From 9f95ff5b6ba01db09552b84a0ab79607060a2666 Mon Sep 17 00:00:00 2001 From: Ali Labbene Date: Wed, 11 Dec 2019 08:59:21 +0100 Subject: Official ARM version: v5.4.0 Add CMSIS V5.4.0, please refer to index.html available under \docs folder. Note: content of \CMSIS\Core\Include has been copied under \Include to keep the same structure used in existing projects, and thus avoid projects mass update Note: the following components have been removed from ARM original delivery (as not used in ST packages) - CMSIS_EW2018.pdf - .gitattributes - .gitignore - \Device - \CMSIS - \CoreValidation - \DAP - \Documentation - \DoxyGen - \Driver - \Pack - \RTOS\CMSIS_RTOS_Tutorial.pdf - \RTOS\RTX - \RTOS\Template - \RTOS2\RTX - \Utilities - All ARM/GCC projects files are deleted from \DSP, \RTOS and \RTOS2 Change-Id: Ia026c3f0f0d016627a4fb5a9032852c33d24b4d3 --- .../arm_biquad_cascade_df2T_f64.c | 603 --------------------- 1 file changed, 603 deletions(-) delete mode 100644 DSP_Lib/Source/FilteringFunctions/arm_biquad_cascade_df2T_f64.c (limited to 'DSP_Lib/Source/FilteringFunctions/arm_biquad_cascade_df2T_f64.c') diff --git a/DSP_Lib/Source/FilteringFunctions/arm_biquad_cascade_df2T_f64.c b/DSP_Lib/Source/FilteringFunctions/arm_biquad_cascade_df2T_f64.c deleted file mode 100644 index 265bd3a..0000000 --- a/DSP_Lib/Source/FilteringFunctions/arm_biquad_cascade_df2T_f64.c +++ /dev/null @@ -1,603 +0,0 @@ -/* ---------------------------------------------------------------------- -* Copyright (C) 2010-2014 ARM Limited. All rights reserved. -* -* $Date: 19. March 2015 -* $Revision: V.1.4.5 -* -* Project: CMSIS DSP Library -* Title: arm_biquad_cascade_df2T_f64.c -* -* Description: Processing function for the floating-point transposed -* direct form II Biquad cascade filter. -* -* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 -* -* Redistribution and use in source and binary forms, with or without -* modification, are permitted provided that the following conditions -* are met: -* - Redistributions of source code must retain the above copyright -* notice, this list of conditions and the following disclaimer. -* - Redistributions in binary form must reproduce the above copyright -* notice, this list of conditions and the following disclaimer in -* the documentation and/or other materials provided with the -* distribution. -* - Neither the name of ARM LIMITED nor the names of its contributors -* may be used to endorse or promote products derived from this -* software without specific prior written permission. -* -* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS -* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT -* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS -* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE -* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, -* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, -* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; -* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER -* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT -* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN -* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE -* POSSIBILITY OF SUCH DAMAGE. -* -------------------------------------------------------------------- */ - -#include "arm_math.h" - -/** -* @ingroup groupFilters -*/ - -/** -* @defgroup BiquadCascadeDF2T Biquad Cascade IIR Filters Using a Direct Form II Transposed Structure -* -* This set of functions implements arbitrary order recursive (IIR) filters using a transposed direct form II structure. -* The filters are implemented as a cascade of second order Biquad sections. -* These functions provide a slight memory savings as compared to the direct form I Biquad filter functions. -* Only floating-point data is supported. -* -* This function operate on blocks of input and output data and each call to the function -* processes blockSize samples through the filter. -* pSrc points to the array of input data and -* pDst points to the array of output data. -* Both arrays contain blockSize values. -* -* \par Algorithm -* Each Biquad stage implements a second order filter using the difference equation: -*
       
-*    y[n] = b0 * x[n] + d1       
-*    d1 = b1 * x[n] + a1 * y[n] + d2       
-*    d2 = b2 * x[n] + a2 * y[n]       
-* 
-* where d1 and d2 represent the two state values. -* -* \par -* A Biquad filter using a transposed Direct Form II structure is shown below. -* \image html BiquadDF2Transposed.gif "Single transposed Direct Form II Biquad" -* Coefficients b0, b1, and b2 multiply the input signal x[n] and are referred to as the feedforward coefficients. -* Coefficients a1 and a2 multiply the output signal y[n] and are referred to as the feedback coefficients. -* Pay careful attention to the sign of the feedback coefficients. -* Some design tools flip the sign of the feedback coefficients: -*
       
-*    y[n] = b0 * x[n] + d1;       
-*    d1 = b1 * x[n] - a1 * y[n] + d2;       
-*    d2 = b2 * x[n] - a2 * y[n];       
-* 
-* In this case the feedback coefficients a1 and a2 must be negated when used with the CMSIS DSP Library. -* -* \par -* Higher order filters are realized as a cascade of second order sections. -* numStages refers to the number of second order stages used. -* For example, an 8th order filter would be realized with numStages=4 second order stages. -* A 9th order filter would be realized with numStages=5 second order stages with the -* coefficients for one of the stages configured as a first order filter (b2=0 and a2=0). -* -* \par -* pState points to the state variable array. -* Each Biquad stage has 2 state variables d1 and d2. -* The state variables are arranged in the pState array as: -*
       
-*     {d11, d12, d21, d22, ...}       
-* 
-* where d1x refers to the state variables for the first Biquad and -* d2x refers to the state variables for the second Biquad. -* The state array has a total length of 2*numStages values. -* The state variables are updated after each block of data is processed; the coefficients are untouched. -* -* \par -* The CMSIS library contains Biquad filters in both Direct Form I and transposed Direct Form II. -* The advantage of the Direct Form I structure is that it is numerically more robust for fixed-point data types. -* That is why the Direct Form I structure supports Q15 and Q31 data types. -* The transposed Direct Form II structure, on the other hand, requires a wide dynamic range for the state variables d1 and d2. -* Because of this, the CMSIS library only has a floating-point version of the Direct Form II Biquad. -* The advantage of the Direct Form II Biquad is that it requires half the number of state variables, 2 rather than 4, per Biquad stage. -* -* \par Instance Structure -* The coefficients and state variables for a filter are stored together in an instance data structure. -* A separate instance structure must be defined for each filter. -* Coefficient arrays may be shared among several instances while state variable arrays cannot be shared. -* -* \par Init Functions -* There is also an associated initialization function. -* The initialization function performs following operations: -* - Sets the values of the internal structure fields. -* - Zeros out the values in the state buffer. -* To do this manually without calling the init function, assign the follow subfields of the instance structure: -* numStages, pCoeffs, pState. Also set all of the values in pState to zero. -* -* \par -* Use of the initialization function is optional. -* However, if the initialization function is used, then the instance structure cannot be placed into a const data section. -* To place an instance structure into a const data section, the instance structure must be manually initialized. -* Set the values in the state buffer to zeros before static initialization. -* For example, to statically initialize the instance structure use -*
       
-*     arm_biquad_cascade_df2T_instance_f64 S1 = {numStages, pState, pCoeffs};       
-* 
-* where numStages is the number of Biquad stages in the filter; pState is the address of the state buffer. -* pCoeffs is the address of the coefficient buffer; -* -*/ - -/** -* @addtogroup BiquadCascadeDF2T -* @{ -*/ - -/** -* @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. -* @param[in] *S points to an instance of the filter data structure. -* @param[in] *pSrc points to the block of input data. -* @param[out] *pDst points to the block of output data -* @param[in] blockSize number of samples to process. -* @return none. -*/ - - -LOW_OPTIMIZATION_ENTER -void arm_biquad_cascade_df2T_f64( -const arm_biquad_cascade_df2T_instance_f64 * S, -float64_t * pSrc, -float64_t * pDst, -uint32_t blockSize) -{ - - float64_t *pIn = pSrc; /* source pointer */ - float64_t *pOut = pDst; /* destination pointer */ - float64_t *pState = S->pState; /* State pointer */ - float64_t *pCoeffs = S->pCoeffs; /* coefficient pointer */ - float64_t acc1; /* accumulator */ - float64_t b0, b1, b2, a1, a2; /* Filter coefficients */ - float64_t Xn1; /* temporary input */ - float64_t d1, d2; /* state variables */ - uint32_t sample, stage = S->numStages; /* loop counters */ - -#if defined(ARM_MATH_CM7) - - float64_t Xn2, Xn3, Xn4, Xn5, Xn6, Xn7, Xn8; /* Input State variables */ - float64_t Xn9, Xn10, Xn11, Xn12, Xn13, Xn14, Xn15, Xn16; - float64_t acc2, acc3, acc4, acc5, acc6, acc7; /* Simulates the accumulator */ - float64_t acc8, acc9, acc10, acc11, acc12, acc13, acc14, acc15, acc16; - - do - { - /* Reading the coefficients */ - b0 = pCoeffs[0]; - b1 = pCoeffs[1]; - b2 = pCoeffs[2]; - a1 = pCoeffs[3]; - /* Apply loop unrolling and compute 16 output values simultaneously. */ - sample = blockSize >> 4u; - a2 = pCoeffs[4]; - - /*Reading the state values */ - d1 = pState[0]; - d2 = pState[1]; - - pCoeffs += 5u; - - - /* First part of the processing with loop unrolling. Compute 16 outputs at a time. - ** a second loop below computes the remaining 1 to 15 samples. */ - while(sample > 0u) { - - /* y[n] = b0 * x[n] + d1 */ - /* d1 = b1 * x[n] + a1 * y[n] + d2 */ - /* d2 = b2 * x[n] + a2 * y[n] */ - - /* Read the first 2 inputs. 2 cycles */ - Xn1 = pIn[0 ]; - Xn2 = pIn[1 ]; - - /* Sample 1. 5 cycles */ - Xn3 = pIn[2 ]; - acc1 = b0 * Xn1 + d1; - - Xn4 = pIn[3 ]; - d1 = b1 * Xn1 + d2; - - Xn5 = pIn[4 ]; - d2 = b2 * Xn1; - - Xn6 = pIn[5 ]; - d1 += a1 * acc1; - - Xn7 = pIn[6 ]; - d2 += a2 * acc1; - - /* Sample 2. 5 cycles */ - Xn8 = pIn[7 ]; - acc2 = b0 * Xn2 + d1; - - Xn9 = pIn[8 ]; - d1 = b1 * Xn2 + d2; - - Xn10 = pIn[9 ]; - d2 = b2 * Xn2; - - Xn11 = pIn[10]; - d1 += a1 * acc2; - - Xn12 = pIn[11]; - d2 += a2 * acc2; - - /* Sample 3. 5 cycles */ - Xn13 = pIn[12]; - acc3 = b0 * Xn3 + d1; - - Xn14 = pIn[13]; - d1 = b1 * Xn3 + d2; - - Xn15 = pIn[14]; - d2 = b2 * Xn3; - - Xn16 = pIn[15]; - d1 += a1 * acc3; - - pIn += 16; - d2 += a2 * acc3; - - /* Sample 4. 5 cycles */ - acc4 = b0 * Xn4 + d1; - d1 = b1 * Xn4 + d2; - d2 = b2 * Xn4; - d1 += a1 * acc4; - d2 += a2 * acc4; - - /* Sample 5. 5 cycles */ - acc5 = b0 * Xn5 + d1; - d1 = b1 * Xn5 + d2; - d2 = b2 * Xn5; - d1 += a1 * acc5; - d2 += a2 * acc5; - - /* Sample 6. 5 cycles */ - acc6 = b0 * Xn6 + d1; - d1 = b1 * Xn6 + d2; - d2 = b2 * Xn6; - d1 += a1 * acc6; - d2 += a2 * acc6; - - /* Sample 7. 5 cycles */ - acc7 = b0 * Xn7 + d1; - d1 = b1 * Xn7 + d2; - d2 = b2 * Xn7; - d1 += a1 * acc7; - d2 += a2 * acc7; - - /* Sample 8. 5 cycles */ - acc8 = b0 * Xn8 + d1; - d1 = b1 * Xn8 + d2; - d2 = b2 * Xn8; - d1 += a1 * acc8; - d2 += a2 * acc8; - - /* Sample 9. 5 cycles */ - acc9 = b0 * Xn9 + d1; - d1 = b1 * Xn9 + d2; - d2 = b2 * Xn9; - d1 += a1 * acc9; - d2 += a2 * acc9; - - /* Sample 10. 5 cycles */ - acc10 = b0 * Xn10 + d1; - d1 = b1 * Xn10 + d2; - d2 = b2 * Xn10; - d1 += a1 * acc10; - d2 += a2 * acc10; - - /* Sample 11. 5 cycles */ - acc11 = b0 * Xn11 + d1; - d1 = b1 * Xn11 + d2; - d2 = b2 * Xn11; - d1 += a1 * acc11; - d2 += a2 * acc11; - - /* Sample 12. 5 cycles */ - acc12 = b0 * Xn12 + d1; - d1 = b1 * Xn12 + d2; - d2 = b2 * Xn12; - d1 += a1 * acc12; - d2 += a2 * acc12; - - /* Sample 13. 5 cycles */ - acc13 = b0 * Xn13 + d1; - d1 = b1 * Xn13 + d2; - d2 = b2 * Xn13; - - pOut[0 ] = acc1 ; - d1 += a1 * acc13; - - pOut[1 ] = acc2 ; - d2 += a2 * acc13; - - /* Sample 14. 5 cycles */ - pOut[2 ] = acc3 ; - acc14 = b0 * Xn14 + d1; - - pOut[3 ] = acc4 ; - d1 = b1 * Xn14 + d2; - - pOut[4 ] = acc5 ; - d2 = b2 * Xn14; - - pOut[5 ] = acc6 ; - d1 += a1 * acc14; - - pOut[6 ] = acc7 ; - d2 += a2 * acc14; - - /* Sample 15. 5 cycles */ - pOut[7 ] = acc8 ; - pOut[8 ] = acc9 ; - acc15 = b0 * Xn15 + d1; - - pOut[9 ] = acc10; - d1 = b1 * Xn15 + d2; - - pOut[10] = acc11; - d2 = b2 * Xn15; - - pOut[11] = acc12; - d1 += a1 * acc15; - - pOut[12] = acc13; - d2 += a2 * acc15; - - /* Sample 16. 5 cycles */ - pOut[13] = acc14; - acc16 = b0 * Xn16 + d1; - - pOut[14] = acc15; - d1 = b1 * Xn16 + d2; - - pOut[15] = acc16; - d2 = b2 * Xn16; - - sample--; - d1 += a1 * acc16; - - pOut += 16; - d2 += a2 * acc16; - } - - sample = blockSize & 0xFu; - while(sample > 0u) { - Xn1 = *pIn; - acc1 = b0 * Xn1 + d1; - - pIn++; - d1 = b1 * Xn1 + d2; - - *pOut = acc1; - d2 = b2 * Xn1; - - pOut++; - d1 += a1 * acc1; - - sample--; - d2 += a2 * acc1; - } - - /* Store the updated state variables back into the state array */ - pState[0] = d1; - /* The current stage input is given as the output to the next stage */ - pIn = pDst; - - pState[1] = d2; - /* decrement the loop counter */ - stage--; - - pState += 2u; - - /*Reset the output working pointer */ - pOut = pDst; - - } while(stage > 0u); - -#elif defined(ARM_MATH_CM0_FAMILY) - - /* Run the below code for Cortex-M0 */ - - do - { - /* Reading the coefficients */ - b0 = *pCoeffs++; - b1 = *pCoeffs++; - b2 = *pCoeffs++; - a1 = *pCoeffs++; - a2 = *pCoeffs++; - - /*Reading the state values */ - d1 = pState[0]; - d2 = pState[1]; - - - sample = blockSize; - - while(sample > 0u) - { - /* Read the input */ - Xn1 = *pIn++; - - /* y[n] = b0 * x[n] + d1 */ - acc1 = (b0 * Xn1) + d1; - - /* Store the result in the accumulator in the destination buffer. */ - *pOut++ = acc1; - - /* Every time after the output is computed state should be updated. */ - /* d1 = b1 * x[n] + a1 * y[n] + d2 */ - d1 = ((b1 * Xn1) + (a1 * acc1)) + d2; - - /* d2 = b2 * x[n] + a2 * y[n] */ - d2 = (b2 * Xn1) + (a2 * acc1); - - /* decrement the loop counter */ - sample--; - } - - /* Store the updated state variables back into the state array */ - *pState++ = d1; - *pState++ = d2; - - /* The current stage input is given as the output to the next stage */ - pIn = pDst; - - /*Reset the output working pointer */ - pOut = pDst; - - /* decrement the loop counter */ - stage--; - - } while(stage > 0u); - -#else - - float64_t Xn2, Xn3, Xn4; /* Input State variables */ - float64_t acc2, acc3, acc4; /* accumulator */ - - - float64_t p0, p1, p2, p3, p4, A1; - - /* Run the below code for Cortex-M4 and Cortex-M3 */ - do - { - /* Reading the coefficients */ - b0 = *pCoeffs++; - b1 = *pCoeffs++; - b2 = *pCoeffs++; - a1 = *pCoeffs++; - a2 = *pCoeffs++; - - - /*Reading the state values */ - d1 = pState[0]; - d2 = pState[1]; - - /* Apply loop unrolling and compute 4 output values simultaneously. */ - sample = blockSize >> 2u; - - /* First part of the processing with loop unrolling. Compute 4 outputs at a time. - ** a second loop below computes the remaining 1 to 3 samples. */ - while(sample > 0u) { - - /* y[n] = b0 * x[n] + d1 */ - /* d1 = b1 * x[n] + a1 * y[n] + d2 */ - /* d2 = b2 * x[n] + a2 * y[n] */ - - /* Read the four inputs */ - Xn1 = pIn[0]; - Xn2 = pIn[1]; - Xn3 = pIn[2]; - Xn4 = pIn[3]; - pIn += 4; - - p0 = b0 * Xn1; - p1 = b1 * Xn1; - acc1 = p0 + d1; - p0 = b0 * Xn2; - p3 = a1 * acc1; - p2 = b2 * Xn1; - A1 = p1 + p3; - p4 = a2 * acc1; - d1 = A1 + d2; - d2 = p2 + p4; - - p1 = b1 * Xn2; - acc2 = p0 + d1; - p0 = b0 * Xn3; - p3 = a1 * acc2; - p2 = b2 * Xn2; - A1 = p1 + p3; - p4 = a2 * acc2; - d1 = A1 + d2; - d2 = p2 + p4; - - p1 = b1 * Xn3; - acc3 = p0 + d1; - p0 = b0 * Xn4; - p3 = a1 * acc3; - p2 = b2 * Xn3; - A1 = p1 + p3; - p4 = a2 * acc3; - d1 = A1 + d2; - d2 = p2 + p4; - - acc4 = p0 + d1; - p1 = b1 * Xn4; - p3 = a1 * acc4; - p2 = b2 * Xn4; - A1 = p1 + p3; - p4 = a2 * acc4; - d1 = A1 + d2; - d2 = p2 + p4; - - pOut[0] = acc1; - pOut[1] = acc2; - pOut[2] = acc3; - pOut[3] = acc4; - pOut += 4; - - sample--; - } - - sample = blockSize & 0x3u; - while(sample > 0u) { - Xn1 = *pIn++; - - p0 = b0 * Xn1; - p1 = b1 * Xn1; - acc1 = p0 + d1; - p3 = a1 * acc1; - p2 = b2 * Xn1; - A1 = p1 + p3; - p4 = a2 * acc1; - d1 = A1 + d2; - d2 = p2 + p4; - - *pOut++ = acc1; - - sample--; - } - - /* Store the updated state variables back into the state array */ - *pState++ = d1; - *pState++ = d2; - - /* The current stage input is given as the output to the next stage */ - pIn = pDst; - - /*Reset the output working pointer */ - pOut = pDst; - - /* decrement the loop counter */ - stage--; - - } while(stage > 0u); - -#endif - -} -LOW_OPTIMIZATION_EXIT - -/** - * @} end of BiquadCascadeDF2T group - */ -- cgit