aboutsummaryrefslogtreecommitdiff
path: root/firmware/main.c
blob: b1af4a56a72811b0b2f26c8d89447715da849aa3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
/* Copyright (c) 2012 Texas Instruments Incorporated.  All rights reserved.
 * Software License Agreement
 * 
 * Texas Instruments (TI) is supplying this software for use solely and
 * exclusively on TI's microcontroller products. The software is owned by
 * TI and/or its suppliers, and is protected under applicable copyright
 * laws. You may not combine this software with "viral" open-source
 * software in order to form a larger program.
 * 
 * THIS SOFTWARE IS PROVIDED "AS IS" AND WITH ALL FAULTS.
 * NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT
 * NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. TI SHALL NOT, UNDER ANY
 * CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
 * DAMAGES, FOR ANY REASON WHATSOEVER.
 * 
 * This is part of revision 9453 of the EK-LM4F120XL Firmware Package.
 */

#include "inc/hw_ints.h"
#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "inc/hw_ssi.h"
#include "driverlib/debug.h"
#include "driverlib/fpu.h"
#include "driverlib/gpio.h"
#include "driverlib/interrupt.h"
#include "driverlib/pin_map.h"
#include "driverlib/sysctl.h"
#include "driverlib/systick.h"
#include "driverlib/timer.h"
#include "driverlib/uart.h"
#include "driverlib/rom.h"
#include "driverlib/udma.h"
#include "driverlib/ssi.h"
#include "usblib/usblib.h"
#include "usblib/usb-ids.h"
#include "usblib/device/usbdevice.h"
#include "usblib/device/usbdbulk.h"
#include "utils/uartstdio.h"
#include "utils/ustdlib.h"
#include "usb_bulk_structs.h"

#define CRATE_WIDTH		5
#define CRATE_HEIGHT	4
#define CRATES_X		4
#define CRATES_Y		2
#define BUS_COUNT		4
#define BYTES_PER_PIXEL	3
#define BUS_ROWS		(CRATES_Y*CRATE_HEIGHT)
#define BUS_COLUMNS		(CRATES_X*CRATE_WIDTH)
#define CRATES_PER_BUS	(CRATES_X*CRATES_Y)
#define CRATE_SIZE		(CRATE_WIDTH*CRATE_HEIGHT)
#define BUS_SIZE		(CRATES_PER_BUS*CRATE_SIZE*BYTES_PER_PIXEL)
unsigned const char const BOTTLE_MAP[CRATE_SIZE] = {
	 0,  1,  2,  3,  4,
	19,  8,  7,  6,  5,
	18,  9, 10, 11, 12,
	17, 16, 15, 14, 13
};

unsigned const char const CRATE_MAP[CRATES_PER_BUS] = {
	6, 4, 2, 0,
	7, 5, 3, 1
};

#define SYSTICKS_PER_SECOND     100
#define SYSTICK_PERIOD_MS       (1000 / SYSTICKS_PER_SECOND)

unsigned char framebuffer[BUS_COUNT*BUS_SIZE];
/* Kick off DMA from RAM to SPI interfaces */
void start_dma(void);
unsigned long framebuffer_read(void *fb, unsigned long len);

unsigned char ucControlTable[1024] __attribute__ ((aligned(1024)));

volatile unsigned long g_ulSysTickCount = 0;

#ifdef DEBUG
unsigned long g_ulUARTRxErrors = 0;
#endif

//Debug output is available via UART0 if DEBUG is defined during build.
#ifdef DEBUG
//Map all debug print calls to UARTprintf in debug builds.
#define DEBUG_PRINT UARTprintf
#else
//Compile out all debug print calls in release builds.
#define DEBUG_PRINT while(0) ((int (*)(char *, ...))0)
#endif

volatile unsigned long g_ulFlags = 0;
char *g_pcStatus;
static volatile tBoolean g_bUSBConfigured = false;

void SysTickIntHandler(void){
    g_ulSysTickCount++;
}

unsigned long RxHandler(void *pvCBData, unsigned long ulEvent, unsigned long ulMsgValue, void *pvMsgData) {
    switch(ulEvent) {
        case USB_EVENT_CONNECTED:
            g_bUSBConfigured = true;
            UARTprintf("Host connected.\n");
            USBBufferFlush(&g_sRxBuffer);
            break;
        case USB_EVENT_DISCONNECTED:
            g_bUSBConfigured = false;
            UARTprintf("Host disconnected.\n");
            break;
        case USB_EVENT_RX_AVAILABLE:
			UARTprintf("Handling host data.\n\n");
			return framebuffer_read(pvMsgData, ulMsgValue);
        case USB_EVENT_SUSPEND:
        case USB_EVENT_RESUME:
            break;
        default:
            break;
    }
    return 0;
}

unsigned long framebuffer_read(void *fb, unsigned long len){
	if(len != BUS_COUNT*BUS_COLUMNS*BUS_ROWS)
		return 0;
	for(unsigned int bus=0; bus<BUS_COUNT; bus++){
		for(unsigned int x=0; x<BUS_COLUMNS; x++){
			for(unsigned int y=0; x<BUS_ROWS; y++){
				unsigned int crate = CRATE_MAP[x/CRATE_WIDTH + (y/CRATE_HEIGHT)*CRATES_X];
				unsigned int bottle = BOTTLE_MAP[x%CRATE_WIDTH + (y%CRATE_HEIGHT)*CRATE_WIDTH];
				//Copy r, g and b data
				framebuffer[(bus*BUS_SIZE + crate*CRATE_SIZE + bottle)*3]     =
					((unsigned char *)fb)[(bus*BUS_SIZE + y*BUS_COLUMNS + x)*3];
				framebuffer[(bus*BUS_SIZE + crate*CRATE_SIZE + bottle)*3 + 1] =
					((unsigned char *)fb)[(bus*BUS_SIZE + y*BUS_COLUMNS + x)*3 + 1];
				framebuffer[(bus*BUS_SIZE + crate*CRATE_SIZE + bottle)*3 + 2] =
					((unsigned char *)fb)[(bus*BUS_SIZE + y*BUS_COLUMNS + x)*3 + 2];
			}
		}
	}
	UARTprintf("Starting DMA.\n\n");
	start_dma();
	return len;
}

void start_dma(void){
	ROM_SSIDMAEnable(SSI0_BASE, SSI_DMA_TX);
	ROM_SSIDMAEnable(SSI1_BASE, SSI_DMA_TX);
	ROM_SSIDMAEnable(SSI2_BASE, SSI_DMA_TX);
	ROM_SSIDMAEnable(SSI3_BASE, SSI_DMA_TX);
}

int main(void){
	/* Enable lazy stacking for interrupt handlers.  This allows floating-point instructions to be used within interrupt
	 * handlers, but at the expense of extra stack usage. */
    ROM_FPULazyStackingEnable();

    //Set clock to PLL at 50MHz
    ROM_SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN |
                       SYSCTL_XTAL_16MHZ);

    //Configure UART0 pins
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);
    GPIOPinConfigure(GPIO_PA0_U0RX);
    GPIOPinConfigure(GPIO_PA1_U0TX);
    ROM_GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO_PIN_0 | GPIO_PIN_1);

    //Enable the GPIO pins for the LED (PF2 & PF3).  
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);
    ROM_GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_3|GPIO_PIN_2);

    UARTStdioInit(0);
    UARTprintf("Booting...\n\n");

    g_bUSBConfigured = false;

    //Enable the GPIO peripheral used for USB, and configure the USB pins.
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOD);
    ROM_GPIOPinTypeUSBAnalog(GPIO_PORTD_BASE, GPIO_PIN_4 | GPIO_PIN_5);

    //Enable the system tick.
    ROM_SysTickPeriodSet(ROM_SysCtlClockGet() / SYSTICKS_PER_SECOND);
    ROM_SysTickIntEnable();
    ROM_SysTickEnable();

	//Configure USB
    USBBufferInit((tUSBBuffer *)&g_sRxBuffer);
    USBStackModeSet(0, USB_MODE_FORCE_DEVICE, 0);
    USBDBulkInit(0, (tUSBDBulkDevice *)&g_sBulkDevice);

	//Configure SSI0..3 for the ws2801's SPI-like protocol
	ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_SSI0);
	ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_SSI1);
	ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_SSI2);
	ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_SSI3);

    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);
    GPIOPinConfigure(GPIO_PA2_SSI0CLK);
    GPIOPinConfigure(GPIO_PA5_SSI0TX);
	ROM_GPIOPinTypeSSI(GPIO_PORTA_BASE, GPIO_PIN_2 | GPIO_PIN_5);

    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOB);
    GPIOPinConfigure(GPIO_PB4_SSI2CLK);
    GPIOPinConfigure(GPIO_PB7_SSI2TX);
	ROM_GPIOPinTypeSSI(GPIO_PORTB_BASE, GPIO_PIN_4 | GPIO_PIN_7);

    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOD);
    GPIOPinConfigure(GPIO_PD0_SSI3CLK);
    GPIOPinConfigure(GPIO_PD3_SSI3TX);
	ROM_GPIOPinTypeSSI(GPIO_PORTD_BASE, GPIO_PIN_0 | GPIO_PIN_3);

    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);
    GPIOPinConfigure(GPIO_PF2_SSI1CLK);
    GPIOPinConfigure(GPIO_PF1_SSI1TX);
	ROM_GPIOPinTypeSSI(GPIO_PORTF_BASE, GPIO_PIN_0 | GPIO_PIN_3);

	SSIConfigSetExpClk(SSI0_BASE, SysCtlClockGet(), SSI_FRF_MOTO_MODE_0, SSI_MODE_MASTER, 2000000, 8);
	SSIConfigSetExpClk(SSI1_BASE, SysCtlClockGet(), SSI_FRF_MOTO_MODE_0, SSI_MODE_MASTER, 2000000, 8);
	SSIConfigSetExpClk(SSI2_BASE, SysCtlClockGet(), SSI_FRF_MOTO_MODE_0, SSI_MODE_MASTER, 2000000, 8);
	SSIConfigSetExpClk(SSI3_BASE, SysCtlClockGet(), SSI_FRF_MOTO_MODE_0, SSI_MODE_MASTER, 2000000, 8);

	//Configure the µDMA controller for use by the SPI interface
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_UDMA);
    ROM_SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_UDMA);
    ROM_IntEnable(INT_UDMAERR); // Enable µDMA error interrupt
    ROM_uDMAEnable();
    ROM_uDMAControlBaseSet(ucControlTable);
    //Put the µDMA attributes in a known state. These should already be disabled by default.
    ROM_uDMAChannelAttributeDisable(UDMA_CH11_SSI0TX, UDMA_ATTR_ALTSELECT | UDMA_ATTR_HIGH_PRIORITY | UDMA_ATTR_REQMASK);
    ROM_uDMAChannelAttributeDisable(UDMA_CH11_SSI1TX, UDMA_ATTR_ALTSELECT | UDMA_ATTR_HIGH_PRIORITY | UDMA_ATTR_REQMASK);
    ROM_uDMAChannelAttributeDisable(UDMA_CH13_SSI2TX, UDMA_ATTR_ALTSELECT | UDMA_ATTR_HIGH_PRIORITY | UDMA_ATTR_REQMASK);
    ROM_uDMAChannelAttributeDisable(UDMA_CH15_SSI3TX, UDMA_ATTR_ALTSELECT | UDMA_ATTR_HIGH_PRIORITY | UDMA_ATTR_REQMASK);
	/* Set the USEBURST attribute for the uDMA UART TX channel.  This will force the controller to always use a burst
	 * when transferring data from the TX buffer to the UART.  This is somewhat more effecient bus usage than the
	 * default which allows single or burst transfers. */
    ROM_uDMAChannelAttributeEnable(UDMA_CH11_SSI0TX, UDMA_ATTR_USEBURST);
    ROM_uDMAChannelAttributeEnable(UDMA_CH11_SSI1TX, UDMA_ATTR_USEBURST);
    ROM_uDMAChannelAttributeEnable(UDMA_CH13_SSI2TX, UDMA_ATTR_USEBURST);
    ROM_uDMAChannelAttributeEnable(UDMA_CH15_SSI3TX, UDMA_ATTR_USEBURST);
	/* Configure the SSI Tx µDMA Channel to transfer from RAM to TX FIFO. The arbitration size is set to 4, which
	 * matches the SSI TX FIFO µDMA trigger threshold. */
	ROM_uDMAChannelControlSet(UDMA_CH11_SSI0TX, UDMA_SIZE_8 | UDMA_SRC_INC_8 | UDMA_DST_INC_NONE | UDMA_ARB_4);
    ROM_uDMAChannelTransferSet(UDMA_CH11_SSI0TX | UDMA_PRI_SELECT, UDMA_MODE_BASIC, framebuffer, (void *)(SSI0_BASE + SSI_O_DR), BUS_SIZE);
    ROM_uDMAChannelEnable(UDMA_CH11_SSI0TX);

	ROM_uDMAChannelControlSet(UDMA_CH11_SSI1TX, UDMA_SIZE_8 | UDMA_SRC_INC_8 | UDMA_DST_INC_NONE | UDMA_ARB_4);
    ROM_uDMAChannelTransferSet(UDMA_CH11_SSI1TX | UDMA_PRI_SELECT, UDMA_MODE_BASIC, framebuffer+BUS_SIZE, (void *)(SSI0_BASE + SSI_O_DR), BUS_SIZE);
    ROM_uDMAChannelEnable(UDMA_CH11_SSI1TX);

	ROM_uDMAChannelControlSet(UDMA_CH13_SSI2TX, UDMA_SIZE_8 | UDMA_SRC_INC_8 | UDMA_DST_INC_NONE | UDMA_ARB_4);
    ROM_uDMAChannelTransferSet(UDMA_CH13_SSI2TX | UDMA_PRI_SELECT, UDMA_MODE_BASIC, framebuffer+BUS_SIZE*2, (void *)(SSI0_BASE + SSI_O_DR), BUS_SIZE);
    ROM_uDMAChannelEnable(UDMA_CH13_SSI2TX);

	ROM_uDMAChannelControlSet(UDMA_CH15_SSI3TX, UDMA_SIZE_8 | UDMA_SRC_INC_8 | UDMA_DST_INC_NONE | UDMA_ARB_4);
    ROM_uDMAChannelTransferSet(UDMA_CH15_SSI3TX | UDMA_PRI_SELECT, UDMA_MODE_BASIC, framebuffer+BUS_SIZE*3, (void *)(SSI0_BASE + SSI_O_DR), BUS_SIZE);
    ROM_uDMAChannelEnable(UDMA_CH15_SSI3TX);

	//Enable the SSIs after configuring anything around them.
	SSIEnable(SSI0_BASE);
	SSIEnable(SSI1_BASE);
	SSIEnable(SSI2_BASE);
	SSIEnable(SSI3_BASE);

	UARTprintf("Booted.\n");

    while(1){
    }
}