import cmsisdsp as dsp import numpy as np from scipy import signal #import matplotlib.pyplot as plt #from scipy.fftpack import dct #r = dsp.arm_add_f32(np.array([1.,2,3]),np.array([4.,5,7])) #print(r) #r = dsp.arm_add_q31([1,2,3],[4,5,7]) #print(r) # #r = dsp.arm_add_q15([1,2,3],[4,5,7]) #print(r) # #r = dsp.arm_add_q7([-1,2,3],[4,127,7]) #print(r) # #r = dsp.arm_scale_f32([1.,2,3],2) #print(r) # #r = dsp.arm_scale_q31([0x7FFF,0x3FFF,0x1FFF],1 << 20,2) #print(r) # #r = dsp.arm_scale_q15([0x7FFF,0x3FFF,0x1FFF],1 << 10,2) #print(r) # #r = dsp.arm_scale_q7([0x7F,0x3F,0x1F],1 << 5,2) #print(r) # # #r = dsp.arm_negate_f32([1.,2,3]) #print(r) # #r = dsp.arm_negate_q31([1,2,3]) #print(r) # #r = dsp.arm_negate_q15([1,2,3]) #print(r) # #r = dsp.arm_negate_q7(np.array([0x80,0x81,0x82])) #print(r) #r = dsp.arm_cmplx_conj_f32([1.,2,3,4]) #print(r) #r = dsp.arm_cmplx_conj_q31([1,2,3,4]) #print(r) #r = dsp.arm_cmplx_conj_q15([1,2,3,4]) #print(r) #r = dsp.arm_cmplx_dot_prod_f32([1.,2,3,4],[1.,2,3,4]) #print(r) #r = dsp.arm_cmplx_dot_prod_q31([0x1FFF,0x3FFF,0x1FFF,0x3FFF],[0x1FFF,0x3FFF,0x1FFF,0x3FFF]) #print(r) #r = dsp.arm_cmplx_mult_real_f32([1.0,2,3,4],[5.,5.,5.,5.]) #print(r) #pidf32 = dsp.arm_pid_instance_f32(Kp=1.0,Ki=1.2,Kd=0.4) #print(pidf32.Kp()) #print(pidf32.Ki()) #print(pidf32.Kd()) #print(pidf32.A0()) # #dsp.arm_pid_init_f32(pidf32,0) #print(pidf32.A0()) #print(dsp.arm_cos_f32(3.14/4.)) #print(dsp.arm_sqrt_q31(0x7FFF)) firf32 = dsp.arm_fir_instance_f32() dsp.arm_fir_init_f32(firf32,3,[1.,2,3],[0,0,0,0,0,0,0]) print(firf32.numTaps()) filtered_x = signal.lfilter([3,2,1.], 1.0, [1,2,3,4,5,1,2,3,4,5]) print(filtered_x) print(dsp.arm_fir_f32(firf32,[1,2,3,4,5])) print(dsp.arm_fir_f32(firf32,[1,2,3,4,5])) def q31sat(x): if x > 0x7FFFFFFF: return(np.int32(0x7FFFFFFF)) elif x < -0x80000000: return(np.int32(0x80000000)) else: return(np.int32(x)) q31satV=np.vectorize(q31sat) def toQ31(x): return(q31satV(np.round(x * (1<<31)))) def q15sat(x): if x > 0x7FFF: return(np.int16(0x7FFF)) elif x < -0x8000: return(np.int16(0x8000)) else: return(np.int16(x)) q15satV=np.vectorize(q15sat) def toQ15(x): return(q15satV(np.round(x * (1<<15)))) def q7sat(x): if x > 0x7F: return(np.int8(0x7F)) elif x < -0x80: return(np.int8(0x80)) else: return(np.int8(x)) q7satV=np.vectorize(q7sat) def toQ7(x): return(q7satV(np.round(x * (1<<7)))) def Q31toF32(x): return(1.0*x / 2**31) def Q15toF32(x): return(1.0*x / 2**15) def Q7toF32(x): return(1.0*x / 2**7) #firq31 = dsp.arm_fir_instance_q31() #x=np.array([1,2,3,4,5])/10.0 #taps=np.array([1,2,3])/10.0 #xQ31=toQ31(x) #tapsQ31=toQ31(taps) #dsp.arm_fir_init_q31(firq31,3,tapsQ31,[0,0,0,0,0,0,0]) #print(firq31.numTaps()) #resultQ31=dsp.arm_fir_q31(firq31,xQ31) #result=Q31toF32(resultQ31) #print(result) #a=np.array([[1.,2,3,4],[5,6,7,8],[9,10,11,12]]) #b=np.array([[1.,2,3,4],[5.1,6,7,8],[9.1,10,11,12]]) #print(a+b) #v=dsp.arm_mat_add_f32(a,b) #print(v) #a=np.array([[1.,2,3,4],[5,6,7,8],[9,10,11,12]]) #b=np.array([[1.,2,3],[5.1,6,7],[9.1,10,11],[5,8,4]]) #print(np.dot(a , b)) #v=dsp.arm_mat_mult_f32(a,b) #print(v) def imToReal2D(a): ar=np.zeros(np.array(a.shape) * [1,2]) ar[::,0::2]=a.real ar[::,1::2]=a.imag return(ar) def realToIm2D(ar): return(ar[::,0::2] + 1j * ar[::,1::2]) #a=np.array([[1. + 2j,3 + 4j],[5 + 6j,7 + 8j],[9 + 10j,11 + 12j]]) #b=np.array([[1. + 2j, 3 + 5.1j ,6 + 7j],[9.1 + 10j,11 + 5j,8 +4j]]) #print(np.dot(a , b)) # # Convert complex array to real array for use in CMSIS DSP #ar = imToReal2D(a) #br = imToReal2D(b) # #v=dsp.arm_mat_cmplx_mult_f32(ar,br) #print(v) #a=np.array([[1.,2,3,4],[5,6,7,8],[9,10,11,12]]) / 30.0 #b=np.array([[1.,2,3,4],[5.1,6,7,8],[9.1,10,11,12]]) / 30.0 #print(a+b) # #aQ31=toQ31(a) #bQ31=toQ31(b) #v=dsp.arm_mat_add_q31(aQ31,bQ31) #rQ31=v[1] #r=Q31toF32(rQ31) #print(r)# #a=np.array([[1.,2,3,4],[5,6,7,8],[9,10,11,12]]) #print(np.transpose(a)) #print(dsp.arm_mat_trans_f32(a)) #a = np.array([[1., 2.], [3., 4.]]) #print(np.linalg.inv(a)) #print(dsp.arm_mat_inverse_f32(a)) #a = np.array([[1., 2.], [3., 4.]]) #print(np.linalg.inv(a)) #print(dsp.arm_mat_inverse_f64(a)) #a=np.array([[1.,2,3,4],[5,6,7,8],[9,10,11,12]]) #print(2.5*a) #print(dsp.arm_mat_scale_f32(a,2.5)) #a=np.array([1.,2,3,4,5,6,7,8,9,10,11,12]) #print(np.max(a)) #print(np.argmax(a)) #print(dsp.arm_max_f32(a)) # #print(np.mean(a)) #print(dsp.arm_mean_f32(a)) # #print(np.dot(a,a)) #print(dsp.arm_power_f32(a)) # def imToReal1D(a): ar=np.zeros(np.array(a.shape) * 2) ar[0::2]=a.real ar[1::2]=a.imag return(ar) def realToIm1D(ar): return(ar[0::2] + 1j * ar[1::2]) #nb = 16 #signal = np.cos(2 * np.pi * np.arange(nb) / nb) #result=np.fft.fft(signal) #print(result) #signalR = imToReal1D(signal) #cfftf32=dsp.arm_cfft_instance_f32() #status=dsp.arm_cfft_init_f32(cfftf32,nb) #print(status) #resultR = dsp.arm_cfft_f32(cfftf32,signalR,0,1) #resultI = realToIm1D(resultR) #print(resultI) #signal = signal / 10.0 #result=np.fft.fft(signal) #print(result) # #signalR = imToReal1D(signal) #signalRQ31=toQ31(signalR) #cfftq31=dsp.arm_cfft_instance_q31() #status=dsp.arm_cfft_init_q31(cfftq31,nb) #print(status) #resultR = dsp.arm_cfft_q31(cfftq31,signalRQ31,0,1) #resultI = realToIm1D(Q31toF32(resultR))*16 #print(resultI) #signal = signal / 10.0 #result=np.fft.fft(signal) #print(result) ## #signalR = imToReal1D(signal) #signalRQ15=toQ15(signalR) #cfftq15=dsp.arm_cfft_instance_q15() #status=dsp.arm_cfft_init_q15(cfftq15,nb) #print(status) #resultR = dsp.arm_cfft_q15(cfftq15,signalRQ15,0,1) #resultR=Q15toF32(resultR) #resultI = realToIm1D(resultR)*16 #print(resultI) #nb = 128 #signal = np.cos(2 * np.pi * np.arange(nb) / nb) # #result=np.fft.fft(signal) ##print(result) #cfftradix4f32=dsp.arm_cfft_radix4_instance_f32() #rfftf32=dsp.arm_rfft_instance_f32() #status=dsp.arm_rfft_init_f32(rfftf32,cfftradix4f32,nb,0,1) #print(status) #resultI = dsp.arm_rfft_f32(rfftf32,signal) #print(result) #nb = 128 #signal = np.cos(2 * np.pi * np.arange(nb) / nb) #signalRQ31=toQ31(signal) # #result=np.fft.fft(signal) ##print(result) #rfftq31=dsp.arm_rfft_instance_q31() #status=dsp.arm_rfft_init_q31(rfftq31,nb,0,1) #print(status) #resultI = dsp.arm_rfft_q31(rfftq31,signalRQ31) #resultI=Q31toF32(resultI)*(1 << 7) ##print(result) #nb = 128 #signal = np.cos(2 * np.pi * np.arange(nb) / nb) #signalRQ15=toQ15(signal) # #result=np.fft.fft(signal) ##print(result) #rfftq15=dsp.arm_rfft_instance_q15() #status=dsp.arm_rfft_init_q15(rfftq15,nb,0,1) #print(status) #resultI = dsp.arm_rfft_q15(rfftq15,signalRQ15) #resultI=Q15toF32(resultI)*(1 << 7) #print(result) #nb = 128 #nb2=64 #signal = np.cos(2 * np.pi * np.arange(nb) / nb) #result=dct(signal,4,norm='ortho') ##print(result) #cfftradix4f32=dsp.arm_cfft_radix4_instance_f32() #rfftf32=dsp.arm_rfft_instance_f32() #dct4f32=dsp.arm_dct4_instance_f32() #status=dsp.arm_dct4_init_f32(dct4f32,rfftf32,cfftradix4f32,nb,nb2,0.125) #print(status) #state=np.zeros(2*nb) #resultI = dsp.arm_dct4_f32(dct4f32,state,signal) ##print(resultI) #signal = signal / 10.0 #result=dct(signal,4,norm='ortho') #signalQ31=toQ31(signal) #cfftradix4q31=dsp.arm_cfft_radix4_instance_q31() #rfftq31=dsp.arm_rfft_instance_q31() #dct4q31=dsp.arm_dct4_instance_q31() #status=dsp.arm_dct4_init_q31(dct4q31,rfftq31,cfftradix4q31,nb,nb2,0x10000000) #print(status) #state=np.zeros(2*nb) #resultI = dsp.arm_dct4_q31(dct4q31,state,signalQ31) #resultI=Q31toF32(resultI)*(1 << 7) #nb = 128 #nb2=64 #signal = np.cos(2 * np.pi * np.arange(nb) / nb) #signal = signal / 10.0 #result=dct(signal,4,norm='ortho') #signalQ15=toQ15(signal) #cfftradix4q15=dsp.arm_cfft_radix4_instance_q15() #rfftq15=dsp.arm_rfft_instance_q15() #dct4q15=dsp.arm_dct4_instance_q15() #status=dsp.arm_dct4_init_q15(dct4q15,rfftq15,cfftradix4q15,nb,nb2,0x1000) #print(status) #state=np.zeros(2*nb) #resultI = dsp.arm_dct4_q15(dct4q15,state,signalQ15) #resultI=Q15toF32(resultI)*(1 << 7) # # #from pylab import figure, clf, plot, xlabel, ylabel, xlim, ylim, title, grid, axes, show #figure(1) #plot(np.absolute(signal)) #t = np.arange(nb) #freq = np.fft.fftfreq(t.shape[-1]) #resultmag=np.absolute(result) #figure(2) #plot(resultmag) #figure(3) #cmsigmag=np.absolute(resultI) #plot(cmsigmag) #show()## #biquadf32 = dsp.arm_biquad_casd_df1_inst_f32() #numStages=1 #state=np.zeros(numStages*4) #coefs=[1.,2,3,4,5] #dsp.arm_biquad_cascade_df1_init_f32(biquadf32,1,coefs,state) #print(dsp.arm_biquad_cascade_df1_f32(biquadf32,[1,2,3,4,5]))#