1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
|
#include <global.h>
#include "microcobs.h"
#include "crc32.h"
struct __attribute__((packed)) ll_pkt_trailer {
uint32_t crc32;
};
struct __attribute__((packed)) req_pkt {
uint32_t req_seq;
struct ll_pkt_trailer trailer;
};
struct __attribute__((packed)) res_pkt {
uint32_t req_seq;
uint32_t res_seq;
struct ll_pkt_trailer trailer;
};
struct tx_state {
uint8_t *tx_char;
int remaining_bytes;
};
static crc32_t pkt_crc(void *pkt, struct ll_pkt_trailer *trailer);
crc32_t pkt_crc(void *pkt, struct ll_pkt_trailer *trailer) {
crc32_t crc = crc32_reset();
for (uint8_t *in = (uint8_t *)pkt; in < (uint8_t *)trailer; in++) {
crc = crc32_update(crc, *in);
}
return crc32_finalize(crc);
}
static void packetize(void *pkt, struct ll_pkt_trailer *trailer);
void packetize(void *pkt, struct ll_pkt_trailer *trailer) {
trailer->crc32 = pkt_crc(pkt, trailer);
}
enum mems_regs {
MEMS_REG_CTRL0, /* 0 */
MEMS_REG_CTRL1, /* 1 */
MEMS_REG_CONFIG, /* 2 */
MEMS_REG_STATUS0, /* 3 */
MEMS_REG_STATUS1, /* 4 */
MEMS_REG_STATUS2, /* 5 */
MEMS_REG_CHIP_REVID, /* 6 */
MEMS_REG_ACC_CHX_LOW, /* 7 */
MEMS_REG_ACC_CHX_HIGH, /* 8 */
MEMS_REG_ACC_CHY_LOW, /* 9 */
MEMS_REG_ACC_CHY_HIGH, /* 10 */
MEMS_REG_OSC_COUNTER, /* 11 */
MEMS_REG_ID_SENSOR_TYPE, /* 12 */
MEMS_REG_ID_VEH_MANUF, /* 13 */
MEMS_REG_ID_SENSOR_MANUF, /* 14 */
MEMS_REG_ID_LOT0, /* 15 */
MEMS_REG_ID_LOT1, /* 16 */
MEMS_REG_ID_LOT2, /* 17 */
MEMS_REG_ID_LOT3, /* 18 */
MEMS_REG_ID_WAFER, /* 19 */
MEMS_REG_ID_COOR_X, /* 20 */
MEMS_REG_ID_COOR_Y, /* 21 */
MEMS_REG_RESET, /* 22 */
MEMS_REG_OFF_CHX_HIGH, /* 23 */
MEMS_REG_OFF_CHX_LOW, /* 24 */
MEMS_REG_OFF_CHY_HIGH, /* 25 */
MEMS_REG_OFF_CHY_LOW, /* 26 */
};
uint8_t crc8_calc(uint8_t *data, size_t len) {
int acc = 0;
for (size_t i=0; i<len; i++) {
acc ^= data[i];
for (size_t j=0; j<8; j++) {
acc <<= 1;
if (acc & 0x100) {
acc ^= 0x197; /* 0x100 | poly */
}
}
}
if (acc & 0x100)
asm volatile ("bkpt");
return acc;
}
#define MEMS_OPCODE_Msk 0x3
#define MEMS_OPCODE_Pos 30
#define MEMS_ADDR_Msk 0x1f
#define MEMS_ADDR_Pos 21
#define MEMS_DATA_Msk 0xff
#define MEMS_DATA_Pos 13
#define MEMS_P_Pos 28
#define MEMS_SEN_Pos 29
#define MEMS_MEAS_Pos 12
#define MEMS_MEAS_Msk 0x3fff
bool parity_calc(uint8_t *data, size_t len) {
bool acc = 0;
for (size_t i=0; i<len; i++) {
uint8_t b = data[i];
for (size_t j=0; j<8; j++) {
if (b&1) {
acc = !acc;
}
b >>= 1;
}
}
return acc;
}
uint32_t mems_trx_word(uint32_t data) {
/* CAUTION: ST's SPI peripherals behave differently depending on DR register access size, yet the CMSIS headers
* expose it as an 32-bit uint only. In this case, we actually want a 32-bit access.
*/
uint16_t *dr = (uint16_t *)&SPI1->DR;
*dr = data>>16;
while (SPI1->SR & SPI_SR_BSY)
;
uint32_t out = (*dr) << 16;
*dr = data&0xffff;
while (SPI1->SR & SPI_SR_BSY)
;
out |= *dr;
return out;
}
uint32_t mems_trx_cmd(uint32_t cmd) {
GPIOA->BRR = 1<<15; /* De-assert !CS */
uint8_t bytes[3] = {(cmd>>16)&0xff, (cmd>>8)&0xff, cmd&0xff};
uint8_t crc = crc8_calc(bytes, 3);
int parity = !!parity_calc(bytes, 3);
uint32_t out = mems_trx_word(cmd | (parity<<MEMS_P_Pos) | crc);
GPIOA->BSRR = 1<<15; /* Assert !CS */
return out;
}
void mems_write_reg(int addr, int val) {
addr &= MEMS_ADDR_Msk;
val &= MEMS_DATA_Msk;
(void)mems_trx_cmd((1<<MEMS_OPCODE_Pos) | (addr<<MEMS_ADDR_Pos) | (val<<MEMS_DATA_Pos));
}
uint32_t mems_read_reg(int addr) {
addr &= MEMS_ADDR_Msk;
mems_trx_cmd((3<<MEMS_OPCODE_Pos) | (addr<<MEMS_ADDR_Pos));
for (int i=0; i<2000; i++)
asm volatile ("nop");
uint32_t rv = mems_trx_cmd(3<<MEMS_OPCODE_Pos);
return (rv >> MEMS_DATA_Pos) & MEMS_DATA_Msk;
}
int16_t mems_read_meas(int ch) {
ch &= 3;
mems_trx_cmd((ch<<MEMS_OPCODE_Pos) | (1<<MEMS_SEN_Pos));
for (int i=0; i<2000; i++)
asm volatile ("nop");
uint32_t rv = mems_trx_cmd(3<<MEMS_OPCODE_Pos);
/* shift 14-bit data left to align the MSB with the int16_t's sign bit */
int16_t data = (rv >> MEMS_MEAS_Pos) << 2;
/* Now do an arithmetic division to sign extend */
return data / 4;
}
void mems_spi_init(void) {
SPI1->CR1 = (6<<SPI_CR1_BR_Pos) | SPI_CR1_MSTR | SPI_CR1_SSM | SPI_CR1_SSI;
SPI1->CR2 = (15<<SPI_CR2_DS_Pos);
SPI1->CR1 |= SPI_CR1_SPE;
}
void mems_init(void) {
mems_spi_init();
for (size_t i=0; i<10000; i++) {
asm volatile("nop");
}
/* Take accelerometer out of initialization phase */
mems_write_reg(MEMS_REG_CTRL0, 0x01);
}
int main(void) {
RCC->AHBENR |= RCC_AHBENR_GPIOAEN;
RCC->APB2ENR |= RCC_APB2ENR_USART1EN | RCC_APB2ENR_SPI1EN;
#define AFRL(pin, val) ((val) << ((pin)*4))
#define AFRH(pin, val) ((val) << (((pin)-8)*4))
#define AF(pin) (2<<(2*(pin)))
#define OUT(pin) (1<<(2*(pin)))
#define IN(pin) (0)
#define ANALOG(pin) (3<<(2*(pin)))
#define CLEAR(pin) (3<<(2*(pin)))
/* GPIO pin config:
* A9: USART 1 TX -> LED
* A10: USART 1 RX -> debug
* A15: Accelerometer CS
* A5/6/7: SPI SCK/MISO/MOSI for Accelerometer
*/
GPIOA->MODER &= ~(CLEAR(15)); /* Clear JTAG TDI pin mode */
GPIOA->MODER |= AF(9) | AF(10) | OUT(15) | AF(5) | AF(6) | AF(7);
GPIOA->AFR[0] = AFRL(5, 5) | AFRL(6, 5) | AFRL(7, 5);
GPIOA->AFR[1] = AFRH(9, 7) | AFRH(10, 7);
GPIOA->BSRR = 1<<15; /* De-assert accelerometer !CS */
SystemCoreClockUpdate();
int apb2_clock = SystemCoreClock / APB2_PRESC;
int baudrate = 115200;
USART1->CR1 = USART_CR1_TE | USART_CR1_RE;
USART1->BRR = (apb2_clock + baudrate/2) / baudrate;
USART1->CR2 |= USART_CR2_RXINV; //| USART_CR2_TXINV;
USART1->CR1 |= USART_CR1_UE;
/* FIXME DEUBG */
while (1) {
mems_init();
for (int i=0; i<100000; i++)
asm volatile("nop");
for (int i=0; i<300; i++) {
mems_read_meas(0);
//mems_read_reg(MEMS_REG_ID_SENSOR_TYPE);
for (int i=0; i<10000; i++)
asm volatile("nop");
}
for (int i=0; i<100000; i++)
asm volatile("nop");
}
int req_seq = 0;
int res_seq = 0;
struct req_pkt req_buf = { 0 };
struct tx_state tx_st = { 0 };
struct res_pkt res_buf = { 0 };
uint8_t rx_buf[512];
uint8_t tx_buf[512];
size_t rx_char = 0;
unsigned int rx_overrun = 0;
unsigned int rx_cobs_error = 0;
unsigned int rx_framing_error = 0;
unsigned int rx_crc_error = 0;
USART1->TDR = 0; /* Kick off transmission */
int i = 0;
while (23) {
if (tx_st.remaining_bytes == 0) {
if (i > 100) {
res_buf.req_seq = req_seq;
res_buf.res_seq = res_seq;
res_seq += 1;
packetize(&res_buf, &res_buf.trailer);
tx_st.tx_char = tx_buf;
tx_st.remaining_bytes = cobs_encode((uint8_t *)&res_buf, sizeof(res_buf), tx_buf, sizeof(tx_buf));;
/*
for (int k=0; k < 8; k++)
tx_buf[k] = 255-k;
for (int k=0; k < 8; k++)
tx_buf[8+k] = (k + 1) % 8;
tx_st.remaining_bytes = 16;
*/
i = 0;
} else {
i++;
}
}
if (USART1->ISR & USART_ISR_TXE && tx_st.remaining_bytes > 0) {
USART1->TDR = *(tx_st.tx_char);
tx_st.tx_char += 1;
tx_st.remaining_bytes -= 1;
}
if (USART1->ISR & USART_ISR_ORE)
USART1->ICR = USART_ICR_ORECF;
if (USART1->ISR & USART_ISR_NE)
USART1->ICR = USART_ICR_NCF;
if (USART1->ISR & USART_ISR_FE)
USART1->ICR = USART_ICR_FECF;
if (USART1->ISR & USART_ISR_RXNE) {
uint8_t c = USART1->RDR;
if (!c) {
if (rx_char < sizeof(rx_buf)) {
int rc = cobs_decode(rx_buf, rx_char, (uint8_t *)&req_buf, sizeof(req_buf));
if (rc < 0) {
rx_cobs_error += 1;
} else {
if (rc == sizeof(req_buf)) {
crc32_t check_crc = pkt_crc(&req_buf, &req_buf.trailer);
if (check_crc != req_buf.trailer.crc32 || check_crc == 0 || (int)check_crc == -1) {
rx_crc_error += 1;
} else {
req_seq = req_buf.req_seq;
}
} else {
rx_framing_error += 1;
}
}
}
rx_char = 0;
} else {
if (rx_char < sizeof(rx_buf)) {
rx_buf[rx_char] = c;
rx_char += 1;
} else {
rx_overrun += 1;
}
}
}
}
}
void __libc_init_array (void) __attribute__((weak));
void __libc_init_array ()
{
}
|