summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorjaseg <git@jaseg.de>2021-03-25 12:15:38 +0100
committerjaseg <git@jaseg.de>2021-03-25 12:15:38 +0100
commit2bb9aecfc62cb597155f50b6bf22131ab33cb301 (patch)
treeac7d5fd93cf0f22ecf29db69e423e98fdfbe2273
parent6fc8f236916c10811b8611f46edea4f3be2118b3 (diff)
downloadihsm-2bb9aecfc62cb597155f50b6bf22131ab33cb301.tar.gz
ihsm-2bb9aecfc62cb597155f50b6bf22131ab33cb301.tar.bz2
ihsm-2bb9aecfc62cb597155f50b6bf22131ab33cb301.zip
Update notebook, add frequency meter
-rw-r--r--prototype/fw/freqmeter.py6
-rw-r--r--prototype/sensor-analysis/Accelerometer Data Analysis.ipynb2274
2 files changed, 2198 insertions, 82 deletions
diff --git a/prototype/fw/freqmeter.py b/prototype/fw/freqmeter.py
index 54c1655..430b73f 100644
--- a/prototype/fw/freqmeter.py
+++ b/prototype/fw/freqmeter.py
@@ -12,11 +12,11 @@ count = lambda le_iter: sum(1 for _ in le_iter)
DEFAULT_SAMPLING_RATE = 1e6 # sps
-def sigrok_capture(duration:'seconds'=1, sampling_rate=DEFAULT_SAMPLING_RATE, driver='dreamsourcelab-dslogic', config=None, channel=0):
+def sigrok_capture(duration:'milliseconds', sampling_rate=DEFAULT_SAMPLING_RATE, driver='dreamsourcelab-dslogic', config=None, channel=0):
proc = subprocess.run(['sigrok-cli',
'--driver', driver,
- '--time', f'{duration}s',
+ '--time', f'{duration}ms',
'--config', (f'{config},' if config else '') + f'samplerate={int(sampling_rate/1e3)}k',
'--channels', str(channel),
'--output-format', 'csv'], check=True, stdout=subprocess.PIPE)
@@ -54,7 +54,7 @@ def calc_frequency(intervals, sampling_rate=DEFAULT_SAMPLING_RATE):
if __name__ == '__main__':
while True:
- capture = sigrok_capture()
+ capture = sigrok_capture(1500)
intervals = list(debounce(capture))
intervals = intervals[2:-1] # ignore partial first and last intervals
diff --git a/prototype/sensor-analysis/Accelerometer Data Analysis.ipynb b/prototype/sensor-analysis/Accelerometer Data Analysis.ipynb
index 23f31b8..72f13c8 100644
--- a/prototype/sensor-analysis/Accelerometer Data Analysis.ipynb
+++ b/prototype/sensor-analysis/Accelerometer Data Analysis.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "code",
- "execution_count": 703,
+ "execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
@@ -24,7 +24,7 @@
},
{
"cell_type": "code",
- "execution_count": 704,
+ "execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
@@ -33,7 +33,7 @@
},
{
"cell_type": "code",
- "execution_count": 705,
+ "execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
@@ -45,7 +45,23 @@
},
{
"cell_type": "code",
- "execution_count": 836,
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "sampling_rate = 10 # sps, set in firmware\n",
+ "mems_lsb_per_g = 68 # LSBs per 1g for our accelerometer\n",
+ "\n",
+ "g = 9.8066\n",
+ "g_to_ms = lambda x: x * g\n",
+ "ms_to_g = lambda x: x / g\n",
+ "\n",
+ "r_mems = 55e-3 # radius of our sensor from the axis of rotation in m"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 83,
"metadata": {
"scrolled": false
},
@@ -1018,7 +1034,7 @@
{
"data": {
"text/html": [
- "<img src=\"\" width=\"640\">"
+ "<img src=\"\" width=\"640\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
@@ -1050,6 +1066,7 @@
" filtered = scipy.signal.sosfiltfilt(sos, y / mems_lsb_per_g)\n",
" ax.plot(t, filtered, color='darkblue')\n",
" \n",
+ " ax.set_xlabel(r't [mm:ss]')\n",
" ax.set_ylabel(r'$a\\; [g]$')\n",
" secax_y = ax.secondary_yaxis(\n",
" 'right', functions=(g_to_ms, ms_to_g))\n",
@@ -1114,7 +1131,7 @@
},
{
"cell_type": "code",
- "execution_count": 1019,
+ "execution_count": 84,
"metadata": {
"scrolled": false
},
@@ -2090,7 +2107,7 @@
{
"data": {
"text/html": [
- "<img src=\"\" width=\"640\">"
+ "<img src=\"\" width=\"500\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
@@ -2165,22 +2182,14 @@
"source": [
"t, y, _1, _2 = load_run(40, plot=False)\n",
"\n",
- "sampling_rate = 10 # sps, set in firmware\n",
- "mems_lsb_per_g = 68 # LSBs per 1g for our accelerometer\n",
- "\n",
"ivl_start, ivl_end = 0.5, 1\n",
"ivl_start, ivl_end = int(ivl_start*60*sampling_rate), int(ivl_end*60*sampling_rate)\n",
"\n",
- "fig, ax = plt.subplots()\n",
+ "fig, ax = plt.subplots(figsize=(5, 3))\n",
"#ax.axvspan(ivl_start/60/sampling_rate, ivl_end/60/sampling_rate, color='orange', alpha=0.5)\n",
" \n",
"plot_measurements(ax, t, y)\n",
"\n",
- "g = 9.8066\n",
- "g_to_ms = lambda x: x * g\n",
- "ms_to_g = lambda x: x / g\n",
- "\n",
- "r_mems = 55e-3 # radius of our sensor from the axis of rotation in m\n",
"le_data = [(0, 50, 3.12), (1,50,5.55), (2,40, 8.2), (3, 30, 10.2), (4,15, 12.5), (5,10, 15.6),\n",
" (6,10, 19.2), (7,11, 11.6), (8,15, 6.49)]\n",
"avg_include = [True, True, True, True, True, False, True, True, True]\n",
@@ -2191,10 +2200,13 @@
" omegan = 2*np.pi*f_actual # angular velocity\n",
" acc = omegan**2 * r_mems # m/s^2\n",
" acc_theory.append(acc / g)\n",
- " ax.axvspan(ts_abs-ivl_w/2, ts_abs+ivl_w/2, zorder=1, color='red', alpha=0.1)\n",
+ " \n",
" \n",
" ts_abs = ts_m + ts_s/60\n",
" ivl_w = 0.5\n",
+ " \n",
+ " #ax.axvspan(ts_abs-ivl_w/2, ts_abs+ivl_w/2, zorder=1, color='red', alpha=0.1)\n",
+ " \n",
" idx = (ts_abs - ivl_w/2 < t) & (t < ts_abs + ivl_w/2)\n",
" ivl_avg = (y / mems_lsb_per_g)[idx].mean()\n",
" acc_meas.append(ivl_avg)\n",
@@ -2219,7 +2231,7 @@
"print(f'Found sensor offset: {sensor_offx:.2f} g / {sensor_offx*g:.2f} m/s^2')\n",
"print()\n",
"\n",
- "for theory, meas, interval, (_1, _2, f_actual) in zip(acc_theory, acc_meas, interval_speeds, le_data):\n",
+ "for theory, meas, (_1, _2, f_actual) in zip(acc_theory, acc_meas, le_data):\n",
" ax.axhline(theory - sensor_offx, color='orange', alpha=1, zorder=1)\n",
" meas += sensor_offx\n",
" \n",
@@ -2228,12 +2240,15 @@
" print(f' Measurement: {meas:.2f} g / {meas*g} m/s^2')\n",
" print(f' Rel. Error: {(theory/meas - 1.0) * 100:.2f} %')\n",
" print(f' Abs. Error: {theory-meas:.2f} g / {(theory-meas)*g:.2f} m/s^2')\n",
- " print()"
+ " print()\n",
+ "\n",
+ "fig.tight_layout()\n",
+ "fig.savefig('fig-acc-trace-steps.pdf')"
]
},
{
"cell_type": "code",
- "execution_count": 1022,
+ "execution_count": 22,
"metadata": {},
"outputs": [
{
@@ -3209,10 +3224,10 @@
{
"data": {
"text/plain": [
- "<matplotlib.legend.Legend at 0x7f3df6c2b3d0>"
+ "<matplotlib.legend.Legend at 0x7f2d6d065190>"
]
},
- "execution_count": 1022,
+ "execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
@@ -3246,7 +3261,1108 @@
},
{
"cell_type": "code",
- "execution_count": 957,
+ "execution_count": 77,
+ "metadata": {
+ "scrolled": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Loading run #28 with 4918 packets total, 178 distinct over 161.5061011314392s\n",
+ "Packet length: 40\n",
+ "Very approximate lower bound on baudrate: 129032.25806451612 bd\n",
+ "Sequence number range: 611 ... 813\n",
+ "Loading run #37 with 3070 packets total, 144 distinct over 117.43898510932922s\n",
+ "Packet length: 40\n",
+ "Very approximate lower bound on baudrate: 129032.25806451612 bd\n",
+ "Sequence number range: 326 ... 473\n",
+ "Loading run #30 with 2208 packets total, 198 distinct over 166.86816382408142s\n",
+ "Packet length: 40\n",
+ "Very approximate lower bound on baudrate: 129032.25806451612 bd\n",
+ "Sequence number range: 1079 ... 1288\n",
+ "Loading run #31 with 2630 packets total, 157 distinct over 126.19650292396545s\n",
+ "Packet length: 40\n",
+ "Very approximate lower bound on baudrate: 129032.25806451612 bd\n",
+ "Sequence number range: 1316 ... 1474\n",
+ "Loading run #34 with 2714 packets total, 121 distinct over 97.30304408073425s\n",
+ "Packet length: 40\n",
+ "Very approximate lower bound on baudrate: 129032.25806451612 bd\n",
+ "Sequence number range: 165 ... 287\n",
+ "Loading run #38 with 2317 packets total, 122 distinct over 103.3755898475647s\n",
+ "Packet length: 40\n",
+ "Very approximate lower bound on baudrate: 129032.25806451612 bd\n",
+ "Sequence number range: 475 ... 604\n",
+ "Loading run #32 with 2643 packets total, 118 distinct over 98.81923913955688s\n",
+ "Packet length: 40\n",
+ "Very approximate lower bound on baudrate: 129032.25806451612 bd\n",
+ "Sequence number range: 3 ... 1583\n",
+ "Loading run #39 with 1429 packets total, 129 distinct over 104.99669194221497s\n",
+ "Packet length: 40\n",
+ "Very approximate lower bound on baudrate: 129032.25806451612 bd\n",
+ "Sequence number range: 606 ... 737\n",
+ "Loading run #33 with 3178 packets total, 125 distinct over 99.94346904754639s\n",
+ "Packet length: 40\n",
+ "Very approximate lower bound on baudrate: 129032.25806451612 bd\n",
+ "Sequence number range: 35 ... 161\n"
+ ]
+ },
+ {
+ "data": {
+ "application/javascript": [
+ "/* Put everything inside the global mpl namespace */\n",
+ "/* global mpl */\n",
+ "window.mpl = {};\n",
+ "\n",
+ "mpl.get_websocket_type = function () {\n",
+ " if (typeof WebSocket !== 'undefined') {\n",
+ " return WebSocket;\n",
+ " } else if (typeof MozWebSocket !== 'undefined') {\n",
+ " return MozWebSocket;\n",
+ " } else {\n",
+ " alert(\n",
+ " 'Your browser does not have WebSocket support. ' +\n",
+ " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
+ " 'Firefox 4 and 5 are also supported but you ' +\n",
+ " 'have to enable WebSockets in about:config.'\n",
+ " );\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n",
+ " this.id = figure_id;\n",
+ "\n",
+ " this.ws = websocket;\n",
+ "\n",
+ " this.supports_binary = this.ws.binaryType !== undefined;\n",
+ "\n",
+ " if (!this.supports_binary) {\n",
+ " var warnings = document.getElementById('mpl-warnings');\n",
+ " if (warnings) {\n",
+ " warnings.style.display = 'block';\n",
+ " warnings.textContent =\n",
+ " 'This browser does not support binary websocket messages. ' +\n",
+ " 'Performance may be slow.';\n",
+ " }\n",
+ " }\n",
+ "\n",
+ " this.imageObj = new Image();\n",
+ "\n",
+ " this.context = undefined;\n",
+ " this.message = undefined;\n",
+ " this.canvas = undefined;\n",
+ " this.rubberband_canvas = undefined;\n",
+ " this.rubberband_context = undefined;\n",
+ " this.format_dropdown = undefined;\n",
+ "\n",
+ " this.image_mode = 'full';\n",
+ "\n",
+ " this.root = document.createElement('div');\n",
+ " this.root.setAttribute('style', 'display: inline-block');\n",
+ " this._root_extra_style(this.root);\n",
+ "\n",
+ " parent_element.appendChild(this.root);\n",
+ "\n",
+ " this._init_header(this);\n",
+ " this._init_canvas(this);\n",
+ " this._init_toolbar(this);\n",
+ "\n",
+ " var fig = this;\n",
+ "\n",
+ " this.waiting = false;\n",
+ "\n",
+ " this.ws.onopen = function () {\n",
+ " fig.send_message('supports_binary', { value: fig.supports_binary });\n",
+ " fig.send_message('send_image_mode', {});\n",
+ " if (fig.ratio !== 1) {\n",
+ " fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n",
+ " }\n",
+ " fig.send_message('refresh', {});\n",
+ " };\n",
+ "\n",
+ " this.imageObj.onload = function () {\n",
+ " if (fig.image_mode === 'full') {\n",
+ " // Full images could contain transparency (where diff images\n",
+ " // almost always do), so we need to clear the canvas so that\n",
+ " // there is no ghosting.\n",
+ " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
+ " }\n",
+ " fig.context.drawImage(fig.imageObj, 0, 0);\n",
+ " };\n",
+ "\n",
+ " this.imageObj.onunload = function () {\n",
+ " fig.ws.close();\n",
+ " };\n",
+ "\n",
+ " this.ws.onmessage = this._make_on_message_function(this);\n",
+ "\n",
+ " this.ondownload = ondownload;\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._init_header = function () {\n",
+ " var titlebar = document.createElement('div');\n",
+ " titlebar.classList =\n",
+ " 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n",
+ " var titletext = document.createElement('div');\n",
+ " titletext.classList = 'ui-dialog-title';\n",
+ " titletext.setAttribute(\n",
+ " 'style',\n",
+ " 'width: 100%; text-align: center; padding: 3px;'\n",
+ " );\n",
+ " titlebar.appendChild(titletext);\n",
+ " this.root.appendChild(titlebar);\n",
+ " this.header = titletext;\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n",
+ "\n",
+ "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n",
+ "\n",
+ "mpl.figure.prototype._init_canvas = function () {\n",
+ " var fig = this;\n",
+ "\n",
+ " var canvas_div = (this.canvas_div = document.createElement('div'));\n",
+ " canvas_div.setAttribute(\n",
+ " 'style',\n",
+ " 'border: 1px solid #ddd;' +\n",
+ " 'box-sizing: content-box;' +\n",
+ " 'clear: both;' +\n",
+ " 'min-height: 1px;' +\n",
+ " 'min-width: 1px;' +\n",
+ " 'outline: 0;' +\n",
+ " 'overflow: hidden;' +\n",
+ " 'position: relative;' +\n",
+ " 'resize: both;'\n",
+ " );\n",
+ "\n",
+ " function on_keyboard_event_closure(name) {\n",
+ " return function (event) {\n",
+ " return fig.key_event(event, name);\n",
+ " };\n",
+ " }\n",
+ "\n",
+ " canvas_div.addEventListener(\n",
+ " 'keydown',\n",
+ " on_keyboard_event_closure('key_press')\n",
+ " );\n",
+ " canvas_div.addEventListener(\n",
+ " 'keyup',\n",
+ " on_keyboard_event_closure('key_release')\n",
+ " );\n",
+ "\n",
+ " this._canvas_extra_style(canvas_div);\n",
+ " this.root.appendChild(canvas_div);\n",
+ "\n",
+ " var canvas = (this.canvas = document.createElement('canvas'));\n",
+ " canvas.classList.add('mpl-canvas');\n",
+ " canvas.setAttribute('style', 'box-sizing: content-box;');\n",
+ "\n",
+ " this.context = canvas.getContext('2d');\n",
+ "\n",
+ " var backingStore =\n",
+ " this.context.backingStorePixelRatio ||\n",
+ " this.context.webkitBackingStorePixelRatio ||\n",
+ " this.context.mozBackingStorePixelRatio ||\n",
+ " this.context.msBackingStorePixelRatio ||\n",
+ " this.context.oBackingStorePixelRatio ||\n",
+ " this.context.backingStorePixelRatio ||\n",
+ " 1;\n",
+ "\n",
+ " this.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
+ "\n",
+ " var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n",
+ " 'canvas'\n",
+ " ));\n",
+ " rubberband_canvas.setAttribute(\n",
+ " 'style',\n",
+ " 'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n",
+ " );\n",
+ "\n",
+ " // Apply a ponyfill if ResizeObserver is not implemented by browser.\n",
+ " if (this.ResizeObserver === undefined) {\n",
+ " if (window.ResizeObserver !== undefined) {\n",
+ " this.ResizeObserver = window.ResizeObserver;\n",
+ " } else {\n",
+ " var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n",
+ " this.ResizeObserver = obs.ResizeObserver;\n",
+ " }\n",
+ " }\n",
+ "\n",
+ " this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n",
+ " var nentries = entries.length;\n",
+ " for (var i = 0; i < nentries; i++) {\n",
+ " var entry = entries[i];\n",
+ " var width, height;\n",
+ " if (entry.contentBoxSize) {\n",
+ " if (entry.contentBoxSize instanceof Array) {\n",
+ " // Chrome 84 implements new version of spec.\n",
+ " width = entry.contentBoxSize[0].inlineSize;\n",
+ " height = entry.contentBoxSize[0].blockSize;\n",
+ " } else {\n",
+ " // Firefox implements old version of spec.\n",
+ " width = entry.contentBoxSize.inlineSize;\n",
+ " height = entry.contentBoxSize.blockSize;\n",
+ " }\n",
+ " } else {\n",
+ " // Chrome <84 implements even older version of spec.\n",
+ " width = entry.contentRect.width;\n",
+ " height = entry.contentRect.height;\n",
+ " }\n",
+ "\n",
+ " // Keep the size of the canvas and rubber band canvas in sync with\n",
+ " // the canvas container.\n",
+ " if (entry.devicePixelContentBoxSize) {\n",
+ " // Chrome 84 implements new version of spec.\n",
+ " canvas.setAttribute(\n",
+ " 'width',\n",
+ " entry.devicePixelContentBoxSize[0].inlineSize\n",
+ " );\n",
+ " canvas.setAttribute(\n",
+ " 'height',\n",
+ " entry.devicePixelContentBoxSize[0].blockSize\n",
+ " );\n",
+ " } else {\n",
+ " canvas.setAttribute('width', width * fig.ratio);\n",
+ " canvas.setAttribute('height', height * fig.ratio);\n",
+ " }\n",
+ " canvas.setAttribute(\n",
+ " 'style',\n",
+ " 'width: ' + width + 'px; height: ' + height + 'px;'\n",
+ " );\n",
+ "\n",
+ " rubberband_canvas.setAttribute('width', width);\n",
+ " rubberband_canvas.setAttribute('height', height);\n",
+ "\n",
+ " // And update the size in Python. We ignore the initial 0/0 size\n",
+ " // that occurs as the element is placed into the DOM, which should\n",
+ " // otherwise not happen due to the minimum size styling.\n",
+ " if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n",
+ " fig.request_resize(width, height);\n",
+ " }\n",
+ " }\n",
+ " });\n",
+ " this.resizeObserverInstance.observe(canvas_div);\n",
+ "\n",
+ " function on_mouse_event_closure(name) {\n",
+ " return function (event) {\n",
+ " return fig.mouse_event(event, name);\n",
+ " };\n",
+ " }\n",
+ "\n",
+ " rubberband_canvas.addEventListener(\n",
+ " 'mousedown',\n",
+ " on_mouse_event_closure('button_press')\n",
+ " );\n",
+ " rubberband_canvas.addEventListener(\n",
+ " 'mouseup',\n",
+ " on_mouse_event_closure('button_release')\n",
+ " );\n",
+ " // Throttle sequential mouse events to 1 every 20ms.\n",
+ " rubberband_canvas.addEventListener(\n",
+ " 'mousemove',\n",
+ " on_mouse_event_closure('motion_notify')\n",
+ " );\n",
+ "\n",
+ " rubberband_canvas.addEventListener(\n",
+ " 'mouseenter',\n",
+ " on_mouse_event_closure('figure_enter')\n",
+ " );\n",
+ " rubberband_canvas.addEventListener(\n",
+ " 'mouseleave',\n",
+ " on_mouse_event_closure('figure_leave')\n",
+ " );\n",
+ "\n",
+ " canvas_div.addEventListener('wheel', function (event) {\n",
+ " if (event.deltaY < 0) {\n",
+ " event.step = 1;\n",
+ " } else {\n",
+ " event.step = -1;\n",
+ " }\n",
+ " on_mouse_event_closure('scroll')(event);\n",
+ " });\n",
+ "\n",
+ " canvas_div.appendChild(canvas);\n",
+ " canvas_div.appendChild(rubberband_canvas);\n",
+ "\n",
+ " this.rubberband_context = rubberband_canvas.getContext('2d');\n",
+ " this.rubberband_context.strokeStyle = '#000000';\n",
+ "\n",
+ " this._resize_canvas = function (width, height, forward) {\n",
+ " if (forward) {\n",
+ " canvas_div.style.width = width + 'px';\n",
+ " canvas_div.style.height = height + 'px';\n",
+ " }\n",
+ " };\n",
+ "\n",
+ " // Disable right mouse context menu.\n",
+ " this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n",
+ " event.preventDefault();\n",
+ " return false;\n",
+ " });\n",
+ "\n",
+ " function set_focus() {\n",
+ " canvas.focus();\n",
+ " canvas_div.focus();\n",
+ " }\n",
+ "\n",
+ " window.setTimeout(set_focus, 100);\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._init_toolbar = function () {\n",
+ " var fig = this;\n",
+ "\n",
+ " var toolbar = document.createElement('div');\n",
+ " toolbar.classList = 'mpl-toolbar';\n",
+ " this.root.appendChild(toolbar);\n",
+ "\n",
+ " function on_click_closure(name) {\n",
+ " return function (_event) {\n",
+ " return fig.toolbar_button_onclick(name);\n",
+ " };\n",
+ " }\n",
+ "\n",
+ " function on_mouseover_closure(tooltip) {\n",
+ " return function (event) {\n",
+ " if (!event.currentTarget.disabled) {\n",
+ " return fig.toolbar_button_onmouseover(tooltip);\n",
+ " }\n",
+ " };\n",
+ " }\n",
+ "\n",
+ " fig.buttons = {};\n",
+ " var buttonGroup = document.createElement('div');\n",
+ " buttonGroup.classList = 'mpl-button-group';\n",
+ " for (var toolbar_ind in mpl.toolbar_items) {\n",
+ " var name = mpl.toolbar_items[toolbar_ind][0];\n",
+ " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+ " var image = mpl.toolbar_items[toolbar_ind][2];\n",
+ " var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+ "\n",
+ " if (!name) {\n",
+ " /* Instead of a spacer, we start a new button group. */\n",
+ " if (buttonGroup.hasChildNodes()) {\n",
+ " toolbar.appendChild(buttonGroup);\n",
+ " }\n",
+ " buttonGroup = document.createElement('div');\n",
+ " buttonGroup.classList = 'mpl-button-group';\n",
+ " continue;\n",
+ " }\n",
+ "\n",
+ " var button = (fig.buttons[name] = document.createElement('button'));\n",
+ " button.classList = 'mpl-widget';\n",
+ " button.setAttribute('role', 'button');\n",
+ " button.setAttribute('aria-disabled', 'false');\n",
+ " button.addEventListener('click', on_click_closure(method_name));\n",
+ " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
+ "\n",
+ " var icon_img = document.createElement('img');\n",
+ " icon_img.src = '_images/' + image + '.png';\n",
+ " icon_img.srcset = '_images/' + image + '_large.png 2x';\n",
+ " icon_img.alt = tooltip;\n",
+ " button.appendChild(icon_img);\n",
+ "\n",
+ " buttonGroup.appendChild(button);\n",
+ " }\n",
+ "\n",
+ " if (buttonGroup.hasChildNodes()) {\n",
+ " toolbar.appendChild(buttonGroup);\n",
+ " }\n",
+ "\n",
+ " var fmt_picker = document.createElement('select');\n",
+ " fmt_picker.classList = 'mpl-widget';\n",
+ " toolbar.appendChild(fmt_picker);\n",
+ " this.format_dropdown = fmt_picker;\n",
+ "\n",
+ " for (var ind in mpl.extensions) {\n",
+ " var fmt = mpl.extensions[ind];\n",
+ " var option = document.createElement('option');\n",
+ " option.selected = fmt === mpl.default_extension;\n",
+ " option.innerHTML = fmt;\n",
+ " fmt_picker.appendChild(option);\n",
+ " }\n",
+ "\n",
+ " var status_bar = document.createElement('span');\n",
+ " status_bar.classList = 'mpl-message';\n",
+ " toolbar.appendChild(status_bar);\n",
+ " this.message = status_bar;\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n",
+ " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
+ " // which will in turn request a refresh of the image.\n",
+ " this.send_message('resize', { width: x_pixels, height: y_pixels });\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.send_message = function (type, properties) {\n",
+ " properties['type'] = type;\n",
+ " properties['figure_id'] = this.id;\n",
+ " this.ws.send(JSON.stringify(properties));\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.send_draw_message = function () {\n",
+ " if (!this.waiting) {\n",
+ " this.waiting = true;\n",
+ " this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
+ " var format_dropdown = fig.format_dropdown;\n",
+ " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
+ " fig.ondownload(fig, format);\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_resize = function (fig, msg) {\n",
+ " var size = msg['size'];\n",
+ " if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n",
+ " fig._resize_canvas(size[0], size[1], msg['forward']);\n",
+ " fig.send_message('refresh', {});\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n",
+ " var x0 = msg['x0'] / fig.ratio;\n",
+ " var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n",
+ " var x1 = msg['x1'] / fig.ratio;\n",
+ " var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n",
+ " x0 = Math.floor(x0) + 0.5;\n",
+ " y0 = Math.floor(y0) + 0.5;\n",
+ " x1 = Math.floor(x1) + 0.5;\n",
+ " y1 = Math.floor(y1) + 0.5;\n",
+ " var min_x = Math.min(x0, x1);\n",
+ " var min_y = Math.min(y0, y1);\n",
+ " var width = Math.abs(x1 - x0);\n",
+ " var height = Math.abs(y1 - y0);\n",
+ "\n",
+ " fig.rubberband_context.clearRect(\n",
+ " 0,\n",
+ " 0,\n",
+ " fig.canvas.width / fig.ratio,\n",
+ " fig.canvas.height / fig.ratio\n",
+ " );\n",
+ "\n",
+ " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n",
+ " // Updates the figure title.\n",
+ " fig.header.textContent = msg['label'];\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n",
+ " var cursor = msg['cursor'];\n",
+ " switch (cursor) {\n",
+ " case 0:\n",
+ " cursor = 'pointer';\n",
+ " break;\n",
+ " case 1:\n",
+ " cursor = 'default';\n",
+ " break;\n",
+ " case 2:\n",
+ " cursor = 'crosshair';\n",
+ " break;\n",
+ " case 3:\n",
+ " cursor = 'move';\n",
+ " break;\n",
+ " }\n",
+ " fig.rubberband_canvas.style.cursor = cursor;\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_message = function (fig, msg) {\n",
+ " fig.message.textContent = msg['message'];\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n",
+ " // Request the server to send over a new figure.\n",
+ " fig.send_draw_message();\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n",
+ " fig.image_mode = msg['mode'];\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n",
+ " for (var key in msg) {\n",
+ " if (!(key in fig.buttons)) {\n",
+ " continue;\n",
+ " }\n",
+ " fig.buttons[key].disabled = !msg[key];\n",
+ " fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n",
+ " if (msg['mode'] === 'PAN') {\n",
+ " fig.buttons['Pan'].classList.add('active');\n",
+ " fig.buttons['Zoom'].classList.remove('active');\n",
+ " } else if (msg['mode'] === 'ZOOM') {\n",
+ " fig.buttons['Pan'].classList.remove('active');\n",
+ " fig.buttons['Zoom'].classList.add('active');\n",
+ " } else {\n",
+ " fig.buttons['Pan'].classList.remove('active');\n",
+ " fig.buttons['Zoom'].classList.remove('active');\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.updated_canvas_event = function () {\n",
+ " // Called whenever the canvas gets updated.\n",
+ " this.send_message('ack', {});\n",
+ "};\n",
+ "\n",
+ "// A function to construct a web socket function for onmessage handling.\n",
+ "// Called in the figure constructor.\n",
+ "mpl.figure.prototype._make_on_message_function = function (fig) {\n",
+ " return function socket_on_message(evt) {\n",
+ " if (evt.data instanceof Blob) {\n",
+ " /* FIXME: We get \"Resource interpreted as Image but\n",
+ " * transferred with MIME type text/plain:\" errors on\n",
+ " * Chrome. But how to set the MIME type? It doesn't seem\n",
+ " * to be part of the websocket stream */\n",
+ " evt.data.type = 'image/png';\n",
+ "\n",
+ " /* Free the memory for the previous frames */\n",
+ " if (fig.imageObj.src) {\n",
+ " (window.URL || window.webkitURL).revokeObjectURL(\n",
+ " fig.imageObj.src\n",
+ " );\n",
+ " }\n",
+ "\n",
+ " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
+ " evt.data\n",
+ " );\n",
+ " fig.updated_canvas_event();\n",
+ " fig.waiting = false;\n",
+ " return;\n",
+ " } else if (\n",
+ " typeof evt.data === 'string' &&\n",
+ " evt.data.slice(0, 21) === 'data:image/png;base64'\n",
+ " ) {\n",
+ " fig.imageObj.src = evt.data;\n",
+ " fig.updated_canvas_event();\n",
+ " fig.waiting = false;\n",
+ " return;\n",
+ " }\n",
+ "\n",
+ " var msg = JSON.parse(evt.data);\n",
+ " var msg_type = msg['type'];\n",
+ "\n",
+ " // Call the \"handle_{type}\" callback, which takes\n",
+ " // the figure and JSON message as its only arguments.\n",
+ " try {\n",
+ " var callback = fig['handle_' + msg_type];\n",
+ " } catch (e) {\n",
+ " console.log(\n",
+ " \"No handler for the '\" + msg_type + \"' message type: \",\n",
+ " msg\n",
+ " );\n",
+ " return;\n",
+ " }\n",
+ "\n",
+ " if (callback) {\n",
+ " try {\n",
+ " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
+ " callback(fig, msg);\n",
+ " } catch (e) {\n",
+ " console.log(\n",
+ " \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n",
+ " e,\n",
+ " e.stack,\n",
+ " msg\n",
+ " );\n",
+ " }\n",
+ " }\n",
+ " };\n",
+ "};\n",
+ "\n",
+ "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
+ "mpl.findpos = function (e) {\n",
+ " //this section is from http://www.quirksmode.org/js/events_properties.html\n",
+ " var targ;\n",
+ " if (!e) {\n",
+ " e = window.event;\n",
+ " }\n",
+ " if (e.target) {\n",
+ " targ = e.target;\n",
+ " } else if (e.srcElement) {\n",
+ " targ = e.srcElement;\n",
+ " }\n",
+ " if (targ.nodeType === 3) {\n",
+ " // defeat Safari bug\n",
+ " targ = targ.parentNode;\n",
+ " }\n",
+ "\n",
+ " // pageX,Y are the mouse positions relative to the document\n",
+ " var boundingRect = targ.getBoundingClientRect();\n",
+ " var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n",
+ " var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n",
+ "\n",
+ " return { x: x, y: y };\n",
+ "};\n",
+ "\n",
+ "/*\n",
+ " * return a copy of an object with only non-object keys\n",
+ " * we need this to avoid circular references\n",
+ " * http://stackoverflow.com/a/24161582/3208463\n",
+ " */\n",
+ "function simpleKeys(original) {\n",
+ " return Object.keys(original).reduce(function (obj, key) {\n",
+ " if (typeof original[key] !== 'object') {\n",
+ " obj[key] = original[key];\n",
+ " }\n",
+ " return obj;\n",
+ " }, {});\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.mouse_event = function (event, name) {\n",
+ " var canvas_pos = mpl.findpos(event);\n",
+ "\n",
+ " if (name === 'button_press') {\n",
+ " this.canvas.focus();\n",
+ " this.canvas_div.focus();\n",
+ " }\n",
+ "\n",
+ " var x = canvas_pos.x * this.ratio;\n",
+ " var y = canvas_pos.y * this.ratio;\n",
+ "\n",
+ " this.send_message(name, {\n",
+ " x: x,\n",
+ " y: y,\n",
+ " button: event.button,\n",
+ " step: event.step,\n",
+ " guiEvent: simpleKeys(event),\n",
+ " });\n",
+ "\n",
+ " /* This prevents the web browser from automatically changing to\n",
+ " * the text insertion cursor when the button is pressed. We want\n",
+ " * to control all of the cursor setting manually through the\n",
+ " * 'cursor' event from matplotlib */\n",
+ " event.preventDefault();\n",
+ " return false;\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n",
+ " // Handle any extra behaviour associated with a key event\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.key_event = function (event, name) {\n",
+ " // Prevent repeat events\n",
+ " if (name === 'key_press') {\n",
+ " if (event.which === this._key) {\n",
+ " return;\n",
+ " } else {\n",
+ " this._key = event.which;\n",
+ " }\n",
+ " }\n",
+ " if (name === 'key_release') {\n",
+ " this._key = null;\n",
+ " }\n",
+ "\n",
+ " var value = '';\n",
+ " if (event.ctrlKey && event.which !== 17) {\n",
+ " value += 'ctrl+';\n",
+ " }\n",
+ " if (event.altKey && event.which !== 18) {\n",
+ " value += 'alt+';\n",
+ " }\n",
+ " if (event.shiftKey && event.which !== 16) {\n",
+ " value += 'shift+';\n",
+ " }\n",
+ "\n",
+ " value += 'k';\n",
+ " value += event.which.toString();\n",
+ "\n",
+ " this._key_event_extra(event, name);\n",
+ "\n",
+ " this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n",
+ " return false;\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n",
+ " if (name === 'download') {\n",
+ " this.handle_save(this, null);\n",
+ " } else {\n",
+ " this.send_message('toolbar_button', { name: name });\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n",
+ " this.message.textContent = tooltip;\n",
+ "};\n",
+ "\n",
+ "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n",
+ "// prettier-ignore\n",
+ "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n",
+ "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
+ "\n",
+ "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
+ "\n",
+ "mpl.default_extension = \"png\";/* global mpl */\n",
+ "\n",
+ "var comm_websocket_adapter = function (comm) {\n",
+ " // Create a \"websocket\"-like object which calls the given IPython comm\n",
+ " // object with the appropriate methods. Currently this is a non binary\n",
+ " // socket, so there is still some room for performance tuning.\n",
+ " var ws = {};\n",
+ "\n",
+ " ws.close = function () {\n",
+ " comm.close();\n",
+ " };\n",
+ " ws.send = function (m) {\n",
+ " //console.log('sending', m);\n",
+ " comm.send(m);\n",
+ " };\n",
+ " // Register the callback with on_msg.\n",
+ " comm.on_msg(function (msg) {\n",
+ " //console.log('receiving', msg['content']['data'], msg);\n",
+ " // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
+ " ws.onmessage(msg['content']['data']);\n",
+ " });\n",
+ " return ws;\n",
+ "};\n",
+ "\n",
+ "mpl.mpl_figure_comm = function (comm, msg) {\n",
+ " // This is the function which gets called when the mpl process\n",
+ " // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
+ "\n",
+ " var id = msg.content.data.id;\n",
+ " // Get hold of the div created by the display call when the Comm\n",
+ " // socket was opened in Python.\n",
+ " var element = document.getElementById(id);\n",
+ " var ws_proxy = comm_websocket_adapter(comm);\n",
+ "\n",
+ " function ondownload(figure, _format) {\n",
+ " window.open(figure.canvas.toDataURL());\n",
+ " }\n",
+ "\n",
+ " var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n",
+ "\n",
+ " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
+ " // web socket which is closed, not our websocket->open comm proxy.\n",
+ " ws_proxy.onopen();\n",
+ "\n",
+ " fig.parent_element = element;\n",
+ " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
+ " if (!fig.cell_info) {\n",
+ " console.error('Failed to find cell for figure', id, fig);\n",
+ " return;\n",
+ " }\n",
+ " fig.cell_info[0].output_area.element.on(\n",
+ " 'cleared',\n",
+ " { fig: fig },\n",
+ " fig._remove_fig_handler\n",
+ " );\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_close = function (fig, msg) {\n",
+ " var width = fig.canvas.width / fig.ratio;\n",
+ " fig.cell_info[0].output_area.element.off(\n",
+ " 'cleared',\n",
+ " fig._remove_fig_handler\n",
+ " );\n",
+ " fig.resizeObserverInstance.unobserve(fig.canvas_div);\n",
+ "\n",
+ " // Update the output cell to use the data from the current canvas.\n",
+ " fig.push_to_output();\n",
+ " var dataURL = fig.canvas.toDataURL();\n",
+ " // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
+ " // the notebook keyboard shortcuts fail.\n",
+ " IPython.keyboard_manager.enable();\n",
+ " fig.parent_element.innerHTML =\n",
+ " '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
+ " fig.close_ws(fig, msg);\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.close_ws = function (fig, msg) {\n",
+ " fig.send_message('closing', msg);\n",
+ " // fig.ws.close()\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n",
+ " // Turn the data on the canvas into data in the output cell.\n",
+ " var width = this.canvas.width / this.ratio;\n",
+ " var dataURL = this.canvas.toDataURL();\n",
+ " this.cell_info[1]['text/html'] =\n",
+ " '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.updated_canvas_event = function () {\n",
+ " // Tell IPython that the notebook contents must change.\n",
+ " IPython.notebook.set_dirty(true);\n",
+ " this.send_message('ack', {});\n",
+ " var fig = this;\n",
+ " // Wait a second, then push the new image to the DOM so\n",
+ " // that it is saved nicely (might be nice to debounce this).\n",
+ " setTimeout(function () {\n",
+ " fig.push_to_output();\n",
+ " }, 1000);\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._init_toolbar = function () {\n",
+ " var fig = this;\n",
+ "\n",
+ " var toolbar = document.createElement('div');\n",
+ " toolbar.classList = 'btn-toolbar';\n",
+ " this.root.appendChild(toolbar);\n",
+ "\n",
+ " function on_click_closure(name) {\n",
+ " return function (_event) {\n",
+ " return fig.toolbar_button_onclick(name);\n",
+ " };\n",
+ " }\n",
+ "\n",
+ " function on_mouseover_closure(tooltip) {\n",
+ " return function (event) {\n",
+ " if (!event.currentTarget.disabled) {\n",
+ " return fig.toolbar_button_onmouseover(tooltip);\n",
+ " }\n",
+ " };\n",
+ " }\n",
+ "\n",
+ " fig.buttons = {};\n",
+ " var buttonGroup = document.createElement('div');\n",
+ " buttonGroup.classList = 'btn-group';\n",
+ " var button;\n",
+ " for (var toolbar_ind in mpl.toolbar_items) {\n",
+ " var name = mpl.toolbar_items[toolbar_ind][0];\n",
+ " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+ " var image = mpl.toolbar_items[toolbar_ind][2];\n",
+ " var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+ "\n",
+ " if (!name) {\n",
+ " /* Instead of a spacer, we start a new button group. */\n",
+ " if (buttonGroup.hasChildNodes()) {\n",
+ " toolbar.appendChild(buttonGroup);\n",
+ " }\n",
+ " buttonGroup = document.createElement('div');\n",
+ " buttonGroup.classList = 'btn-group';\n",
+ " continue;\n",
+ " }\n",
+ "\n",
+ " button = fig.buttons[name] = document.createElement('button');\n",
+ " button.classList = 'btn btn-default';\n",
+ " button.href = '#';\n",
+ " button.title = name;\n",
+ " button.innerHTML = '<i class=\"fa ' + image + ' fa-lg\"></i>';\n",
+ " button.addEventListener('click', on_click_closure(method_name));\n",
+ " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
+ " buttonGroup.appendChild(button);\n",
+ " }\n",
+ "\n",
+ " if (buttonGroup.hasChildNodes()) {\n",
+ " toolbar.appendChild(buttonGroup);\n",
+ " }\n",
+ "\n",
+ " // Add the status bar.\n",
+ " var status_bar = document.createElement('span');\n",
+ " status_bar.classList = 'mpl-message pull-right';\n",
+ " toolbar.appendChild(status_bar);\n",
+ " this.message = status_bar;\n",
+ "\n",
+ " // Add the close button to the window.\n",
+ " var buttongrp = document.createElement('div');\n",
+ " buttongrp.classList = 'btn-group inline pull-right';\n",
+ " button = document.createElement('button');\n",
+ " button.classList = 'btn btn-mini btn-primary';\n",
+ " button.href = '#';\n",
+ " button.title = 'Stop Interaction';\n",
+ " button.innerHTML = '<i class=\"fa fa-power-off icon-remove icon-large\"></i>';\n",
+ " button.addEventListener('click', function (_evt) {\n",
+ " fig.handle_close(fig, {});\n",
+ " });\n",
+ " button.addEventListener(\n",
+ " 'mouseover',\n",
+ " on_mouseover_closure('Stop Interaction')\n",
+ " );\n",
+ " buttongrp.appendChild(button);\n",
+ " var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n",
+ " titlebar.insertBefore(buttongrp, titlebar.firstChild);\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._remove_fig_handler = function (event) {\n",
+ " var fig = event.data.fig;\n",
+ " if (event.target !== this) {\n",
+ " // Ignore bubbled events from children.\n",
+ " return;\n",
+ " }\n",
+ " fig.close_ws(fig, {});\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._root_extra_style = function (el) {\n",
+ " el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._canvas_extra_style = function (el) {\n",
+ " // this is important to make the div 'focusable\n",
+ " el.setAttribute('tabindex', 0);\n",
+ " // reach out to IPython and tell the keyboard manager to turn it's self\n",
+ " // off when our div gets focus\n",
+ "\n",
+ " // location in version 3\n",
+ " if (IPython.notebook.keyboard_manager) {\n",
+ " IPython.notebook.keyboard_manager.register_events(el);\n",
+ " } else {\n",
+ " // location in version 2\n",
+ " IPython.keyboard_manager.register_events(el);\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._key_event_extra = function (event, _name) {\n",
+ " var manager = IPython.notebook.keyboard_manager;\n",
+ " if (!manager) {\n",
+ " manager = IPython.keyboard_manager;\n",
+ " }\n",
+ "\n",
+ " // Check for shift+enter\n",
+ " if (event.shiftKey && event.which === 13) {\n",
+ " this.canvas_div.blur();\n",
+ " // select the cell after this one\n",
+ " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n",
+ " IPython.notebook.select(index + 1);\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
+ " fig.ondownload(fig, null);\n",
+ "};\n",
+ "\n",
+ "mpl.find_output_cell = function (html_output) {\n",
+ " // Return the cell and output element which can be found *uniquely* in the notebook.\n",
+ " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
+ " // IPython event is triggered only after the cells have been serialised, which for\n",
+ " // our purposes (turning an active figure into a static one), is too late.\n",
+ " var cells = IPython.notebook.get_cells();\n",
+ " var ncells = cells.length;\n",
+ " for (var i = 0; i < ncells; i++) {\n",
+ " var cell = cells[i];\n",
+ " if (cell.cell_type === 'code') {\n",
+ " for (var j = 0; j < cell.output_area.outputs.length; j++) {\n",
+ " var data = cell.output_area.outputs[j];\n",
+ " if (data.data) {\n",
+ " // IPython >= 3 moved mimebundle to data attribute of output\n",
+ " data = data.data;\n",
+ " }\n",
+ " if (data['text/html'] === html_output) {\n",
+ " return [cell, data, j];\n",
+ " }\n",
+ " }\n",
+ " }\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "// Register the function which deals with the matplotlib target/channel.\n",
+ "// The kernel may be null if the page has been refreshed.\n",
+ "if (IPython.notebook.kernel !== null) {\n",
+ " IPython.notebook.kernel.comm_manager.register_target(\n",
+ " 'matplotlib',\n",
+ " mpl.mpl_figure_comm\n",
+ " );\n",
+ "}\n"
+ ],
+ "text/plain": [
+ "<IPython.core.display.Javascript object>"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "<img src=\"\" width=\"500\">"
+ ],
+ "text/plain": [
+ "<IPython.core.display.HTML object>"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "run_spans = {\n",
+ " 28: (4.35, 70, 120),\n",
+ "# 29: (3.10, 70, 120), Data is missing initial quiet period\n",
+ " 30: (7.04, 40, 120),\n",
+ " 31: (7.57, 30, 100),\n",
+ " 32: (10.4, 40, 90),\n",
+ " 33: (16.1, 40, 75),\n",
+ " 34: (8.62, 20, 80),\n",
+ " 37: (6.67, 20, 90),\n",
+ " 38: (9.43, 20, 80),\n",
+ " 39: (13.1, 20, 85),\n",
+ "}\n",
+ "\n",
+ "def plot_acceleration(runs, figsize=None, save=None):\n",
+ " acc_theory, acc_meas, acc_meas_err_tot, acc_meas_err_x, acc_meas_err_y, freqs = [], [], [], [], [], []\n",
+ " for run_id, (freq_meas, t_start, t_end) in sorted(run_spans.items(), key=lambda x: x[1][0]):\n",
+ " freqs.append(freq_meas)\n",
+ " omegan = 2*np.pi*freq_meas# angular velocity\n",
+ " acc = omegan**2 * r_mems # m/s^2\n",
+ " acc_theory.append(acc / g)\n",
+ " \n",
+ " t, y, packet_delay, packet_times = load_run(run_id, plot=False)\n",
+ " data_slice = y[(t > t_start/60) & (t < t_end/60)] / mems_lsb_per_g\n",
+ " silence_slice = y[t < 10/60] / mems_lsb_per_g\n",
+ " acc_meas.append(data_slice.mean() - silence_slice.mean())\n",
+ " \n",
+ " freq_meas_delta = 0.5 # Hz estimated\n",
+ " delta_due_to_f = 2*4*(np.pi**2)*freq_meas*r_mems*freq_meas_delta / g\n",
+ " #\n",
+ " # Absolute offset errors are corrected by subtracting the silence period at the beginning. Sensor noise\n",
+ " # is measured directly from the data and includes mechanical noise due to device vibrations. We have to\n",
+ " # account for sensitivity error (incorrect scaling of all measurements) and nonlinearity error\n",
+ " # (per-measurement scale error) here.\n",
+ " #\n",
+ " # We can safely ignore sensor temperature drift.\n",
+ " #\n",
+ " mems_nonl_err = 0.01\n",
+ " mems_sens_err = 0.05\n",
+ " mems_position_tol = 2e-3 # m\n",
+ " mems_position_err = omegan**2 * mems_position_tol / g\n",
+ " data_err_sq = data_slice.std()**2 + mems_nonl_err**2 + mems_sens_err**2 + mems_position_err**2\n",
+ " err = np.sqrt(delta_due_to_f**2 + data_err_sq)\n",
+ " #print(f'{delta_due_to_f=} {data_slice.std()=} {err=}')\n",
+ " \n",
+ " acc_meas_err_tot.append(err)\n",
+ " acc_meas_err_x.append(freq_meas_delta)\n",
+ " acc_meas_err_y.append(np.sqrt(data_err_sq))\n",
+ "\n",
+ " acc_meas = np.array(acc_meas)\n",
+ " acc_meas_std = np.array(acc_meas_err_tot)\n",
+ " \n",
+ " fig, ax = plt.subplots(figsize=figsize)\n",
+ " #ax.plot(freqs, acc_theory, label='Theory')\n",
+ " \n",
+ " tfreqs = np.linspace(0, 17, 1000)\n",
+ " ax.plot(tfreqs, (2*np.pi*tfreqs)**2 * r_mems / g, label='Theory')\n",
+ " \n",
+ " ax.fill_between(freqs, acc_meas-acc_meas_err_tot, acc_meas+acc_meas_err_tot, color='orange', alpha=0.2, zorder=1)\n",
+ " ax.errorbar(freqs, acc_meas, xerr=acc_meas_err_x, yerr=acc_meas_err_y, marker='.', label='Measurements', zorder=1)\n",
+ "\n",
+ " ax.grid()\n",
+ " ax.set_xlabel('$f\\;[Hz]$')\n",
+ " ax2 = ax.twiny()\n",
+ " x1, x2 = ax.get_xlim()\n",
+ " ax2.set_xlim((x1*60, x2*60))\n",
+ " ax2.set_xlabel('$f\\;[rpm]$')\n",
+ " ax.set_ylabel('$a\\;[g]$')\n",
+ " ax3 = ax.twinx()\n",
+ " y1, y2 = ax.get_ylim()\n",
+ " ax3.set_ylim(y1*g, y2*g)\n",
+ " ax3.set_ylabel('$a\\;[ms^-1]$')\n",
+ "\n",
+ " ax.legend()\n",
+ " fig.tight_layout()\n",
+ " if save:\n",
+ " fig.savefig(save)\n",
+ " \n",
+ "plot_acceleration(run_spans, figsize=(5, 3), save='fig-acc-theory-meas.pdf')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
"metadata": {
"scrolled": false
},
@@ -4250,7 +5366,7 @@
"4.3273542600896855"
]
},
- "execution_count": 957,
+ "execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
@@ -4296,7 +5412,7 @@
},
{
"cell_type": "code",
- "execution_count": 958,
+ "execution_count": 13,
"metadata": {
"scrolled": false
},
@@ -5294,7 +6410,7 @@
},
{
"cell_type": "code",
- "execution_count": 959,
+ "execution_count": 14,
"metadata": {},
"outputs": [
{
@@ -6270,10 +7386,10 @@
{
"data": {
"text/plain": [
- "[<matplotlib.lines.Line2D at 0x7f3e0e5af160>]"
+ "[<matplotlib.lines.Line2D at 0x7f2d6fc88040>]"
]
},
- "execution_count": 959,
+ "execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
@@ -6287,7 +7403,7 @@
},
{
"cell_type": "code",
- "execution_count": 1000,
+ "execution_count": 15,
"metadata": {
"scrolled": false
},
@@ -7488,7 +8604,7 @@
},
{
"cell_type": "code",
- "execution_count": 995,
+ "execution_count": 89,
"metadata": {},
"outputs": [
{
@@ -8452,7 +9568,1027 @@
{
"data": {
"text/html": [
- "<img src=\"\" width=\"640\">"
+ "<img src=\"\" width=\"500\">"
+ ],
+ "text/plain": [
+ "<IPython.core.display.HTML object>"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " ===== Run 34: =====\n",
+ "Loading run #34 with 2714 packets total, 121 distinct over 97.30304408073425s\n",
+ "Packet length: 40\n",
+ "Very approximate lower bound on baudrate: 129032.25806451612 bd\n",
+ "Sequence number range: 165 ... 287\n",
+ "interval: 0.11474772130686393\n",
+ "scores: [-0.030846569646590577, -0.017939041958299002, 0.007585993694854823, 0.013487796252691883, 0.01286325763359304, 0.012345763316803614, 0.011619541945226932, 0.010974011837158768, 0.010396432266781988]\n",
+ "argmin: 1\n",
+ "min score -0.030846569646590577 -0.09545980709610284\n",
+ "Average speed of rotation: 8.71 Hz / 523 rpm\n",
+ "\n",
+ " f_meas = 8.62 Hz; f_est = 8.71 Hz\n",
+ " Δabs = 0.09 Hz; Δrel = +1.1 %\n"
+ ]
+ }
+ ],
+ "source": [
+ "fig, ax = plt.subplots(figsize=(5, 3))\n",
+ "run_id = 34\n",
+ "freq_meas, t_start, t_end = run_spans[run_id]\n",
+ "\n",
+ "print()\n",
+ "print(f' ===== Run {run_id}: =====')\n",
+ "t, y, packet_delay, packet_times = load_run(run_id, plot=False)\n",
+ "freq_est = estimate_freq_delay(packet_delay, packet_times, (t_start, t_end), ax=ax)\n",
+ "#ax.set_title(f'Run {run_id} @ $f_{{meas}} = {freq_meas:02.2f} Hz$ / $f_{{est}} = {freq_est:02.2f} Hz$')\n",
+ "print()\n",
+ "print(f' f_meas = {freq_meas:02.2f} Hz; f_est = {freq_est:02.2f} Hz')\n",
+ "delta_abs = freq_est - freq_meas\n",
+ "delta_rel = freq_est/freq_meas-1\n",
+ "deltas.append((delta_abs, delta_rel))\n",
+ "print(f' Δabs = {delta_abs:02.2f} Hz; Δrel = {delta_rel*100:+.1f} %')\n",
+ "\n",
+ "ax.set_ylabel(r'$\\Delta t\\;[s]$')\n",
+ "ax.set_xlabel(r'Cumulative packets')\n",
+ "\n",
+ "fig.tight_layout()\n",
+ "fig.savefig('fig-comms-delays.pdf')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/javascript": [
+ "/* Put everything inside the global mpl namespace */\n",
+ "/* global mpl */\n",
+ "window.mpl = {};\n",
+ "\n",
+ "mpl.get_websocket_type = function () {\n",
+ " if (typeof WebSocket !== 'undefined') {\n",
+ " return WebSocket;\n",
+ " } else if (typeof MozWebSocket !== 'undefined') {\n",
+ " return MozWebSocket;\n",
+ " } else {\n",
+ " alert(\n",
+ " 'Your browser does not have WebSocket support. ' +\n",
+ " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
+ " 'Firefox 4 and 5 are also supported but you ' +\n",
+ " 'have to enable WebSockets in about:config.'\n",
+ " );\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n",
+ " this.id = figure_id;\n",
+ "\n",
+ " this.ws = websocket;\n",
+ "\n",
+ " this.supports_binary = this.ws.binaryType !== undefined;\n",
+ "\n",
+ " if (!this.supports_binary) {\n",
+ " var warnings = document.getElementById('mpl-warnings');\n",
+ " if (warnings) {\n",
+ " warnings.style.display = 'block';\n",
+ " warnings.textContent =\n",
+ " 'This browser does not support binary websocket messages. ' +\n",
+ " 'Performance may be slow.';\n",
+ " }\n",
+ " }\n",
+ "\n",
+ " this.imageObj = new Image();\n",
+ "\n",
+ " this.context = undefined;\n",
+ " this.message = undefined;\n",
+ " this.canvas = undefined;\n",
+ " this.rubberband_canvas = undefined;\n",
+ " this.rubberband_context = undefined;\n",
+ " this.format_dropdown = undefined;\n",
+ "\n",
+ " this.image_mode = 'full';\n",
+ "\n",
+ " this.root = document.createElement('div');\n",
+ " this.root.setAttribute('style', 'display: inline-block');\n",
+ " this._root_extra_style(this.root);\n",
+ "\n",
+ " parent_element.appendChild(this.root);\n",
+ "\n",
+ " this._init_header(this);\n",
+ " this._init_canvas(this);\n",
+ " this._init_toolbar(this);\n",
+ "\n",
+ " var fig = this;\n",
+ "\n",
+ " this.waiting = false;\n",
+ "\n",
+ " this.ws.onopen = function () {\n",
+ " fig.send_message('supports_binary', { value: fig.supports_binary });\n",
+ " fig.send_message('send_image_mode', {});\n",
+ " if (fig.ratio !== 1) {\n",
+ " fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n",
+ " }\n",
+ " fig.send_message('refresh', {});\n",
+ " };\n",
+ "\n",
+ " this.imageObj.onload = function () {\n",
+ " if (fig.image_mode === 'full') {\n",
+ " // Full images could contain transparency (where diff images\n",
+ " // almost always do), so we need to clear the canvas so that\n",
+ " // there is no ghosting.\n",
+ " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
+ " }\n",
+ " fig.context.drawImage(fig.imageObj, 0, 0);\n",
+ " };\n",
+ "\n",
+ " this.imageObj.onunload = function () {\n",
+ " fig.ws.close();\n",
+ " };\n",
+ "\n",
+ " this.ws.onmessage = this._make_on_message_function(this);\n",
+ "\n",
+ " this.ondownload = ondownload;\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._init_header = function () {\n",
+ " var titlebar = document.createElement('div');\n",
+ " titlebar.classList =\n",
+ " 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n",
+ " var titletext = document.createElement('div');\n",
+ " titletext.classList = 'ui-dialog-title';\n",
+ " titletext.setAttribute(\n",
+ " 'style',\n",
+ " 'width: 100%; text-align: center; padding: 3px;'\n",
+ " );\n",
+ " titlebar.appendChild(titletext);\n",
+ " this.root.appendChild(titlebar);\n",
+ " this.header = titletext;\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n",
+ "\n",
+ "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n",
+ "\n",
+ "mpl.figure.prototype._init_canvas = function () {\n",
+ " var fig = this;\n",
+ "\n",
+ " var canvas_div = (this.canvas_div = document.createElement('div'));\n",
+ " canvas_div.setAttribute(\n",
+ " 'style',\n",
+ " 'border: 1px solid #ddd;' +\n",
+ " 'box-sizing: content-box;' +\n",
+ " 'clear: both;' +\n",
+ " 'min-height: 1px;' +\n",
+ " 'min-width: 1px;' +\n",
+ " 'outline: 0;' +\n",
+ " 'overflow: hidden;' +\n",
+ " 'position: relative;' +\n",
+ " 'resize: both;'\n",
+ " );\n",
+ "\n",
+ " function on_keyboard_event_closure(name) {\n",
+ " return function (event) {\n",
+ " return fig.key_event(event, name);\n",
+ " };\n",
+ " }\n",
+ "\n",
+ " canvas_div.addEventListener(\n",
+ " 'keydown',\n",
+ " on_keyboard_event_closure('key_press')\n",
+ " );\n",
+ " canvas_div.addEventListener(\n",
+ " 'keyup',\n",
+ " on_keyboard_event_closure('key_release')\n",
+ " );\n",
+ "\n",
+ " this._canvas_extra_style(canvas_div);\n",
+ " this.root.appendChild(canvas_div);\n",
+ "\n",
+ " var canvas = (this.canvas = document.createElement('canvas'));\n",
+ " canvas.classList.add('mpl-canvas');\n",
+ " canvas.setAttribute('style', 'box-sizing: content-box;');\n",
+ "\n",
+ " this.context = canvas.getContext('2d');\n",
+ "\n",
+ " var backingStore =\n",
+ " this.context.backingStorePixelRatio ||\n",
+ " this.context.webkitBackingStorePixelRatio ||\n",
+ " this.context.mozBackingStorePixelRatio ||\n",
+ " this.context.msBackingStorePixelRatio ||\n",
+ " this.context.oBackingStorePixelRatio ||\n",
+ " this.context.backingStorePixelRatio ||\n",
+ " 1;\n",
+ "\n",
+ " this.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
+ "\n",
+ " var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n",
+ " 'canvas'\n",
+ " ));\n",
+ " rubberband_canvas.setAttribute(\n",
+ " 'style',\n",
+ " 'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n",
+ " );\n",
+ "\n",
+ " // Apply a ponyfill if ResizeObserver is not implemented by browser.\n",
+ " if (this.ResizeObserver === undefined) {\n",
+ " if (window.ResizeObserver !== undefined) {\n",
+ " this.ResizeObserver = window.ResizeObserver;\n",
+ " } else {\n",
+ " var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n",
+ " this.ResizeObserver = obs.ResizeObserver;\n",
+ " }\n",
+ " }\n",
+ "\n",
+ " this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n",
+ " var nentries = entries.length;\n",
+ " for (var i = 0; i < nentries; i++) {\n",
+ " var entry = entries[i];\n",
+ " var width, height;\n",
+ " if (entry.contentBoxSize) {\n",
+ " if (entry.contentBoxSize instanceof Array) {\n",
+ " // Chrome 84 implements new version of spec.\n",
+ " width = entry.contentBoxSize[0].inlineSize;\n",
+ " height = entry.contentBoxSize[0].blockSize;\n",
+ " } else {\n",
+ " // Firefox implements old version of spec.\n",
+ " width = entry.contentBoxSize.inlineSize;\n",
+ " height = entry.contentBoxSize.blockSize;\n",
+ " }\n",
+ " } else {\n",
+ " // Chrome <84 implements even older version of spec.\n",
+ " width = entry.contentRect.width;\n",
+ " height = entry.contentRect.height;\n",
+ " }\n",
+ "\n",
+ " // Keep the size of the canvas and rubber band canvas in sync with\n",
+ " // the canvas container.\n",
+ " if (entry.devicePixelContentBoxSize) {\n",
+ " // Chrome 84 implements new version of spec.\n",
+ " canvas.setAttribute(\n",
+ " 'width',\n",
+ " entry.devicePixelContentBoxSize[0].inlineSize\n",
+ " );\n",
+ " canvas.setAttribute(\n",
+ " 'height',\n",
+ " entry.devicePixelContentBoxSize[0].blockSize\n",
+ " );\n",
+ " } else {\n",
+ " canvas.setAttribute('width', width * fig.ratio);\n",
+ " canvas.setAttribute('height', height * fig.ratio);\n",
+ " }\n",
+ " canvas.setAttribute(\n",
+ " 'style',\n",
+ " 'width: ' + width + 'px; height: ' + height + 'px;'\n",
+ " );\n",
+ "\n",
+ " rubberband_canvas.setAttribute('width', width);\n",
+ " rubberband_canvas.setAttribute('height', height);\n",
+ "\n",
+ " // And update the size in Python. We ignore the initial 0/0 size\n",
+ " // that occurs as the element is placed into the DOM, which should\n",
+ " // otherwise not happen due to the minimum size styling.\n",
+ " if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n",
+ " fig.request_resize(width, height);\n",
+ " }\n",
+ " }\n",
+ " });\n",
+ " this.resizeObserverInstance.observe(canvas_div);\n",
+ "\n",
+ " function on_mouse_event_closure(name) {\n",
+ " return function (event) {\n",
+ " return fig.mouse_event(event, name);\n",
+ " };\n",
+ " }\n",
+ "\n",
+ " rubberband_canvas.addEventListener(\n",
+ " 'mousedown',\n",
+ " on_mouse_event_closure('button_press')\n",
+ " );\n",
+ " rubberband_canvas.addEventListener(\n",
+ " 'mouseup',\n",
+ " on_mouse_event_closure('button_release')\n",
+ " );\n",
+ " // Throttle sequential mouse events to 1 every 20ms.\n",
+ " rubberband_canvas.addEventListener(\n",
+ " 'mousemove',\n",
+ " on_mouse_event_closure('motion_notify')\n",
+ " );\n",
+ "\n",
+ " rubberband_canvas.addEventListener(\n",
+ " 'mouseenter',\n",
+ " on_mouse_event_closure('figure_enter')\n",
+ " );\n",
+ " rubberband_canvas.addEventListener(\n",
+ " 'mouseleave',\n",
+ " on_mouse_event_closure('figure_leave')\n",
+ " );\n",
+ "\n",
+ " canvas_div.addEventListener('wheel', function (event) {\n",
+ " if (event.deltaY < 0) {\n",
+ " event.step = 1;\n",
+ " } else {\n",
+ " event.step = -1;\n",
+ " }\n",
+ " on_mouse_event_closure('scroll')(event);\n",
+ " });\n",
+ "\n",
+ " canvas_div.appendChild(canvas);\n",
+ " canvas_div.appendChild(rubberband_canvas);\n",
+ "\n",
+ " this.rubberband_context = rubberband_canvas.getContext('2d');\n",
+ " this.rubberband_context.strokeStyle = '#000000';\n",
+ "\n",
+ " this._resize_canvas = function (width, height, forward) {\n",
+ " if (forward) {\n",
+ " canvas_div.style.width = width + 'px';\n",
+ " canvas_div.style.height = height + 'px';\n",
+ " }\n",
+ " };\n",
+ "\n",
+ " // Disable right mouse context menu.\n",
+ " this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n",
+ " event.preventDefault();\n",
+ " return false;\n",
+ " });\n",
+ "\n",
+ " function set_focus() {\n",
+ " canvas.focus();\n",
+ " canvas_div.focus();\n",
+ " }\n",
+ "\n",
+ " window.setTimeout(set_focus, 100);\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._init_toolbar = function () {\n",
+ " var fig = this;\n",
+ "\n",
+ " var toolbar = document.createElement('div');\n",
+ " toolbar.classList = 'mpl-toolbar';\n",
+ " this.root.appendChild(toolbar);\n",
+ "\n",
+ " function on_click_closure(name) {\n",
+ " return function (_event) {\n",
+ " return fig.toolbar_button_onclick(name);\n",
+ " };\n",
+ " }\n",
+ "\n",
+ " function on_mouseover_closure(tooltip) {\n",
+ " return function (event) {\n",
+ " if (!event.currentTarget.disabled) {\n",
+ " return fig.toolbar_button_onmouseover(tooltip);\n",
+ " }\n",
+ " };\n",
+ " }\n",
+ "\n",
+ " fig.buttons = {};\n",
+ " var buttonGroup = document.createElement('div');\n",
+ " buttonGroup.classList = 'mpl-button-group';\n",
+ " for (var toolbar_ind in mpl.toolbar_items) {\n",
+ " var name = mpl.toolbar_items[toolbar_ind][0];\n",
+ " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+ " var image = mpl.toolbar_items[toolbar_ind][2];\n",
+ " var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+ "\n",
+ " if (!name) {\n",
+ " /* Instead of a spacer, we start a new button group. */\n",
+ " if (buttonGroup.hasChildNodes()) {\n",
+ " toolbar.appendChild(buttonGroup);\n",
+ " }\n",
+ " buttonGroup = document.createElement('div');\n",
+ " buttonGroup.classList = 'mpl-button-group';\n",
+ " continue;\n",
+ " }\n",
+ "\n",
+ " var button = (fig.buttons[name] = document.createElement('button'));\n",
+ " button.classList = 'mpl-widget';\n",
+ " button.setAttribute('role', 'button');\n",
+ " button.setAttribute('aria-disabled', 'false');\n",
+ " button.addEventListener('click', on_click_closure(method_name));\n",
+ " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
+ "\n",
+ " var icon_img = document.createElement('img');\n",
+ " icon_img.src = '_images/' + image + '.png';\n",
+ " icon_img.srcset = '_images/' + image + '_large.png 2x';\n",
+ " icon_img.alt = tooltip;\n",
+ " button.appendChild(icon_img);\n",
+ "\n",
+ " buttonGroup.appendChild(button);\n",
+ " }\n",
+ "\n",
+ " if (buttonGroup.hasChildNodes()) {\n",
+ " toolbar.appendChild(buttonGroup);\n",
+ " }\n",
+ "\n",
+ " var fmt_picker = document.createElement('select');\n",
+ " fmt_picker.classList = 'mpl-widget';\n",
+ " toolbar.appendChild(fmt_picker);\n",
+ " this.format_dropdown = fmt_picker;\n",
+ "\n",
+ " for (var ind in mpl.extensions) {\n",
+ " var fmt = mpl.extensions[ind];\n",
+ " var option = document.createElement('option');\n",
+ " option.selected = fmt === mpl.default_extension;\n",
+ " option.innerHTML = fmt;\n",
+ " fmt_picker.appendChild(option);\n",
+ " }\n",
+ "\n",
+ " var status_bar = document.createElement('span');\n",
+ " status_bar.classList = 'mpl-message';\n",
+ " toolbar.appendChild(status_bar);\n",
+ " this.message = status_bar;\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n",
+ " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
+ " // which will in turn request a refresh of the image.\n",
+ " this.send_message('resize', { width: x_pixels, height: y_pixels });\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.send_message = function (type, properties) {\n",
+ " properties['type'] = type;\n",
+ " properties['figure_id'] = this.id;\n",
+ " this.ws.send(JSON.stringify(properties));\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.send_draw_message = function () {\n",
+ " if (!this.waiting) {\n",
+ " this.waiting = true;\n",
+ " this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
+ " var format_dropdown = fig.format_dropdown;\n",
+ " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
+ " fig.ondownload(fig, format);\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_resize = function (fig, msg) {\n",
+ " var size = msg['size'];\n",
+ " if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n",
+ " fig._resize_canvas(size[0], size[1], msg['forward']);\n",
+ " fig.send_message('refresh', {});\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n",
+ " var x0 = msg['x0'] / fig.ratio;\n",
+ " var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n",
+ " var x1 = msg['x1'] / fig.ratio;\n",
+ " var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n",
+ " x0 = Math.floor(x0) + 0.5;\n",
+ " y0 = Math.floor(y0) + 0.5;\n",
+ " x1 = Math.floor(x1) + 0.5;\n",
+ " y1 = Math.floor(y1) + 0.5;\n",
+ " var min_x = Math.min(x0, x1);\n",
+ " var min_y = Math.min(y0, y1);\n",
+ " var width = Math.abs(x1 - x0);\n",
+ " var height = Math.abs(y1 - y0);\n",
+ "\n",
+ " fig.rubberband_context.clearRect(\n",
+ " 0,\n",
+ " 0,\n",
+ " fig.canvas.width / fig.ratio,\n",
+ " fig.canvas.height / fig.ratio\n",
+ " );\n",
+ "\n",
+ " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n",
+ " // Updates the figure title.\n",
+ " fig.header.textContent = msg['label'];\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n",
+ " var cursor = msg['cursor'];\n",
+ " switch (cursor) {\n",
+ " case 0:\n",
+ " cursor = 'pointer';\n",
+ " break;\n",
+ " case 1:\n",
+ " cursor = 'default';\n",
+ " break;\n",
+ " case 2:\n",
+ " cursor = 'crosshair';\n",
+ " break;\n",
+ " case 3:\n",
+ " cursor = 'move';\n",
+ " break;\n",
+ " }\n",
+ " fig.rubberband_canvas.style.cursor = cursor;\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_message = function (fig, msg) {\n",
+ " fig.message.textContent = msg['message'];\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n",
+ " // Request the server to send over a new figure.\n",
+ " fig.send_draw_message();\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n",
+ " fig.image_mode = msg['mode'];\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n",
+ " for (var key in msg) {\n",
+ " if (!(key in fig.buttons)) {\n",
+ " continue;\n",
+ " }\n",
+ " fig.buttons[key].disabled = !msg[key];\n",
+ " fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n",
+ " if (msg['mode'] === 'PAN') {\n",
+ " fig.buttons['Pan'].classList.add('active');\n",
+ " fig.buttons['Zoom'].classList.remove('active');\n",
+ " } else if (msg['mode'] === 'ZOOM') {\n",
+ " fig.buttons['Pan'].classList.remove('active');\n",
+ " fig.buttons['Zoom'].classList.add('active');\n",
+ " } else {\n",
+ " fig.buttons['Pan'].classList.remove('active');\n",
+ " fig.buttons['Zoom'].classList.remove('active');\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.updated_canvas_event = function () {\n",
+ " // Called whenever the canvas gets updated.\n",
+ " this.send_message('ack', {});\n",
+ "};\n",
+ "\n",
+ "// A function to construct a web socket function for onmessage handling.\n",
+ "// Called in the figure constructor.\n",
+ "mpl.figure.prototype._make_on_message_function = function (fig) {\n",
+ " return function socket_on_message(evt) {\n",
+ " if (evt.data instanceof Blob) {\n",
+ " /* FIXME: We get \"Resource interpreted as Image but\n",
+ " * transferred with MIME type text/plain:\" errors on\n",
+ " * Chrome. But how to set the MIME type? It doesn't seem\n",
+ " * to be part of the websocket stream */\n",
+ " evt.data.type = 'image/png';\n",
+ "\n",
+ " /* Free the memory for the previous frames */\n",
+ " if (fig.imageObj.src) {\n",
+ " (window.URL || window.webkitURL).revokeObjectURL(\n",
+ " fig.imageObj.src\n",
+ " );\n",
+ " }\n",
+ "\n",
+ " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
+ " evt.data\n",
+ " );\n",
+ " fig.updated_canvas_event();\n",
+ " fig.waiting = false;\n",
+ " return;\n",
+ " } else if (\n",
+ " typeof evt.data === 'string' &&\n",
+ " evt.data.slice(0, 21) === 'data:image/png;base64'\n",
+ " ) {\n",
+ " fig.imageObj.src = evt.data;\n",
+ " fig.updated_canvas_event();\n",
+ " fig.waiting = false;\n",
+ " return;\n",
+ " }\n",
+ "\n",
+ " var msg = JSON.parse(evt.data);\n",
+ " var msg_type = msg['type'];\n",
+ "\n",
+ " // Call the \"handle_{type}\" callback, which takes\n",
+ " // the figure and JSON message as its only arguments.\n",
+ " try {\n",
+ " var callback = fig['handle_' + msg_type];\n",
+ " } catch (e) {\n",
+ " console.log(\n",
+ " \"No handler for the '\" + msg_type + \"' message type: \",\n",
+ " msg\n",
+ " );\n",
+ " return;\n",
+ " }\n",
+ "\n",
+ " if (callback) {\n",
+ " try {\n",
+ " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
+ " callback(fig, msg);\n",
+ " } catch (e) {\n",
+ " console.log(\n",
+ " \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n",
+ " e,\n",
+ " e.stack,\n",
+ " msg\n",
+ " );\n",
+ " }\n",
+ " }\n",
+ " };\n",
+ "};\n",
+ "\n",
+ "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
+ "mpl.findpos = function (e) {\n",
+ " //this section is from http://www.quirksmode.org/js/events_properties.html\n",
+ " var targ;\n",
+ " if (!e) {\n",
+ " e = window.event;\n",
+ " }\n",
+ " if (e.target) {\n",
+ " targ = e.target;\n",
+ " } else if (e.srcElement) {\n",
+ " targ = e.srcElement;\n",
+ " }\n",
+ " if (targ.nodeType === 3) {\n",
+ " // defeat Safari bug\n",
+ " targ = targ.parentNode;\n",
+ " }\n",
+ "\n",
+ " // pageX,Y are the mouse positions relative to the document\n",
+ " var boundingRect = targ.getBoundingClientRect();\n",
+ " var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n",
+ " var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n",
+ "\n",
+ " return { x: x, y: y };\n",
+ "};\n",
+ "\n",
+ "/*\n",
+ " * return a copy of an object with only non-object keys\n",
+ " * we need this to avoid circular references\n",
+ " * http://stackoverflow.com/a/24161582/3208463\n",
+ " */\n",
+ "function simpleKeys(original) {\n",
+ " return Object.keys(original).reduce(function (obj, key) {\n",
+ " if (typeof original[key] !== 'object') {\n",
+ " obj[key] = original[key];\n",
+ " }\n",
+ " return obj;\n",
+ " }, {});\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.mouse_event = function (event, name) {\n",
+ " var canvas_pos = mpl.findpos(event);\n",
+ "\n",
+ " if (name === 'button_press') {\n",
+ " this.canvas.focus();\n",
+ " this.canvas_div.focus();\n",
+ " }\n",
+ "\n",
+ " var x = canvas_pos.x * this.ratio;\n",
+ " var y = canvas_pos.y * this.ratio;\n",
+ "\n",
+ " this.send_message(name, {\n",
+ " x: x,\n",
+ " y: y,\n",
+ " button: event.button,\n",
+ " step: event.step,\n",
+ " guiEvent: simpleKeys(event),\n",
+ " });\n",
+ "\n",
+ " /* This prevents the web browser from automatically changing to\n",
+ " * the text insertion cursor when the button is pressed. We want\n",
+ " * to control all of the cursor setting manually through the\n",
+ " * 'cursor' event from matplotlib */\n",
+ " event.preventDefault();\n",
+ " return false;\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n",
+ " // Handle any extra behaviour associated with a key event\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.key_event = function (event, name) {\n",
+ " // Prevent repeat events\n",
+ " if (name === 'key_press') {\n",
+ " if (event.which === this._key) {\n",
+ " return;\n",
+ " } else {\n",
+ " this._key = event.which;\n",
+ " }\n",
+ " }\n",
+ " if (name === 'key_release') {\n",
+ " this._key = null;\n",
+ " }\n",
+ "\n",
+ " var value = '';\n",
+ " if (event.ctrlKey && event.which !== 17) {\n",
+ " value += 'ctrl+';\n",
+ " }\n",
+ " if (event.altKey && event.which !== 18) {\n",
+ " value += 'alt+';\n",
+ " }\n",
+ " if (event.shiftKey && event.which !== 16) {\n",
+ " value += 'shift+';\n",
+ " }\n",
+ "\n",
+ " value += 'k';\n",
+ " value += event.which.toString();\n",
+ "\n",
+ " this._key_event_extra(event, name);\n",
+ "\n",
+ " this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n",
+ " return false;\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n",
+ " if (name === 'download') {\n",
+ " this.handle_save(this, null);\n",
+ " } else {\n",
+ " this.send_message('toolbar_button', { name: name });\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n",
+ " this.message.textContent = tooltip;\n",
+ "};\n",
+ "\n",
+ "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n",
+ "// prettier-ignore\n",
+ "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n",
+ "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
+ "\n",
+ "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
+ "\n",
+ "mpl.default_extension = \"png\";/* global mpl */\n",
+ "\n",
+ "var comm_websocket_adapter = function (comm) {\n",
+ " // Create a \"websocket\"-like object which calls the given IPython comm\n",
+ " // object with the appropriate methods. Currently this is a non binary\n",
+ " // socket, so there is still some room for performance tuning.\n",
+ " var ws = {};\n",
+ "\n",
+ " ws.close = function () {\n",
+ " comm.close();\n",
+ " };\n",
+ " ws.send = function (m) {\n",
+ " //console.log('sending', m);\n",
+ " comm.send(m);\n",
+ " };\n",
+ " // Register the callback with on_msg.\n",
+ " comm.on_msg(function (msg) {\n",
+ " //console.log('receiving', msg['content']['data'], msg);\n",
+ " // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
+ " ws.onmessage(msg['content']['data']);\n",
+ " });\n",
+ " return ws;\n",
+ "};\n",
+ "\n",
+ "mpl.mpl_figure_comm = function (comm, msg) {\n",
+ " // This is the function which gets called when the mpl process\n",
+ " // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
+ "\n",
+ " var id = msg.content.data.id;\n",
+ " // Get hold of the div created by the display call when the Comm\n",
+ " // socket was opened in Python.\n",
+ " var element = document.getElementById(id);\n",
+ " var ws_proxy = comm_websocket_adapter(comm);\n",
+ "\n",
+ " function ondownload(figure, _format) {\n",
+ " window.open(figure.canvas.toDataURL());\n",
+ " }\n",
+ "\n",
+ " var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n",
+ "\n",
+ " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
+ " // web socket which is closed, not our websocket->open comm proxy.\n",
+ " ws_proxy.onopen();\n",
+ "\n",
+ " fig.parent_element = element;\n",
+ " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
+ " if (!fig.cell_info) {\n",
+ " console.error('Failed to find cell for figure', id, fig);\n",
+ " return;\n",
+ " }\n",
+ " fig.cell_info[0].output_area.element.on(\n",
+ " 'cleared',\n",
+ " { fig: fig },\n",
+ " fig._remove_fig_handler\n",
+ " );\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_close = function (fig, msg) {\n",
+ " var width = fig.canvas.width / fig.ratio;\n",
+ " fig.cell_info[0].output_area.element.off(\n",
+ " 'cleared',\n",
+ " fig._remove_fig_handler\n",
+ " );\n",
+ " fig.resizeObserverInstance.unobserve(fig.canvas_div);\n",
+ "\n",
+ " // Update the output cell to use the data from the current canvas.\n",
+ " fig.push_to_output();\n",
+ " var dataURL = fig.canvas.toDataURL();\n",
+ " // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
+ " // the notebook keyboard shortcuts fail.\n",
+ " IPython.keyboard_manager.enable();\n",
+ " fig.parent_element.innerHTML =\n",
+ " '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
+ " fig.close_ws(fig, msg);\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.close_ws = function (fig, msg) {\n",
+ " fig.send_message('closing', msg);\n",
+ " // fig.ws.close()\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n",
+ " // Turn the data on the canvas into data in the output cell.\n",
+ " var width = this.canvas.width / this.ratio;\n",
+ " var dataURL = this.canvas.toDataURL();\n",
+ " this.cell_info[1]['text/html'] =\n",
+ " '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.updated_canvas_event = function () {\n",
+ " // Tell IPython that the notebook contents must change.\n",
+ " IPython.notebook.set_dirty(true);\n",
+ " this.send_message('ack', {});\n",
+ " var fig = this;\n",
+ " // Wait a second, then push the new image to the DOM so\n",
+ " // that it is saved nicely (might be nice to debounce this).\n",
+ " setTimeout(function () {\n",
+ " fig.push_to_output();\n",
+ " }, 1000);\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._init_toolbar = function () {\n",
+ " var fig = this;\n",
+ "\n",
+ " var toolbar = document.createElement('div');\n",
+ " toolbar.classList = 'btn-toolbar';\n",
+ " this.root.appendChild(toolbar);\n",
+ "\n",
+ " function on_click_closure(name) {\n",
+ " return function (_event) {\n",
+ " return fig.toolbar_button_onclick(name);\n",
+ " };\n",
+ " }\n",
+ "\n",
+ " function on_mouseover_closure(tooltip) {\n",
+ " return function (event) {\n",
+ " if (!event.currentTarget.disabled) {\n",
+ " return fig.toolbar_button_onmouseover(tooltip);\n",
+ " }\n",
+ " };\n",
+ " }\n",
+ "\n",
+ " fig.buttons = {};\n",
+ " var buttonGroup = document.createElement('div');\n",
+ " buttonGroup.classList = 'btn-group';\n",
+ " var button;\n",
+ " for (var toolbar_ind in mpl.toolbar_items) {\n",
+ " var name = mpl.toolbar_items[toolbar_ind][0];\n",
+ " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+ " var image = mpl.toolbar_items[toolbar_ind][2];\n",
+ " var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+ "\n",
+ " if (!name) {\n",
+ " /* Instead of a spacer, we start a new button group. */\n",
+ " if (buttonGroup.hasChildNodes()) {\n",
+ " toolbar.appendChild(buttonGroup);\n",
+ " }\n",
+ " buttonGroup = document.createElement('div');\n",
+ " buttonGroup.classList = 'btn-group';\n",
+ " continue;\n",
+ " }\n",
+ "\n",
+ " button = fig.buttons[name] = document.createElement('button');\n",
+ " button.classList = 'btn btn-default';\n",
+ " button.href = '#';\n",
+ " button.title = name;\n",
+ " button.innerHTML = '<i class=\"fa ' + image + ' fa-lg\"></i>';\n",
+ " button.addEventListener('click', on_click_closure(method_name));\n",
+ " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
+ " buttonGroup.appendChild(button);\n",
+ " }\n",
+ "\n",
+ " if (buttonGroup.hasChildNodes()) {\n",
+ " toolbar.appendChild(buttonGroup);\n",
+ " }\n",
+ "\n",
+ " // Add the status bar.\n",
+ " var status_bar = document.createElement('span');\n",
+ " status_bar.classList = 'mpl-message pull-right';\n",
+ " toolbar.appendChild(status_bar);\n",
+ " this.message = status_bar;\n",
+ "\n",
+ " // Add the close button to the window.\n",
+ " var buttongrp = document.createElement('div');\n",
+ " buttongrp.classList = 'btn-group inline pull-right';\n",
+ " button = document.createElement('button');\n",
+ " button.classList = 'btn btn-mini btn-primary';\n",
+ " button.href = '#';\n",
+ " button.title = 'Stop Interaction';\n",
+ " button.innerHTML = '<i class=\"fa fa-power-off icon-remove icon-large\"></i>';\n",
+ " button.addEventListener('click', function (_evt) {\n",
+ " fig.handle_close(fig, {});\n",
+ " });\n",
+ " button.addEventListener(\n",
+ " 'mouseover',\n",
+ " on_mouseover_closure('Stop Interaction')\n",
+ " );\n",
+ " buttongrp.appendChild(button);\n",
+ " var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n",
+ " titlebar.insertBefore(buttongrp, titlebar.firstChild);\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._remove_fig_handler = function (event) {\n",
+ " var fig = event.data.fig;\n",
+ " if (event.target !== this) {\n",
+ " // Ignore bubbled events from children.\n",
+ " return;\n",
+ " }\n",
+ " fig.close_ws(fig, {});\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._root_extra_style = function (el) {\n",
+ " el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._canvas_extra_style = function (el) {\n",
+ " // this is important to make the div 'focusable\n",
+ " el.setAttribute('tabindex', 0);\n",
+ " // reach out to IPython and tell the keyboard manager to turn it's self\n",
+ " // off when our div gets focus\n",
+ "\n",
+ " // location in version 3\n",
+ " if (IPython.notebook.keyboard_manager) {\n",
+ " IPython.notebook.keyboard_manager.register_events(el);\n",
+ " } else {\n",
+ " // location in version 2\n",
+ " IPython.keyboard_manager.register_events(el);\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._key_event_extra = function (event, _name) {\n",
+ " var manager = IPython.notebook.keyboard_manager;\n",
+ " if (!manager) {\n",
+ " manager = IPython.keyboard_manager;\n",
+ " }\n",
+ "\n",
+ " // Check for shift+enter\n",
+ " if (event.shiftKey && event.which === 13) {\n",
+ " this.canvas_div.blur();\n",
+ " // select the cell after this one\n",
+ " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n",
+ " IPython.notebook.select(index + 1);\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
+ " fig.ondownload(fig, null);\n",
+ "};\n",
+ "\n",
+ "mpl.find_output_cell = function (html_output) {\n",
+ " // Return the cell and output element which can be found *uniquely* in the notebook.\n",
+ " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
+ " // IPython event is triggered only after the cells have been serialised, which for\n",
+ " // our purposes (turning an active figure into a static one), is too late.\n",
+ " var cells = IPython.notebook.get_cells();\n",
+ " var ncells = cells.length;\n",
+ " for (var i = 0; i < ncells; i++) {\n",
+ " var cell = cells[i];\n",
+ " if (cell.cell_type === 'code') {\n",
+ " for (var j = 0; j < cell.output_area.outputs.length; j++) {\n",
+ " var data = cell.output_area.outputs[j];\n",
+ " if (data.data) {\n",
+ " // IPython >= 3 moved mimebundle to data attribute of output\n",
+ " data = data.data;\n",
+ " }\n",
+ " if (data['text/html'] === html_output) {\n",
+ " return [cell, data, j];\n",
+ " }\n",
+ " }\n",
+ " }\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "// Register the function which deals with the matplotlib target/channel.\n",
+ "// The kernel may be null if the page has been refreshed.\n",
+ "if (IPython.notebook.kernel !== null) {\n",
+ " IPython.notebook.kernel.comm_manager.register_target(\n",
+ " 'matplotlib',\n",
+ " mpl.mpl_figure_comm\n",
+ " );\n",
+ "}\n"
+ ],
+ "text/plain": [
+ "<IPython.core.display.Javascript object>"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "<img src=\"\" width=\"640\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
@@ -8467,7 +10603,7 @@
"Text(0.5, 0, '$f\\\\;[Hz]$')"
]
},
- "execution_count": 995,
+ "execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
@@ -8480,7 +10616,7 @@
"\n",
"#ax = ax.twinx()\n",
"ax.grid()\n",
- "ax.plot(freqs[:-1], [ delta_rel*100 for _delta_abs, delta_rel in deltas[:-1] ])#, color='orange')\n",
+ "ax.plot(freqs, [ delta_rel*100 for _delta_abs, delta_rel in deltas[:-1] ])#, color='orange')\n",
"ax.set_ylabel('$\\Delta_{rel}\\;[\\%]$')\n",
"\n",
"ax.set_xlabel('$f\\;[Hz]$')"
@@ -8488,7 +10624,7 @@
},
{
"cell_type": "code",
- "execution_count": 718,
+ "execution_count": 19,
"metadata": {
"scrolled": false
},
@@ -9467,20 +11603,23 @@
"source": [
"fig, ax = plt.subplots()\n",
"ax.grid()\n",
- "ax.magnitude_spectrum(reassembled_values[ivl_start:ivl_end]/mems_lsb_per_g, Fs=10);"
+ "ax.magnitude_spectrum(y[ivl_start:ivl_end]/mems_lsb_per_g, Fs=10);"
]
},
{
"cell_type": "code",
- "execution_count": 719,
+ "execution_count": 20,
"metadata": {},
"outputs": [
{
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Centrifugal acceleration at 4.31 Hz: 40.42 m/s^2 / 4.12 g\n",
- "Centrifugal acceleration at 15.73 Hz: 537.19 m/s^2 / 54.78 g\n"
+ "ename": "NameError",
+ "evalue": "name 'largest_peak_f' is not defined",
+ "output_type": "error",
+ "traceback": [
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
+ "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
+ "\u001b[0;32m<ipython-input-20-312a4bb81e5c>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mr_mems\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m55e-3\u001b[0m \u001b[0;31m# radius of our sensor from the axis of rotation in m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mf\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mlargest_peak_f\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3\u001b[0m \u001b[0momega\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m2\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpi\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mf\u001b[0m \u001b[0;31m# angular velocity\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0mcentrifugal_acceleration\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0momega\u001b[0m\u001b[0;34m**\u001b[0m\u001b[0;36m2\u001b[0m \u001b[0;34m*\u001b[0m \u001b[0mr_mems\u001b[0m \u001b[0;31m# m/s^2\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;31mNameError\u001b[0m: name 'largest_peak_f' is not defined"
]
}
],
@@ -9500,45 +11639,11 @@
},
{
"cell_type": "code",
- "execution_count": 720,
+ "execution_count": null,
"metadata": {
"scrolled": false
},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Centrifugal acceleration at 0.10 Hz: 0.02 m/s^2 / 0.00 g\n",
- "Centrifugal acceleration at 0.20 Hz: 0.09 m/s^2 / 0.01 g\n",
- "Centrifugal acceleration at 0.50 Hz: 0.54 m/s^2 / 0.06 g\n",
- "Centrifugal acceleration at 1.00 Hz: 2.17 m/s^2 / 0.22 g\n",
- "Centrifugal acceleration at 1.50 Hz: 4.89 m/s^2 / 0.50 g\n",
- "Centrifugal acceleration at 2.00 Hz: 8.69 m/s^2 / 0.89 g\n",
- "Centrifugal acceleration at 2.50 Hz: 13.57 m/s^2 / 1.38 g\n",
- "Centrifugal acceleration at 3.00 Hz: 19.54 m/s^2 / 1.99 g\n",
- "Centrifugal acceleration at 3.50 Hz: 26.60 m/s^2 / 2.71 g\n",
- "Centrifugal acceleration at 4.00 Hz: 34.74 m/s^2 / 3.54 g\n",
- "Centrifugal acceleration at 4.50 Hz: 43.97 m/s^2 / 4.48 g\n",
- "Centrifugal acceleration at 5.00 Hz: 54.28 m/s^2 / 5.54 g\n",
- "Centrifugal acceleration at 6.00 Hz: 78.17 m/s^2 / 7.97 g\n",
- "Centrifugal acceleration at 7.00 Hz: 106.39 m/s^2 / 10.85 g\n",
- "Centrifugal acceleration at 8.00 Hz: 138.96 m/s^2 / 14.17 g\n",
- "Centrifugal acceleration at 9.00 Hz: 175.88 m/s^2 / 17.93 g\n",
- "Centrifugal acceleration at 10.00 Hz: 217.13 m/s^2 / 22.14 g\n",
- "Centrifugal acceleration at 11.00 Hz: 262.73 m/s^2 / 26.79 g\n",
- "Centrifugal acceleration at 12.00 Hz: 312.67 m/s^2 / 31.88 g\n",
- "Centrifugal acceleration at 13.00 Hz: 366.95 m/s^2 / 37.42 g\n",
- "Centrifugal acceleration at 14.00 Hz: 425.58 m/s^2 / 43.40 g\n",
- "Centrifugal acceleration at 15.00 Hz: 488.55 m/s^2 / 49.82 g\n",
- "Centrifugal acceleration at 16.00 Hz: 555.86 m/s^2 / 56.68 g\n",
- "Centrifugal acceleration at 17.00 Hz: 627.51 m/s^2 / 63.99 g\n",
- "Centrifugal acceleration at 18.00 Hz: 703.51 m/s^2 / 71.74 g\n",
- "Centrifugal acceleration at 19.00 Hz: 783.84 m/s^2 / 79.93 g\n",
- "Centrifugal acceleration at 20.00 Hz: 868.53 m/s^2 / 88.57 g\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"for fn in [0.1, 0.2, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0,\n",
" 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0]:\n",
@@ -9550,7 +11655,7 @@
},
{
"cell_type": "code",
- "execution_count": 721,
+ "execution_count": 21,
"metadata": {},
"outputs": [
{
@@ -10514,7 +12619,7 @@
{
"data": {
"text/html": [
- "<img src=\"\" width=\"640\">"
+ "<img src=\"\" width=\"640\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
@@ -10522,6 +12627,17 @@
},
"metadata": {},
"output_type": "display_data"
+ },
+ {
+ "ename": "NameError",
+ "evalue": "name 'centrifugal_acceleration' is not defined",
+ "output_type": "error",
+ "traceback": [
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
+ "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
+ "\u001b[0;32m<ipython-input-21-492c806a914e>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0mfig\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0max\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msubplots\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0max\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0maxvspan\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mivl_start\u001b[0m\u001b[0;34m/\u001b[0m\u001b[0;36m60\u001b[0m\u001b[0;34m/\u001b[0m\u001b[0msampling_rate\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mivl_end\u001b[0m\u001b[0;34m/\u001b[0m\u001b[0;36m60\u001b[0m\u001b[0;34m/\u001b[0m\u001b[0msampling_rate\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcolor\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'orange'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0malpha\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0.5\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 6\u001b[0;31m \u001b[0max\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0maxhline\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcentrifugal_acceleration\u001b[0m\u001b[0;34m/\u001b[0m\u001b[0mg\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcolor\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'orange'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 7\u001b[0m \u001b[0max\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0maxhline\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcentrifugal_acceleration2\u001b[0m\u001b[0;34m/\u001b[0m\u001b[0mg\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcolor\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'orange'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[0minterval\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;31mNameError\u001b[0m: name 'centrifugal_acceleration' is not defined"
+ ]
}
],
"source": [