1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
|
/* 8seg LED display driver firmware
* Copyright (C) 2018 Sebastian Götte <code@jaseg.net>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "global.h"
#include "serial.h"
#include "i2c.h"
#include "lcd1602.h"
#include "mcp9801.h"
#include "ina226.h"
#include "mini-printf.h"
#include <8b10b.h>
/* Part number: STM32F030F4C6 */
volatile unsigned int comm_led_ctr, err_led_ctr;
volatile unsigned int sys_time_tick = 0;
volatile unsigned int sys_time_ms;
volatile unsigned int sys_time_s;
volatile unsigned int sys_flag_1Hz;
unsigned int frame_duration_us;
volatile uint8_t global_brightness; /* FIXME implement sending */
void trigger_error_led() {
err_led_ctr = STATUS_LED_DURATION_MS/TICK_MS;
}
void trigger_comm_led() {
comm_led_ctr = STATUS_LED_DURATION_MS/TICK_MS;
}
static volatile struct {
int current_symbol;
struct state_8b10b_enc st;
} txstate;
#define NO_SYMBOL (DECODER_RETURN_CODE_LAST + 1)
uint8_t random() {
static uint8_t x, a, b, c;
x++; //x is incremented every round and is not affected by any other variable
a = (a ^ c ^ x); //note the mix of addition and XOR
b = (b + a); //And the use of very few instructions
c = ((c + ((b >> 1) ^ a))); // the AES S-Box Operation ensures an even distributon of entropy
return c;
}
enum STATUS_LEDS {
STATUS_LED_COMMUNICATION = 1,
STATUS_LED_ERROR = 2,
STATUS_LED_LOAD = 4,
STATUS_LED_OPERATION = 8,
STATUS_LED_J5_GREEN = 16,
STATUS_LED_J5_YELLOW = 32,
STATUS_LED_J4_GREEN = 64,
STATUS_LED_J4_YELLOW = 128
};
static void set_status_leds(uint8_t val) {
/* Reset strobe. Will be set in systick handler */
GPIOA->BRR = 1<<4;
/* Workaround for *nasty* hardware behavior: If SPI data width is configured as 8 bit but DR is written as 16
* bit, SPI actually sends 16 clock cycles. Thus, we have to make sure the compiler emits a 8-bit write here.
* Thanks, TI! */
*((volatile uint8_t *)&(SPI1->DR)) = val ^ 0x0f; /* Invert LEDs connected to VCC instead of GND */
}
int main(void) {
/* Startup code */
RCC->CR |= RCC_CR_HSEON;
while (!(RCC->CR&RCC_CR_HSERDY));
RCC->CFGR &= ~RCC_CFGR_PLLMUL_Msk & ~RCC_CFGR_SW_Msk & ~RCC_CFGR_PPRE_Msk & ~RCC_CFGR_HPRE_Msk;
RCC->CFGR |= ((6-2)<<RCC_CFGR_PLLMUL_Pos) | RCC_CFGR_PLLSRC_HSE_PREDIV; /* PLL x6 -> 48.0MHz */
RCC->CR |= RCC_CR_PLLON;
while (!(RCC->CR&RCC_CR_PLLRDY));
RCC->CFGR |= (2<<RCC_CFGR_SW_Pos);
RCC->AHBENR |= RCC_AHBENR_DMAEN | RCC_AHBENR_GPIOAEN | RCC_AHBENR_GPIOBEN | RCC_AHBENR_FLITFEN;
RCC->APB1ENR |= RCC_APB1ENR_TIM3EN | RCC_APB1ENR_PWREN | RCC_APB1ENR_I2C1EN;
RCC->APB2ENR |= RCC_APB2ENR_SYSCFGEN | RCC_APB2ENR_ADCEN| RCC_APB2ENR_DBGMCUEN | RCC_APB2ENR_USART1EN | RCC_APB2ENR_SPI1EN;
SystemCoreClockUpdate();
SysTick_Config(SystemCoreClock/(1000/TICK_MS)); /* 10ms interval */
NVIC_EnableIRQ(SysTick_IRQn);
NVIC_SetPriority(SysTick_IRQn, 3<<5);
/* GPIO setup
*
* Note: since we have quite a bunch of pin constraints we can't actually use complementary outputs for the
* complementary MOSFET driver control signals (CTRL_A & CTRL_B). Instead, we use two totally separate output
* channels (1 & 4) and emulate the dead-time generator in software.
*/
GPIOA->MODER |=
(3<<GPIO_MODER_MODER0_Pos) /* PA0 - Vboot to ADC */
| (2<<GPIO_MODER_MODER1_Pos) /* PA1 - RS485 DE */
| (2<<GPIO_MODER_MODER2_Pos) /* PA2 - RS485 TX */
| (2<<GPIO_MODER_MODER3_Pos) /* PA3 - RS485 RX */
| (1<<GPIO_MODER_MODER4_Pos) /* PA4 - Strobe/Vin to ADC. CAUTION: This pin is dual-use */
| (2<<GPIO_MODER_MODER5_Pos) /* PA5 - SCK */
| (2<<GPIO_MODER_MODER6_Pos) /* PA6 - CTRL_A to TIM 3 ch 1 */
| (2<<GPIO_MODER_MODER7_Pos) /* PA7 - MOSI */
| (2<<GPIO_MODER_MODER9_Pos) /* PA9 - SCL */
| (2<<GPIO_MODER_MODER10_Pos);/* PA10 - SDA */
GPIOA->AFR[0] =
(1<<GPIO_AFRL_AFSEL1_Pos) /* PA1 */
| (1<<GPIO_AFRL_AFSEL2_Pos) /* PA2 */
| (1<<GPIO_AFRL_AFSEL3_Pos) /* PA3 */
| (1<<GPIO_AFRL_AFSEL6_Pos); /* PA6 */
GPIOA->AFR[1] =
(4<<GPIO_AFRH_AFSEL9_Pos) /* PA9 */
| (4<<GPIO_AFRH_AFSEL10_Pos);/* PA10 */
GPIOA->ODR = 0; /* Set PA4 ODR to 0 */
GPIOA->OTYPER |=
GPIO_OTYPER_OT_1
| GPIO_OTYPER_OT_2;
// FIXME lag 37.3us @ 720 Ohm / 16.0us @ 360 Ohm / 2.8us @ 88 Ohm
GPIOA->OSPEEDR |=
(3<<GPIO_OSPEEDR_OSPEEDR1_Pos)
| (3<<GPIO_OSPEEDR_OSPEEDR2_Pos);
GPIOB->MODER |=
(2<<GPIO_MODER_MODER1_Pos); /* PB1 - CTRL_B to TIM 3 ch 4 */
GPIOB->AFR[0] = (1<<GPIO_AFRL_AFSEL1_Pos); /* PB1 */
serial_init();
/* FIXME ADC config */
/* SPI config. SPI1 is used to control the shift register controlling the eight status LEDs. */
SPI1->CR2 = (7<<SPI_CR2_DS_Pos);
/* Baud rate PCLK/128 -> 375.0kHz */
SPI1->CR1 =
SPI_CR1_SSM
| SPI_CR1_SSI
| (6<<SPI_CR1_BR_Pos)
| SPI_CR1_MSTR;
SPI1->CR1 |= SPI_CR1_SPE;
/* I2C for LCD, temp sensor, current sensor */
i2c_config_filters(I2C1, I2C_AF_ENABLE, 0);
i2c_config_timing(I2C1, 0x2000090e); /* Magic value for 100kHz I2C @ 48MHz CLK. Fell out of STMCubeMX. I love
downloading 120MB of software to download another 100MB of software, only
this time over unsecured HTTP, to generate 3.5 bytes of configuration values
using a Java(TM) GUI. */
i2c_enable(I2C1);
lcd1602_init();
ina226_init(); /* Current/voltage monitor */
mcp9801_init(); /* MOSFET temperature. Placed between middle two low-side MOSFETs. */
/* TIM3 is used to generate the MOSFET driver control signals */
/* TIM3 running off 48MHz APB1 clk, T=20.833ns */
TIM3->CR1 = 0; /* Disable ARR preload (double-buffering) */
TIM3->PSC = 48-1; /* Prescaler 48 -> f=1MHz/T=1us */
TIM3->DIER = TIM_DIER_UIE; /* Enable update (overflow) interrupt */
/* Set both CCRs to 0xffff to ensure both bridge halves are turned off after we enable the timer. If we don't do
* this, we will cause a very low-ohm short circuit that at best will trigger our power supply's short-circuit or
* over-current protection right after power-on but at worst will detonate the mosfets. */
TIM3->CCR1 = 0xffff;
TIM3->CCR4 = 0xffff;
/* Configure output compare unit 1 to PWM mode 1, enable CCR1 preload */
TIM3->CCMR1 = 6<<TIM_CCMR1_OC1M_Pos | TIM_CCMR1_OC1PE;
/* Configure output compare unit 4 to PWM mode 1, enable CCR4 preload */
TIM3->CCMR2 = 6<<TIM_CCMR2_OC4M_Pos | TIM_CCMR2_OC4PE;
/* Confiugre CH1 to complementary outputs */
TIM3->CCER = TIM_CCER_CC1E | TIM_CCER_CC1P | TIM_CCER_CC4E | TIM_CCER_CC4P;
/* Enable MOE on next update event, i.e. on initial timer load. */
TIM3->BDTR = TIM_BDTR_MOE;
/* Enable timer */
TIM3->CR1 |= TIM_CR1_CEN;
/* Set f=2.5kHz/T=0.4ms */
TIM3->ARR = 800-1;
/* Initialize AC protocol state machine in TIM3 ISR with the AC protocol comma */
xfr_8b10b_encode_reset(&txstate.st);
txstate.current_symbol = xfr_8b10b_encode(&txstate.st, K28_1) | 1<<10;
/* The timer is still stopped. Start it by manually triggering an update event. */
TIM3->EGR |= TIM_EGR_UG;
NVIC_EnableIRQ(TIM3_IRQn);
NVIC_SetPriority(TIM3_IRQn, 2<<4);
lcd_write_str(0, 0, "8seg driver");
lcd_write_str(0, 1, "initialized \xbc");
while (42) {
if (sys_flag_1Hz) { /* Update display every second */
sys_flag_1Hz = 0;
char buf[17];
int temp = mcp9801_read_mdegC();
int deg = temp/1000;
int frac = (temp%1000)/100;
mini_snprintf(buf, sizeof(buf), "Temp: %d.%01d\xdf""C" LCD_FILL, deg, frac);
lcd_write_str(0, 0, buf);
mini_snprintf(buf, sizeof(buf), "I=%dmA U=%dmV" LCD_FILL, ina226_read_i()*INA226_I_LSB_uA/1000, ina226_read_v()*INA226_VB_LSB_uV/1000);
lcd_write_str(0, 1, buf);
}
}
}
static int flipbits10(int in) {
return
(in&0x200)>>9 |
(in&0x100)>>7 |
(in&0x080)>>5 |
(in&0x040)>>3 |
(in&0x020)>>1 |
(in&0x010)<<1 |
(in&0x008)<<3 |
(in&0x004)<<5 |
(in&0x002)<<7 |
(in&0x001)<<9;
}
#define BACKCHANNEL_INTERVAL 10
void TIM3_IRQHandler() {
static int txpos = -1;
static unsigned int tx_start_tick = 0;
static uint8_t txbuf[2] = {0x04, 0x05};
static int backchannel_counter = 0;
TIM3->SR &= ~TIM_SR_UIF;
int sym = txstate.current_symbol;
int bit = sym&1;
sym >>= 1;
if (sym == 1) { /* last bit shifted out */
/* Insert the backchannel sync control symbol K.28.2 once every BACKCHANNEL_INTERVAL symbols independent from AC
* forward channel protocol framing. The backchannel sync control symbol is different from the AC protocol comma
* K.28.1. The backchannel sync control symbol is not a comma, so the 8b10b receiver cannot lock on it. The only
* practical implication of this is that after powerup or other loss of sync, the receiver will only lock on the
* backchannel sync once the first AC forward-channel protocol frame has been begun. Since all backchannel comm
* is triggered by the driver anyway this should not be noticeable in practice.
*/
backchannel_counter++;
if (backchannel_counter == BACKCHANNEL_INTERVAL) {
backchannel_counter = 0;
sym = xfr_8b10b_encode(&txstate.st, -K28_2); /* TODO factor out backchannel comma into constant */
} else {
if (txpos == -1)
sym = xfr_8b10b_encode(&txstate.st, -K28_1); /* TODO factor out comma into constant */
else
sym = xfr_8b10b_encode(&txstate.st, txbuf[txpos]);
txpos++;
if (txpos >= sizeof(txbuf)/sizeof(txbuf[0])) {
frame_duration_us = (sys_time_tick - tx_start_tick) * 10 * 1000;
tx_start_tick = sys_time_tick;
txpos = -1;
}
}
/* Append one '1' bit as an end-of-symbol marker for this state machine. This bit is not actually transmitted. */
sym = flipbits10(sym) | 1<<10;
}
txstate.current_symbol = sym;
/* FIXME factor out into header, or even make configurable */
#define DEAD_TIME 100
/* Set both CCRs to values for opposing polarities. The dead time is always inserted at the beginning of the timer
* cycle due to the way the capture/compare unit PWM machinery works. By setting the CCR to 0xffff we make sure the
* output is never turned on, since 0xffff is larger than the ARR/counter top value.
*/
TIM3->CCR1 = bit ? 0xffff : DEAD_TIME;
TIM3->CCR4 = bit ? DEAD_TIME : 0xffff;
}
void NMI_Handler(void) {
}
void HardFault_Handler(void) __attribute__((naked));
void HardFault_Handler() {
asm volatile ("bkpt");
}
void SVC_Handler(void) {
}
void PendSV_Handler(void) {
}
void SysTick_Handler(void) {
sys_time_tick++;
sys_time_ms += TICK_MS;
if (sys_time_ms++ == 1000) {
sys_time_ms = 0;
sys_time_s++;
sys_flag_1Hz = 1;
}
/* This is a hack. We could use the SPI interrupt here if that didn't fire at the start instead of end of transmission.... -.- */
if (sys_time_tick&1) {
uint8_t val = (sys_time_ms >= 300) ? STATUS_LED_OPERATION : 0;
if (comm_led_ctr) {
comm_led_ctr--;
val |= STATUS_LED_COMMUNICATION;
}
if (err_led_ctr) {
err_led_ctr--;
val |= STATUS_LED_ERROR;
}
set_status_leds(val);
} else {
/* Reset strobe for the status LED shift register. Reset in set_status_leds. */
GPIOA->BSRR = 1<<4;
}
}
void _init(void) {
}
void BusFault_Handler(void) __attribute__((naked));
void BusFault_Handler() {
asm volatile ("bkpt");
}
|