From 9f95ff5b6ba01db09552b84a0ab79607060a2666 Mon Sep 17 00:00:00 2001 From: Ali Labbene Date: Wed, 11 Dec 2019 08:59:21 +0100 Subject: Official ARM version: v5.4.0 Add CMSIS V5.4.0, please refer to index.html available under \docs folder. Note: content of \CMSIS\Core\Include has been copied under \Include to keep the same structure used in existing projects, and thus avoid projects mass update Note: the following components have been removed from ARM original delivery (as not used in ST packages) - CMSIS_EW2018.pdf - .gitattributes - .gitignore - \Device - \CMSIS - \CoreValidation - \DAP - \Documentation - \DoxyGen - \Driver - \Pack - \RTOS\CMSIS_RTOS_Tutorial.pdf - \RTOS\RTX - \RTOS\Template - \RTOS2\RTX - \Utilities - All ARM/GCC projects files are deleted from \DSP, \RTOS and \RTOS2 Change-Id: Ia026c3f0f0d016627a4fb5a9032852c33d24b4d3 --- .../Source/FilteringFunctions/arm_conv_fast_q15.c | 1410 -------------------- 1 file changed, 1410 deletions(-) delete mode 100644 DSP_Lib/Source/FilteringFunctions/arm_conv_fast_q15.c (limited to 'DSP_Lib/Source/FilteringFunctions/arm_conv_fast_q15.c') diff --git a/DSP_Lib/Source/FilteringFunctions/arm_conv_fast_q15.c b/DSP_Lib/Source/FilteringFunctions/arm_conv_fast_q15.c deleted file mode 100644 index 44f19bb..0000000 --- a/DSP_Lib/Source/FilteringFunctions/arm_conv_fast_q15.c +++ /dev/null @@ -1,1410 +0,0 @@ -/* ---------------------------------------------------------------------- -* Copyright (C) 2010-2014 ARM Limited. All rights reserved. -* -* $Date: 19. March 2015 -* $Revision: V.1.4.5 -* -* Project: CMSIS DSP Library -* Title: arm_conv_fast_q15.c -* -* Description: Fast Q15 Convolution. -* -* Target Processor: Cortex-M4/Cortex-M3 -* -* Redistribution and use in source and binary forms, with or without -* modification, are permitted provided that the following conditions -* are met: -* - Redistributions of source code must retain the above copyright -* notice, this list of conditions and the following disclaimer. -* - Redistributions in binary form must reproduce the above copyright -* notice, this list of conditions and the following disclaimer in -* the documentation and/or other materials provided with the -* distribution. -* - Neither the name of ARM LIMITED nor the names of its contributors -* may be used to endorse or promote products derived from this -* software without specific prior written permission. -* -* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS -* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT -* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS -* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE -* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, -* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, -* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; -* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER -* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT -* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN -* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE -* POSSIBILITY OF SUCH DAMAGE. -* -------------------------------------------------------------------- */ - -#include "arm_math.h" - -/** - * @ingroup groupFilters - */ - -/** - * @addtogroup Conv - * @{ - */ - -/** - * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4. - * @param[in] *pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] *pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1. - * @return none. - * - * Scaling and Overflow Behavior: - * - * \par - * This fast version uses a 32-bit accumulator with 2.30 format. - * The accumulator maintains full precision of the intermediate multiplication results - * but provides only a single guard bit. There is no saturation on intermediate additions. - * Thus, if the accumulator overflows it wraps around and distorts the result. - * The input signals should be scaled down to avoid intermediate overflows. - * Scale down the inputs by log2(min(srcALen, srcBLen)) (log2 is read as log to the base 2) times to avoid overflows, - * as maximum of min(srcALen, srcBLen) number of additions are carried internally. - * The 2.30 accumulator is right shifted by 15 bits and then saturated to 1.15 format to yield the final result. - * - * \par - * See arm_conv_q15() for a slower implementation of this function which uses 64-bit accumulation to avoid wrap around distortion. - */ - -void arm_conv_fast_q15( - q15_t * pSrcA, - uint32_t srcALen, - q15_t * pSrcB, - uint32_t srcBLen, - q15_t * pDst) -{ -#ifndef UNALIGNED_SUPPORT_DISABLE - q15_t *pIn1; /* inputA pointer */ - q15_t *pIn2; /* inputB pointer */ - q15_t *pOut = pDst; /* output pointer */ - q31_t sum, acc0, acc1, acc2, acc3; /* Accumulator */ - q15_t *px; /* Intermediate inputA pointer */ - q15_t *py; /* Intermediate inputB pointer */ - q15_t *pSrc1, *pSrc2; /* Intermediate pointers */ - q31_t x0, x1, x2, x3, c0; /* Temporary variables to hold state and coefficient values */ - uint32_t blockSize1, blockSize2, blockSize3, j, k, count, blkCnt; /* loop counter */ - - /* The algorithm implementation is based on the lengths of the inputs. */ - /* srcB is always made to slide across srcA. */ - /* So srcBLen is always considered as shorter or equal to srcALen */ - if(srcALen >= srcBLen) - { - /* Initialization of inputA pointer */ - pIn1 = pSrcA; - - /* Initialization of inputB pointer */ - pIn2 = pSrcB; - } - else - { - /* Initialization of inputA pointer */ - pIn1 = pSrcB; - - /* Initialization of inputB pointer */ - pIn2 = pSrcA; - - /* srcBLen is always considered as shorter or equal to srcALen */ - j = srcBLen; - srcBLen = srcALen; - srcALen = j; - } - - /* conv(x,y) at n = x[n] * y[0] + x[n-1] * y[1] + x[n-2] * y[2] + ...+ x[n-N+1] * y[N -1] */ - /* The function is internally - * divided into three stages according to the number of multiplications that has to be - * taken place between inputA samples and inputB samples. In the first stage of the - * algorithm, the multiplications increase by one for every iteration. - * In the second stage of the algorithm, srcBLen number of multiplications are done. - * In the third stage of the algorithm, the multiplications decrease by one - * for every iteration. */ - - /* The algorithm is implemented in three stages. - The loop counters of each stage is initiated here. */ - blockSize1 = srcBLen - 1u; - blockSize2 = srcALen - (srcBLen - 1u); - blockSize3 = blockSize1; - - /* -------------------------- - * Initializations of stage1 - * -------------------------*/ - - /* sum = x[0] * y[0] - * sum = x[0] * y[1] + x[1] * y[0] - * .... - * sum = x[0] * y[srcBlen - 1] + x[1] * y[srcBlen - 2] +...+ x[srcBLen - 1] * y[0] - */ - - /* In this stage the MAC operations are increased by 1 for every iteration. - The count variable holds the number of MAC operations performed */ - count = 1u; - - /* Working pointer of inputA */ - px = pIn1; - - /* Working pointer of inputB */ - py = pIn2; - - - /* ------------------------ - * Stage1 process - * ----------------------*/ - - /* For loop unrolling by 4, this stage is divided into two. */ - /* First part of this stage computes the MAC operations less than 4 */ - /* Second part of this stage computes the MAC operations greater than or equal to 4 */ - - /* The first part of the stage starts here */ - while((count < 4u) && (blockSize1 > 0u)) - { - /* Accumulator is made zero for every iteration */ - sum = 0; - - /* Loop over number of MAC operations between - * inputA samples and inputB samples */ - k = count; - - while(k > 0u) - { - /* Perform the multiply-accumulates */ - sum = __SMLAD(*px++, *py--, sum); - - /* Decrement the loop counter */ - k--; - } - - /* Store the result in the accumulator in the destination buffer. */ - *pOut++ = (q15_t) (sum >> 15); - - /* Update the inputA and inputB pointers for next MAC calculation */ - py = pIn2 + count; - px = pIn1; - - /* Increment the MAC count */ - count++; - - /* Decrement the loop counter */ - blockSize1--; - } - - /* The second part of the stage starts here */ - /* The internal loop, over count, is unrolled by 4 */ - /* To, read the last two inputB samples using SIMD: - * y[srcBLen] and y[srcBLen-1] coefficients, py is decremented by 1 */ - py = py - 1; - - while(blockSize1 > 0u) - { - /* Accumulator is made zero for every iteration */ - sum = 0; - - /* Apply loop unrolling and compute 4 MACs simultaneously. */ - k = count >> 2u; - - /* First part of the processing with loop unrolling. Compute 4 MACs at a time. - ** a second loop below computes MACs for the remaining 1 to 3 samples. */ - while(k > 0u) - { - /* Perform the multiply-accumulates */ - /* x[0], x[1] are multiplied with y[srcBLen - 1], y[srcBLen - 2] respectively */ - sum = __SMLADX(*__SIMD32(px)++, *__SIMD32(py)--, sum); - /* x[2], x[3] are multiplied with y[srcBLen - 3], y[srcBLen - 4] respectively */ - sum = __SMLADX(*__SIMD32(px)++, *__SIMD32(py)--, sum); - - /* Decrement the loop counter */ - k--; - } - - /* For the next MAC operations, the pointer py is used without SIMD - * So, py is incremented by 1 */ - py = py + 1u; - - /* If the count is not a multiple of 4, compute any remaining MACs here. - ** No loop unrolling is used. */ - k = count % 0x4u; - - while(k > 0u) - { - /* Perform the multiply-accumulates */ - sum = __SMLAD(*px++, *py--, sum); - - /* Decrement the loop counter */ - k--; - } - - /* Store the result in the accumulator in the destination buffer. */ - *pOut++ = (q15_t) (sum >> 15); - - /* Update the inputA and inputB pointers for next MAC calculation */ - py = pIn2 + (count - 1u); - px = pIn1; - - /* Increment the MAC count */ - count++; - - /* Decrement the loop counter */ - blockSize1--; - } - - /* -------------------------- - * Initializations of stage2 - * ------------------------*/ - - /* sum = x[0] * y[srcBLen-1] + x[1] * y[srcBLen-2] +...+ x[srcBLen-1] * y[0] - * sum = x[1] * y[srcBLen-1] + x[2] * y[srcBLen-2] +...+ x[srcBLen] * y[0] - * .... - * sum = x[srcALen-srcBLen-2] * y[srcBLen-1] + x[srcALen] * y[srcBLen-2] +...+ x[srcALen-1] * y[0] - */ - - /* Working pointer of inputA */ - px = pIn1; - - /* Working pointer of inputB */ - pSrc2 = pIn2 + (srcBLen - 1u); - py = pSrc2; - - /* count is the index by which the pointer pIn1 to be incremented */ - count = 0u; - - - /* -------------------- - * Stage2 process - * -------------------*/ - - /* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed. - * So, to loop unroll over blockSize2, - * srcBLen should be greater than or equal to 4 */ - if(srcBLen >= 4u) - { - /* Loop unroll over blockSize2, by 4 */ - blkCnt = blockSize2 >> 2u; - - while(blkCnt > 0u) - { - py = py - 1u; - - /* Set all accumulators to zero */ - acc0 = 0; - acc1 = 0; - acc2 = 0; - acc3 = 0; - - - /* read x[0], x[1] samples */ - x0 = *__SIMD32(px); - /* read x[1], x[2] samples */ - x1 = _SIMD32_OFFSET(px+1); - px+= 2u; - - - /* Apply loop unrolling and compute 4 MACs simultaneously. */ - k = srcBLen >> 2u; - - /* First part of the processing with loop unrolling. Compute 4 MACs at a time. - ** a second loop below computes MACs for the remaining 1 to 3 samples. */ - do - { - /* Read the last two inputB samples using SIMD: - * y[srcBLen - 1] and y[srcBLen - 2] */ - c0 = *__SIMD32(py)--; - - /* acc0 += x[0] * y[srcBLen - 1] + x[1] * y[srcBLen - 2] */ - acc0 = __SMLADX(x0, c0, acc0); - - /* acc1 += x[1] * y[srcBLen - 1] + x[2] * y[srcBLen - 2] */ - acc1 = __SMLADX(x1, c0, acc1); - - /* Read x[2], x[3] */ - x2 = *__SIMD32(px); - - /* Read x[3], x[4] */ - x3 = _SIMD32_OFFSET(px+1); - - /* acc2 += x[2] * y[srcBLen - 1] + x[3] * y[srcBLen - 2] */ - acc2 = __SMLADX(x2, c0, acc2); - - /* acc3 += x[3] * y[srcBLen - 1] + x[4] * y[srcBLen - 2] */ - acc3 = __SMLADX(x3, c0, acc3); - - /* Read y[srcBLen - 3] and y[srcBLen - 4] */ - c0 = *__SIMD32(py)--; - - /* acc0 += x[2] * y[srcBLen - 3] + x[3] * y[srcBLen - 4] */ - acc0 = __SMLADX(x2, c0, acc0); - - /* acc1 += x[3] * y[srcBLen - 3] + x[4] * y[srcBLen - 4] */ - acc1 = __SMLADX(x3, c0, acc1); - - /* Read x[4], x[5] */ - x0 = _SIMD32_OFFSET(px+2); - - /* Read x[5], x[6] */ - x1 = _SIMD32_OFFSET(px+3); - px += 4u; - - /* acc2 += x[4] * y[srcBLen - 3] + x[5] * y[srcBLen - 4] */ - acc2 = __SMLADX(x0, c0, acc2); - - /* acc3 += x[5] * y[srcBLen - 3] + x[6] * y[srcBLen - 4] */ - acc3 = __SMLADX(x1, c0, acc3); - - } while(--k); - - /* For the next MAC operations, SIMD is not used - * So, the 16 bit pointer if inputB, py is updated */ - - /* If the srcBLen is not a multiple of 4, compute any remaining MACs here. - ** No loop unrolling is used. */ - k = srcBLen % 0x4u; - - if(k == 1u) - { - /* Read y[srcBLen - 5] */ - c0 = *(py+1); - -#ifdef ARM_MATH_BIG_ENDIAN - - c0 = c0 << 16u; - -#else - - c0 = c0 & 0x0000FFFF; - -#endif /* #ifdef ARM_MATH_BIG_ENDIAN */ - - /* Read x[7] */ - x3 = *__SIMD32(px); - px++; - - /* Perform the multiply-accumulates */ - acc0 = __SMLAD(x0, c0, acc0); - acc1 = __SMLAD(x1, c0, acc1); - acc2 = __SMLADX(x1, c0, acc2); - acc3 = __SMLADX(x3, c0, acc3); - } - - if(k == 2u) - { - /* Read y[srcBLen - 5], y[srcBLen - 6] */ - c0 = _SIMD32_OFFSET(py); - - /* Read x[7], x[8] */ - x3 = *__SIMD32(px); - - /* Read x[9] */ - x2 = _SIMD32_OFFSET(px+1); - px += 2u; - - /* Perform the multiply-accumulates */ - acc0 = __SMLADX(x0, c0, acc0); - acc1 = __SMLADX(x1, c0, acc1); - acc2 = __SMLADX(x3, c0, acc2); - acc3 = __SMLADX(x2, c0, acc3); - } - - if(k == 3u) - { - /* Read y[srcBLen - 5], y[srcBLen - 6] */ - c0 = _SIMD32_OFFSET(py); - - /* Read x[7], x[8] */ - x3 = *__SIMD32(px); - - /* Read x[9] */ - x2 = _SIMD32_OFFSET(px+1); - - /* Perform the multiply-accumulates */ - acc0 = __SMLADX(x0, c0, acc0); - acc1 = __SMLADX(x1, c0, acc1); - acc2 = __SMLADX(x3, c0, acc2); - acc3 = __SMLADX(x2, c0, acc3); - - /* Read y[srcBLen - 7] */ - c0 = *(py-1); -#ifdef ARM_MATH_BIG_ENDIAN - - c0 = c0 << 16u; -#else - - c0 = c0 & 0x0000FFFF; -#endif /* #ifdef ARM_MATH_BIG_ENDIAN */ - - /* Read x[10] */ - x3 = _SIMD32_OFFSET(px+2); - px += 3u; - - /* Perform the multiply-accumulates */ - acc0 = __SMLADX(x1, c0, acc0); - acc1 = __SMLAD(x2, c0, acc1); - acc2 = __SMLADX(x2, c0, acc2); - acc3 = __SMLADX(x3, c0, acc3); - } - - /* Store the results in the accumulators in the destination buffer. */ -#ifndef ARM_MATH_BIG_ENDIAN - - *__SIMD32(pOut)++ = __PKHBT((acc0 >> 15), (acc1 >> 15), 16); - *__SIMD32(pOut)++ = __PKHBT((acc2 >> 15), (acc3 >> 15), 16); - -#else - - *__SIMD32(pOut)++ = __PKHBT((acc1 >> 15), (acc0 >> 15), 16); - *__SIMD32(pOut)++ = __PKHBT((acc3 >> 15), (acc2 >> 15), 16); - -#endif /* #ifndef ARM_MATH_BIG_ENDIAN */ - - /* Increment the pointer pIn1 index, count by 4 */ - count += 4u; - - /* Update the inputA and inputB pointers for next MAC calculation */ - px = pIn1 + count; - py = pSrc2; - - /* Decrement the loop counter */ - blkCnt--; - } - - /* If the blockSize2 is not a multiple of 4, compute any remaining output samples here. - ** No loop unrolling is used. */ - blkCnt = blockSize2 % 0x4u; - - while(blkCnt > 0u) - { - /* Accumulator is made zero for every iteration */ - sum = 0; - - /* Apply loop unrolling and compute 4 MACs simultaneously. */ - k = srcBLen >> 2u; - - /* First part of the processing with loop unrolling. Compute 4 MACs at a time. - ** a second loop below computes MACs for the remaining 1 to 3 samples. */ - while(k > 0u) - { - /* Perform the multiply-accumulates */ - sum += ((q31_t) * px++ * *py--); - sum += ((q31_t) * px++ * *py--); - sum += ((q31_t) * px++ * *py--); - sum += ((q31_t) * px++ * *py--); - - /* Decrement the loop counter */ - k--; - } - - /* If the srcBLen is not a multiple of 4, compute any remaining MACs here. - ** No loop unrolling is used. */ - k = srcBLen % 0x4u; - - while(k > 0u) - { - /* Perform the multiply-accumulates */ - sum += ((q31_t) * px++ * *py--); - - /* Decrement the loop counter */ - k--; - } - - /* Store the result in the accumulator in the destination buffer. */ - *pOut++ = (q15_t) (sum >> 15); - - /* Increment the pointer pIn1 index, count by 1 */ - count++; - - /* Update the inputA and inputB pointers for next MAC calculation */ - px = pIn1 + count; - py = pSrc2; - - /* Decrement the loop counter */ - blkCnt--; - } - } - else - { - /* If the srcBLen is not a multiple of 4, - * the blockSize2 loop cannot be unrolled by 4 */ - blkCnt = blockSize2; - - while(blkCnt > 0u) - { - /* Accumulator is made zero for every iteration */ - sum = 0; - - /* srcBLen number of MACS should be performed */ - k = srcBLen; - - while(k > 0u) - { - /* Perform the multiply-accumulate */ - sum += ((q31_t) * px++ * *py--); - - /* Decrement the loop counter */ - k--; - } - - /* Store the result in the accumulator in the destination buffer. */ - *pOut++ = (q15_t) (sum >> 15); - - /* Increment the MAC count */ - count++; - - /* Update the inputA and inputB pointers for next MAC calculation */ - px = pIn1 + count; - py = pSrc2; - - /* Decrement the loop counter */ - blkCnt--; - } - } - - - /* -------------------------- - * Initializations of stage3 - * -------------------------*/ - - /* sum += x[srcALen-srcBLen+1] * y[srcBLen-1] + x[srcALen-srcBLen+2] * y[srcBLen-2] +...+ x[srcALen-1] * y[1] - * sum += x[srcALen-srcBLen+2] * y[srcBLen-1] + x[srcALen-srcBLen+3] * y[srcBLen-2] +...+ x[srcALen-1] * y[2] - * .... - * sum += x[srcALen-2] * y[srcBLen-1] + x[srcALen-1] * y[srcBLen-2] - * sum += x[srcALen-1] * y[srcBLen-1] - */ - - /* In this stage the MAC operations are decreased by 1 for every iteration. - The blockSize3 variable holds the number of MAC operations performed */ - - /* Working pointer of inputA */ - pSrc1 = (pIn1 + srcALen) - (srcBLen - 1u); - px = pSrc1; - - /* Working pointer of inputB */ - pSrc2 = pIn2 + (srcBLen - 1u); - pIn2 = pSrc2 - 1u; - py = pIn2; - - /* ------------------- - * Stage3 process - * ------------------*/ - - /* For loop unrolling by 4, this stage is divided into two. */ - /* First part of this stage computes the MAC operations greater than 4 */ - /* Second part of this stage computes the MAC operations less than or equal to 4 */ - - /* The first part of the stage starts here */ - j = blockSize3 >> 2u; - - while((j > 0u) && (blockSize3 > 0u)) - { - /* Accumulator is made zero for every iteration */ - sum = 0; - - /* Apply loop unrolling and compute 4 MACs simultaneously. */ - k = blockSize3 >> 2u; - - /* First part of the processing with loop unrolling. Compute 4 MACs at a time. - ** a second loop below computes MACs for the remaining 1 to 3 samples. */ - while(k > 0u) - { - /* x[srcALen - srcBLen + 1], x[srcALen - srcBLen + 2] are multiplied - * with y[srcBLen - 1], y[srcBLen - 2] respectively */ - sum = __SMLADX(*__SIMD32(px)++, *__SIMD32(py)--, sum); - /* x[srcALen - srcBLen + 3], x[srcALen - srcBLen + 4] are multiplied - * with y[srcBLen - 3], y[srcBLen - 4] respectively */ - sum = __SMLADX(*__SIMD32(px)++, *__SIMD32(py)--, sum); - - /* Decrement the loop counter */ - k--; - } - - /* For the next MAC operations, the pointer py is used without SIMD - * So, py is incremented by 1 */ - py = py + 1u; - - /* If the blockSize3 is not a multiple of 4, compute any remaining MACs here. - ** No loop unrolling is used. */ - k = blockSize3 % 0x4u; - - while(k > 0u) - { - /* sum += x[srcALen - srcBLen + 5] * y[srcBLen - 5] */ - sum = __SMLAD(*px++, *py--, sum); - - /* Decrement the loop counter */ - k--; - } - - /* Store the result in the accumulator in the destination buffer. */ - *pOut++ = (q15_t) (sum >> 15); - - /* Update the inputA and inputB pointers for next MAC calculation */ - px = ++pSrc1; - py = pIn2; - - /* Decrement the loop counter */ - blockSize3--; - - j--; - } - - /* The second part of the stage starts here */ - /* SIMD is not used for the next MAC operations, - * so pointer py is updated to read only one sample at a time */ - py = py + 1u; - - while(blockSize3 > 0u) - { - /* Accumulator is made zero for every iteration */ - sum = 0; - - /* Apply loop unrolling and compute 4 MACs simultaneously. */ - k = blockSize3; - - while(k > 0u) - { - /* Perform the multiply-accumulates */ - /* sum += x[srcALen-1] * y[srcBLen-1] */ - sum = __SMLAD(*px++, *py--, sum); - - /* Decrement the loop counter */ - k--; - } - - /* Store the result in the accumulator in the destination buffer. */ - *pOut++ = (q15_t) (sum >> 15); - - /* Update the inputA and inputB pointers for next MAC calculation */ - px = ++pSrc1; - py = pSrc2; - - /* Decrement the loop counter */ - blockSize3--; - } - -#else - q15_t *pIn1; /* inputA pointer */ - q15_t *pIn2; /* inputB pointer */ - q15_t *pOut = pDst; /* output pointer */ - q31_t sum, acc0, acc1, acc2, acc3; /* Accumulator */ - q15_t *px; /* Intermediate inputA pointer */ - q15_t *py; /* Intermediate inputB pointer */ - q15_t *pSrc1, *pSrc2; /* Intermediate pointers */ - q31_t x0, x1, x2, x3, c0; /* Temporary variables to hold state and coefficient values */ - uint32_t blockSize1, blockSize2, blockSize3, j, k, count, blkCnt; /* loop counter */ - q15_t a, b; - - /* The algorithm implementation is based on the lengths of the inputs. */ - /* srcB is always made to slide across srcA. */ - /* So srcBLen is always considered as shorter or equal to srcALen */ - if(srcALen >= srcBLen) - { - /* Initialization of inputA pointer */ - pIn1 = pSrcA; - - /* Initialization of inputB pointer */ - pIn2 = pSrcB; - } - else - { - /* Initialization of inputA pointer */ - pIn1 = pSrcB; - - /* Initialization of inputB pointer */ - pIn2 = pSrcA; - - /* srcBLen is always considered as shorter or equal to srcALen */ - j = srcBLen; - srcBLen = srcALen; - srcALen = j; - } - - /* conv(x,y) at n = x[n] * y[0] + x[n-1] * y[1] + x[n-2] * y[2] + ...+ x[n-N+1] * y[N -1] */ - /* The function is internally - * divided into three stages according to the number of multiplications that has to be - * taken place between inputA samples and inputB samples. In the first stage of the - * algorithm, the multiplications increase by one for every iteration. - * In the second stage of the algorithm, srcBLen number of multiplications are done. - * In the third stage of the algorithm, the multiplications decrease by one - * for every iteration. */ - - /* The algorithm is implemented in three stages. - The loop counters of each stage is initiated here. */ - blockSize1 = srcBLen - 1u; - blockSize2 = srcALen - (srcBLen - 1u); - blockSize3 = blockSize1; - - /* -------------------------- - * Initializations of stage1 - * -------------------------*/ - - /* sum = x[0] * y[0] - * sum = x[0] * y[1] + x[1] * y[0] - * .... - * sum = x[0] * y[srcBlen - 1] + x[1] * y[srcBlen - 2] +...+ x[srcBLen - 1] * y[0] - */ - - /* In this stage the MAC operations are increased by 1 for every iteration. - The count variable holds the number of MAC operations performed */ - count = 1u; - - /* Working pointer of inputA */ - px = pIn1; - - /* Working pointer of inputB */ - py = pIn2; - - - /* ------------------------ - * Stage1 process - * ----------------------*/ - - /* For loop unrolling by 4, this stage is divided into two. */ - /* First part of this stage computes the MAC operations less than 4 */ - /* Second part of this stage computes the MAC operations greater than or equal to 4 */ - - /* The first part of the stage starts here */ - while((count < 4u) && (blockSize1 > 0u)) - { - /* Accumulator is made zero for every iteration */ - sum = 0; - - /* Loop over number of MAC operations between - * inputA samples and inputB samples */ - k = count; - - while(k > 0u) - { - /* Perform the multiply-accumulates */ - sum += ((q31_t) * px++ * *py--); - - /* Decrement the loop counter */ - k--; - } - - /* Store the result in the accumulator in the destination buffer. */ - *pOut++ = (q15_t) (sum >> 15); - - /* Update the inputA and inputB pointers for next MAC calculation */ - py = pIn2 + count; - px = pIn1; - - /* Increment the MAC count */ - count++; - - /* Decrement the loop counter */ - blockSize1--; - } - - /* The second part of the stage starts here */ - /* The internal loop, over count, is unrolled by 4 */ - /* To, read the last two inputB samples using SIMD: - * y[srcBLen] and y[srcBLen-1] coefficients, py is decremented by 1 */ - py = py - 1; - - while(blockSize1 > 0u) - { - /* Accumulator is made zero for every iteration */ - sum = 0; - - /* Apply loop unrolling and compute 4 MACs simultaneously. */ - k = count >> 2u; - - /* First part of the processing with loop unrolling. Compute 4 MACs at a time. - ** a second loop below computes MACs for the remaining 1 to 3 samples. */ - py++; - - while(k > 0u) - { - /* Perform the multiply-accumulates */ - sum += ((q31_t) * px++ * *py--); - sum += ((q31_t) * px++ * *py--); - sum += ((q31_t) * px++ * *py--); - sum += ((q31_t) * px++ * *py--); - - /* Decrement the loop counter */ - k--; - } - - /* If the count is not a multiple of 4, compute any remaining MACs here. - ** No loop unrolling is used. */ - k = count % 0x4u; - - while(k > 0u) - { - /* Perform the multiply-accumulates */ - sum += ((q31_t) * px++ * *py--); - - /* Decrement the loop counter */ - k--; - } - - /* Store the result in the accumulator in the destination buffer. */ - *pOut++ = (q15_t) (sum >> 15); - - /* Update the inputA and inputB pointers for next MAC calculation */ - py = pIn2 + (count - 1u); - px = pIn1; - - /* Increment the MAC count */ - count++; - - /* Decrement the loop counter */ - blockSize1--; - } - - /* -------------------------- - * Initializations of stage2 - * ------------------------*/ - - /* sum = x[0] * y[srcBLen-1] + x[1] * y[srcBLen-2] +...+ x[srcBLen-1] * y[0] - * sum = x[1] * y[srcBLen-1] + x[2] * y[srcBLen-2] +...+ x[srcBLen] * y[0] - * .... - * sum = x[srcALen-srcBLen-2] * y[srcBLen-1] + x[srcALen] * y[srcBLen-2] +...+ x[srcALen-1] * y[0] - */ - - /* Working pointer of inputA */ - px = pIn1; - - /* Working pointer of inputB */ - pSrc2 = pIn2 + (srcBLen - 1u); - py = pSrc2; - - /* count is the index by which the pointer pIn1 to be incremented */ - count = 0u; - - - /* -------------------- - * Stage2 process - * -------------------*/ - - /* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed. - * So, to loop unroll over blockSize2, - * srcBLen should be greater than or equal to 4 */ - if(srcBLen >= 4u) - { - /* Loop unroll over blockSize2, by 4 */ - blkCnt = blockSize2 >> 2u; - - while(blkCnt > 0u) - { - py = py - 1u; - - /* Set all accumulators to zero */ - acc0 = 0; - acc1 = 0; - acc2 = 0; - acc3 = 0; - - /* read x[0], x[1] samples */ - a = *px++; - b = *px++; - -#ifndef ARM_MATH_BIG_ENDIAN - - x0 = __PKHBT(a, b, 16); - a = *px; - x1 = __PKHBT(b, a, 16); - -#else - - x0 = __PKHBT(b, a, 16); - a = *px; - x1 = __PKHBT(a, b, 16); - -#endif /* #ifndef ARM_MATH_BIG_ENDIAN */ - - /* Apply loop unrolling and compute 4 MACs simultaneously. */ - k = srcBLen >> 2u; - - /* First part of the processing with loop unrolling. Compute 4 MACs at a time. - ** a second loop below computes MACs for the remaining 1 to 3 samples. */ - do - { - /* Read the last two inputB samples using SIMD: - * y[srcBLen - 1] and y[srcBLen - 2] */ - a = *py; - b = *(py+1); - py -= 2; - -#ifndef ARM_MATH_BIG_ENDIAN - - c0 = __PKHBT(a, b, 16); - -#else - - c0 = __PKHBT(b, a, 16);; - -#endif /* #ifndef ARM_MATH_BIG_ENDIAN */ - - /* acc0 += x[0] * y[srcBLen - 1] + x[1] * y[srcBLen - 2] */ - acc0 = __SMLADX(x0, c0, acc0); - - /* acc1 += x[1] * y[srcBLen - 1] + x[2] * y[srcBLen - 2] */ - acc1 = __SMLADX(x1, c0, acc1); - - a = *px; - b = *(px + 1); - -#ifndef ARM_MATH_BIG_ENDIAN - - x2 = __PKHBT(a, b, 16); - a = *(px + 2); - x3 = __PKHBT(b, a, 16); - -#else - - x2 = __PKHBT(b, a, 16); - a = *(px + 2); - x3 = __PKHBT(a, b, 16); - -#endif /* #ifndef ARM_MATH_BIG_ENDIAN */ - - /* acc2 += x[2] * y[srcBLen - 1] + x[3] * y[srcBLen - 2] */ - acc2 = __SMLADX(x2, c0, acc2); - - /* acc3 += x[3] * y[srcBLen - 1] + x[4] * y[srcBLen - 2] */ - acc3 = __SMLADX(x3, c0, acc3); - - /* Read y[srcBLen - 3] and y[srcBLen - 4] */ - a = *py; - b = *(py+1); - py -= 2; - -#ifndef ARM_MATH_BIG_ENDIAN - - c0 = __PKHBT(a, b, 16); - -#else - - c0 = __PKHBT(b, a, 16);; - -#endif /* #ifndef ARM_MATH_BIG_ENDIAN */ - - /* acc0 += x[2] * y[srcBLen - 3] + x[3] * y[srcBLen - 4] */ - acc0 = __SMLADX(x2, c0, acc0); - - /* acc1 += x[3] * y[srcBLen - 3] + x[4] * y[srcBLen - 4] */ - acc1 = __SMLADX(x3, c0, acc1); - - /* Read x[4], x[5], x[6] */ - a = *(px + 2); - b = *(px + 3); - -#ifndef ARM_MATH_BIG_ENDIAN - - x0 = __PKHBT(a, b, 16); - a = *(px + 4); - x1 = __PKHBT(b, a, 16); - -#else - - x0 = __PKHBT(b, a, 16); - a = *(px + 4); - x1 = __PKHBT(a, b, 16); - -#endif /* #ifndef ARM_MATH_BIG_ENDIAN */ - - px += 4u; - - /* acc2 += x[4] * y[srcBLen - 3] + x[5] * y[srcBLen - 4] */ - acc2 = __SMLADX(x0, c0, acc2); - - /* acc3 += x[5] * y[srcBLen - 3] + x[6] * y[srcBLen - 4] */ - acc3 = __SMLADX(x1, c0, acc3); - - } while(--k); - - /* For the next MAC operations, SIMD is not used - * So, the 16 bit pointer if inputB, py is updated */ - - /* If the srcBLen is not a multiple of 4, compute any remaining MACs here. - ** No loop unrolling is used. */ - k = srcBLen % 0x4u; - - if(k == 1u) - { - /* Read y[srcBLen - 5] */ - c0 = *(py+1); - -#ifdef ARM_MATH_BIG_ENDIAN - - c0 = c0 << 16u; - -#else - - c0 = c0 & 0x0000FFFF; - -#endif /* #ifdef ARM_MATH_BIG_ENDIAN */ - - /* Read x[7] */ - a = *px; - b = *(px+1); - px++; - -#ifndef ARM_MATH_BIG_ENDIAN - - x3 = __PKHBT(a, b, 16); - -#else - - x3 = __PKHBT(b, a, 16);; - -#endif /* #ifndef ARM_MATH_BIG_ENDIAN */ - - - /* Perform the multiply-accumulates */ - acc0 = __SMLAD(x0, c0, acc0); - acc1 = __SMLAD(x1, c0, acc1); - acc2 = __SMLADX(x1, c0, acc2); - acc3 = __SMLADX(x3, c0, acc3); - } - - if(k == 2u) - { - /* Read y[srcBLen - 5], y[srcBLen - 6] */ - a = *py; - b = *(py+1); - -#ifndef ARM_MATH_BIG_ENDIAN - - c0 = __PKHBT(a, b, 16); - -#else - - c0 = __PKHBT(b, a, 16);; - -#endif /* #ifndef ARM_MATH_BIG_ENDIAN */ - - /* Read x[7], x[8], x[9] */ - a = *px; - b = *(px + 1); - -#ifndef ARM_MATH_BIG_ENDIAN - - x3 = __PKHBT(a, b, 16); - a = *(px + 2); - x2 = __PKHBT(b, a, 16); - -#else - - x3 = __PKHBT(b, a, 16); - a = *(px + 2); - x2 = __PKHBT(a, b, 16); - -#endif /* #ifndef ARM_MATH_BIG_ENDIAN */ - px += 2u; - - /* Perform the multiply-accumulates */ - acc0 = __SMLADX(x0, c0, acc0); - acc1 = __SMLADX(x1, c0, acc1); - acc2 = __SMLADX(x3, c0, acc2); - acc3 = __SMLADX(x2, c0, acc3); - } - - if(k == 3u) - { - /* Read y[srcBLen - 5], y[srcBLen - 6] */ - a = *py; - b = *(py+1); - -#ifndef ARM_MATH_BIG_ENDIAN - - c0 = __PKHBT(a, b, 16); - -#else - - c0 = __PKHBT(b, a, 16);; - -#endif /* #ifndef ARM_MATH_BIG_ENDIAN */ - - /* Read x[7], x[8], x[9] */ - a = *px; - b = *(px + 1); - -#ifndef ARM_MATH_BIG_ENDIAN - - x3 = __PKHBT(a, b, 16); - a = *(px + 2); - x2 = __PKHBT(b, a, 16); - -#else - - x3 = __PKHBT(b, a, 16); - a = *(px + 2); - x2 = __PKHBT(a, b, 16); - -#endif /* #ifndef ARM_MATH_BIG_ENDIAN */ - - /* Perform the multiply-accumulates */ - acc0 = __SMLADX(x0, c0, acc0); - acc1 = __SMLADX(x1, c0, acc1); - acc2 = __SMLADX(x3, c0, acc2); - acc3 = __SMLADX(x2, c0, acc3); - - /* Read y[srcBLen - 7] */ - c0 = *(py-1); -#ifdef ARM_MATH_BIG_ENDIAN - - c0 = c0 << 16u; -#else - - c0 = c0 & 0x0000FFFF; -#endif /* #ifdef ARM_MATH_BIG_ENDIAN */ - - /* Read x[10] */ - a = *(px+2); - b = *(px+3); - -#ifndef ARM_MATH_BIG_ENDIAN - - x3 = __PKHBT(a, b, 16); - -#else - - x3 = __PKHBT(b, a, 16);; - -#endif /* #ifndef ARM_MATH_BIG_ENDIAN */ - - px += 3u; - - /* Perform the multiply-accumulates */ - acc0 = __SMLADX(x1, c0, acc0); - acc1 = __SMLAD(x2, c0, acc1); - acc2 = __SMLADX(x2, c0, acc2); - acc3 = __SMLADX(x3, c0, acc3); - } - - /* Store the results in the accumulators in the destination buffer. */ - *pOut++ = (q15_t)(acc0 >> 15); - *pOut++ = (q15_t)(acc1 >> 15); - *pOut++ = (q15_t)(acc2 >> 15); - *pOut++ = (q15_t)(acc3 >> 15); - - /* Increment the pointer pIn1 index, count by 4 */ - count += 4u; - - /* Update the inputA and inputB pointers for next MAC calculation */ - px = pIn1 + count; - py = pSrc2; - - /* Decrement the loop counter */ - blkCnt--; - } - - /* If the blockSize2 is not a multiple of 4, compute any remaining output samples here. - ** No loop unrolling is used. */ - blkCnt = blockSize2 % 0x4u; - - while(blkCnt > 0u) - { - /* Accumulator is made zero for every iteration */ - sum = 0; - - /* Apply loop unrolling and compute 4 MACs simultaneously. */ - k = srcBLen >> 2u; - - /* First part of the processing with loop unrolling. Compute 4 MACs at a time. - ** a second loop below computes MACs for the remaining 1 to 3 samples. */ - while(k > 0u) - { - /* Perform the multiply-accumulates */ - sum += ((q31_t) * px++ * *py--); - sum += ((q31_t) * px++ * *py--); - sum += ((q31_t) * px++ * *py--); - sum += ((q31_t) * px++ * *py--); - - /* Decrement the loop counter */ - k--; - } - - /* If the srcBLen is not a multiple of 4, compute any remaining MACs here. - ** No loop unrolling is used. */ - k = srcBLen % 0x4u; - - while(k > 0u) - { - /* Perform the multiply-accumulates */ - sum += ((q31_t) * px++ * *py--); - - /* Decrement the loop counter */ - k--; - } - - /* Store the result in the accumulator in the destination buffer. */ - *pOut++ = (q15_t) (sum >> 15); - - /* Increment the pointer pIn1 index, count by 1 */ - count++; - - /* Update the inputA and inputB pointers for next MAC calculation */ - px = pIn1 + count; - py = pSrc2; - - /* Decrement the loop counter */ - blkCnt--; - } - } - else - { - /* If the srcBLen is not a multiple of 4, - * the blockSize2 loop cannot be unrolled by 4 */ - blkCnt = blockSize2; - - while(blkCnt > 0u) - { - /* Accumulator is made zero for every iteration */ - sum = 0; - - /* srcBLen number of MACS should be performed */ - k = srcBLen; - - while(k > 0u) - { - /* Perform the multiply-accumulate */ - sum += ((q31_t) * px++ * *py--); - - /* Decrement the loop counter */ - k--; - } - - /* Store the result in the accumulator in the destination buffer. */ - *pOut++ = (q15_t) (sum >> 15); - - /* Increment the MAC count */ - count++; - - /* Update the inputA and inputB pointers for next MAC calculation */ - px = pIn1 + count; - py = pSrc2; - - /* Decrement the loop counter */ - blkCnt--; - } - } - - - /* -------------------------- - * Initializations of stage3 - * -------------------------*/ - - /* sum += x[srcALen-srcBLen+1] * y[srcBLen-1] + x[srcALen-srcBLen+2] * y[srcBLen-2] +...+ x[srcALen-1] * y[1] - * sum += x[srcALen-srcBLen+2] * y[srcBLen-1] + x[srcALen-srcBLen+3] * y[srcBLen-2] +...+ x[srcALen-1] * y[2] - * .... - * sum += x[srcALen-2] * y[srcBLen-1] + x[srcALen-1] * y[srcBLen-2] - * sum += x[srcALen-1] * y[srcBLen-1] - */ - - /* In this stage the MAC operations are decreased by 1 for every iteration. - The blockSize3 variable holds the number of MAC operations performed */ - - /* Working pointer of inputA */ - pSrc1 = (pIn1 + srcALen) - (srcBLen - 1u); - px = pSrc1; - - /* Working pointer of inputB */ - pSrc2 = pIn2 + (srcBLen - 1u); - pIn2 = pSrc2 - 1u; - py = pIn2; - - /* ------------------- - * Stage3 process - * ------------------*/ - - /* For loop unrolling by 4, this stage is divided into two. */ - /* First part of this stage computes the MAC operations greater than 4 */ - /* Second part of this stage computes the MAC operations less than or equal to 4 */ - - /* The first part of the stage starts here */ - j = blockSize3 >> 2u; - - while((j > 0u) && (blockSize3 > 0u)) - { - /* Accumulator is made zero for every iteration */ - sum = 0; - - /* Apply loop unrolling and compute 4 MACs simultaneously. */ - k = blockSize3 >> 2u; - - /* First part of the processing with loop unrolling. Compute 4 MACs at a time. - ** a second loop below computes MACs for the remaining 1 to 3 samples. */ - py++; - - while(k > 0u) - { - sum += ((q31_t) * px++ * *py--); - sum += ((q31_t) * px++ * *py--); - sum += ((q31_t) * px++ * *py--); - sum += ((q31_t) * px++ * *py--); - /* Decrement the loop counter */ - k--; - } - - /* If the blockSize3 is not a multiple of 4, compute any remaining MACs here. - ** No loop unrolling is used. */ - k = blockSize3 % 0x4u; - - while(k > 0u) - { - /* sum += x[srcALen - srcBLen + 5] * y[srcBLen - 5] */ - sum += ((q31_t) * px++ * *py--); - - /* Decrement the loop counter */ - k--; - } - - /* Store the result in the accumulator in the destination buffer. */ - *pOut++ = (q15_t) (sum >> 15); - - /* Update the inputA and inputB pointers for next MAC calculation */ - px = ++pSrc1; - py = pIn2; - - /* Decrement the loop counter */ - blockSize3--; - - j--; - } - - /* The second part of the stage starts here */ - /* SIMD is not used for the next MAC operations, - * so pointer py is updated to read only one sample at a time */ - py = py + 1u; - - while(blockSize3 > 0u) - { - /* Accumulator is made zero for every iteration */ - sum = 0; - - /* Apply loop unrolling and compute 4 MACs simultaneously. */ - k = blockSize3; - - while(k > 0u) - { - /* Perform the multiply-accumulates */ - /* sum += x[srcALen-1] * y[srcBLen-1] */ - sum += ((q31_t) * px++ * *py--); - - /* Decrement the loop counter */ - k--; - } - - /* Store the result in the accumulator in the destination buffer. */ - *pOut++ = (q15_t) (sum >> 15); - - /* Update the inputA and inputB pointers for next MAC calculation */ - px = ++pSrc1; - py = pSrc2; - - /* Decrement the loop counter */ - blockSize3--; - } - -#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */ -} - -/** - * @} end of Conv group - */ -- cgit