summaryrefslogtreecommitdiff
path: root/fw/cdc-dials/Drivers/CMSIS/DSP/DSP_Lib_TestSuite/RefLibs/src/FilteringFunctions/lms.c
diff options
context:
space:
mode:
Diffstat (limited to 'fw/cdc-dials/Drivers/CMSIS/DSP/DSP_Lib_TestSuite/RefLibs/src/FilteringFunctions/lms.c')
-rw-r--r--fw/cdc-dials/Drivers/CMSIS/DSP/DSP_Lib_TestSuite/RefLibs/src/FilteringFunctions/lms.c695
1 files changed, 695 insertions, 0 deletions
diff --git a/fw/cdc-dials/Drivers/CMSIS/DSP/DSP_Lib_TestSuite/RefLibs/src/FilteringFunctions/lms.c b/fw/cdc-dials/Drivers/CMSIS/DSP/DSP_Lib_TestSuite/RefLibs/src/FilteringFunctions/lms.c
new file mode 100644
index 0000000..fee99f9
--- /dev/null
+++ b/fw/cdc-dials/Drivers/CMSIS/DSP/DSP_Lib_TestSuite/RefLibs/src/FilteringFunctions/lms.c
@@ -0,0 +1,695 @@
+#include "ref.h"
+
+void ref_lms_f32(
+ const arm_lms_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pRef,
+ float32_t * pOut,
+ float32_t * pErr,
+ uint32_t blockSize)
+{
+ float32_t *pState = S->pState; /* State pointer */
+ float32_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ float32_t *pStateCurnt; /* Points to the current sample of the state */
+ float32_t mu = S->mu; /* Adaptive factor */
+ uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
+ uint32_t i, blkCnt; /* Loop counters */
+ float32_t sum, e, d; /* accumulator, error, reference data sample */
+ float32_t w = 0.0f; /* weight factor */
+
+ e = 0.0f;
+ d = 0.0f;
+
+ /* S->pState points to state array which contains previous frame (numTaps - 1) samples */
+ /* pStateCurnt points to the location where the new input data should be written */
+ pStateCurnt = &(S->pState[numTaps - 1U]);
+
+ blkCnt = blockSize;
+
+ while (blkCnt > 0U)
+ {
+ /* Copy the new input sample into the state buffer */
+ *pStateCurnt++ = *pSrc++;
+
+ /* Set the accumulator to zero */
+ sum = 0.0f;
+
+ for(i=0;i<numTaps;i++)
+ { /* Perform the multiply-accumulate */
+ sum += pState[i] * pCoeffs[i];
+ }
+
+ /* The result is stored in the destination buffer. */
+ *pOut++ = sum;
+
+ /* Compute and store error */
+ d = *pRef++;
+ e = d - sum;
+ *pErr++ = e;
+
+ /* Weighting factor for the LMS version */
+ w = e * mu;
+
+ for(i=0;i<numTaps;i++)
+ { /* Perform the multiply-accumulate */
+ pCoeffs[i] += w * pState[i];
+ }
+
+ /* Advance state pointer by 1 for the next sample */
+ pState++;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* Processing is complete. Now copy the last numTaps - 1 samples to the
+ * start of the state buffer. This prepares the state buffer for the
+ * next function call. */
+ for(i=0;i<numTaps-1;i++)
+ {
+ S->pState[i] = pState[i];
+ }
+}
+
+void ref_lms_norm_f32(
+ arm_lms_norm_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pRef,
+ float32_t * pOut,
+ float32_t * pErr,
+ uint32_t blockSize)
+{
+ float32_t *pState = S->pState; /* State pointer */
+ float32_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ float32_t *pStateCurnt; /* Points to the current sample of the state */
+ float32_t mu = S->mu; /* Adaptive factor */
+ uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
+ uint32_t i, blkCnt; /* Loop counters */
+ float32_t energy; /* Energy of the input */
+ float32_t sum, e, d; /* accumulator, error, reference data sample */
+ float32_t w, x0, in; /* weight factor, temporary variable to hold input sample and state */
+
+ /* Initializations of error, difference, Coefficient update */
+ e = 0.0f;
+ d = 0.0f;
+ w = 0.0f;
+
+ energy = S->energy;
+ x0 = S->x0;
+
+ /* S->pState points to buffer which contains previous frame (numTaps - 1) samples */
+ /* pStateCurnt points to the location where the new input data should be written */
+ pStateCurnt = &(S->pState[numTaps - 1U]);
+
+ for(blkCnt = blockSize; blkCnt > 0U; blkCnt--)
+ {
+ /* Copy the new input sample into the state buffer */
+ *pStateCurnt++ = *pSrc;
+
+ /* Read the sample from input buffer */
+ in = *pSrc++;
+
+ /* Update the energy calculation */
+ energy -= x0 * x0;
+ energy += in * in;
+
+ /* Set the accumulator to zero */
+ sum = 0.0f;
+
+ for(i=0;i<numTaps;i++)
+ { /* Perform the multiply-accumulate */
+ sum += pState[i] * pCoeffs[i];
+ }
+
+ /* The result in the accumulator is stored in the destination buffer. */
+ *pOut++ = sum;
+
+ /* Compute and store error */
+ d = *pRef++;
+ e = d - sum;
+ *pErr++ = e;
+
+ /* Calculation of Weighting factor for updating filter coefficients */
+ /* epsilon value 0.000000119209289f */
+ w = e * mu / (energy + 0.000000119209289f);
+
+ for(i=0;i<numTaps;i++)
+ {
+ /* Perform the multiply-accumulate */
+ pCoeffs[i] += w * pState[i];
+ }
+
+ x0 = *pState;
+
+ /* Advance state pointer by 1 for the next sample */
+ pState++;
+ }
+
+ S->energy = energy;
+ S->x0 = x0;
+
+ /* Processing is complete. Now copy the last numTaps - 1 samples to the
+ * start of the state buffer. This prepares the state buffer for the
+ * next function call. */
+ for(i=0;i<numTaps-1;i++)
+ {
+ S->pState[i] = pState[i];
+ }
+}
+
+void ref_lms_q31(
+ const arm_lms_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pRef,
+ q31_t * pOut,
+ q31_t * pErr,
+ uint32_t blockSize)
+{
+ q31_t *pState = S->pState; /* State pointer */
+ uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
+ q31_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ q31_t *pStateCurnt; /* Points to the current sample of the state */
+ q31_t mu = S->mu; /* Adaptive factor */
+ q31_t *px; /* Temporary pointer for state */
+ q31_t *pb; /* Temporary pointer for coefficient buffer */
+ uint32_t tapCnt, blkCnt; /* Loop counters */
+ q63_t acc; /* Accumulator */
+ q31_t e = 0; /* error of data sample */
+ q31_t alpha; /* Intermediate constant for taps update */
+ q31_t coef; /* Temporary variable for coef */
+ q31_t acc_l, acc_h; /* temporary input */
+ uint32_t uShift = (uint32_t)S->postShift + 1;
+ uint32_t lShift = 32U - uShift; /* Shift to be applied to the output */
+
+ /* S->pState points to buffer which contains previous frame (numTaps - 1) samples */
+ /* pStateCurnt points to the location where the new input data should be written */
+ pStateCurnt = &(S->pState[(numTaps - 1U)]);
+
+ for(blkCnt = blockSize; blkCnt > 0U; blkCnt--)
+ {
+ /* Copy the new input sample into the state buffer */
+ *pStateCurnt++ = *pSrc++;
+
+ /* Initialize pState pointer */
+ px = pState;
+
+ /* Initialize pCoeffs pointer */
+ pb = pCoeffs;
+
+ /* Set the accumulator to zero */
+ acc = 0;
+
+ /* Loop over numTaps number of values */
+ tapCnt = numTaps;
+
+ while (tapCnt > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ acc += (q63_t)(*px++) * (*pb++);
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Converting the result to 1.31 format */
+ /* Store the result from accumulator into the destination buffer. */
+ /* Calc lower part of acc */
+ acc_l = acc & 0xffffffff;
+
+ /* Calc upper part of acc */
+ acc_h = (acc >> 32) & 0xffffffff;
+
+ acc = (uint32_t)acc_l >> lShift | acc_h << uShift;
+
+ *pOut++ = (q31_t)acc;
+
+ /* Compute and store error */
+ e = *pRef++ - (q31_t)acc;
+
+ *pErr++ = (q31_t)e;
+
+ /* Weighting factor for the LMS version */
+ alpha = (q31_t)(((q63_t)e * mu) >> 31);
+
+ /* Initialize pState pointer */
+ /* Advance state pointer by 1 for the next sample */
+ px = pState++;
+
+ /* Initialize pCoeffs pointer */
+ pb = pCoeffs;
+
+ /* Loop over numTaps number of values */
+ tapCnt = numTaps;
+
+ while (tapCnt > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ coef = (q31_t)(((q63_t) alpha * (*px++)) >> 32);
+ *pb = ref_sat_q31((q63_t)*pb + (coef << 1));
+ pb++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+ }
+
+ /* Processing is complete. Now copy the last numTaps - 1 samples to the
+ start of the state buffer. This prepares the state buffer for the
+ next function call. */
+
+ /* Points to the start of the pState buffer */
+ pStateCurnt = S->pState;
+
+ /* Copy (numTaps - 1U) samples */
+ tapCnt = numTaps - 1;
+
+ /* Copy the data */
+ while (tapCnt > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+}
+
+void ref_lms_norm_q31(
+ arm_lms_norm_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pRef,
+ q31_t * pOut,
+ q31_t * pErr,
+ uint32_t blockSize)
+{
+ q31_t *pState = S->pState; /* State pointer */
+ q31_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ q31_t *pStateCurnt; /* Points to the current sample of the state */
+ q31_t *px, *pb; /* Temporary pointers for state and coefficient buffers */
+ q31_t mu = S->mu; /* Adaptive factor */
+ uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
+ uint32_t tapCnt, blkCnt; /* Loop counters */
+ q63_t energy; /* Energy of the input */
+ q63_t acc; /* Accumulator */
+ q31_t e = 0, d = 0; /* error, reference data sample */
+ q31_t w = 0, in; /* weight factor and state */
+ q31_t x0; /* temporary variable to hold input sample */
+ q63_t errorXmu; /* Temporary variables to store error and mu product and reciprocal of energy */
+ q31_t coef; /* Temporary variable for coef */
+ q31_t acc_l, acc_h; /* temporary input */
+ uint32_t uShift = ((uint32_t) S->postShift + 1U);
+ uint32_t lShift = 32U - uShift; /* Shift to be applied to the output */
+
+ energy = S->energy;
+ x0 = S->x0;
+
+ /* S->pState points to buffer which contains previous frame (numTaps - 1) samples */
+ /* pStateCurnt points to the location where the new input data should be written */
+ pStateCurnt = &(S->pState[(numTaps - 1U)]);
+
+ for(blkCnt = blockSize; blkCnt > 0U; blkCnt--)
+ {
+
+ /* Copy the new input sample into the state buffer */
+ *pStateCurnt++ = *pSrc;
+
+ /* Initialize pState pointer */
+ px = pState;
+
+ /* Initialize pCoeffs pointer */
+ pb = pCoeffs;
+
+ /* Read the sample from input buffer */
+ in = *pSrc++;
+
+ /* Update the energy calculation */
+ energy = (q31_t)((((q63_t)energy << 32) - (((q63_t)x0 * x0) << 1)) >> 32) & 0xffffffff;
+ energy = (q31_t)(((((q63_t)in * in) << 1) + ((q63_t)energy << 32)) >> 32) & 0xffffffff;
+
+ /* Set the accumulator to zero */
+ acc = 0;
+
+ /* Loop over numTaps number of values */
+ tapCnt = numTaps;
+
+ while (tapCnt > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ acc += ((q63_t) (*px++)) * (*pb++);
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Converting the result to 1.31 format */
+ /* Calc lower part of acc */
+ acc_l = acc & 0xffffffff;
+
+ /* Calc upper part of acc */
+ acc_h = (acc >> 32) & 0xffffffff;
+
+ acc = (uint32_t)acc_l >> lShift | acc_h << uShift;
+
+ /* Store the result from accumulator into the destination buffer. */
+ *pOut++ = (q31_t)acc;
+
+ /* Compute and store error */
+ d = *pRef++;
+ e = d - (q31_t)acc;
+ *pErr++ = e;
+
+ /* Calculation of product of (e * mu) */
+ errorXmu = (q63_t)e * mu;
+
+ /* Weighting factor for the normalized version */
+ w = ref_sat_q31(errorXmu / (energy + DELTA_Q31));
+
+ /* Initialize pState pointer */
+ px = pState;
+
+ /* Initialize coeff pointer */
+ pb = pCoeffs;
+
+ /* Loop over numTaps number of values */
+ tapCnt = numTaps;
+
+ while (tapCnt > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ /* coef is in 2.30 format */
+ coef = (q31_t)(((q63_t)w * (*px++)) >> 32);
+ /* get coef in 1.31 format by left shifting */
+ *pb = ref_sat_q31((q63_t)*pb + (coef << 1U));
+ /* update coefficient buffer to next coefficient */
+ pb++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Read the sample from state buffer */
+ x0 = *pState;
+
+ /* Advance state pointer by 1 for the next sample */
+ pState++;
+ }
+
+ /* Save energy and x0 values for the next frame */
+ S->energy = (q31_t)energy;
+ S->x0 = x0;
+
+ /* Processing is complete. Now copy the last numTaps - 1 samples to the
+ start of the state buffer. This prepares the state buffer for the
+ next function call. */
+
+ /* Points to the start of the pState buffer */
+ pStateCurnt = S->pState;
+
+ /* Loop for (numTaps - 1U) samples copy */
+ tapCnt = numTaps - 1;
+
+ /* Copy the remaining q31_t data */
+ while (tapCnt > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+}
+
+void ref_lms_q15(
+ const arm_lms_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pRef,
+ q15_t * pOut,
+ q15_t * pErr,
+ uint32_t blockSize)
+{
+ q15_t *pState = S->pState; /* State pointer */
+ uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
+ q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ q15_t *pStateCurnt; /* Points to the current sample of the state */
+ q15_t mu = S->mu; /* Adaptive factor */
+ q15_t *px; /* Temporary pointer for state */
+ q15_t *pb; /* Temporary pointer for coefficient buffer */
+ uint32_t tapCnt, blkCnt; /* Loop counters */
+ q63_t acc; /* Accumulator */
+ q15_t e = 0; /* error of data sample */
+ q15_t alpha; /* Intermediate constant for taps update */
+ q31_t coef; /* Teporary variable for coefficient */
+ q31_t acc_l, acc_h;
+ int32_t lShift = 15 - (int32_t)S->postShift; /* Post shift */
+ int32_t uShift = 32 - lShift;
+
+ /* S->pState points to buffer which contains previous frame (numTaps - 1) samples */
+ /* pStateCurnt points to the location where the new input data should be written */
+ pStateCurnt = &(S->pState[(numTaps - 1U)]);
+
+ for(blkCnt = blockSize; blkCnt > 0U; blkCnt--)
+ {
+ /* Copy the new input sample into the state buffer */
+ *pStateCurnt++ = *pSrc++;
+
+ /* Initialize pState pointer */
+ px = pState;
+
+ /* Initialize pCoeffs pointer */
+ pb = pCoeffs;
+
+ /* Set the accumulator to zero */
+ acc = 0;
+
+ /* Loop over numTaps number of values */
+ tapCnt = numTaps;
+
+ while (tapCnt > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ acc += (q63_t)((q31_t)(*px++) * (*pb++));
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Calc lower part of acc */
+ acc_l = acc & 0xffffffff;
+
+ /* Calc upper part of acc */
+ acc_h = (acc >> 32) & 0xffffffff;
+
+ /* Apply shift for lower part of acc and upper part of acc */
+ acc = (uint32_t)acc_l >> lShift | acc_h << uShift;
+
+ /* Converting the result to 1.15 format and saturate the output */
+ acc = ref_sat_q15(acc);
+
+ /* Store the result from accumulator into the destination buffer. */
+ *pOut++ = (q15_t)acc;
+
+ /* Compute and store error */
+ e = *pRef++ - (q15_t)acc;
+
+ *pErr++ = (q15_t)e;
+
+ /* Compute alpha i.e. intermediate constant for taps update */
+ alpha = (q15_t)(((q31_t)e * mu) >> 15);
+
+ /* Initialize pState pointer */
+ /* Advance state pointer by 1 for the next sample */
+ px = pState++;
+
+ /* Initialize pCoeffs pointer */
+ pb = pCoeffs;
+
+ /* Loop over numTaps number of values */
+ tapCnt = numTaps;
+
+ while (tapCnt > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ coef = (q31_t) * pb + (((q31_t) alpha * (*px++)) >> 15);
+ *pb++ = (q15_t) ref_sat_q15(coef);
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+ }
+
+ /* Processing is complete. Now copy the last numTaps - 1 samples to the
+ start of the state buffer. This prepares the state buffer for the
+ next function call. */
+
+ /* Points to the start of the pState buffer */
+ pStateCurnt = S->pState;
+
+ /* Copy (numTaps - 1U) samples */
+ tapCnt = numTaps - 1;
+
+ /* Copy the data */
+ while (tapCnt > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+}
+
+void ref_lms_norm_q15(
+ arm_lms_norm_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pRef,
+ q15_t * pOut,
+ q15_t * pErr,
+ uint32_t blockSize)
+{
+ q15_t *pState = S->pState; /* State pointer */
+ q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ q15_t *pStateCurnt; /* Points to the current sample of the state */
+ q15_t *px, *pb; /* Temporary pointers for state and coefficient buffers */
+ q15_t mu = S->mu; /* Adaptive factor */
+ uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
+ uint32_t tapCnt, blkCnt; /* Loop counters */
+ q31_t energy; /* Energy of the input */
+ q63_t acc; /* Accumulator */
+ q15_t e = 0, d = 0; /* error, reference data sample */
+ q15_t w = 0, in; /* weight factor and state */
+ q15_t x0; /* temporary variable to hold input sample */
+ q15_t errorXmu, oneByEnergy; /* Temporary variables to store error and mu product and reciprocal of energy */
+ //q31_t errorXmu; /* Temporary variables to store error and mu product and reciprocal of energy */
+ q15_t postShift; /* Post shift to be applied to weight after reciprocal calculation */
+ q31_t coef; /* Teporary variable for coefficient */
+ q31_t acc_l, acc_h;
+ int32_t lShift = 15 - (int32_t)S->postShift; /* Post shift */
+ int32_t uShift = 32 - lShift;
+
+ energy = S->energy;
+ x0 = S->x0;
+
+ /* S->pState points to buffer which contains previous frame (numTaps - 1) samples */
+ /* pStateCurnt points to the location where the new input data should be written */
+ pStateCurnt = &(S->pState[(numTaps - 1U)]);
+
+ for(blkCnt = blockSize; blkCnt > 0U; blkCnt--)
+ {
+ /* Copy the new input sample into the state buffer */
+ *pStateCurnt++ = *pSrc;
+
+ /* Initialize pState pointer */
+ px = pState;
+
+ /* Initialize pCoeffs pointer */
+ pb = pCoeffs;
+
+ /* Read the sample from input buffer */
+ in = *pSrc++;
+
+ /* Update the energy calculation */
+ energy -= (((q31_t)x0 * x0) >> 15) & 0xffff;
+ energy += (((q31_t)in * in) >> 15) & 0xffff;
+
+ /* Set the accumulator to zero */
+ acc = 0;
+
+ /* Loop over numTaps number of values */
+ tapCnt = numTaps;
+
+ while (tapCnt > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ acc += (q31_t)*px++ * (*pb++);
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Calc lower part of acc */
+ acc_l = acc & 0xffffffff;
+
+ /* Calc upper part of acc */
+ acc_h = (acc >> 32) & 0xffffffff;
+
+ /* Apply shift for lower part of acc and upper part of acc */
+ acc = (uint32_t) acc_l >> lShift | acc_h << uShift;
+
+ /* Converting the result to 1.15 format and saturate the output */
+ acc = ref_sat_q15(acc);
+
+ /* Store the result from accumulator into the destination buffer. */
+ *pOut++ = (q15_t) acc;
+
+ /* Compute and store error */
+ d = *pRef++;
+ e = d - (q15_t) acc;
+ *pErr++ = e;
+
+#if 0
+ /* Calculation of e * mu value */
+ errorXmu = (q31_t) e * mu;
+
+ /* Calculation of (e * mu) /energy value */
+ acc = errorXmu / (energy + DELTA_Q15);
+#endif
+
+ /* Calculation of 1/energy */
+ postShift = arm_recip_q15((q15_t) energy + DELTA_Q15,
+ &oneByEnergy, S->recipTable);
+
+ /* Calculation of e * mu value */
+ errorXmu = (q15_t) (((q31_t) e * mu) >> 15);
+
+ /* Calculation of (e * mu) * (1/energy) value */
+ acc = (((q31_t) errorXmu * oneByEnergy) >> (15 - postShift));
+
+ /* Weighting factor for the normalized version */
+ w = ref_sat_q15((q31_t)acc);
+
+ /* Initialize pState pointer */
+ px = pState;
+
+ /* Initialize coeff pointer */
+ pb = pCoeffs;
+
+ /* Loop over numTaps number of values */
+ tapCnt = numTaps;
+
+ while (tapCnt > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ coef = *pb + (((q31_t)w * (*px++)) >> 15);
+ *pb++ = ref_sat_q15(coef);
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Read the sample from state buffer */
+ x0 = *pState;
+
+ /* Advance state pointer by 1 for the next sample */
+ pState = pState + 1U;
+ }
+
+ /* Save energy and x0 values for the next frame */
+ S->energy = (q15_t)energy;
+ S->x0 = x0;
+
+ /* Processing is complete. Now copy the last numTaps - 1 samples to the
+ satrt of the state buffer. This prepares the state buffer for the
+ next function call. */
+
+ /* Points to the start of the pState buffer */
+ pStateCurnt = S->pState;
+
+ /* copy (numTaps - 1U) data */
+ tapCnt = numTaps - 1;
+
+ /* copy data */
+ while (tapCnt > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+}