CMSIS-NN  Version 1.1.0
CMSIS NN Software Library
 All Data Structures Namespaces Files Functions Variables Enumerations Enumerator Macros Groups Pages
Neural Network Convolution Functions

Functions

arm_status arm_convolve_1x1_HWC_q7_fast_nonsquare (const q7_t *Im_in, const uint16_t dim_im_in_x, const uint16_t dim_im_in_y, const uint16_t ch_im_in, const q7_t *wt, const uint16_t ch_im_out, const uint16_t dim_kernel_x, const uint16_t dim_kernel_y, const uint16_t padding_x, const uint16_t padding_y, const uint16_t stride_x, const uint16_t stride_y, const q7_t *bias, const uint16_t bias_shift, const uint16_t out_shift, q7_t *Im_out, const uint16_t dim_im_out_x, const uint16_t dim_im_out_y, q15_t *bufferA, q7_t *bufferB)
 Fast Q7 version of 1x1 convolution (non-sqaure shape) More...
 
arm_status arm_convolve_HWC_q15_basic (const q15_t *Im_in, const uint16_t dim_im_in, const uint16_t ch_im_in, const q15_t *wt, const uint16_t ch_im_out, const uint16_t dim_kernel, const uint16_t padding, const uint16_t stride, const q15_t *bias, const uint16_t bias_shift, const uint16_t out_shift, q15_t *Im_out, const uint16_t dim_im_out, q15_t *bufferA, q7_t *bufferB)
 Basic Q15 convolution function. More...
 
arm_status arm_convolve_HWC_q15_fast (const q15_t *Im_in, const uint16_t dim_im_in, const uint16_t ch_im_in, const q15_t *wt, const uint16_t ch_im_out, const uint16_t dim_kernel, const uint16_t padding, const uint16_t stride, const q15_t *bias, const uint16_t bias_shift, const uint16_t out_shift, q15_t *Im_out, const uint16_t dim_im_out, q15_t *bufferA, q7_t *bufferB)
 Fast Q15 convolution function. More...
 
arm_status arm_convolve_HWC_q15_fast_nonsquare (const q15_t *Im_in, const uint16_t dim_im_in_x, const uint16_t dim_im_in_y, const uint16_t ch_im_in, const q15_t *wt, const uint16_t ch_im_out, const uint16_t dim_kernel_x, const uint16_t dim_kernel_y, const uint16_t padding_x, const uint16_t padding_y, const uint16_t stride_x, const uint16_t stride_y, const q15_t *bias, const uint16_t bias_shift, const uint16_t out_shift, q15_t *Im_out, const uint16_t dim_im_out_x, const uint16_t dim_im_out_y, q15_t *bufferA, q7_t *bufferB)
 Fast Q15 convolution function (non-sqaure shape) More...
 
arm_status arm_convolve_HWC_q7_basic (const q7_t *Im_in, const uint16_t dim_im_in, const uint16_t ch_im_in, const q7_t *wt, const uint16_t ch_im_out, const uint16_t dim_kernel, const uint16_t padding, const uint16_t stride, const q7_t *bias, const uint16_t bias_shift, const uint16_t out_shift, q7_t *Im_out, const uint16_t dim_im_out, q15_t *bufferA, q7_t *bufferB)
 Basic Q7 convolution function. More...
 
arm_status arm_convolve_HWC_q7_basic_nonsquare (const q7_t *Im_in, const uint16_t dim_im_in_x, const uint16_t dim_im_in_y, const uint16_t ch_im_in, const q7_t *wt, const uint16_t ch_im_out, const uint16_t dim_kernel_x, const uint16_t dim_kernel_y, const uint16_t padding_x, const uint16_t padding_y, const uint16_t stride_x, const uint16_t stride_y, const q7_t *bias, const uint16_t bias_shift, const uint16_t out_shift, q7_t *Im_out, const uint16_t dim_im_out_x, const uint16_t dim_im_out_y, q15_t *bufferA, q7_t *bufferB)
 Basic Q7 convolution function (non-sqaure shape) More...
 
arm_status arm_convolve_HWC_q7_fast (const q7_t *Im_in, const uint16_t dim_im_in, const uint16_t ch_im_in, const q7_t *wt, const uint16_t ch_im_out, const uint16_t dim_kernel, const uint16_t padding, const uint16_t stride, const q7_t *bias, const uint16_t bias_shift, const uint16_t out_shift, q7_t *Im_out, const uint16_t dim_im_out, q15_t *bufferA, q7_t *bufferB)
 Fast Q7 convolution function. More...
 
arm_status arm_convolve_HWC_q7_fast_nonsquare (const q7_t *Im_in, const uint16_t dim_im_in_x, const uint16_t dim_im_in_y, const uint16_t ch_im_in, const q7_t *wt, const uint16_t ch_im_out, const uint16_t dim_kernel_x, const uint16_t dim_kernel_y, const uint16_t padding_x, const uint16_t padding_y, const uint16_t stride_x, const uint16_t stride_y, const q7_t *bias, const uint16_t bias_shift, const uint16_t out_shift, q7_t *Im_out, const uint16_t dim_im_out_x, const uint16_t dim_im_out_y, q15_t *bufferA, q7_t *bufferB)
 Fast Q7 convolution function (non-sqaure shape) More...
 
arm_status arm_convolve_HWC_q7_RGB (const q7_t *Im_in, const uint16_t dim_im_in, const uint16_t ch_im_in, const q7_t *wt, const uint16_t ch_im_out, const uint16_t dim_kernel, const uint16_t padding, const uint16_t stride, const q7_t *bias, const uint16_t bias_shift, const uint16_t out_shift, q7_t *Im_out, const uint16_t dim_im_out, q15_t *bufferA, q7_t *bufferB)
 Q7 convolution function for RGB image. More...
 
arm_status arm_depthwise_separable_conv_HWC_q7 (const q7_t *Im_in, const uint16_t dim_im_in, const uint16_t ch_im_in, const q7_t *wt, const uint16_t ch_im_out, const uint16_t dim_kernel, const uint16_t padding, const uint16_t stride, const q7_t *bias, const uint16_t bias_shift, const uint16_t out_shift, q7_t *Im_out, const uint16_t dim_im_out, q15_t *bufferA, q7_t *bufferB)
 Q7 depthwise separable convolution function. More...
 
arm_status arm_depthwise_separable_conv_HWC_q7_nonsquare (const q7_t *Im_in, const uint16_t dim_im_in_x, const uint16_t dim_im_in_y, const uint16_t ch_im_in, const q7_t *wt, const uint16_t ch_im_out, const uint16_t dim_kernel_x, const uint16_t dim_kernel_y, const uint16_t padding_x, const uint16_t padding_y, const uint16_t stride_x, const uint16_t stride_y, const q7_t *bias, const uint16_t bias_shift, const uint16_t out_shift, q7_t *Im_out, const uint16_t dim_im_out_x, const uint16_t dim_im_out_y, q15_t *bufferA, q7_t *bufferB)
 Q7 depthwise separable convolution function (non-square shape) More...
 

Description

Perform convolution layer

The convolution is implemented in 2 steps: im2col and GEMM

im2col is a process of converting each patch of image data into a column. After im2col, the convolution is computed as matrix-matrix multiplication.

To reduce the memory footprint, the im2col is performed partially. Each iteration, only a few column (i.e., patches) are generated and computed with GEMM kernels similar to CMSIS-DSP arm_mat_mult functions.

Function Documentation

arm_status arm_convolve_1x1_HWC_q7_fast_nonsquare ( const q7_t *  Im_in,
const uint16_t  dim_im_in_x,
const uint16_t  dim_im_in_y,
const uint16_t  ch_im_in,
const q7_t *  wt,
const uint16_t  ch_im_out,
const uint16_t  dim_kernel_x,
const uint16_t  dim_kernel_y,
const uint16_t  padding_x,
const uint16_t  padding_y,
const uint16_t  stride_x,
const uint16_t  stride_y,
const q7_t *  bias,
const uint16_t  bias_shift,
const uint16_t  out_shift,
q7_t *  Im_out,
const uint16_t  dim_im_out_x,
const uint16_t  dim_im_out_y,
q15_t *  bufferA,
q7_t *  bufferB 
)
Parameters
[in]Im_inpointer to input tensor
[in]dim_im_in_xinput tensor dimention x
[in]dim_im_in_yinput tensor dimention y
[in]ch_im_innumber of input tensor channels
[in]wtpointer to kernel weights
[in]ch_im_outnumber of filters, i.e., output tensor channels
[in]dim_kernel_xfilter kernel size x
[in]dim_kernel_yfilter kernel size y
[in]padding_xpadding size x
[in]padding_ypadding size y
[in]stride_xconvolution stride x
[in]stride_yconvolution stride y
[in]biaspointer to bias
[in]bias_shiftamount of left-shift for bias
[in]out_shiftamount of right-shift for output
[in,out]Im_outpointer to output tensor
[in]dim_im_out_xoutput tensor dimension x
[in]dim_im_out_youtput tensor dimension y
[in,out]bufferApointer to buffer space for input
[in,out]bufferBpointer to buffer space for output
Returns
The function returns either ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking.

This function is optimized for convolution with 1x1 kernel size (i.e., dim_kernel_x=1 and dim_kernel_y=1). It can be used for the second half of MobileNets [1] after depthwise separable convolution.

This function is the version with full list of optimization tricks, but with some contraints: ch_im_in is multiple of 4 ch_im_out is multiple of 2

[1] MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications https://arxiv.org/abs/1704.04861

References arm_nn_mat_mult_kernel_q7_q15_reordered(), arm_q7_to_q15_reordered_no_shift(), and NN_ROUND.

arm_status arm_convolve_HWC_q15_basic ( const q15_t *  Im_in,
const uint16_t  dim_im_in,
const uint16_t  ch_im_in,
const q15_t *  wt,
const uint16_t  ch_im_out,
const uint16_t  dim_kernel,
const uint16_t  padding,
const uint16_t  stride,
const q15_t *  bias,
const uint16_t  bias_shift,
const uint16_t  out_shift,
q15_t *  Im_out,
const uint16_t  dim_im_out,
q15_t *  bufferA,
q7_t *  bufferB 
)
Parameters
[in]Im_inpointer to input tensor
[in]dim_im_ininput tensor dimention
[in]ch_im_innumber of input tensor channels
[in]wtpointer to kernel weights
[in]ch_im_outnumber of filters, i.e., output tensor channels
[in]dim_kernelfilter kernel size
[in]paddingpadding sizes
[in]strideconvolution stride
[in]biaspointer to bias
[in]bias_shiftamount of left-shift for bias
[in]out_shiftamount of right-shift for output
[in,out]Im_outpointer to output tensor
[in]dim_im_outoutput tensor dimension
[in,out]bufferApointer to buffer space for input
[in,out]bufferBpointer to buffer space for output
Returns
The function returns ARM_MATH_SUCCESS

Buffer size:

bufferA size: ch_im_in*dim_kernel*dim_kernel

bufferB size: 0

This basic version is designed to work for any input tensor and weight dimension.

References NN_ROUND.

arm_status arm_convolve_HWC_q15_fast ( const q15_t *  Im_in,
const uint16_t  dim_im_in,
const uint16_t  ch_im_in,
const q15_t *  wt,
const uint16_t  ch_im_out,
const uint16_t  dim_kernel,
const uint16_t  padding,
const uint16_t  stride,
const q15_t *  bias,
const uint16_t  bias_shift,
const uint16_t  out_shift,
q15_t *  Im_out,
const uint16_t  dim_im_out,
q15_t *  bufferA,
q7_t *  bufferB 
)
Parameters
[in]Im_inpointer to input tensor
[in]dim_im_ininput tensor dimention
[in]ch_im_innumber of input tensor channels
[in]wtpointer to kernel weights
[in]ch_im_outnumber of filters, i.e., output tensor channels
[in]dim_kernelfilter kernel size
[in]paddingpadding sizes
[in]strideconvolution stride
[in]biaspointer to bias
[in]bias_shiftamount of left-shift for bias
[in]out_shiftamount of right-shift for output
[in,out]Im_outpointer to output tensor
[in]dim_im_outoutput tensor dimension
[in,out]bufferApointer to buffer space for input
[in,out]bufferBpointer to buffer space for output
Returns
The function returns either ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking.

Buffer size:

bufferA size: 2*ch_im_in*dim_kernel*dim_kernel

bufferB size: 0

Input dimension constraints:

ch_im_in is multiple of 2

ch_im_out is multipe of 2

References NN_ROUND.

arm_status arm_convolve_HWC_q15_fast_nonsquare ( const q15_t *  Im_in,
const uint16_t  dim_im_in_x,
const uint16_t  dim_im_in_y,
const uint16_t  ch_im_in,
const q15_t *  wt,
const uint16_t  ch_im_out,
const uint16_t  dim_kernel_x,
const uint16_t  dim_kernel_y,
const uint16_t  padding_x,
const uint16_t  padding_y,
const uint16_t  stride_x,
const uint16_t  stride_y,
const q15_t *  bias,
const uint16_t  bias_shift,
const uint16_t  out_shift,
q15_t *  Im_out,
const uint16_t  dim_im_out_x,
const uint16_t  dim_im_out_y,
q15_t *  bufferA,
q7_t *  bufferB 
)
Parameters
[in]Im_inpointer to input tensor
[in]dim_im_in_xinput tensor dimention x
[in]dim_im_in_yinput tensor dimention y
[in]ch_im_innumber of input tensor channels
[in]wtpointer to kernel weights
[in]ch_im_outnumber of filters, i.e., output tensor channels
[in]dim_kernel_xfilter kernel size x
[in]dim_kernel_yfilter kernel size y
[in]padding_xpadding size x
[in]padding_ypadding size y
[in]stride_xconvolution stride x
[in]stride_yconvolution stride y
[in]biaspointer to bias
[in]bias_shiftamount of left-shift for bias
[in]out_shiftamount of right-shift for output
[in,out]Im_outpointer to output tensor
[in]dim_im_out_xoutput tensor dimension x
[in]dim_im_out_youtput tensor dimension y
[in,out]bufferApointer to buffer space for input
[in,out]bufferBpointer to buffer space for output
Returns
The function returns either ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking.

Buffer size:

bufferA size: 2*ch_im_in*dim_kernel*dim_kernel

bufferB size: 0

Input dimension constraints:

ch_im_in is multiple of 2

ch_im_out is multipe of 2

References NN_ROUND.

arm_status arm_convolve_HWC_q7_basic ( const q7_t *  Im_in,
const uint16_t  dim_im_in,
const uint16_t  ch_im_in,
const q7_t *  wt,
const uint16_t  ch_im_out,
const uint16_t  dim_kernel,
const uint16_t  padding,
const uint16_t  stride,
const q7_t *  bias,
const uint16_t  bias_shift,
const uint16_t  out_shift,
q7_t *  Im_out,
const uint16_t  dim_im_out,
q15_t *  bufferA,
q7_t *  bufferB 
)
Parameters
[in]Im_inpointer to input tensor
[in]dim_im_ininput tensor dimention
[in]ch_im_innumber of input tensor channels
[in]wtpointer to kernel weights
[in]ch_im_outnumber of filters, i.e., output tensor channels
[in]dim_kernelfilter kernel size
[in]paddingpadding sizes
[in]strideconvolution stride
[in]biaspointer to bias
[in]bias_shiftamount of left-shift for bias
[in]out_shiftamount of right-shift for output
[in,out]Im_outpointer to output tensor
[in]dim_im_outoutput tensor dimension
[in,out]bufferApointer to buffer space for input
[in,out]bufferBpointer to buffer space for output
Returns
The function returns ARM_MATH_SUCCESS

Buffer size:

bufferA size: 2*ch_im_in*dim_kernel*dim_kernel

bufferB size: 0

This basic version is designed to work for any input tensor and weight dimension.

References arm_nn_mat_mult_kernel_q7_q15(), arm_q7_to_q15_no_shift(), and NN_ROUND.

arm_status arm_convolve_HWC_q7_basic_nonsquare ( const q7_t *  Im_in,
const uint16_t  dim_im_in_x,
const uint16_t  dim_im_in_y,
const uint16_t  ch_im_in,
const q7_t *  wt,
const uint16_t  ch_im_out,
const uint16_t  dim_kernel_x,
const uint16_t  dim_kernel_y,
const uint16_t  padding_x,
const uint16_t  padding_y,
const uint16_t  stride_x,
const uint16_t  stride_y,
const q7_t *  bias,
const uint16_t  bias_shift,
const uint16_t  out_shift,
q7_t *  Im_out,
const uint16_t  dim_im_out_x,
const uint16_t  dim_im_out_y,
q15_t *  bufferA,
q7_t *  bufferB 
)
Parameters
[in]Im_inpointer to input tensor
[in]dim_im_in_xinput tensor dimention x
[in]dim_im_in_yinput tensor dimention y
[in]ch_im_innumber of input tensor channels
[in]wtpointer to kernel weights
[in]ch_im_outnumber of filters, i.e., output tensor channels
[in]dim_kernel_xfilter kernel size x
[in]dim_kernel_yfilter kernel size y
[in]padding_xpadding size x
[in]padding_ypadding size y
[in]stride_xconvolution stride x
[in]stride_yconvolution stride y
[in]biaspointer to bias
[in]bias_shiftamount of left-shift for bias
[in]out_shiftamount of right-shift for output
[in,out]Im_outpointer to output tensor
[in]dim_im_out_xoutput tensor dimension x
[in]dim_im_out_youtput tensor dimension y
[in,out]bufferApointer to buffer space for input
[in,out]bufferBpointer to buffer space for output
Returns
The function returns ARM_MATH_SUCCESS

References arm_nn_mat_mult_kernel_q7_q15(), arm_q7_to_q15_no_shift(), and NN_ROUND.

arm_status arm_convolve_HWC_q7_fast ( const q7_t *  Im_in,
const uint16_t  dim_im_in,
const uint16_t  ch_im_in,
const q7_t *  wt,
const uint16_t  ch_im_out,
const uint16_t  dim_kernel,
const uint16_t  padding,
const uint16_t  stride,
const q7_t *  bias,
const uint16_t  bias_shift,
const uint16_t  out_shift,
q7_t *  Im_out,
const uint16_t  dim_im_out,
q15_t *  bufferA,
q7_t *  bufferB 
)
Parameters
[in]Im_inpointer to input tensor
[in]dim_im_ininput tensor dimention
[in]ch_im_innumber of input tensor channels
[in]wtpointer to kernel weights
[in]ch_im_outnumber of filters, i.e., output tensor channels
[in]dim_kernelfilter kernel size
[in]paddingpadding sizes
[in]strideconvolution stride
[in]biaspointer to bias
[in]bias_shiftamount of left-shift for bias
[in]out_shiftamount of right-shift for output
[in,out]Im_outpointer to output tensor
[in]dim_im_outoutput tensor dimension
[in,out]bufferApointer to buffer space for input
[in,out]bufferBpointer to buffer space for output
Returns
The function returns either ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking.

Buffer size:

bufferA size: 2*ch_im_in*dim_kernel*dim_kernel

bufferB size: 0

Input dimension constraints:

ch_im_in is multiple of 4 ( because of the SIMD32 read and swap )

ch_im_out is multipe of 2 ( bacause 2x2 mat_mult kernel )

The im2col converts the Q7 tensor input into Q15 column, which is stored in bufferA. There is reordering happenning during this im2col process with arm_q7_to_q15_reordered_no_shift. For every four elements, the second and third elements are swapped.

The computation kernel arm_nn_mat_mult_kernel_q7_q15_reordered does the GEMM computation with the reordered columns.

To speed-up the determination of the padding condition, we split the computation into 3x3 parts, i.e., {top, mid, bottom} X {left, mid, right}. This reduces the total number of boundary condition checks and improves the data copying performance.

References arm_nn_mat_mult_kernel_q7_q15_reordered(), arm_q7_to_q15_reordered_no_shift(), and NN_ROUND.

Referenced by main().

arm_status arm_convolve_HWC_q7_fast_nonsquare ( const q7_t *  Im_in,
const uint16_t  dim_im_in_x,
const uint16_t  dim_im_in_y,
const uint16_t  ch_im_in,
const q7_t *  wt,
const uint16_t  ch_im_out,
const uint16_t  dim_kernel_x,
const uint16_t  dim_kernel_y,
const uint16_t  padding_x,
const uint16_t  padding_y,
const uint16_t  stride_x,
const uint16_t  stride_y,
const q7_t *  bias,
const uint16_t  bias_shift,
const uint16_t  out_shift,
q7_t *  Im_out,
const uint16_t  dim_im_out_x,
const uint16_t  dim_im_out_y,
q15_t *  bufferA,
q7_t *  bufferB 
)
Parameters
[in]Im_inpointer to input tensor
[in]dim_im_in_xinput tensor dimention x
[in]dim_im_in_yinput tensor dimention y
[in]ch_im_innumber of input tensor channels
[in]wtpointer to kernel weights
[in]ch_im_outnumber of filters, i.e., output tensor channels
[in]dim_kernel_xfilter kernel size x
[in]dim_kernel_yfilter kernel size y
[in]padding_xpadding size x
[in]padding_ypadding size y
[in]stride_xconvolution stride x
[in]stride_yconvolution stride y
[in]biaspointer to bias
[in]bias_shiftamount of left-shift for bias
[in]out_shiftamount of right-shift for output
[in,out]Im_outpointer to output tensor
[in]dim_im_out_xoutput tensor dimension x
[in]dim_im_out_youtput tensor dimension y
[in,out]bufferApointer to buffer space for input
[in,out]bufferBpointer to buffer space for output
Returns
The function returns either ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking.

This function is the version with full list of optimization tricks, but with some contraints: ch_im_in is multiple of 4 ch_im_out is multiple of 2

References arm_nn_mat_mult_kernel_q7_q15_reordered(), arm_q7_to_q15_reordered_no_shift(), and NN_ROUND.

arm_status arm_convolve_HWC_q7_RGB ( const q7_t *  Im_in,
const uint16_t  dim_im_in,
const uint16_t  ch_im_in,
const q7_t *  wt,
const uint16_t  ch_im_out,
const uint16_t  dim_kernel,
const uint16_t  padding,
const uint16_t  stride,
const q7_t *  bias,
const uint16_t  bias_shift,
const uint16_t  out_shift,
q7_t *  Im_out,
const uint16_t  dim_im_out,
q15_t *  bufferA,
q7_t *  bufferB 
)

Q7 version of convolution for RGB image.

Parameters
[in]Im_inpointer to input tensor
[in]dim_im_ininput tensor dimention
[in]ch_im_innumber of input tensor channels
[in]wtpointer to kernel weights
[in]ch_im_outnumber of filters, i.e., output tensor channels
[in]dim_kernelfilter kernel size
[in]paddingpadding sizes
[in]strideconvolution stride
[in]biaspointer to bias
[in]bias_shiftamount of left-shift for bias
[in]out_shiftamount of right-shift for output
[in,out]Im_outpointer to output tensor
[in]dim_im_outoutput tensor dimension
[in,out]bufferApointer to buffer space for input
[in,out]bufferBpointer to buffer space for output
Returns
The function returns either ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking.

Buffer size:

bufferA size: 2*ch_im_in*dim_kernel*dim_kernel

bufferB size: 0

Input dimension constraints:

ch_im_in equals 3

This kernel is written exclusively for convolution with ch_im_in equals 3. This applies on the first layer of CNNs which has input image with RGB format.

References arm_nn_mat_mult_kernel_q7_q15(), arm_nnword::half_words, NN_ROUND, and arm_nnword::word.

Referenced by main().

arm_status arm_depthwise_separable_conv_HWC_q7 ( const q7_t *  Im_in,
const uint16_t  dim_im_in,
const uint16_t  ch_im_in,
const q7_t *  wt,
const uint16_t  ch_im_out,
const uint16_t  dim_kernel,
const uint16_t  padding,
const uint16_t  stride,
const q7_t *  bias,
const uint16_t  bias_shift,
const uint16_t  out_shift,
q7_t *  Im_out,
const uint16_t  dim_im_out,
q15_t *  bufferA,
q7_t *  bufferB 
)
Parameters
[in]Im_inpointer to input tensor
[in]dim_im_ininput tensor dimention
[in]ch_im_innumber of input tensor channels
[in]wtpointer to kernel weights
[in]ch_im_outnumber of filters, i.e., output tensor channels
[in]dim_kernelfilter kernel size
[in]paddingpadding sizes
[in]strideconvolution stride
[in]biaspointer to bias
[in]bias_shiftamount of left-shift for bias
[in]out_shiftamount of right-shift for output
[in,out]Im_outpointer to output tensor
[in]dim_im_outoutput tensor dimension
[in,out]bufferApointer to buffer space for input
[in,out]bufferBpointer to buffer space for output
Returns
The function returns either ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking.

Buffer size:

bufferA size: 2*ch_im_in*dim_kernel*dim_kernel

bufferB size: 0

Input dimension constraints:

ch_im_in equals ch_im_out

Implementation: There are 3 nested loop here: Inner loop: calculate each output value with MAC instruction over an accumulator Mid loop: loop over different output channel Outer loop: loop over different output (x, y)

References arm_nnword::bytes, NN_ROUND, and arm_nnword::word.

arm_status arm_depthwise_separable_conv_HWC_q7_nonsquare ( const q7_t *  Im_in,
const uint16_t  dim_im_in_x,
const uint16_t  dim_im_in_y,
const uint16_t  ch_im_in,
const q7_t *  wt,
const uint16_t  ch_im_out,
const uint16_t  dim_kernel_x,
const uint16_t  dim_kernel_y,
const uint16_t  padding_x,
const uint16_t  padding_y,
const uint16_t  stride_x,
const uint16_t  stride_y,
const q7_t *  bias,
const uint16_t  bias_shift,
const uint16_t  out_shift,
q7_t *  Im_out,
const uint16_t  dim_im_out_x,
const uint16_t  dim_im_out_y,
q15_t *  bufferA,
q7_t *  bufferB 
)
Parameters
[in]Im_inpointer to input tensor
[in]dim_im_in_xinput tensor dimention x
[in]dim_im_in_yinput tensor dimention y
[in]ch_im_innumber of input tensor channels
[in]wtpointer to kernel weights
[in]ch_im_outnumber of filters, i.e., output tensor channels
[in]dim_kernel_xfilter kernel size x
[in]dim_kernel_yfilter kernel size y
[in]padding_xpadding sizes x
[in]padding_ypadding sizes y
[in]stride_xconvolution stride x
[in]stride_yconvolution stride y
[in]biaspointer to bias
[in]bias_shiftamount of left-shift for bias
[in]out_shiftamount of right-shift for output
[in,out]Im_outpointer to output tensor
[in]dim_im_out_xoutput tensor dimension x
[in]dim_im_out_youtput tensor dimension y
[in,out]bufferApointer to buffer space for input
[in,out]bufferBpointer to buffer space for output
Returns
The function returns either ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking.

This function is the version with full list of optimization tricks, but with some contraints: ch_im_in is multiple of 2 ch_im_out is multiple of 2

References arm_nnword::bytes, NN_ROUND, and arm_nnword::word.