aboutsummaryrefslogtreecommitdiff
path: root/fw/main.c
diff options
context:
space:
mode:
authorjaseg <git@jaseg.net>2017-12-10 13:11:30 +0100
committerjaseg <git@jaseg.net>2017-12-10 13:11:30 +0100
commit322b306bf2d59fbfbcf93784362aac8a695b1ca3 (patch)
tree72dbb62287ce3ead708b62b22ac400270fd929c2 /fw/main.c
parent49c4d3ab8eb29669a7286ec492b9bf3bcfe13e75 (diff)
download7seg-322b306bf2d59fbfbcf93784362aac8a695b1ca3.tar.gz
7seg-322b306bf2d59fbfbcf93784362aac8a695b1ca3.tar.bz2
7seg-322b306bf2d59fbfbcf93784362aac8a695b1ca3.zip
ADC properly triggering now
Diffstat (limited to 'fw/main.c')
-rw-r--r--fw/main.c83
1 files changed, 62 insertions, 21 deletions
diff --git a/fw/main.c b/fw/main.c
index 4e4ef36..108d3a1 100644
--- a/fw/main.c
+++ b/fw/main.c
@@ -162,8 +162,11 @@ void cfg_spi1() {
/* FIXME maybe try w/o BIDI */
}
+/* This is a lookup table mapping segments to present a standard segment order on the UART interface. This is converted
+ * into an internal representation once on startup in main(). The data type must be at least uint16. */
uint32_t segment_map[8] = {5, 7, 6, 4, 1, 3, 0, 2};
+/* The value to be written into the aux register. This encompasses LED state as well as the current setting bits. */
static volatile uint32_t aux_reg = 0;
static volatile int frame_duration_us;
volatile int nbits = MAX_BITS;
@@ -171,17 +174,34 @@ volatile int nbits = MAX_BITS;
static unsigned int active_bit = 0;
static int active_segment = 0;
-/* Bit timing base value. This is the lowes bit interval used */
+/* Bit timing base value. This is the lowes bit interval used in TIM1/TIM3 timer counts. */
#define PERIOD_BASE 4
/* This value is a constant offset added to every bit period to allow for the timer IRQ handler to execute. This is set
- * empirically using a debugger and a logic analyzer. */
+ * empirically using a debugger and a logic analyzer.
+ *
+ * This value is in TIM1/TIM3 timer counts. */
#define TIMER_CYCLES_FOR_SPI_TRANSMISSIONS 9
+/* This value sets the point when the LED strobe is asserted after the begin of the current bit cycle and IRQ
+ * processing. This must be less than TIMER_CYCLES_FOR_SPI_TRANSMISSIONS but must be large enough to allow for the SPI
+ * transmission to reliably finish.
+ *
+ * This value is in TIM1/TIM3 timer counts. */
#define TIMER_CYCLES_BEFORE_LED_STROBE 8
-#define AUX_SPI_PRETRIGGER 64
-#define ADC_PRETRIGGER 64
+/* This value sets how long the TIM1 CC IRQ used for AUX register setting etc. is triggered before the end of the
+ * longest cycle. This value should not be larger than PERIOD_BASE<<MIN_BITS to make sure the TIM1 CC IRQ does only
+ * trigger in the longest cycle no matter what nbits is set to.
+ *
+ * This value is in TIM1/TIM3 timer counts. */
+#define AUX_SPI_PRETRIGGER 64 /* trigger with about 24us margin to the end of cycle/next TIM3 IRQ */
+
+/* This value sets how long a batch of ADC conversions used for temperature measurement is started before the end of the
+ * longest cycle. Here too the above caveats apply.
+ *
+ * This value is in TIM1/TIM3 timer counts. */
+#define ADC_PRETRIGGER 150 /* trigger with about 12us margin to TIM1 CC IRQ */
/* Defines for brevity */
#define A TIMER_CYCLES_FOR_SPI_TRANSMISSIONS
@@ -230,7 +250,6 @@ void cfg_timers_led() {
* * Compare unit 1 triggers the interrupt handler only in the longest bit cycle. The IRQ handler
* * transmits the data to the auxiliary shift registers and
* * swaps the frame buffers if pending
- * * kicks off the ADC for (oversampled) temperature measurement
* * Compare unit 2 generates the led drivers' STROBE signal
*
* The AUX_STROBE signal for the two auxiliary shift registers that deal with segment selection, current setting and
@@ -261,10 +280,12 @@ void cfg_timers_led() {
/* Setup CC1 and CC2. CC2 generates the LED drivers' STROBE, CC1 triggers the IRQ handler */
TIM1->BDTR = TIM_BDTR_MOE;
TIM1->CCMR1 = (6<<TIM_CCMR1_OC2M_Pos) | TIM_CCMR1_OC2PE; /* PWM Mode 1, enable CCR preload for AUX_STROBE */
- TIM1->CCER = TIM_CCER_CC1E | TIM_CCER_CC2E;
+ TIM1->CCMR2 = (6<<TIM_CCMR2_OC4M_Pos); /* PWM Mode 1 */
+ TIM1->CCER = TIM_CCER_CC1E | TIM_CCER_CC2E | TIM_CCER_CC4E;
TIM1->CCR2 = TIMER_CYCLES_BEFORE_LED_STROBE;
/* Trigger at the end of the longest bit cycle. This means this does not trigger in shorter bit cycles. */
TIM1->CCR1 = timer_period_lookup[nbits-1] - AUX_SPI_PRETRIGGER;
+ TIM1->CCR4 = timer_period_lookup[nbits-1] - ADC_PRETRIGGER;
TIM1->DIER = TIM_DIER_CC1IE;
TIM1->ARR = 0xffff; /* This is as large as possible since TIM1 is reset by TIM3. */
@@ -284,6 +305,7 @@ void cfg_timers_led() {
void TIM1_CC_IRQHandler() {
/* This handler takes about 1.5us */
+ GPIOA->BSRR = GPIO_BSRR_BS_0; // Debug
/* Set SPI baudrate to 12.5MBd for slow-ish 74HC(T)595. This is reset again in TIM3's IRQ handler.*/
SPI1->CR1 |= (2<<SPI_CR1_BR_Pos);
@@ -312,15 +334,16 @@ void TIM1_CC_IRQHandler() {
GPIOA->BSRR = GPIO_BSRR_BR_10;
/* Send AUX register data */
SPI1->DR = aux_reg | segment_map[active_segment];
- /* Kick off ADC for (oversampled) temperature measurement */
- ADC1->CR |= ADC_CR_ADSTART;
/* Clear interrupt flag */
TIM1->SR &= ~TIM_SR_CC1IF_Msk;
+
+ GPIOA->BSRR = GPIO_BSRR_BR_0; // Debug
}
void TIM3_IRQHandler() {
/* This handler takes about 2.1us */
+ GPIOA->BSRR = GPIO_BSRR_BS_0; // Debug
/* Reset SPI baudrate to 25MBd for fast MBI5026. Every couple of cycles, TIM1's ISR will set this to a slower value
* for the slower AUX registers.*/
@@ -344,6 +367,8 @@ void TIM3_IRQHandler() {
/* Clear interrupt flag */
TIM3->SR &= ~TIM_SR_UIF_Msk;
+
+ GPIOA->BSRR = GPIO_BSRR_BR_0; // Debug
}
enum Command {
@@ -476,8 +501,6 @@ void USART1_IRQHandler(void) {
/* COBS skip counter. During payload processing this contains the remaining non-null payload bytes */
static int cobs_count = 0;
- GPIOA->BSRR = GPIO_BSRR_BS_0; // Debug
-
if (USART1->ISR & USART_ISR_ORE) { /* Overrun handling */
overruns++;
/* Reset and re-synchronize. Retry next frame. */
@@ -516,26 +539,30 @@ void USART1_IRQHandler(void) {
}
}
}
-
- GPIOA->BSRR = GPIO_BSRR_BR_0; // Debug
}
#define ADC_OVERSAMPLING 4
uint32_t vsense;
void DMA1_Channel1_IRQHandler(void) {
+ /* This interrupt takes either 1.2us or 13us. It can be pre-empted by the more timing-critical UART and LED timer
+ * interrupts. */
GPIOA->BSRR = GPIO_BSRR_BS_4; // Debug
- static int count = 0;
- static uint32_t adc_aggregate[2] = {0, 0};
+ static int count = 0; /* oversampling accumulator sample count */
+ static uint32_t adc_aggregate[2] = {0, 0}; /* oversampling accumulator */
+ /* Clear the interrupt flag */
DMA1->IFCR |= DMA_IFCR_CGIF1;
adc_aggregate[0] += adc_buf[0];
adc_aggregate[1] += adc_buf[1];
if (count++ == (1<<ADC_OVERSAMPLING)) {
+ /* This has been cobbled together from online tutorials and ST documentation. The datasheet is pretty poor on
+ * this. */
adc_vcc_mv = (3300 * VREFINT_CAL)/(adc_aggregate[0]>>ADC_OVERSAMPLING);
vsense = ((adc_aggregate[1]>>ADC_OVERSAMPLING) * adc_vcc_mv)/4095 ;
adc_temp_tenth_celsius = 300 - (((TS_CAL1*adc_vcc_mv/4095) - vsense)*100)/43;
+ /* Reset oversampling state */
count = 0;
adc_aggregate[0] = 0;
adc_aggregate[1] = 0;
@@ -544,29 +571,43 @@ void DMA1_Channel1_IRQHandler(void) {
}
void adc_config(void) {
- ADC1->CFGR1 = ADC_CFGR1_DMAEN | ADC_CFGR1_DMACFG;
- ADC1->CFGR2 = (1<<ADC_CFGR2_CKMODE_Pos);
- ADC1->SMPR = (7<<ADC_SMPR_SMP_Pos);
+ /* The ADC is used for temperature measurement. To compute the temperature from an ADC reading of the internal
+ * temperature sensor, the supply voltage must also be measured. Thus we are using two channels.
+ *
+ * The ADC is triggered by compare channel 4 of timer 1. The trigger is set to falling edge to trigger on compare
+ * match, not overflow.
+ */
+ ADC1->CFGR1 = ADC_CFGR1_DMAEN | ADC_CFGR1_DMACFG | (2<<ADC_CFGR1_EXTEN_Pos) | (1<<ADC_CFGR1_EXTSEL_Pos);
+ /* Clock from PCLK/4 instead of the internal exclusive high-speed RC oscillator. */
+ ADC1->CFGR2 = (2<<ADC_CFGR2_CKMODE_Pos);
+ /* Use the slowest available sample rate */
+ ADC1->SMPR = (7<<ADC_SMPR_SMP_Pos);
+ /* Internal VCC and temperature sensor channels */
ADC1->CHSELR = ADC_CHSELR_CHSEL16 | ADC_CHSELR_CHSEL17;
+ /* Enable internal voltage reference and temperature sensor */
ADC->CCR = ADC_CCR_TSEN | ADC_CCR_VREFEN;
+ /* Perform ADC calibration */
ADC1->CR |= ADC_CR_ADCAL;
while (ADC1->CR & ADC_CR_ADCAL)
;
+ /* Enable ADC */
ADC1->CR |= ADC_CR_ADEN;
- /* FIXME handle adc overrun */
+ ADC1->CR |= ADC_CR_ADSTART;
+ /* Configure DMA 1 Channel 1 to get rid of all the data */
DMA1_Channel1->CPAR = (unsigned int)&ADC1->DR;
DMA1_Channel1->CMAR = (unsigned int)&adc_buf;
DMA1_Channel1->CNDTR = sizeof(adc_buf)/sizeof(adc_buf[0]);
DMA1_Channel1->CCR = (0<<DMA_CCR_PL_Pos);
DMA1_Channel1->CCR |=
- DMA_CCR_CIRC
+ DMA_CCR_CIRC /* circular mode so we can leave it running indefinitely */
| (1<<DMA_CCR_MSIZE_Pos) /* 16 bit */
| (1<<DMA_CCR_PSIZE_Pos) /* 16 bit */
| DMA_CCR_MINC
- | DMA_CCR_TCIE;
- DMA1_Channel1->CCR |= DMA_CCR_EN;
+ | DMA_CCR_TCIE; /* Enable transfer complete interrupt. */
+ DMA1_Channel1->CCR |= DMA_CCR_EN; /* Enable channel */
+ /* triggered on transfer completion. We use this to process the ADC data */
NVIC_EnableIRQ(DMA1_Channel1_IRQn);
NVIC_SetPriority(DMA1_Channel1_IRQn, 3);
}