summaryrefslogtreecommitdiff
path: root/DSP_Lib/Source/FilteringFunctions/arm_biquad_cascade_df1_fast_q31.c
diff options
context:
space:
mode:
Diffstat (limited to 'DSP_Lib/Source/FilteringFunctions/arm_biquad_cascade_df1_fast_q31.c')
-rw-r--r--DSP_Lib/Source/FilteringFunctions/arm_biquad_cascade_df1_fast_q31.c305
1 files changed, 0 insertions, 305 deletions
diff --git a/DSP_Lib/Source/FilteringFunctions/arm_biquad_cascade_df1_fast_q31.c b/DSP_Lib/Source/FilteringFunctions/arm_biquad_cascade_df1_fast_q31.c
deleted file mode 100644
index b135b2e..0000000
--- a/DSP_Lib/Source/FilteringFunctions/arm_biquad_cascade_df1_fast_q31.c
+++ /dev/null
@@ -1,305 +0,0 @@
-/* ----------------------------------------------------------------------
-* Copyright (C) 2010-2014 ARM Limited. All rights reserved.
-*
-* $Date: 19. October 2015
-* $Revision: V.1.4.5 a
-*
-* Project: CMSIS DSP Library
-* Title: arm_biquad_cascade_df1_fast_q31.c
-*
-* Description: Processing function for the
-* Q31 Fast Biquad cascade DirectFormI(DF1) filter.
-*
-* Target Processor: Cortex-M4/Cortex-M3
-*
-* Redistribution and use in source and binary forms, with or without
-* modification, are permitted provided that the following conditions
-* are met:
-* - Redistributions of source code must retain the above copyright
-* notice, this list of conditions and the following disclaimer.
-* - Redistributions in binary form must reproduce the above copyright
-* notice, this list of conditions and the following disclaimer in
-* the documentation and/or other materials provided with the
-* distribution.
-* - Neither the name of ARM LIMITED nor the names of its contributors
-* may be used to endorse or promote products derived from this
-* software without specific prior written permission.
-*
-* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
-* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
-* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
-* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
-* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
-* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
-* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
-* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
-* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-* POSSIBILITY OF SUCH DAMAGE.
-* -------------------------------------------------------------------- */
-
-#include "arm_math.h"
-
-/**
- * @ingroup groupFilters
- */
-
-/**
- * @addtogroup BiquadCascadeDF1
- * @{
- */
-
-/**
- * @details
- *
- * @param[in] *S points to an instance of the Q31 Biquad cascade structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data.
- * @param[in] blockSize number of samples to process per call.
- * @return none.
- *
- * <b>Scaling and Overflow Behavior:</b>
- * \par
- * This function is optimized for speed at the expense of fixed-point precision and overflow protection.
- * The result of each 1.31 x 1.31 multiplication is truncated to 2.30 format.
- * These intermediate results are added to a 2.30 accumulator.
- * Finally, the accumulator is saturated and converted to a 1.31 result.
- * The fast version has the same overflow behavior as the standard version and provides less precision since it discards the low 32 bits of each multiplication result.
- * In order to avoid overflows completely the input signal must be scaled down by two bits and lie in the range [-0.25 +0.25). Use the intialization function
- * arm_biquad_cascade_df1_init_q31() to initialize filter structure.
- *
- * \par
- * Refer to the function <code>arm_biquad_cascade_df1_q31()</code> for a slower implementation of this function which uses 64-bit accumulation to provide higher precision. Both the slow and the fast versions use the same instance structure.
- * Use the function <code>arm_biquad_cascade_df1_init_q31()</code> to initialize the filter structure.
- */
-
-void arm_biquad_cascade_df1_fast_q31(
- const arm_biquad_casd_df1_inst_q31 * S,
- q31_t * pSrc,
- q31_t * pDst,
- uint32_t blockSize)
-{
- q31_t acc = 0; /* accumulator */
- q31_t Xn1, Xn2, Yn1, Yn2; /* Filter state variables */
- q31_t b0, b1, b2, a1, a2; /* Filter coefficients */
- q31_t *pIn = pSrc; /* input pointer initialization */
- q31_t *pOut = pDst; /* output pointer initialization */
- q31_t *pState = S->pState; /* pState pointer initialization */
- q31_t *pCoeffs = S->pCoeffs; /* coeff pointer initialization */
- q31_t Xn; /* temporary input */
- int32_t shift = (int32_t) S->postShift + 1; /* Shift to be applied to the output */
- uint32_t sample, stage = S->numStages; /* loop counters */
-
-
- do
- {
- /* Reading the coefficients */
- b0 = *pCoeffs++;
- b1 = *pCoeffs++;
- b2 = *pCoeffs++;
- a1 = *pCoeffs++;
- a2 = *pCoeffs++;
-
- /* Reading the state values */
- Xn1 = pState[0];
- Xn2 = pState[1];
- Yn1 = pState[2];
- Yn2 = pState[3];
-
- /* Apply loop unrolling and compute 4 output values simultaneously. */
- /* The variables acc ... acc3 hold output values that are being computed:
- *
- * acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
- */
-
- sample = blockSize >> 2u;
-
- /* First part of the processing with loop unrolling. Compute 4 outputs at a time.
- ** a second loop below computes the remaining 1 to 3 samples. */
- while(sample > 0u)
- {
- /* Read the input */
- Xn = *pIn;
-
- /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
- /* acc = b0 * x[n] */
- /*acc = (q31_t) (((q63_t) b1 * Xn1) >> 32);*/
- mult_32x32_keep32_R(acc, b1, Xn1);
- /* acc += b1 * x[n-1] */
- /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b0 * (Xn))) >> 32);*/
- multAcc_32x32_keep32_R(acc, b0, Xn);
- /* acc += b[2] * x[n-2] */
- /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b2 * (Xn2))) >> 32);*/
- multAcc_32x32_keep32_R(acc, b2, Xn2);
- /* acc += a1 * y[n-1] */
- /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a1 * (Yn1))) >> 32);*/
- multAcc_32x32_keep32_R(acc, a1, Yn1);
- /* acc += a2 * y[n-2] */
- /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a2 * (Yn2))) >> 32);*/
- multAcc_32x32_keep32_R(acc, a2, Yn2);
-
- /* The result is converted to 1.31 , Yn2 variable is reused */
- Yn2 = acc << shift;
-
- /* Read the second input */
- Xn2 = *(pIn + 1u);
-
- /* Store the output in the destination buffer. */
- *pOut = Yn2;
-
- /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
- /* acc = b0 * x[n] */
- /*acc = (q31_t) (((q63_t) b0 * (Xn2)) >> 32);*/
- mult_32x32_keep32_R(acc, b0, Xn2);
- /* acc += b1 * x[n-1] */
- /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b1 * (Xn))) >> 32);*/
- multAcc_32x32_keep32_R(acc, b1, Xn);
- /* acc += b[2] * x[n-2] */
- /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b2 * (Xn1))) >> 32);*/
- multAcc_32x32_keep32_R(acc, b2, Xn1);
- /* acc += a1 * y[n-1] */
- /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a1 * (Yn2))) >> 32);*/
- multAcc_32x32_keep32_R(acc, a1, Yn2);
- /* acc += a2 * y[n-2] */
- /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a2 * (Yn1))) >> 32);*/
- multAcc_32x32_keep32_R(acc, a2, Yn1);
-
- /* The result is converted to 1.31, Yn1 variable is reused */
- Yn1 = acc << shift;
-
- /* Read the third input */
- Xn1 = *(pIn + 2u);
-
- /* Store the output in the destination buffer. */
- *(pOut + 1u) = Yn1;
-
- /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
- /* acc = b0 * x[n] */
- /*acc = (q31_t) (((q63_t) b0 * (Xn1)) >> 32);*/
- mult_32x32_keep32_R(acc, b0, Xn1);
- /* acc += b1 * x[n-1] */
- /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b1 * (Xn2))) >> 32);*/
- multAcc_32x32_keep32_R(acc, b1, Xn2);
- /* acc += b[2] * x[n-2] */
- /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b2 * (Xn))) >> 32);*/
- multAcc_32x32_keep32_R(acc, b2, Xn);
- /* acc += a1 * y[n-1] */
- /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a1 * (Yn1))) >> 32);*/
- multAcc_32x32_keep32_R(acc, a1, Yn1);
- /* acc += a2 * y[n-2] */
- /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a2 * (Yn2))) >> 32);*/
- multAcc_32x32_keep32_R(acc, a2, Yn2);
-
- /* The result is converted to 1.31, Yn2 variable is reused */
- Yn2 = acc << shift;
-
- /* Read the forth input */
- Xn = *(pIn + 3u);
-
- /* Store the output in the destination buffer. */
- *(pOut + 2u) = Yn2;
- pIn += 4u;
-
- /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
- /* acc = b0 * x[n] */
- /*acc = (q31_t) (((q63_t) b0 * (Xn)) >> 32);*/
- mult_32x32_keep32_R(acc, b0, Xn);
- /* acc += b1 * x[n-1] */
- /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b1 * (Xn1))) >> 32);*/
- multAcc_32x32_keep32_R(acc, b1, Xn1);
- /* acc += b[2] * x[n-2] */
- /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b2 * (Xn2))) >> 32);*/
- multAcc_32x32_keep32_R(acc, b2, Xn2);
- /* acc += a1 * y[n-1] */
- /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a1 * (Yn2))) >> 32);*/
- multAcc_32x32_keep32_R(acc, a1, Yn2);
- /* acc += a2 * y[n-2] */
- /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a2 * (Yn1))) >> 32);*/
- multAcc_32x32_keep32_R(acc, a2, Yn1);
-
- /* Every time after the output is computed state should be updated. */
- /* The states should be updated as: */
- /* Xn2 = Xn1 */
- Xn2 = Xn1;
-
- /* The result is converted to 1.31, Yn1 variable is reused */
- Yn1 = acc << shift;
-
- /* Xn1 = Xn */
- Xn1 = Xn;
-
- /* Store the output in the destination buffer. */
- *(pOut + 3u) = Yn1;
- pOut += 4u;
-
- /* decrement the loop counter */
- sample--;
- }
-
- /* If the blockSize is not a multiple of 4, compute any remaining output samples here.
- ** No loop unrolling is used. */
- sample = (blockSize & 0x3u);
-
- while(sample > 0u)
- {
- /* Read the input */
- Xn = *pIn++;
-
- /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
- /* acc = b0 * x[n] */
- /*acc = (q31_t) (((q63_t) b0 * (Xn)) >> 32);*/
- mult_32x32_keep32_R(acc, b0, Xn);
- /* acc += b1 * x[n-1] */
- /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b1 * (Xn1))) >> 32);*/
- multAcc_32x32_keep32_R(acc, b1, Xn1);
- /* acc += b[2] * x[n-2] */
- /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b2 * (Xn2))) >> 32);*/
- multAcc_32x32_keep32_R(acc, b2, Xn2);
- /* acc += a1 * y[n-1] */
- /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a1 * (Yn1))) >> 32);*/
- multAcc_32x32_keep32_R(acc, a1, Yn1);
- /* acc += a2 * y[n-2] */
- /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a2 * (Yn2))) >> 32);*/
- multAcc_32x32_keep32_R(acc, a2, Yn2);
-
- /* The result is converted to 1.31 */
- acc = acc << shift;
-
- /* Every time after the output is computed state should be updated. */
- /* The states should be updated as: */
- /* Xn2 = Xn1 */
- /* Xn1 = Xn */
- /* Yn2 = Yn1 */
- /* Yn1 = acc */
- Xn2 = Xn1;
- Xn1 = Xn;
- Yn2 = Yn1;
- Yn1 = acc;
-
- /* Store the output in the destination buffer. */
- *pOut++ = acc;
-
- /* decrement the loop counter */
- sample--;
- }
-
- /* The first stage goes from the input buffer to the output buffer. */
- /* Subsequent stages occur in-place in the output buffer */
- pIn = pDst;
-
- /* Reset to destination pointer */
- pOut = pDst;
-
- /* Store the updated state variables back into the pState array */
- *pState++ = Xn1;
- *pState++ = Xn2;
- *pState++ = Yn1;
- *pState++ = Yn2;
-
- } while(--stage);
-}
-
-/**
- * @} end of BiquadCascadeDF1 group
- */