aboutsummaryrefslogtreecommitdiff
path: root/hw/chibi
diff options
context:
space:
mode:
authorjaseg <git@jaseg.net>2017-06-12 13:03:18 +0200
committerjaseg <git@jaseg.net>2017-06-12 13:03:18 +0200
commit6f12a41cc6fc61d62bfd862f454e63b0652823fc (patch)
treefb859409840bb2dc471b3849a41ddef0d70ce2a0 /hw/chibi
parent6301aad16983dca0ac34c285bbeee7944075ddde (diff)
download7seg-6f12a41cc6fc61d62bfd862f454e63b0652823fc.tar.gz
7seg-6f12a41cc6fc61d62bfd862f454e63b0652823fc.tar.bz2
7seg-6f12a41cc6fc61d62bfd862f454e63b0652823fc.zip
Add resistor calculation script
Diffstat (limited to 'hw/chibi')
-rw-r--r--hw/chibi/chibi_2024/rcalc.py127
1 files changed, 127 insertions, 0 deletions
diff --git a/hw/chibi/chibi_2024/rcalc.py b/hw/chibi/chibi_2024/rcalc.py
new file mode 100644
index 0000000..3bba342
--- /dev/null
+++ b/hw/chibi/chibi_2024/rcalc.py
@@ -0,0 +1,127 @@
+#!/usr/bin/env python3
+"""
+ MBI5026 current set resistor calculations
+
+ The MBI5026's output current is set by a current set via a single resistor
+ connected to its R_ext pin.
+
+ To get a larger inter-frame dynamic range Megumin can switch between
+ four different current ranges. The ratio between one current range and the
+ next smaller one is r=1:8 (eq. -lg(r)=3 bit). This means at b=12bit BCM range we
+ get a minimum of
+
+ bmin = b+lg(r) = 8bit @ r=1:16, b=12bit
+
+ worst-case in the intermediate ranges using a static current setting.
+ Megumin uses BC847 small-signal NPN transistors to switch between three
+ current ranges:
+
+ ┌─────────┐
+ │ MBI5026 │
+ │ │
+ │ Rext─┼──┬──┤R1├───────────GND
+ │ │ │
+ └─────────┘ ├──┤R2├──┤BC847├──GND
+ │
+ ├──┤R3├──┤BC847├──GND
+ │
+ └──┤R4├──┤BC847├──GND
+
+ The transistors are used to select either or none of {R2, R3, R4}. This means
+ the R_ext pin sees either R1, R1||R2, R1||R3 or R1||R4. We don't do a full
+ R-2R or similar DAC configuration as we only have to maintain the ratio r
+ between ranges.
+
+ Megumin's smallest BCM period is tb=250ns resulting in a base BCM rate of
+ 4MHz minus control overhead. This results in a BCM period and frame rate of
+
+ Tm = tb*(2**b) = 1.024ms @ tb=250ns, b=12bit.
+ fm = 1/Tm ≈ 1kHz
+
+ Now, if we want to modulate the display at a current range in between two
+ of the preset ranges, we can switch between both ranges with a ratio of
+ sqrt(r)=1:4 and still get a frame rate of
+
+ f = fm/sqrt(r) = 250Hz @ fm=1kHz, r=1:16
+
+ Normalized to the larger of the two ranges (here r1=1) we get the following
+ equation for the ratio of the resulting modulated range:
+
+ r_im1 = sqrt(r)*r1 = 0.25 @ r=1:16, r1=1
+ r_im_tot = r_im1 + (1-sqrt(r))*r2 = 0.297 @ r2=r*r1
+
+ Including the 2 bit gained by inter-frame modulation this results in the
+ following basic ranges at framerate f=250Hz with a slight mid-range
+ discontinuity at the mixed ranges:
+
+ Range max │ Total bits
+ ───────────┼──────────────────────
+ 1.000 │ 14
+ 0.297 | 16 (14 at mid-range)
+ 0.250 | 14
+
+ The resistances of the resistors R1, R2, R3, R4 used are calculated in this
+ script.
+"""
+
+prefixes = {' ': 1, 'k': 1e3, 'M': 1e6, 'm': 1e-3, 'μ': 1e-6, 'n': 1e-9}
+def format_unit(val):
+ for prefix, magnitude in prefixes.items():
+ if 1.0 <= val/magnitude < 1000.0:
+ return val/magnitude, prefix
+ else:
+ if val<1:
+ return val/10e-9, 'n'
+ else:
+ return val/10e6, 'M'
+
+def print_var(name, val, unit, **kwargs):
+ scaled, prefix = format_unit(val)
+ print('{} = {: >7.3f}{}{}'.format(name, scaled, prefix, unit), **kwargs)
+
+r = 1/16
+stages = 3
+mod_r = 1/8
+I_max_led = 0.01
+n_boards = 20
+n_digits_per_board = 8*4
+n_leds = n_boards*n_digits_per_board*8
+V_fw = 1.9 # V
+
+print('r = 1:{:.0f}'.format(1/r))
+
+I_min_led = I_max_led*(r**(stages-1)) # A
+I_max_mod = I_max_led/mod_r
+I_min_mod = I_min_led/mod_r
+print_var('I_max_led', I_max_led, 'A')
+print_var('I_max_mod', I_max_mod, 'A')
+print_var('I_min_mod', I_min_mod, 'A')
+if (I_max_mod > 0.09):
+ print('\033[91mError: The MBI5026 has a maximum output current of 90mA!\033[0m')
+
+Vrext = 1.26 # V
+# Iout = 15 * Vrext/Rext | acc. to MBI5026 datasheet
+R1 = 15*Vrext/I_min_mod
+Itot_1 = n_leds * mod_r * I_min_mod
+Ptot_1 = Itot_1 * V_fw
+print_var('R1', R1, 'Ω', end='\t')
+print_var('I1', I_min_mod, 'A', end='\t')
+print_var('Itot_1', Itot_1, 'A', end='\t')
+print_var('Ptot_1', Ptot_1, 'W')
+
+for i in range(stages-2, -1, -1):
+ # Rpar = 15*Vrext/(I_max_mod*r)
+ # R1||R2 = 1/(1/R1 + 1/R2) =!= Rpar = 15*Vrext/(I_max_mod*r)
+ # ⇒ 1/R1 + 1/R2 = 1/(15*Vrext/(I_max_mod*r))
+ # ⇒ 1/R2 = 1/(15*Vrext/(I_max_mod*r)) - 1/R1
+ # ⇒ R2 = 1/((I_max_mod*r)/(15*Vrext) - 1/R1)
+ In = I_max_mod*(r**i)
+ Rn = 1/(In/(15*Vrext) - 1/R1)
+ Itot_n = n_leds * mod_r * In
+ Ptot_n = Itot_n * V_fw
+ scaled, prefix = format_unit(Rn)
+ print_var('R{}'.format(stages-i), Rn, 'Ω', end='\t')
+ print_var('I{}'.format(stages-i), In, 'A', end='\t')
+ print_var('Itot_{}'.format(stages-i), Itot_n, 'A', end='\t')
+ print_var('Ptot_{}'.format(stages-i), Ptot_n, 'W')
+