diff options
Diffstat (limited to 'NN/Include')
-rw-r--r-- | NN/Include/arm_nn_tables.h | 59 | ||||
-rw-r--r-- | NN/Include/arm_nnfunctions.h | 1010 | ||||
-rw-r--r-- | NN/Include/arm_nnsupportfunctions.h | 202 |
3 files changed, 1271 insertions, 0 deletions
diff --git a/NN/Include/arm_nn_tables.h b/NN/Include/arm_nn_tables.h new file mode 100644 index 0000000..d56d82c --- /dev/null +++ b/NN/Include/arm_nn_tables.h @@ -0,0 +1,59 @@ +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_nn_tables.h + * Description: Extern declaration for NN tables + * + * $Date: 17. January 2018 + * $Revision: V.1.0.0 + * + * Target Processor: Cortex-M cores + * -------------------------------------------------------------------- */ +/* + * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#ifndef _ARM_NN_TABLES_H +#define _ARM_NN_TABLES_H + +#include "arm_math.h" + +/** +* @brief tables for various activation functions +* +*/ + +extern const q15_t sigmoidTable_q15[256]; +extern const q7_t sigmoidTable_q7[256]; + +extern const q7_t tanhTable_q7[256]; +extern const q15_t tanhTable_q15[256]; + + /** + * @brief 2-way tables for various activation functions + * + * 2-way table, H table for value larger than 1/4 + * L table for value smaller than 1/4, H table for remaining + * We have this only for the q15_t version. It does not make + * sense to have it for q7_t type + */ +extern const q15_t sigmoidHTable_q15[192]; +extern const q15_t sigmoidLTable_q15[128]; + +extern const q15_t sigmoidLTable_q15[128]; +extern const q15_t sigmoidHTable_q15[192]; + +#endif /* ARM_NN_TABLES_H */ diff --git a/NN/Include/arm_nnfunctions.h b/NN/Include/arm_nnfunctions.h new file mode 100644 index 0000000..c6ec83a --- /dev/null +++ b/NN/Include/arm_nnfunctions.h @@ -0,0 +1,1010 @@ +/* + * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_nnfunctions.h + * Description: Public header file for CMSIS NN Library + * + * $Date: 13. July 2018 + * $Revision: V.1.0.0 + * + * Target Processor: Cortex-M cores + * -------------------------------------------------------------------- */ + +/** + \mainpage CMSIS NN Software Library + * + * Introduction + * ------------ + * + * This user manual describes the CMSIS NN software library, + * a collection of efficient neural network kernels developed to maximize the + * performance and minimize the memory footprint of neural networks on Cortex-M processor cores. + * + * The library is divided into a number of functions each covering a specific category: + * - Neural Network Convolution Functions + * - Neural Network Activation Functions + * - Fully-connected Layer Functions + * - Neural Network Pooling Functions + * - Softmax Functions + * - Neural Network Support Functions + * + * The library has separate functions for operating on different weight and activation data + * types including 8-bit integers (q7_t) and 16-bit integers (q15_t). The descrition of the + * kernels are included in the function description. The implementation details are also + * described in this paper [1]. + * + * Block Diagram + * -------- + * \image html CMSIS-NN-OVERVIEW.PNG + * + * Examples + * -------- + * + * The library ships with a number of examples which demonstrate how to use the library functions. + * + * Pre-processor Macros + * ------------ + * + * Each library project have differant pre-processor macros. + * + * - ARM_MATH_DSP: + * + * Define macro ARM_MATH_DSP, If the silicon supports DSP instructions. + * + * - ARM_MATH_BIG_ENDIAN: + * + * Define macro ARM_MATH_BIG_ENDIAN to build the library for big endian targets. By default library builds for little endian targets. + * + * - ARM_NN_TRUNCATE: + * + * Define macro ARM_NN_TRUNCATE to use floor instead of round-to-the-nearest-int for the computation. + * + * Copyright Notice + * ------------ + * + * Copyright (C) 2010-2018 Arm Limited. All rights reserved. + * + * [1] CMSIS-NN: Efficient Neural Network Kernels for Arm Cortex-M CPUs https://arxiv.org/abs/1801.06601 + */ + +/** + * @defgroup groupNN Neural Network Functions + * These functions perform basic operations for neural network layers. + */ + +#ifndef _ARM_NNFUNCTIONS_H +#define _ARM_NNFUNCTIONS_H + +#include "arm_nnsupportfunctions.h" +#include "arm_nn_tables.h" + +#define USE_INTRINSIC + +//#define ARM_NN_TRUNCATE /* This config the rounding model to floor or round to the nearest int */ + +#ifdef __cplusplus +extern "C" +{ +#endif + +/** + * @defgroup NNConv Neural Network Convolution Functions + * + * Perform convolution layer + * + * The convolution is implemented in 2 steps: im2col and GEMM + * + * im2col is a process of converting each patch of image data into + * a column. After im2col, the convolution is computed as matrix-matrix + * multiplication. + * + * To reduce the memory footprint, the im2col is performed partially. + * Each iteration, only a few column (i.e., patches) are generated and + * computed with GEMM kernels similar to CMSIS-DSP arm_mat_mult functions. + * + */ + + /** + * @brief Basic Q7 convolution function + * @param[in] Im_in pointer to input tensor + * @param[in] dim_im_in input tensor dimention + * @param[in] ch_im_in number of input tensor channels + * @param[in] wt pointer to kernel weights + * @param[in] ch_im_out number of filters, i.e., output tensor channels + * @param[in] dim_kernel filter kernel size + * @param[in] padding padding sizes + * @param[in] stride convolution stride + * @param[in] bias pointer to bias + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in,out] Im_out pointer to output tensor + * @param[in] dim_im_out output tensor dimension + * @param[in,out] bufferA pointer to buffer space for input + * @param[in,out] bufferB pointer to buffer space for output + * @return The function returns <code>ARM_MATH_SUCCESS</code> + * + */ + + arm_status arm_convolve_HWC_q7_basic(const q7_t * Im_in, + const uint16_t dim_im_in, + const uint16_t ch_im_in, + const q7_t * wt, + const uint16_t ch_im_out, + const uint16_t dim_kernel, + const uint16_t padding, + const uint16_t stride, + const q7_t * bias, + const uint16_t bias_shift, + const uint16_t out_shift, + q7_t * Im_out, + const uint16_t dim_im_out, + q15_t * bufferA, + q7_t * bufferB); + + /** + * @brief Basic Q7 convolution function (non-sqaure shape) + * @param[in] Im_in pointer to input tensor + * @param[in] dim_im_in_x input tensor dimention x + * @param[in] dim_im_in_y input tensor dimention y + * @param[in] ch_im_in number of input tensor channels + * @param[in] wt pointer to kernel weights + * @param[in] ch_im_out number of filters, i.e., output tensor channels + * @param[in] dim_kernel_x filter kernel size x + * @param[in] dim_kernel_y filter kernel size y + * @param[in] padding_x padding size x + * @param[in] padding_y padding size y + * @param[in] stride_x convolution stride x + * @param[in] stride_y convolution stride y + * @param[in] bias pointer to bias + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in,out] Im_out pointer to output tensor + * @param[in] dim_im_out_x output tensor dimension x + * @param[in] dim_im_out_y output tensor dimension y + * @param[in,out] bufferA pointer to buffer space for input + * @param[in,out] bufferB pointer to buffer space for output + * @return The function returns <code>ARM_MATH_SUCCESS</code> + */ + + arm_status arm_convolve_HWC_q7_basic_nonsquare(const q7_t * Im_in, + const uint16_t dim_im_in_x, + const uint16_t dim_im_in_y, + const uint16_t ch_im_in, + const q7_t * wt, + const uint16_t ch_im_out, + const uint16_t dim_kernel_x, + const uint16_t dim_kernel_y, + const uint16_t padding_x, + const uint16_t padding_y, + const uint16_t stride_x, + const uint16_t stride_y, + const q7_t * bias, + const uint16_t bias_shift, + const uint16_t out_shift, + q7_t * Im_out, + const uint16_t dim_im_out_x, + const uint16_t dim_im_out_y, + q15_t * bufferA, + q7_t * bufferB); + + /** + * @brief Basic Q15 convolution function + * @param[in] Im_in pointer to input tensor + * @param[in] dim_im_in input tensor dimention + * @param[in] ch_im_in number of input tensor channels + * @param[in] wt pointer to kernel weights + * @param[in] ch_im_out number of filters, i.e., output tensor channels + * @param[in] dim_kernel filter kernel size + * @param[in] padding padding sizes + * @param[in] stride convolution stride + * @param[in] bias pointer to bias + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in,out] Im_out pointer to output tensor + * @param[in] dim_im_out output tensor dimension + * @param[in,out] bufferA pointer to buffer space for input + * @param[in,out] bufferB pointer to buffer space for output + * @return The function returns <code>ARM_MATH_SUCCESS</code> + * + */ + + arm_status arm_convolve_HWC_q15_basic(const q15_t * Im_in, + const uint16_t dim_im_in, + const uint16_t ch_im_in, + const q15_t * wt, + const uint16_t ch_im_out, + const uint16_t dim_kernel, + const uint16_t padding, + const uint16_t stride, + const q15_t * bias, + const uint16_t bias_shift, + const uint16_t out_shift, + q15_t * Im_out, + const uint16_t dim_im_out, + q15_t * bufferA, + q7_t * bufferB); + + /** + * @brief Fast Q7 convolution function + * @param[in] Im_in pointer to input tensor + * @param[in] dim_im_in input tensor dimention + * @param[in] ch_im_in number of input tensor channels + * @param[in] wt pointer to kernel weights + * @param[in] ch_im_out number of filters, i.e., output tensor channels + * @param[in] dim_kernel filter kernel size + * @param[in] padding padding sizes + * @param[in] stride convolution stride + * @param[in] bias pointer to bias + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in,out] Im_out pointer to output tensor + * @param[in] dim_im_out output tensor dimension + * @param[in,out] bufferA pointer to buffer space for input + * @param[in,out] bufferB pointer to buffer space for output + * @return The function returns either + * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. + * + * This function is the version with full list of optimization tricks, but with + * some contraints: + * ch_im_in is multiple of 4 + * ch_im_out is multiple of 2 + */ + + arm_status arm_convolve_HWC_q7_fast(const q7_t * Im_in, + const uint16_t dim_im_in, + const uint16_t ch_im_in, + const q7_t * wt, + const uint16_t ch_im_out, + const uint16_t dim_kernel, + const uint16_t padding, + const uint16_t stride, + const q7_t * bias, + const uint16_t bias_shift, + const uint16_t out_shift, + q7_t * Im_out, + const uint16_t dim_im_out, + q15_t * bufferA, + q7_t * bufferB); + + /** + * @brief Fast Q7 convolution function (non-sqaure shape) + * @param[in] Im_in pointer to input tensor + * @param[in] dim_im_in_x input tensor dimention x + * @param[in] dim_im_in_y input tensor dimention y + * @param[in] ch_im_in number of input tensor channels + * @param[in] wt pointer to kernel weights + * @param[in] ch_im_out number of filters, i.e., output tensor channels + * @param[in] dim_kernel_x filter kernel size x + * @param[in] dim_kernel_y filter kernel size y + * @param[in] padding_x padding size x + * @param[in] padding_y padding size y + * @param[in] stride_x convolution stride x + * @param[in] stride_y convolution stride y + * @param[in] bias pointer to bias + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in,out] Im_out pointer to output tensor + * @param[in] dim_im_out_x output tensor dimension x + * @param[in] dim_im_out_y output tensor dimension y + * @param[in,out] bufferA pointer to buffer space for input + * @param[in,out] bufferB pointer to buffer space for output + * @return The function returns either + * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. + * + * This function is the version with full list of optimization tricks, but with + * some contraints: + * ch_im_in is multiple of 4 + * ch_im_out is multiple of 2 + */ + + arm_status arm_convolve_HWC_q7_fast_nonsquare(const q7_t * Im_in, + const uint16_t dim_im_in_x, + const uint16_t dim_im_in_y, + const uint16_t ch_im_in, + const q7_t * wt, + const uint16_t ch_im_out, + const uint16_t dim_kernel_x, + const uint16_t dim_kernel_y, + const uint16_t padding_x, + const uint16_t padding_y, + const uint16_t stride_x, + const uint16_t stride_y, + const q7_t * bias, + const uint16_t bias_shift, + const uint16_t out_shift, + q7_t * Im_out, + const uint16_t dim_im_out_x, + const uint16_t dim_im_out_y, + q15_t * bufferA, + q7_t * bufferB); + + /** + * @brief Fast Q7 version of 1x1 convolution (non-sqaure shape) + * @param[in] Im_in pointer to input tensor + * @param[in] dim_im_in_x input tensor dimention x + * @param[in] dim_im_in_y input tensor dimention y + * @param[in] ch_im_in number of input tensor channels + * @param[in] wt pointer to kernel weights + * @param[in] ch_im_out number of filters, i.e., output tensor channels + * @param[in] dim_kernel_x filter kernel size x + * @param[in] dim_kernel_y filter kernel size y + * @param[in] padding_x padding size x + * @param[in] padding_y padding size y + * @param[in] stride_x convolution stride x + * @param[in] stride_y convolution stride y + * @param[in] bias pointer to bias + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in,out] Im_out pointer to output tensor + * @param[in] dim_im_out_x output tensor dimension x + * @param[in] dim_im_out_y output tensor dimension y + * @param[in,out] bufferA pointer to buffer space for input + * @param[in,out] bufferB pointer to buffer space for output + * @return The function returns either + * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. + * + * This function implement convolution with 1x1 kernel size (i.e., dim_kernel_x=1 + * and dim_kernel_y=1). It can be used for + * second half of MobileNets after depthwise separable convolution. + * + * This function is the version with full list of optimization tricks, but with + * some contraints: + * ch_im_in is multiple of 4 + * ch_im_out is multiple of 2 + */ + arm_status arm_convolve_1x1_HWC_q7_fast_nonsquare(const q7_t * Im_in, + const uint16_t dim_im_in_x, + const uint16_t dim_im_in_y, + const uint16_t ch_im_in, + const q7_t * wt, + const uint16_t ch_im_out, + const uint16_t dim_kernel_x, + const uint16_t dim_kernel_y, + const uint16_t padding_x, + const uint16_t padding_y, + const uint16_t stride_x, + const uint16_t stride_y, + const q7_t * bias, + const uint16_t bias_shift, + const uint16_t out_shift, + q7_t * Im_out, + const uint16_t dim_im_out_x, + const uint16_t dim_im_out_y, + q15_t * bufferA, + q7_t * bufferB); + + /** + * @brief Q7 version of convolution for RGB image + * @param[in] Im_in pointer to input tensor + * @param[in] dim_im_in input tensor dimention + * @param[in] ch_im_in number of input tensor channels + * @param[in] wt pointer to kernel weights + * @param[in] ch_im_out number of filters, i.e., output tensor channels + * @param[in] dim_kernel filter kernel size + * @param[in] padding padding sizes + * @param[in] stride convolution stride + * @param[in] bias pointer to bias + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in,out] Im_out pointer to output tensor + * @param[in] dim_im_out output tensor dimension + * @param[in,out] bufferA pointer to buffer space for input + * @param[in,out] bufferB pointer to buffer space for output + * @return The function returns either + * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. + * + * This kernel is written exclusively for convolution with ch_im_in + * equals 3. This applies on the first layer of CNNs which has input + * image with RGB format. + */ + + arm_status arm_convolve_HWC_q7_RGB(const q7_t * Im_in, + const uint16_t dim_im_in, + const uint16_t ch_im_in, + const q7_t * wt, + const uint16_t ch_im_out, + const uint16_t dim_kernel, + const uint16_t padding, + const uint16_t stride, + const q7_t * bias, + const uint16_t bias_shift, + const uint16_t out_shift, + q7_t * Im_out, + const uint16_t dim_im_out, + q15_t * bufferA, + q7_t * bufferB); + + /** + * @brief Fast Q15 convolution function + * @param[in] Im_in pointer to input tensor + * @param[in] dim_im_in input tensor dimention + * @param[in] ch_im_in number of input tensor channels + * @param[in] wt pointer to kernel weights + * @param[in] ch_im_out number of filters, i.e., output tensor channels + * @param[in] dim_kernel filter kernel size + * @param[in] padding padding sizes + * @param[in] stride convolution stride + * @param[in] bias pointer to bias + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in,out] Im_out pointer to output tensor + * @param[in] dim_im_out output tensor dimension + * @param[in,out] bufferA pointer to buffer space for input + * @param[in,out] bufferB pointer to buffer space for output + * @return The function returns either + * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. + * + * This function is the version with full list of optimization tricks, but with + * some contraints: + * ch_im_in is multiple of 2 + * ch_im_out is multiple of 2 + */ + + arm_status arm_convolve_HWC_q15_fast(const q15_t * Im_in, + const uint16_t dim_im_in, + const uint16_t ch_im_in, + const q15_t * wt, + const uint16_t ch_im_out, + const uint16_t dim_kernel, + const uint16_t padding, + const uint16_t stride, + const q15_t * bias, + const uint16_t bias_shift, + const uint16_t out_shift, + q15_t * Im_out, + const uint16_t dim_im_out, + q15_t * bufferA, + q7_t * bufferB); + + /** + * @brief Fast Q15 convolution function (non-sqaure shape) + * @param[in] Im_in pointer to input tensor + * @param[in] dim_im_in_x input tensor dimention x + * @param[in] dim_im_in_y input tensor dimention y + * @param[in] ch_im_in number of input tensor channels + * @param[in] wt pointer to kernel weights + * @param[in] ch_im_out number of filters, i.e., output tensor channels + * @param[in] dim_kernel_x filter kernel size x + * @param[in] dim_kernel_y filter kernel size y + * @param[in] padding_x padding size x + * @param[in] padding_y padding size y + * @param[in] stride_x convolution stride x + * @param[in] stride_y convolution stride y + * @param[in] bias pointer to bias + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in,out] Im_out pointer to output tensor + * @param[in] dim_im_out_x output tensor dimension x + * @param[in] dim_im_out_y output tensor dimension y + * @param[in,out] bufferA pointer to buffer space for input + * @param[in,out] bufferB pointer to buffer space for output + * @return The function returns either + * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. + * + * @details + * + * <b>Buffer size:</b> + * + * bufferA size: 2*ch_im_in*dim_kernel*dim_kernel + * + * bufferB size: 0 + * + * <b>Input dimension constraints:</b> + * + * ch_im_in is multiple of 2 + * + * ch_im_out is multipe of 2 + * + */ + + arm_status + arm_convolve_HWC_q15_fast_nonsquare(const q15_t * Im_in, + const uint16_t dim_im_in_x, + const uint16_t dim_im_in_y, + const uint16_t ch_im_in, + const q15_t * wt, + const uint16_t ch_im_out, + const uint16_t dim_kernel_x, + const uint16_t dim_kernel_y, + const uint16_t padding_x, + const uint16_t padding_y, + const uint16_t stride_x, + const uint16_t stride_y, + const q15_t * bias, + const uint16_t bias_shift, + const uint16_t out_shift, + q15_t * Im_out, + const uint16_t dim_im_out_x, + const uint16_t dim_im_out_y, + q15_t * bufferA, + q7_t * bufferB); + + /** + * @brief Q7 depthwise separable convolution function + * @param[in] Im_in pointer to input tensor + * @param[in] dim_im_in input tensor dimention + * @param[in] ch_im_in number of input tensor channels + * @param[in] wt pointer to kernel weights + * @param[in] ch_im_out number of filters, i.e., output tensor channels + * @param[in] dim_kernel filter kernel size + * @param[in] padding padding sizes + * @param[in] stride convolution stride + * @param[in] bias pointer to bias + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in,out] Im_out pointer to output tensor + * @param[in] dim_im_out output tensor dimension + * @param[in,out] bufferA pointer to buffer space for input + * @param[in,out] bufferB pointer to buffer space for output + * @return The function returns either + * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. + * + * This function is the version with full list of optimization tricks, but with + * some contraints: + * ch_im_in is multiple of 2 + * ch_im_out is multiple of 2 + */ + + arm_status arm_depthwise_separable_conv_HWC_q7(const q7_t * Im_in, + const uint16_t dim_im_in, + const uint16_t ch_im_in, + const q7_t * wt, + const uint16_t ch_im_out, + const uint16_t dim_kernel, + const uint16_t padding, + const uint16_t stride, + const q7_t * bias, + const uint16_t bias_shift, + const uint16_t out_shift, + q7_t * Im_out, + const uint16_t dim_im_out, + q15_t * bufferA, + q7_t * bufferB); + + /** + * @brief Q7 depthwise separable convolution function (non-square shape) + * @param[in] Im_in pointer to input tensor + * @param[in] dim_im_in_x input tensor dimention x + * @param[in] dim_im_in_y input tensor dimention y + * @param[in] ch_im_in number of input tensor channels + * @param[in] wt pointer to kernel weights + * @param[in] ch_im_out number of filters, i.e., output tensor channels + * @param[in] dim_kernel_x filter kernel size x + * @param[in] dim_kernel_y filter kernel size y + * @param[in] padding_x padding sizes x + * @param[in] padding_y padding sizes y + * @param[in] stride_x convolution stride x + * @param[in] stride_y convolution stride y + * @param[in] bias pointer to bias + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in,out] Im_out pointer to output tensor + * @param[in] dim_im_out_x output tensor dimension x + * @param[in] dim_im_out_y output tensor dimension y + * @param[in,out] bufferA pointer to buffer space for input + * @param[in,out] bufferB pointer to buffer space for output + * @return The function returns either + * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. + * + * This function is the version with full list of optimization tricks, but with + * some contraints: + * ch_im_in is multiple of 2 + * ch_im_out is multiple of 2 + */ + arm_status arm_depthwise_separable_conv_HWC_q7_nonsquare(const q7_t * Im_in, + const uint16_t dim_im_in_x, + const uint16_t dim_im_in_y, + const uint16_t ch_im_in, + const q7_t * wt, + const uint16_t ch_im_out, + const uint16_t dim_kernel_x, + const uint16_t dim_kernel_y, + const uint16_t padding_x, + const uint16_t padding_y, + const uint16_t stride_x, + const uint16_t stride_y, + const q7_t * bias, + const uint16_t bias_shift, + const uint16_t out_shift, + q7_t * Im_out, + const uint16_t dim_im_out_x, + const uint16_t dim_im_out_y, + q15_t * bufferA, + q7_t * bufferB); + + +/** + * @defgroup FC Fully-connected Layer Functions + * + * Perform fully-connected layer + * + * Fully-connected layer is basically a matrix-vector multiplication + * with bias. The matrix is the weights and the input/output vectors + * are the activation values. Supported {weight, activation} precisions + * include {8-bit, 8-bit}, {16-bit, 16-bit}, and {8-bit, 16-bit}. + * + * Here we have two types of kernel functions. The basic function + * implements the function using regular GEMV approach. The opt functions + * operates with weights in interleaved formats. + * + */ + + /** + * @brief Q7 basic fully-connected layer function + * @param[in] pV pointer to input vector + * @param[in] pM pointer to matrix weights + * @param[in] dim_vec length of the vector + * @param[in] num_of_rows number of rows in weight matrix + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in] bias pointer to bias + * @param[in,out] pOut pointer to output vector + * @param[in,out] vec_buffer pointer to buffer space for input + * @return The function returns <code>ARM_MATH_SUCCESS</code> + * + */ + + arm_status arm_fully_connected_q7(const q7_t * pV, + const q7_t * pM, + const uint16_t dim_vec, + const uint16_t num_of_rows, + const uint16_t bias_shift, + const uint16_t out_shift, + const q7_t * bias, + q7_t * pOut, + q15_t * vec_buffer); + + /** + * @brief Q7 opt fully-connected layer function + * @param[in] pV pointer to input vector + * @param[in] pM pointer to matrix weights + * @param[in] dim_vec length of the vector + * @param[in] num_of_rows number of rows in weight matrix + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in] bias pointer to bias + * @param[in,out] pOut pointer to output vector + * @param[in,out] vec_buffer pointer to buffer space for input + * @return The function returns <code>ARM_MATH_SUCCESS</code> + * + */ + + arm_status arm_fully_connected_q7_opt(const q7_t * pV, + const q7_t * pM, + const uint16_t dim_vec, + const uint16_t num_of_rows, + const uint16_t bias_shift, + const uint16_t out_shift, + const q7_t * bias, + q7_t * pOut, + q15_t * vec_buffer); + + /** + * @brief Q15 basic fully-connected layer function + * @param[in] pV pointer to input vector + * @param[in] pM pointer to matrix weights + * @param[in] dim_vec length of the vector + * @param[in] num_of_rows number of rows in weight matrix + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in] bias pointer to bias + * @param[in,out] pOut pointer to output vector + * @param[in,out] vec_buffer pointer to buffer space for input + * @return The function returns <code>ARM_MATH_SUCCESS</code> + * + */ + + arm_status arm_fully_connected_q15(const q15_t * pV, + const q15_t * pM, + const uint16_t dim_vec, + const uint16_t num_of_rows, + const uint16_t bias_shift, + const uint16_t out_shift, + const q15_t * bias, + q15_t * pOut, + q15_t * vec_buffer); + + /** + * @brief Q15 opt fully-connected layer function + * @param[in] pV pointer to input vector + * @param[in] pM pointer to matrix weights + * @param[in] dim_vec length of the vector + * @param[in] num_of_rows number of rows in weight matrix + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in] bias pointer to bias + * @param[in,out] pOut pointer to output vector + * @param[in,out] vec_buffer pointer to buffer space for input + * @return The function returns <code>ARM_MATH_SUCCESS</code> + * + */ + + arm_status arm_fully_connected_q15_opt(const q15_t * pV, + const q15_t * pM, + const uint16_t dim_vec, + const uint16_t num_of_rows, + const uint16_t bias_shift, + const uint16_t out_shift, + const q15_t * bias, + q15_t * pOut, + q15_t * vec_buffer); + + /** + * @brief Mixed Q15-Q7 fully-connected layer function + * @param[in] pV pointer to input vector + * @param[in] pM pointer to matrix weights + * @param[in] dim_vec length of the vector + * @param[in] num_of_rows number of rows in weight matrix + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in] bias pointer to bias + * @param[in,out] pOut pointer to output vector + * @param[in,out] vec_buffer pointer to buffer space for input + * @return The function returns <code>ARM_MATH_SUCCESS</code> + * + */ + + arm_status arm_fully_connected_mat_q7_vec_q15(const q15_t * pV, + const q7_t * pM, + const uint16_t dim_vec, + const uint16_t num_of_rows, + const uint16_t bias_shift, + const uint16_t out_shift, + const q7_t * bias, + q15_t * pOut, + q15_t * vec_buffer); + + /** + * @brief Mixed Q15-Q7 opt fully-connected layer function + * @param[in] pV pointer to input vector + * @param[in] pM pointer to matrix weights + * @param[in] dim_vec length of the vector + * @param[in] num_of_rows number of rows in weight matrix + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in] bias pointer to bias + * @param[in,out] pOut pointer to output vector + * @param[in,out] vec_buffer pointer to buffer space for input + * @return The function returns <code>ARM_MATH_SUCCESS</code> + * + */ + + arm_status arm_fully_connected_mat_q7_vec_q15_opt(const q15_t * pV, + const q7_t * pM, + const uint16_t dim_vec, + const uint16_t num_of_rows, + const uint16_t bias_shift, + const uint16_t out_shift, + const q7_t * bias, + q15_t * pOut, + q15_t * vec_buffer); + +/** + * @brief Matrix-Multiplication Kernels for Convolution + * + * These functions are used within convolution layer functions for + * matrix multiplication. + * + * The implementation is similar to CMSIS-DSP arm_mat_mult functions + * with one Q7 and one Q15 operands. The Q15 operand is the im2col + * output which is always with 2 columns. + * + */ + + /** + * @brief Matrix-multiplication function for convolution + * @param[in] pA pointer to operand A + * @param[in] pInBuffer pointer to operand B, always conssists of 2 vectors + * @param[in] ch_im_out numRow of A + * @param[in] numCol_A numCol of A + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in] bias the bias + * @param[in,out] pOut pointer to output + * @return The function returns the incremented output pointer + */ + + q7_t *arm_nn_mat_mult_kernel_q7_q15(const q7_t * pA, + const q15_t * pInBuffer, + const uint16_t ch_im_out, + const uint16_t numCol_A, + const uint16_t bias_shift, + const uint16_t out_shift, + const q7_t * bias, + q7_t * pOut); + + /** + * @brief Matrix-multiplication function for convolution with reordered columns + * @param[in] pA pointer to operand A + * @param[in] pInBuffer pointer to operand B, always conssists of 2 vectors + * @param[in] ch_im_out numRow of A + * @param[in] numCol_A numCol of A + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in] bias the bias + * @param[in,out] pOut pointer to output + * @return The function returns the incremented output pointer + */ + + q7_t *arm_nn_mat_mult_kernel_q7_q15_reordered(const q7_t * pA, + const q15_t * pInBuffer, + const uint16_t ch_im_out, + const uint16_t numCol_A, + const uint16_t bias_shift, + const uint16_t out_shift, + const q7_t * bias, + q7_t * pOut); + +#ifdef __cplusplus +} +#endif + +/* + * Other functions + * These layers are typically not timing critical + * Basic implementation is supported here + */ + +#ifdef __cplusplus +extern "C" +{ +#endif + +/** + * @defgroup Acti Neural Network Activation Functions + * + * Perform activation layers, including ReLU (Rectified Linear Unit), + * sigmoid and tanh + * + */ + + /** + * @brief Q7 RELU function + * @param[in,out] data pointer to input + * @param[in] size number of elements + * @return none. + */ + + void arm_relu_q7(q7_t * data, uint16_t size); + + /** + * @brief Q15 RELU function + * @param[in,out] data pointer to input + * @param[in] size number of elements + * @return none. + */ + + void arm_relu_q15(q15_t * data, uint16_t size); + + /** + * @brief Q7 neural network activation function using direct table look-up + * @param[in,out] data pointer to input + * @param[in] size number of elements + * @param[in] int_width bit-width of the integer part, assume to be smaller than 3 + * @param[in] type type of activation functions + * @return none. + */ + + void arm_nn_activations_direct_q7(q7_t * data, uint16_t size, uint16_t int_width, + arm_nn_activation_type type); + + /** + * @brief Q15 neural network activation function using direct table look-up + * @param[in,out] data pointer to input + * @param[in] size number of elements + * @param[in] int_width bit-width of the integer part, assume to be smaller than 3 + * @param[in] type type of activation functions + * @return none. + */ + + void arm_nn_activations_direct_q15(q15_t * data, uint16_t size, uint16_t int_width, + arm_nn_activation_type type); + +/** + * @defgroup Pooling Neural Network Pooling Functions + * + * Perform pooling functions, including max pooling and average pooling + * + */ + + /** + * @brief Q7 max pooling function + * @param[in] Im_in pointer to input tensor + * @param[in] dim_im_in input tensor dimention + * @param[in] ch_im_in number of input tensor channels + * @param[in] dim_kernel filter kernel size + * @param[in] padding padding sizes + * @param[in] stride convolution stride + * @param[in] dim_im_out output tensor dimension + * @param[in,out] bufferA pointer to buffer space for input + * @param[in,out] Im_out pointer to output tensor + * @return none. + * + */ + + void arm_maxpool_q7_HWC(q7_t * Im_in, + const uint16_t dim_im_in, + const uint16_t ch_im_in, + const uint16_t dim_kernel, + const uint16_t padding, + const uint16_t stride, + const uint16_t dim_im_out, + q7_t * bufferA, + q7_t * Im_out); + + /** + * @brief Q7 average pooling function + * @param[in] Im_in pointer to input tensor + * @param[in] dim_im_in input tensor dimention + * @param[in] ch_im_in number of input tensor channels + * @param[in] dim_kernel filter kernel size + * @param[in] padding padding sizes + * @param[in] stride convolution stride + * @param[in] dim_im_out output tensor dimension + * @param[in,out] bufferA pointer to buffer space for input + * @param[in,out] Im_out pointer to output tensor + * @return none. + * + */ + + void arm_avepool_q7_HWC(q7_t * Im_in, + const uint16_t dim_im_in, + const uint16_t ch_im_in, + const uint16_t dim_kernel, + const uint16_t padding, + const uint16_t stride, + const uint16_t dim_im_out, + q7_t * bufferA, + q7_t * Im_out); + +/** + * @defgroup Softmax Softmax Functions + * + * EXP(2) based softmax function + * + */ + + /** + * @brief Q7 softmax function + * @param[in] vec_in pointer to input vector + * @param[in] dim_vec input vector dimention + * @param[out] p_out pointer to output vector + * @return none. + * + */ + + void arm_softmax_q7(const q7_t * vec_in, const uint16_t dim_vec, q7_t * p_out); + + /** + * @brief Q15 softmax function + * @param[in] vec_in pointer to input vector + * @param[in] dim_vec input vector dimention + * @param[out] p_out pointer to output vector + * @return none. + * + */ + + void arm_softmax_q15(const q15_t * vec_in, const uint16_t dim_vec, q15_t * p_out); + +#ifdef __cplusplus +} +#endif + +#endif diff --git a/NN/Include/arm_nnsupportfunctions.h b/NN/Include/arm_nnsupportfunctions.h new file mode 100644 index 0000000..8460190 --- /dev/null +++ b/NN/Include/arm_nnsupportfunctions.h @@ -0,0 +1,202 @@ +/* + * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_nnsupportfunctions.h + * Description: Public header file of support functions for CMSIS NN Library + * + * $Date: 13. July 2018 + * $Revision: V.1.0.0 + * + * Target Processor: Cortex-M cores + * -------------------------------------------------------------------- */ + +#ifndef _ARM_NNSUPPORTFUNCTIONS_H_ +#define _ARM_NNSUPPORTFUNCTIONS_H_ + +#include "arm_math.h" +#include "arm_common_tables.h" +//#include <cstring> + +#ifdef __cplusplus +extern "C" +{ +#endif + +/** + * @brief Union for SIMD access of Q31/Q15/Q7 types + */ +union arm_nnword +{ + q31_t word; + /**< Q31 type */ + q15_t half_words[2]; + /**< Q15 type */ + q7_t bytes[4]; + /**< Q7 type */ +}; + +/** + * @brief Struct for specifying activation function types + * + */ +typedef enum +{ + ARM_SIGMOID = 0, + /**< Sigmoid activation function */ + ARM_TANH = 1, + /**< Tanh activation function */ +} arm_nn_activation_type; + +/** + * @defgroup nndata_convert Neural Network Data Conversion Functions + * + * Perform data type conversion in-between neural network operations + * + */ + +/** + * @brief Converts the elements of the Q7 vector to Q15 vector without left-shift + * @param[in] *pSrc points to the Q7 input vector + * @param[out] *pDst points to the Q15 output vector + * @param[in] blockSize length of the input vector + * @return none. + * + */ + +void arm_q7_to_q15_no_shift(const q7_t * pSrc, q15_t * pDst, uint32_t blockSize); + +/** + * @brief Converts the elements of the Q7 vector to reordered Q15 vector without left-shift + * @param[in] *pSrc points to the Q7 input vector + * @param[out] *pDst points to the Q15 output vector + * @param[in] blockSize length of the input vector + * @return none. + * + */ + +void arm_q7_to_q15_reordered_no_shift(const q7_t * pSrc, q15_t * pDst, uint32_t blockSize); + +#if defined (ARM_MATH_DSP) + +/** + * @brief read and expand one Q7 word into two Q15 words + */ + +__STATIC_FORCEINLINE void *read_and_pad(void *source, q31_t * out1, q31_t * out2) +{ + q31_t inA = *__SIMD32(source)++; + q31_t inAbuf1 = __SXTB16(__ROR(inA, 8)); + q31_t inAbuf2 = __SXTB16(inA); + +#ifndef ARM_MATH_BIG_ENDIAN + *out2 = __PKHTB(inAbuf1, inAbuf2, 16); + *out1 = __PKHBT(inAbuf2, inAbuf1, 16); +#else + *out1 = __PKHTB(inAbuf1, inAbuf2, 16); + *out2 = __PKHBT(inAbuf2, inAbuf1, 16); +#endif + + return source; +} + +/** + * @brief read and expand one Q7 word into two Q15 words with reordering + */ + +__STATIC_FORCEINLINE void *read_and_pad_reordered(void *source, q31_t * out1, q31_t * out2) +{ + q31_t inA = *__SIMD32(source)++; +#ifndef ARM_MATH_BIG_ENDIAN + *out2 = __SXTB16(__ROR(inA, 8)); + *out1 = __SXTB16(inA); +#else + *out1 = __SXTB16(__ROR(inA, 8)); + *out2 = __SXTB16(inA); +#endif + + return source; +} +#endif + +/** + * @defgroup NNBasicMath Basic Math Functions for Neural Network Computation + * + * Basic Math Functions for Neural Network Computation + * + */ + +/** + * @brief Q7 vector multiplication with variable output shifts + * @param[in] *pSrcA pointer to the first input vector + * @param[in] *pSrcB pointer to the second input vector + * @param[out] *pDst pointer to the output vector + * @param[in] out_shift amount of right-shift for output + * @param[in] blockSize number of samples in each vector + * @return none. + * + * <b>Scaling and Overflow Behavior:</b> + * \par + * The function uses saturating arithmetic. + * Results outside of the allowable Q15 range [0x8000 0x7FFF] will be saturated. + */ + +void arm_nn_mult_q15( + q15_t * pSrcA, + q15_t * pSrcB, + q15_t * pDst, + const uint16_t out_shift, + uint32_t blockSize); + +/** + * @brief Q7 vector multiplication with variable output shifts + * @param[in] *pSrcA pointer to the first input vector + * @param[in] *pSrcB pointer to the second input vector + * @param[out] *pDst pointer to the output vector + * @param[in] out_shift amount of right-shift for output + * @param[in] blockSize number of samples in each vector + * @return none. + * + * <b>Scaling and Overflow Behavior:</b> + * \par + * The function uses saturating arithmetic. + * Results outside of the allowable Q7 range [0x80 0x7F] will be saturated. + */ + +void arm_nn_mult_q7( + q7_t * pSrcA, + q7_t * pSrcB, + q7_t * pDst, + const uint16_t out_shift, + uint32_t blockSize); + +/** + * @brief defition to adding rouding offset + */ +#ifndef ARM_NN_TRUNCATE + #define NN_ROUND(out_shift) ( 0x1 << (out_shift - 1) ) +#else + #define NN_ROUND(out_shift) 0 +#endif + +#ifdef __cplusplus +} +#endif + +#endif |