CMSIS-NN
Version 1.1.0
CMSIS NN Software Library
|
Functions | |
arm_status | arm_convolve_1x1_HWC_q7_fast_nonsquare (const q7_t *Im_in, const uint16_t dim_im_in_x, const uint16_t dim_im_in_y, const uint16_t ch_im_in, const q7_t *wt, const uint16_t ch_im_out, const uint16_t dim_kernel_x, const uint16_t dim_kernel_y, const uint16_t padding_x, const uint16_t padding_y, const uint16_t stride_x, const uint16_t stride_y, const q7_t *bias, const uint16_t bias_shift, const uint16_t out_shift, q7_t *Im_out, const uint16_t dim_im_out_x, const uint16_t dim_im_out_y, q15_t *bufferA, q7_t *bufferB) |
Fast Q7 version of 1x1 convolution (non-sqaure shape) More... | |
arm_status | arm_convolve_HWC_q15_basic (const q15_t *Im_in, const uint16_t dim_im_in, const uint16_t ch_im_in, const q15_t *wt, const uint16_t ch_im_out, const uint16_t dim_kernel, const uint16_t padding, const uint16_t stride, const q15_t *bias, const uint16_t bias_shift, const uint16_t out_shift, q15_t *Im_out, const uint16_t dim_im_out, q15_t *bufferA, q7_t *bufferB) |
Basic Q15 convolution function. More... | |
arm_status | arm_convolve_HWC_q15_fast (const q15_t *Im_in, const uint16_t dim_im_in, const uint16_t ch_im_in, const q15_t *wt, const uint16_t ch_im_out, const uint16_t dim_kernel, const uint16_t padding, const uint16_t stride, const q15_t *bias, const uint16_t bias_shift, const uint16_t out_shift, q15_t *Im_out, const uint16_t dim_im_out, q15_t *bufferA, q7_t *bufferB) |
Fast Q15 convolution function. More... | |
arm_status | arm_convolve_HWC_q15_fast_nonsquare (const q15_t *Im_in, const uint16_t dim_im_in_x, const uint16_t dim_im_in_y, const uint16_t ch_im_in, const q15_t *wt, const uint16_t ch_im_out, const uint16_t dim_kernel_x, const uint16_t dim_kernel_y, const uint16_t padding_x, const uint16_t padding_y, const uint16_t stride_x, const uint16_t stride_y, const q15_t *bias, const uint16_t bias_shift, const uint16_t out_shift, q15_t *Im_out, const uint16_t dim_im_out_x, const uint16_t dim_im_out_y, q15_t *bufferA, q7_t *bufferB) |
Fast Q15 convolution function (non-sqaure shape) More... | |
arm_status | arm_convolve_HWC_q7_basic (const q7_t *Im_in, const uint16_t dim_im_in, const uint16_t ch_im_in, const q7_t *wt, const uint16_t ch_im_out, const uint16_t dim_kernel, const uint16_t padding, const uint16_t stride, const q7_t *bias, const uint16_t bias_shift, const uint16_t out_shift, q7_t *Im_out, const uint16_t dim_im_out, q15_t *bufferA, q7_t *bufferB) |
Basic Q7 convolution function. More... | |
arm_status | arm_convolve_HWC_q7_basic_nonsquare (const q7_t *Im_in, const uint16_t dim_im_in_x, const uint16_t dim_im_in_y, const uint16_t ch_im_in, const q7_t *wt, const uint16_t ch_im_out, const uint16_t dim_kernel_x, const uint16_t dim_kernel_y, const uint16_t padding_x, const uint16_t padding_y, const uint16_t stride_x, const uint16_t stride_y, const q7_t *bias, const uint16_t bias_shift, const uint16_t out_shift, q7_t *Im_out, const uint16_t dim_im_out_x, const uint16_t dim_im_out_y, q15_t *bufferA, q7_t *bufferB) |
Basic Q7 convolution function (non-sqaure shape) More... | |
arm_status | arm_convolve_HWC_q7_fast (const q7_t *Im_in, const uint16_t dim_im_in, const uint16_t ch_im_in, const q7_t *wt, const uint16_t ch_im_out, const uint16_t dim_kernel, const uint16_t padding, const uint16_t stride, const q7_t *bias, const uint16_t bias_shift, const uint16_t out_shift, q7_t *Im_out, const uint16_t dim_im_out, q15_t *bufferA, q7_t *bufferB) |
Fast Q7 convolution function. More... | |
arm_status | arm_convolve_HWC_q7_fast_nonsquare (const q7_t *Im_in, const uint16_t dim_im_in_x, const uint16_t dim_im_in_y, const uint16_t ch_im_in, const q7_t *wt, const uint16_t ch_im_out, const uint16_t dim_kernel_x, const uint16_t dim_kernel_y, const uint16_t padding_x, const uint16_t padding_y, const uint16_t stride_x, const uint16_t stride_y, const q7_t *bias, const uint16_t bias_shift, const uint16_t out_shift, q7_t *Im_out, const uint16_t dim_im_out_x, const uint16_t dim_im_out_y, q15_t *bufferA, q7_t *bufferB) |
Fast Q7 convolution function (non-sqaure shape) More... | |
arm_status | arm_convolve_HWC_q7_RGB (const q7_t *Im_in, const uint16_t dim_im_in, const uint16_t ch_im_in, const q7_t *wt, const uint16_t ch_im_out, const uint16_t dim_kernel, const uint16_t padding, const uint16_t stride, const q7_t *bias, const uint16_t bias_shift, const uint16_t out_shift, q7_t *Im_out, const uint16_t dim_im_out, q15_t *bufferA, q7_t *bufferB) |
Q7 convolution function for RGB image. More... | |
arm_status | arm_depthwise_separable_conv_HWC_q7 (const q7_t *Im_in, const uint16_t dim_im_in, const uint16_t ch_im_in, const q7_t *wt, const uint16_t ch_im_out, const uint16_t dim_kernel, const uint16_t padding, const uint16_t stride, const q7_t *bias, const uint16_t bias_shift, const uint16_t out_shift, q7_t *Im_out, const uint16_t dim_im_out, q15_t *bufferA, q7_t *bufferB) |
Q7 depthwise separable convolution function. More... | |
arm_status | arm_depthwise_separable_conv_HWC_q7_nonsquare (const q7_t *Im_in, const uint16_t dim_im_in_x, const uint16_t dim_im_in_y, const uint16_t ch_im_in, const q7_t *wt, const uint16_t ch_im_out, const uint16_t dim_kernel_x, const uint16_t dim_kernel_y, const uint16_t padding_x, const uint16_t padding_y, const uint16_t stride_x, const uint16_t stride_y, const q7_t *bias, const uint16_t bias_shift, const uint16_t out_shift, q7_t *Im_out, const uint16_t dim_im_out_x, const uint16_t dim_im_out_y, q15_t *bufferA, q7_t *bufferB) |
Q7 depthwise separable convolution function (non-square shape) More... | |
Perform convolution layer
The convolution is implemented in 2 steps: im2col and GEMM
im2col is a process of converting each patch of image data into a column. After im2col, the convolution is computed as matrix-matrix multiplication.
To reduce the memory footprint, the im2col is performed partially. Each iteration, only a few column (i.e., patches) are generated and computed with GEMM kernels similar to CMSIS-DSP arm_mat_mult functions.
arm_status arm_convolve_1x1_HWC_q7_fast_nonsquare | ( | const q7_t * | Im_in, |
const uint16_t | dim_im_in_x, | ||
const uint16_t | dim_im_in_y, | ||
const uint16_t | ch_im_in, | ||
const q7_t * | wt, | ||
const uint16_t | ch_im_out, | ||
const uint16_t | dim_kernel_x, | ||
const uint16_t | dim_kernel_y, | ||
const uint16_t | padding_x, | ||
const uint16_t | padding_y, | ||
const uint16_t | stride_x, | ||
const uint16_t | stride_y, | ||
const q7_t * | bias, | ||
const uint16_t | bias_shift, | ||
const uint16_t | out_shift, | ||
q7_t * | Im_out, | ||
const uint16_t | dim_im_out_x, | ||
const uint16_t | dim_im_out_y, | ||
q15_t * | bufferA, | ||
q7_t * | bufferB | ||
) |
[in] | Im_in | pointer to input tensor |
[in] | dim_im_in_x | input tensor dimention x |
[in] | dim_im_in_y | input tensor dimention y |
[in] | ch_im_in | number of input tensor channels |
[in] | wt | pointer to kernel weights |
[in] | ch_im_out | number of filters, i.e., output tensor channels |
[in] | dim_kernel_x | filter kernel size x |
[in] | dim_kernel_y | filter kernel size y |
[in] | padding_x | padding size x |
[in] | padding_y | padding size y |
[in] | stride_x | convolution stride x |
[in] | stride_y | convolution stride y |
[in] | bias | pointer to bias |
[in] | bias_shift | amount of left-shift for bias |
[in] | out_shift | amount of right-shift for output |
[in,out] | Im_out | pointer to output tensor |
[in] | dim_im_out_x | output tensor dimension x |
[in] | dim_im_out_y | output tensor dimension y |
[in,out] | bufferA | pointer to buffer space for input |
[in,out] | bufferB | pointer to buffer space for output |
ARM_MATH_SIZE_MISMATCH
or ARM_MATH_SUCCESS
based on the outcome of size checking.This function is optimized for convolution with 1x1 kernel size (i.e., dim_kernel_x=1 and dim_kernel_y=1). It can be used for the second half of MobileNets [1] after depthwise separable convolution.
This function is the version with full list of optimization tricks, but with some contraints: ch_im_in is multiple of 4 ch_im_out is multiple of 2
[1] MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications https://arxiv.org/abs/1704.04861
References arm_nn_mat_mult_kernel_q7_q15_reordered(), arm_q7_to_q15_reordered_no_shift(), and NN_ROUND.
arm_status arm_convolve_HWC_q15_basic | ( | const q15_t * | Im_in, |
const uint16_t | dim_im_in, | ||
const uint16_t | ch_im_in, | ||
const q15_t * | wt, | ||
const uint16_t | ch_im_out, | ||
const uint16_t | dim_kernel, | ||
const uint16_t | padding, | ||
const uint16_t | stride, | ||
const q15_t * | bias, | ||
const uint16_t | bias_shift, | ||
const uint16_t | out_shift, | ||
q15_t * | Im_out, | ||
const uint16_t | dim_im_out, | ||
q15_t * | bufferA, | ||
q7_t * | bufferB | ||
) |
[in] | Im_in | pointer to input tensor |
[in] | dim_im_in | input tensor dimention |
[in] | ch_im_in | number of input tensor channels |
[in] | wt | pointer to kernel weights |
[in] | ch_im_out | number of filters, i.e., output tensor channels |
[in] | dim_kernel | filter kernel size |
[in] | padding | padding sizes |
[in] | stride | convolution stride |
[in] | bias | pointer to bias |
[in] | bias_shift | amount of left-shift for bias |
[in] | out_shift | amount of right-shift for output |
[in,out] | Im_out | pointer to output tensor |
[in] | dim_im_out | output tensor dimension |
[in,out] | bufferA | pointer to buffer space for input |
[in,out] | bufferB | pointer to buffer space for output |
ARM_MATH_SUCCESS
Buffer size:
bufferA size: ch_im_in*dim_kernel*dim_kernel
bufferB size: 0
This basic version is designed to work for any input tensor and weight dimension.
References NN_ROUND.
arm_status arm_convolve_HWC_q15_fast | ( | const q15_t * | Im_in, |
const uint16_t | dim_im_in, | ||
const uint16_t | ch_im_in, | ||
const q15_t * | wt, | ||
const uint16_t | ch_im_out, | ||
const uint16_t | dim_kernel, | ||
const uint16_t | padding, | ||
const uint16_t | stride, | ||
const q15_t * | bias, | ||
const uint16_t | bias_shift, | ||
const uint16_t | out_shift, | ||
q15_t * | Im_out, | ||
const uint16_t | dim_im_out, | ||
q15_t * | bufferA, | ||
q7_t * | bufferB | ||
) |
[in] | Im_in | pointer to input tensor |
[in] | dim_im_in | input tensor dimention |
[in] | ch_im_in | number of input tensor channels |
[in] | wt | pointer to kernel weights |
[in] | ch_im_out | number of filters, i.e., output tensor channels |
[in] | dim_kernel | filter kernel size |
[in] | padding | padding sizes |
[in] | stride | convolution stride |
[in] | bias | pointer to bias |
[in] | bias_shift | amount of left-shift for bias |
[in] | out_shift | amount of right-shift for output |
[in,out] | Im_out | pointer to output tensor |
[in] | dim_im_out | output tensor dimension |
[in,out] | bufferA | pointer to buffer space for input |
[in,out] | bufferB | pointer to buffer space for output |
ARM_MATH_SIZE_MISMATCH
or ARM_MATH_SUCCESS
based on the outcome of size checking.Buffer size:
bufferA size: 2*ch_im_in*dim_kernel*dim_kernel
bufferB size: 0
Input dimension constraints:
ch_im_in is multiple of 2
ch_im_out is multipe of 2
References NN_ROUND.
arm_status arm_convolve_HWC_q15_fast_nonsquare | ( | const q15_t * | Im_in, |
const uint16_t | dim_im_in_x, | ||
const uint16_t | dim_im_in_y, | ||
const uint16_t | ch_im_in, | ||
const q15_t * | wt, | ||
const uint16_t | ch_im_out, | ||
const uint16_t | dim_kernel_x, | ||
const uint16_t | dim_kernel_y, | ||
const uint16_t | padding_x, | ||
const uint16_t | padding_y, | ||
const uint16_t | stride_x, | ||
const uint16_t | stride_y, | ||
const q15_t * | bias, | ||
const uint16_t | bias_shift, | ||
const uint16_t | out_shift, | ||
q15_t * | Im_out, | ||
const uint16_t | dim_im_out_x, | ||
const uint16_t | dim_im_out_y, | ||
q15_t * | bufferA, | ||
q7_t * | bufferB | ||
) |
[in] | Im_in | pointer to input tensor |
[in] | dim_im_in_x | input tensor dimention x |
[in] | dim_im_in_y | input tensor dimention y |
[in] | ch_im_in | number of input tensor channels |
[in] | wt | pointer to kernel weights |
[in] | ch_im_out | number of filters, i.e., output tensor channels |
[in] | dim_kernel_x | filter kernel size x |
[in] | dim_kernel_y | filter kernel size y |
[in] | padding_x | padding size x |
[in] | padding_y | padding size y |
[in] | stride_x | convolution stride x |
[in] | stride_y | convolution stride y |
[in] | bias | pointer to bias |
[in] | bias_shift | amount of left-shift for bias |
[in] | out_shift | amount of right-shift for output |
[in,out] | Im_out | pointer to output tensor |
[in] | dim_im_out_x | output tensor dimension x |
[in] | dim_im_out_y | output tensor dimension y |
[in,out] | bufferA | pointer to buffer space for input |
[in,out] | bufferB | pointer to buffer space for output |
ARM_MATH_SIZE_MISMATCH
or ARM_MATH_SUCCESS
based on the outcome of size checking.Buffer size:
bufferA size: 2*ch_im_in*dim_kernel*dim_kernel
bufferB size: 0
Input dimension constraints:
ch_im_in is multiple of 2
ch_im_out is multipe of 2
References NN_ROUND.
arm_status arm_convolve_HWC_q7_basic | ( | const q7_t * | Im_in, |
const uint16_t | dim_im_in, | ||
const uint16_t | ch_im_in, | ||
const q7_t * | wt, | ||
const uint16_t | ch_im_out, | ||
const uint16_t | dim_kernel, | ||
const uint16_t | padding, | ||
const uint16_t | stride, | ||
const q7_t * | bias, | ||
const uint16_t | bias_shift, | ||
const uint16_t | out_shift, | ||
q7_t * | Im_out, | ||
const uint16_t | dim_im_out, | ||
q15_t * | bufferA, | ||
q7_t * | bufferB | ||
) |
[in] | Im_in | pointer to input tensor |
[in] | dim_im_in | input tensor dimention |
[in] | ch_im_in | number of input tensor channels |
[in] | wt | pointer to kernel weights |
[in] | ch_im_out | number of filters, i.e., output tensor channels |
[in] | dim_kernel | filter kernel size |
[in] | padding | padding sizes |
[in] | stride | convolution stride |
[in] | bias | pointer to bias |
[in] | bias_shift | amount of left-shift for bias |
[in] | out_shift | amount of right-shift for output |
[in,out] | Im_out | pointer to output tensor |
[in] | dim_im_out | output tensor dimension |
[in,out] | bufferA | pointer to buffer space for input |
[in,out] | bufferB | pointer to buffer space for output |
ARM_MATH_SUCCESS
Buffer size:
bufferA size: 2*ch_im_in*dim_kernel*dim_kernel
bufferB size: 0
This basic version is designed to work for any input tensor and weight dimension.
References arm_nn_mat_mult_kernel_q7_q15(), arm_q7_to_q15_no_shift(), and NN_ROUND.
arm_status arm_convolve_HWC_q7_basic_nonsquare | ( | const q7_t * | Im_in, |
const uint16_t | dim_im_in_x, | ||
const uint16_t | dim_im_in_y, | ||
const uint16_t | ch_im_in, | ||
const q7_t * | wt, | ||
const uint16_t | ch_im_out, | ||
const uint16_t | dim_kernel_x, | ||
const uint16_t | dim_kernel_y, | ||
const uint16_t | padding_x, | ||
const uint16_t | padding_y, | ||
const uint16_t | stride_x, | ||
const uint16_t | stride_y, | ||
const q7_t * | bias, | ||
const uint16_t | bias_shift, | ||
const uint16_t | out_shift, | ||
q7_t * | Im_out, | ||
const uint16_t | dim_im_out_x, | ||
const uint16_t | dim_im_out_y, | ||
q15_t * | bufferA, | ||
q7_t * | bufferB | ||
) |
[in] | Im_in | pointer to input tensor |
[in] | dim_im_in_x | input tensor dimention x |
[in] | dim_im_in_y | input tensor dimention y |
[in] | ch_im_in | number of input tensor channels |
[in] | wt | pointer to kernel weights |
[in] | ch_im_out | number of filters, i.e., output tensor channels |
[in] | dim_kernel_x | filter kernel size x |
[in] | dim_kernel_y | filter kernel size y |
[in] | padding_x | padding size x |
[in] | padding_y | padding size y |
[in] | stride_x | convolution stride x |
[in] | stride_y | convolution stride y |
[in] | bias | pointer to bias |
[in] | bias_shift | amount of left-shift for bias |
[in] | out_shift | amount of right-shift for output |
[in,out] | Im_out | pointer to output tensor |
[in] | dim_im_out_x | output tensor dimension x |
[in] | dim_im_out_y | output tensor dimension y |
[in,out] | bufferA | pointer to buffer space for input |
[in,out] | bufferB | pointer to buffer space for output |
ARM_MATH_SUCCESS
References arm_nn_mat_mult_kernel_q7_q15(), arm_q7_to_q15_no_shift(), and NN_ROUND.
arm_status arm_convolve_HWC_q7_fast | ( | const q7_t * | Im_in, |
const uint16_t | dim_im_in, | ||
const uint16_t | ch_im_in, | ||
const q7_t * | wt, | ||
const uint16_t | ch_im_out, | ||
const uint16_t | dim_kernel, | ||
const uint16_t | padding, | ||
const uint16_t | stride, | ||
const q7_t * | bias, | ||
const uint16_t | bias_shift, | ||
const uint16_t | out_shift, | ||
q7_t * | Im_out, | ||
const uint16_t | dim_im_out, | ||
q15_t * | bufferA, | ||
q7_t * | bufferB | ||
) |
[in] | Im_in | pointer to input tensor |
[in] | dim_im_in | input tensor dimention |
[in] | ch_im_in | number of input tensor channels |
[in] | wt | pointer to kernel weights |
[in] | ch_im_out | number of filters, i.e., output tensor channels |
[in] | dim_kernel | filter kernel size |
[in] | padding | padding sizes |
[in] | stride | convolution stride |
[in] | bias | pointer to bias |
[in] | bias_shift | amount of left-shift for bias |
[in] | out_shift | amount of right-shift for output |
[in,out] | Im_out | pointer to output tensor |
[in] | dim_im_out | output tensor dimension |
[in,out] | bufferA | pointer to buffer space for input |
[in,out] | bufferB | pointer to buffer space for output |
ARM_MATH_SIZE_MISMATCH
or ARM_MATH_SUCCESS
based on the outcome of size checking.Buffer size:
bufferA size: 2*ch_im_in*dim_kernel*dim_kernel
bufferB size: 0
Input dimension constraints:
ch_im_in is multiple of 4 ( because of the SIMD32 read and swap )
ch_im_out is multipe of 2 ( bacause 2x2 mat_mult kernel )
The im2col converts the Q7 tensor input into Q15 column, which is stored in bufferA. There is reordering happenning during this im2col process with arm_q7_to_q15_reordered_no_shift. For every four elements, the second and third elements are swapped.
The computation kernel arm_nn_mat_mult_kernel_q7_q15_reordered does the GEMM computation with the reordered columns.
To speed-up the determination of the padding condition, we split the computation into 3x3 parts, i.e., {top, mid, bottom} X {left, mid, right}. This reduces the total number of boundary condition checks and improves the data copying performance.
References arm_nn_mat_mult_kernel_q7_q15_reordered(), arm_q7_to_q15_reordered_no_shift(), and NN_ROUND.
Referenced by main().
arm_status arm_convolve_HWC_q7_fast_nonsquare | ( | const q7_t * | Im_in, |
const uint16_t | dim_im_in_x, | ||
const uint16_t | dim_im_in_y, | ||
const uint16_t | ch_im_in, | ||
const q7_t * | wt, | ||
const uint16_t | ch_im_out, | ||
const uint16_t | dim_kernel_x, | ||
const uint16_t | dim_kernel_y, | ||
const uint16_t | padding_x, | ||
const uint16_t | padding_y, | ||
const uint16_t | stride_x, | ||
const uint16_t | stride_y, | ||
const q7_t * | bias, | ||
const uint16_t | bias_shift, | ||
const uint16_t | out_shift, | ||
q7_t * | Im_out, | ||
const uint16_t | dim_im_out_x, | ||
const uint16_t | dim_im_out_y, | ||
q15_t * | bufferA, | ||
q7_t * | bufferB | ||
) |
[in] | Im_in | pointer to input tensor |
[in] | dim_im_in_x | input tensor dimention x |
[in] | dim_im_in_y | input tensor dimention y |
[in] | ch_im_in | number of input tensor channels |
[in] | wt | pointer to kernel weights |
[in] | ch_im_out | number of filters, i.e., output tensor channels |
[in] | dim_kernel_x | filter kernel size x |
[in] | dim_kernel_y | filter kernel size y |
[in] | padding_x | padding size x |
[in] | padding_y | padding size y |
[in] | stride_x | convolution stride x |
[in] | stride_y | convolution stride y |
[in] | bias | pointer to bias |
[in] | bias_shift | amount of left-shift for bias |
[in] | out_shift | amount of right-shift for output |
[in,out] | Im_out | pointer to output tensor |
[in] | dim_im_out_x | output tensor dimension x |
[in] | dim_im_out_y | output tensor dimension y |
[in,out] | bufferA | pointer to buffer space for input |
[in,out] | bufferB | pointer to buffer space for output |
ARM_MATH_SIZE_MISMATCH
or ARM_MATH_SUCCESS
based on the outcome of size checking.This function is the version with full list of optimization tricks, but with some contraints: ch_im_in is multiple of 4 ch_im_out is multiple of 2
References arm_nn_mat_mult_kernel_q7_q15_reordered(), arm_q7_to_q15_reordered_no_shift(), and NN_ROUND.
arm_status arm_convolve_HWC_q7_RGB | ( | const q7_t * | Im_in, |
const uint16_t | dim_im_in, | ||
const uint16_t | ch_im_in, | ||
const q7_t * | wt, | ||
const uint16_t | ch_im_out, | ||
const uint16_t | dim_kernel, | ||
const uint16_t | padding, | ||
const uint16_t | stride, | ||
const q7_t * | bias, | ||
const uint16_t | bias_shift, | ||
const uint16_t | out_shift, | ||
q7_t * | Im_out, | ||
const uint16_t | dim_im_out, | ||
q15_t * | bufferA, | ||
q7_t * | bufferB | ||
) |
Q7 version of convolution for RGB image.
[in] | Im_in | pointer to input tensor |
[in] | dim_im_in | input tensor dimention |
[in] | ch_im_in | number of input tensor channels |
[in] | wt | pointer to kernel weights |
[in] | ch_im_out | number of filters, i.e., output tensor channels |
[in] | dim_kernel | filter kernel size |
[in] | padding | padding sizes |
[in] | stride | convolution stride |
[in] | bias | pointer to bias |
[in] | bias_shift | amount of left-shift for bias |
[in] | out_shift | amount of right-shift for output |
[in,out] | Im_out | pointer to output tensor |
[in] | dim_im_out | output tensor dimension |
[in,out] | bufferA | pointer to buffer space for input |
[in,out] | bufferB | pointer to buffer space for output |
ARM_MATH_SIZE_MISMATCH
or ARM_MATH_SUCCESS
based on the outcome of size checking.Buffer size:
bufferA size: 2*ch_im_in*dim_kernel*dim_kernel
bufferB size: 0
Input dimension constraints:
ch_im_in equals 3
This kernel is written exclusively for convolution with ch_im_in equals 3. This applies on the first layer of CNNs which has input image with RGB format.
References arm_nn_mat_mult_kernel_q7_q15(), arm_nnword::half_words, NN_ROUND, and arm_nnword::word.
Referenced by main().
arm_status arm_depthwise_separable_conv_HWC_q7 | ( | const q7_t * | Im_in, |
const uint16_t | dim_im_in, | ||
const uint16_t | ch_im_in, | ||
const q7_t * | wt, | ||
const uint16_t | ch_im_out, | ||
const uint16_t | dim_kernel, | ||
const uint16_t | padding, | ||
const uint16_t | stride, | ||
const q7_t * | bias, | ||
const uint16_t | bias_shift, | ||
const uint16_t | out_shift, | ||
q7_t * | Im_out, | ||
const uint16_t | dim_im_out, | ||
q15_t * | bufferA, | ||
q7_t * | bufferB | ||
) |
[in] | Im_in | pointer to input tensor |
[in] | dim_im_in | input tensor dimention |
[in] | ch_im_in | number of input tensor channels |
[in] | wt | pointer to kernel weights |
[in] | ch_im_out | number of filters, i.e., output tensor channels |
[in] | dim_kernel | filter kernel size |
[in] | padding | padding sizes |
[in] | stride | convolution stride |
[in] | bias | pointer to bias |
[in] | bias_shift | amount of left-shift for bias |
[in] | out_shift | amount of right-shift for output |
[in,out] | Im_out | pointer to output tensor |
[in] | dim_im_out | output tensor dimension |
[in,out] | bufferA | pointer to buffer space for input |
[in,out] | bufferB | pointer to buffer space for output |
ARM_MATH_SIZE_MISMATCH
or ARM_MATH_SUCCESS
based on the outcome of size checking.Buffer size:
bufferA size: 2*ch_im_in*dim_kernel*dim_kernel
bufferB size: 0
Input dimension constraints:
ch_im_in equals ch_im_out
Implementation: There are 3 nested loop here: Inner loop: calculate each output value with MAC instruction over an accumulator Mid loop: loop over different output channel Outer loop: loop over different output (x, y)
References arm_nnword::bytes, NN_ROUND, and arm_nnword::word.
arm_status arm_depthwise_separable_conv_HWC_q7_nonsquare | ( | const q7_t * | Im_in, |
const uint16_t | dim_im_in_x, | ||
const uint16_t | dim_im_in_y, | ||
const uint16_t | ch_im_in, | ||
const q7_t * | wt, | ||
const uint16_t | ch_im_out, | ||
const uint16_t | dim_kernel_x, | ||
const uint16_t | dim_kernel_y, | ||
const uint16_t | padding_x, | ||
const uint16_t | padding_y, | ||
const uint16_t | stride_x, | ||
const uint16_t | stride_y, | ||
const q7_t * | bias, | ||
const uint16_t | bias_shift, | ||
const uint16_t | out_shift, | ||
q7_t * | Im_out, | ||
const uint16_t | dim_im_out_x, | ||
const uint16_t | dim_im_out_y, | ||
q15_t * | bufferA, | ||
q7_t * | bufferB | ||
) |
[in] | Im_in | pointer to input tensor |
[in] | dim_im_in_x | input tensor dimention x |
[in] | dim_im_in_y | input tensor dimention y |
[in] | ch_im_in | number of input tensor channels |
[in] | wt | pointer to kernel weights |
[in] | ch_im_out | number of filters, i.e., output tensor channels |
[in] | dim_kernel_x | filter kernel size x |
[in] | dim_kernel_y | filter kernel size y |
[in] | padding_x | padding sizes x |
[in] | padding_y | padding sizes y |
[in] | stride_x | convolution stride x |
[in] | stride_y | convolution stride y |
[in] | bias | pointer to bias |
[in] | bias_shift | amount of left-shift for bias |
[in] | out_shift | amount of right-shift for output |
[in,out] | Im_out | pointer to output tensor |
[in] | dim_im_out_x | output tensor dimension x |
[in] | dim_im_out_y | output tensor dimension y |
[in,out] | bufferA | pointer to buffer space for input |
[in,out] | bufferB | pointer to buffer space for output |
ARM_MATH_SIZE_MISMATCH
or ARM_MATH_SUCCESS
based on the outcome of size checking.This function is the version with full list of optimization tricks, but with some contraints: ch_im_in is multiple of 2 ch_im_out is multiple of 2
References arm_nnword::bytes, NN_ROUND, and arm_nnword::word.