diff options
author | Ali Labbene <ali.labbene@st.com> | 2019-12-11 08:59:21 +0100 |
---|---|---|
committer | Ali Labbene <ali.labbene@st.com> | 2019-12-16 16:35:24 +0100 |
commit | 9f95ff5b6ba01db09552b84a0ab79607060a2666 (patch) | |
tree | 8a6e0dda832555c692307869aed49d07ee7facfe /NN/Source/FullyConnectedFunctions | |
parent | 76177aa280494bb36d7a0bcbda1078d4db717020 (diff) | |
download | st-cmsis-core-lowfat-9f95ff5b6ba01db09552b84a0ab79607060a2666.tar.gz st-cmsis-core-lowfat-9f95ff5b6ba01db09552b84a0ab79607060a2666.tar.bz2 st-cmsis-core-lowfat-9f95ff5b6ba01db09552b84a0ab79607060a2666.zip |
Official ARM version: v5.4.0
Add CMSIS V5.4.0, please refer to index.html available under \docs folder.
Note: content of \CMSIS\Core\Include has been copied under \Include to keep the same structure
used in existing projects, and thus avoid projects mass update
Note: the following components have been removed from ARM original delivery (as not used in ST packages)
- CMSIS_EW2018.pdf
- .gitattributes
- .gitignore
- \Device
- \CMSIS
- \CoreValidation
- \DAP
- \Documentation
- \DoxyGen
- \Driver
- \Pack
- \RTOS\CMSIS_RTOS_Tutorial.pdf
- \RTOS\RTX
- \RTOS\Template
- \RTOS2\RTX
- \Utilities
- All ARM/GCC projects files are deleted from \DSP, \RTOS and \RTOS2
Change-Id: Ia026c3f0f0d016627a4fb5a9032852c33d24b4d3
Diffstat (limited to 'NN/Source/FullyConnectedFunctions')
6 files changed, 1809 insertions, 0 deletions
diff --git a/NN/Source/FullyConnectedFunctions/arm_fully_connected_mat_q7_vec_q15.c b/NN/Source/FullyConnectedFunctions/arm_fully_connected_mat_q7_vec_q15.c new file mode 100644 index 0000000..2746967 --- /dev/null +++ b/NN/Source/FullyConnectedFunctions/arm_fully_connected_mat_q7_vec_q15.c @@ -0,0 +1,199 @@ +/* + * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_fully_connected_mat_q7_vec_q15.c + * Description: Mixed Q15-Q7 fully-connected layer function + * + * $Date: 17. January 2018 + * $Revision: V.1.0.0 + * + * Target Processor: Cortex-M cores + * + * -------------------------------------------------------------------- */ + +#include "arm_math.h" +#include "arm_nnfunctions.h" + +/** + * @ingroup groupNN + */ + +/** + * @addtogroup FC + * @{ + */ + + /** + * @brief Mixed Q15-Q7 fully-connected layer function + * @param[in] pV pointer to input vector + * @param[in] pM pointer to matrix weights + * @param[in] dim_vec length of the vector + * @param[in] num_of_rows number of rows in weight matrix + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in] bias pointer to bias + * @param[in,out] pOut pointer to output vector + * @param[in,out] vec_buffer pointer to buffer space for input + * @return The function returns <code>ARM_MATH_SUCCESS</code> + * + * @details + * + * <b>Buffer size:</b> + * + * vec_buffer size: 0 + * + * Q7_Q15 version of the fully connected layer + * + * Weights are in q7_t and Activations are in q15_t + * + */ + +arm_status +arm_fully_connected_mat_q7_vec_q15(const q15_t * pV, + const q7_t * pM, + const uint16_t dim_vec, + const uint16_t num_of_rows, + const uint16_t bias_shift, + const uint16_t out_shift, + const q7_t * bias, + q15_t * pOut, + q15_t * vec_buffer) +{ + +#if defined (ARM_MATH_DSP) + /* Run the following code for Cortex-M4 and Cortex-M7 */ + + const q7_t *pB = pM; + const q7_t *pB2; + q15_t *pO = pOut; + const q7_t *pBias = bias; + const q15_t *pA = pV; + + uint16_t rowCnt = num_of_rows >> 1; + + while (rowCnt) + { + q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + uint16_t colCnt = dim_vec >> 2; + + pA = pV; + pB2 = pB + dim_vec; + + while (colCnt) + { + q31_t inV, inM11, inM12, inM21, inM22; + pB = (q7_t *) read_and_pad((void *)pB, &inM11, &inM12); + pB2 = (q7_t *) read_and_pad((void *)pB2, &inM21, &inM22); + + inV = *__SIMD32(pA)++; + + sum = __SMLAD(inV, inM11, sum); + sum2 = __SMLAD(inV, inM21, sum2); + + inV = *__SIMD32(pA)++; + + sum = __SMLAD(inV, inM12, sum); + sum2 = __SMLAD(inV, inM22, sum2); + + colCnt--; + } + colCnt = dim_vec & 0x3; + while (colCnt) + { + q15_t inV = *pA++; + q7_t inM = *pB++; + q7_t inM2 = *pB2++; + + sum += inV * inM; + sum2 += inV * inM2; + colCnt--; + } /* while over colCnt */ + *pO++ = (q15_t) (__SSAT((sum >> out_shift), 16)); + *pO++ = (q15_t) (__SSAT((sum2 >> out_shift), 16)); + + /*adjust the pointers and counters */ + pB += dim_vec; + rowCnt--; + } + + /* left-over part of the rows */ + rowCnt = num_of_rows & 0x1; + + while (rowCnt) + { + q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + uint16_t colCnt = dim_vec >> 2; + + pA = pV; + + while (colCnt) + { + q31_t inV1, inV2, inM11, inM12; + + pB = (q7_t *) read_and_pad((void *)pB, &inM11, &inM12); + + inV1 = *__SIMD32(pA)++; + sum = __SMLAD(inV1, inM11, sum); + + inV2 = *__SIMD32(pA)++; + sum = __SMLAD(inV2, inM12, sum); + + colCnt--; + } + + /* left-over of the vector */ + colCnt = dim_vec & 0x3; + while (colCnt) + { + q15_t inV = *pA++; + q7_t inM = *pB++; + sum += inV * inM; + colCnt--; + } + + *pO++ = (q15_t) (__SSAT((sum >> out_shift), 16)); + + rowCnt--; + } + +#else + int i, j; + /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ + for (i = 0; i < num_of_rows; i++) + { + int ip_out = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift); + for (j = 0; j < dim_vec; j++) + { + ip_out += pV[j] * pM[i * dim_vec + j]; + } + pOut[i] = (q15_t) __SSAT((ip_out >> out_shift), 16); + } + +#endif /* ARM_MATH_DSP */ + + /* Return to ARM_MATH_SUCCESS */ + return (ARM_MATH_SUCCESS); + +} + +/** + * @} end of FC group + */ diff --git a/NN/Source/FullyConnectedFunctions/arm_fully_connected_mat_q7_vec_q15_opt.c b/NN/Source/FullyConnectedFunctions/arm_fully_connected_mat_q7_vec_q15_opt.c new file mode 100644 index 0000000..7be156f --- /dev/null +++ b/NN/Source/FullyConnectedFunctions/arm_fully_connected_mat_q7_vec_q15_opt.c @@ -0,0 +1,403 @@ +/* + * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_fully_connected_mat_q7_vec_q15_opt.c + * Description: Mixed Q15-Q7 opt fully-connected layer function + * + * $Date: 17. January 2018 + * $Revision: V.1.0.0 + * + * Target Processor: Cortex-M cores + * + * -------------------------------------------------------------------- */ + +#include "arm_math.h" +#include "arm_nnfunctions.h" + +/** + * @ingroup groupNN + */ + +/** + * @addtogroup FC + * @{ + */ + + /** + * @brief Mixed Q15-Q7 opt fully-connected layer function + * @param[in] pV pointer to input vector + * @param[in] pM pointer to matrix weights + * @param[in] dim_vec length of the vector + * @param[in] num_of_rows number of rows in weight matrix + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in] bias pointer to bias + * @param[in,out] pOut pointer to output vector + * @param[in,out] vec_buffer pointer to buffer space for input + * @return The function returns <code>ARM_MATH_SUCCESS</code> + * + * @details + * + * <b>Buffer size:</b> + * + * vec_buffer size: 0 + * + * Q7_Q15 version of the fully connected layer + * + * Weights are in q7_t and Activations are in q15_t + * + * Limitation: x4 version requires weight reordering to work + * + * Here we use only one pointer to read 4 rows in the weight + * matrix. So if the original q7_t matrix looks like this: + * + * | a11 | a12 | a13 | a14 | a15 | a16 | a17 | + * + * | a21 | a22 | a23 | a24 | a25 | a26 | a27 | + * + * | a31 | a32 | a33 | a34 | a35 | a36 | a37 | + * + * | a41 | a42 | a43 | a44 | a45 | a46 | a47 | + * + * | a51 | a52 | a53 | a54 | a55 | a56 | a57 | + * + * | a61 | a62 | a63 | a64 | a65 | a66 | a67 | + * + * We operates on multiple-of-4 rows, so the first four rows becomes + * + * | a11 | a21 | a12 | a22 | a31 | a41 | a32 | a42 | + * + * | a13 | a23 | a14 | a24 | a33 | a43 | a34 | a44 | + * + * | a15 | a25 | a16 | a26 | a35 | a45 | a36 | a46 | + * + * The column left over will be in-order. + * which is: + * | a17 | a27 | a37 | a47 | + * + * For the left-over rows, we do 1x1 computation, so the data remains + * as its original order. + * + * So the stored weight matrix looks like this: + * + * | a11 | a21 | a12 | a22 | a31 | a41 | + * + * | a32 | a42 | a13 | a23 | a14 | a24 | + * + * | a33 | a43 | a34 | a44 | a15 | a25 | + * + * | a16 | a26 | a35 | a45 | a36 | a46 | + * + * | a17 | a27 | a37 | a47 | a51 | a52 | + * + * | a53 | a54 | a55 | a56 | a57 | a61 | + * + * | a62 | a63 | a64 | a65 | a66 | a67 | + * + */ + +arm_status +arm_fully_connected_mat_q7_vec_q15_opt(const q15_t * pV, + const q7_t * pM, + const uint16_t dim_vec, + const uint16_t num_of_rows, + const uint16_t bias_shift, + const uint16_t out_shift, const q7_t * bias, q15_t * pOut, q15_t * vec_buffer) +{ + +#if defined (ARM_MATH_DSP) + /* Run the following code for Cortex-M4 and Cortex-M7 */ + + const q7_t *pB = pM; + q15_t *pO = pOut; + const q7_t *pBias = bias; + const q15_t *pA = pV; + + uint16_t rowCnt = num_of_rows >> 2; + + while (rowCnt) + { + q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum3 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + + uint16_t colCnt = dim_vec >> 1; + + pA = pV; + +#ifdef USE_INTRINSIC + +#ifndef ARM_MATH_BIG_ENDIAN + + while (colCnt) + { + q31_t inM11, inM12, inM13, inM14; + q31_t inV; + + inV = *__SIMD32(pA)++; + inM11 = *__SIMD32(pB)++; + inM12 = __SXTB16(__ROR(inM11, 8)); + inM11 = __SXTB16(inM11); + sum = __SMLAD(inM11, inV, sum); + sum2 = __SMLAD(inM12, inV, sum2); + inM13 = *__SIMD32(pB)++; + inM14 = __SXTB16(__ROR(inM13, 8)); + inM13 = __SXTB16(inM13); + sum3 = __SMLAD(inM13, inV, sum3); + sum4 = __SMLAD(inM14, inV, sum4); + colCnt--; + } + +#else + + while (colCnt) + { + q31_t inM11, inM12, inM13, inM14; + q31_t inV; + + inV = *__SIMD32(pA)++; + inM11 = *__SIMD32(pB)++; + inM12 = __SXTB16(__ROR(inM11, 8)); + inM11 = __SXTB16(inM11); + sum = __SMLAD(inM12, inV, sum); + sum2 = __SMLAD(inM11, inV, sum2); + inM13 = *__SIMD32(pB)++; + inM14 = __SXTB16(__ROR(inM13, 8)); + inM13 = __SXTB16(inM13); + sum3 = __SMLAD(inM14, inV, sum3); + sum4 = __SMLAD(inM13, inV, sum4); + colCnt--; + } + +#endif /* ARM_MATH_BIG_ENDIAN */ + +#else + + /* + * register needed: + * loop counter: colCnt + * accumulators: sum, sum2, sum3, sum4 + * pointers: pB, pA + * weight data: inM11, inM12, inM13, inM14 + * activation data: inV + */ + +#ifndef ARM_MATH_BIG_ENDIAN + asm volatile ("COL_LOOP_%=:\n" + "ldr.w r4, [%[pA]], #4\n" + "ldr.w r1, [%[pB]], #8\n" + "mov.w r0, r1, ror #8\n" + "sxtb16 r0, r0\n" + "sxtb16 r1, r1\n" + "smlad %[sum], r4, r1, %[sum]\n" + "smlad %[sum2], r4, r0, %[sum2]\n" + "ldr.w r3, [%[pB], #-4]\n" + "mov.w r2, r3, ror #8\n" + "sxtb16 r2, r2\n" + "sxtb16 r3, r3\n" + "smlad %[sum3], r4, r3, %[sum3]\n" + "smlad %[sum4], r4, r2, %[sum4]\n" + "subs %[colCnt], #1\n" + "bne COL_LOOP_%=\n":[sum] "+r"(sum), + [sum2] "+r"(sum2),[sum3] "+r"(sum3), + [sum4] "+r"(sum4),[pB] "+r"(pB),[pA] "+r"(pA):[colCnt] "r"(colCnt):"r0", "r1", "r2", "r3", "r4"); +#else + asm volatile ("COL_LOOP_%=:\n" + "ldr.w r4, [%[pA]], #4\n" + "ldr.w r1, [%[pB]], #8\n" + "mov.w r0, r1, ror #8\n" + "sxtb16 r0, r0\n" + "sxtb16 r1, r1\n" + "smlad %[sum], r4, r0, %[sum]\n" + "smlad %[sum2], r4, r1, %[sum2]\n" + "ldr.w r3, [%[pB], #-4]\n" + "mov.w r2, r3, ror #8\n" + "sxtb16 r2, r2\n" + "sxtb16 r3, r3\n" + "smlad %[sum3], r4, r2, %[sum3]\n" + "smlad %[sum4], r4, r3, %[sum4]\n" + "subs %[colCnt], #1\n" + "bne COL_LOOP_%=\n":[sum] "+r"(sum), + [sum2] "+r"(sum2),[sum3] "+r"(sum3), + [sum4] "+r"(sum4),[pB] "+r"(pB),[pA] "+r"(pA):[colCnt] "r"(colCnt):"r0", "r1", "r2", "r3", "r4"); +#endif /* ARM_MATH_BIG_ENDIAN */ + +#endif /* USE_INTRINSIC */ + + colCnt = dim_vec & 0x1; + while (colCnt) + { + q15_t inV = *pA++; + q7_t inM = *pB++; + q7_t inM2 = *pB++; + q7_t inM3 = *pB++; + q7_t inM4 = *pB++; + + sum += inV * inM; + sum2 += inV * inM2; + sum3 += inV * inM3; + sum4 += inV * inM4; + colCnt--; + } /* while over colCnt */ + *pO++ = (q15_t) (__SSAT((sum >> out_shift), 16)); + *pO++ = (q15_t) (__SSAT((sum2 >> out_shift), 16)); + *pO++ = (q15_t) (__SSAT((sum3 >> out_shift), 16)); + *pO++ = (q15_t) (__SSAT((sum4 >> out_shift), 16)); + + /* adjust the pointers and counters */ + rowCnt--; + } + + /* left-over part of the rows */ + rowCnt = num_of_rows & 0x3; + + while (rowCnt) + { + q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + + uint16_t colCnt = dim_vec >> 2; + + pA = pV; + + while (colCnt) + { + q31_t inV1, inV2, inM11, inM12; + + pB = (q7_t *) read_and_pad((void *)pB, &inM11, &inM12); + + inV1 = *__SIMD32(pA)++; + sum = __SMLAD(inV1, inM11, sum); + + inV2 = *__SIMD32(pA)++; + sum = __SMLAD(inV2, inM12, sum); + + colCnt--; + } + + /* left-over of the vector */ + colCnt = dim_vec & 0x3; + while (colCnt) + { + q15_t inV = *pA++; + q7_t inM = *pB++; + sum += inV * inM; + colCnt--; + } + + *pO++ = (q15_t) (__SSAT((sum >> out_shift), 16)); + + rowCnt--; + } + +#else + /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ + uint16_t rowCnt = num_of_rows >> 2; + const q7_t *pB = pM; + const q15_t *pA; + q15_t *pO = pOut; + const q7_t *pBias = bias; + + while (rowCnt) + { + q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum3 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + uint16_t colCnt = dim_vec >> 1; + + pA = pV; + + while (colCnt) + { + q15_t inA1 = *pA++; + q15_t inA2 = *pA++; + + q7_t inB1 = *pB++; + q7_t inB3 = *pB++; + q7_t inB2 = *pB++; + q7_t inB4 = *pB++; + + sum += inA1 * inB1 + inA2 * inB2; + sum2 += inA1 * inB3 + inA2 * inB4; + + inB1 = *pB++; + inB3 = *pB++; + inB2 = *pB++; + inB4 = *pB++; + + sum3 += inA1 * inB1 + inA2 * inB2; + sum4 += inA1 * inB3 + inA2 * inB4; + + colCnt--; + } + + colCnt = dim_vec & 0x1; + while (colCnt) + { + q15_t inA = *pA++; + q7_t inB = *pB++; + sum += inA * inB; + inB = *pB++; + sum2 += inA * inB; + inB = *pB++; + sum3 += inA * inB; + inB = *pB++; + sum4 += inA * inB; + + colCnt--; + } + *pO++ = (q15_t) __SSAT((sum >> out_shift), 16); + *pO++ = (q15_t) __SSAT((sum2 >> out_shift), 16); + *pO++ = (q15_t) __SSAT((sum3 >> out_shift), 16); + *pO++ = (q15_t) __SSAT((sum4 >> out_shift), 16); + + rowCnt--; + } + + rowCnt = num_of_rows & 0x3; + + while (rowCnt) + { + int ip_out = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + int j; + + pA = pV; + for (j = 0; j < dim_vec; j++) + { + q15_t inA = *pA++; + q7_t inB = *pB++; + ip_out += inA * inB; + } + *pO++ = (q15_t) __SSAT((ip_out >> out_shift), 16); + + rowCnt--; + } + +#endif /* ARM_MATH_DSP */ + + /* Return to ARM_MATH_SUCCESS */ + return (ARM_MATH_SUCCESS); + +} + +/** + * @} end of FC group + */ diff --git a/NN/Source/FullyConnectedFunctions/arm_fully_connected_q15.c b/NN/Source/FullyConnectedFunctions/arm_fully_connected_q15.c new file mode 100644 index 0000000..c3e7cf2 --- /dev/null +++ b/NN/Source/FullyConnectedFunctions/arm_fully_connected_q15.c @@ -0,0 +1,193 @@ +/* + * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_fully_connected_q15.c + * Description: Q15 basic fully-connected layer function + * + * $Date: 17. January 2018 + * $Revision: V.1.0.0 + * + * Target Processor: Cortex-M cores + * + * -------------------------------------------------------------------- */ + +#include "arm_math.h" +#include "arm_nnfunctions.h" + +/** + * @ingroup groupNN + */ + +/** + * @addtogroup FC + * @{ + */ + + /** + * @brief Q15 opt fully-connected layer function + * @param[in] pV pointer to input vector + * @param[in] pM pointer to matrix weights + * @param[in] dim_vec length of the vector + * @param[in] num_of_rows number of rows in weight matrix + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in] bias pointer to bias + * @param[in,out] pOut pointer to output vector + * @param[in,out] vec_buffer pointer to buffer space for input + * @return The function returns <code>ARM_MATH_SUCCESS</code> + * + * + * @details + * + * <b>Buffer size:</b> + * + * vec_buffer size: 0 + * + */ + +arm_status +arm_fully_connected_q15(const q15_t * pV, + const q15_t * pM, + const uint16_t dim_vec, + const uint16_t num_of_rows, + const uint16_t bias_shift, + const uint16_t out_shift, + const q15_t * bias, + q15_t * pOut, + q15_t * vec_buffer) +{ + +#if defined (ARM_MATH_DSP) + /* Run the following code for Cortex-M4 and Cortex-M7 */ + + const q15_t *pB = pM; + const q15_t *pB2 = pB + dim_vec; + q15_t *pO = pOut; + const q15_t *pA; + const q15_t *pBias = bias; + uint16_t rowCnt = num_of_rows >> 1; + + /* this loop loops over different output */ + while (rowCnt) { + q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + + uint16_t colCnt = dim_vec >> 2; + + pA = pV; + pB2 = pB + dim_vec; + + while (colCnt) + { + q31_t inV1, inM1, inM2; + inV1 = *__SIMD32(pA)++; + inM1 = *__SIMD32(pB)++; + sum = __SMLAD(inV1, inM1, sum); + inM2 = *__SIMD32(pB2)++; + sum2 = __SMLAD(inV1, inM2, sum2); + + inV1 = *__SIMD32(pA)++; + inM1 = *__SIMD32(pB)++; + sum = __SMLAD(inV1, inM1, sum); + inM2 = *__SIMD32(pB2)++; + sum2 = __SMLAD(inV1, inM2, sum2); + + colCnt--; + } + colCnt = dim_vec & 0x3; + while (colCnt) + { + q15_t inV = *pA++; + q15_t inM = *pB++; + q15_t inM2 = *pB2++; + + sum += inV * inM; + sum2 += inV * inM2; + colCnt--; + } /* while over colCnt */ + *pO++ = (q15_t) (__SSAT((sum >> out_shift), 16)); + *pO++ = (q15_t) (__SSAT((sum2>> out_shift), 16)); + + /* adjust the pointers and counters */ + pB = pB + dim_vec; + rowCnt --; + } + + rowCnt = num_of_rows & 0x1; + + while (rowCnt) { + q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + + uint16_t colCnt = dim_vec >> 2; + + pA = pV; + + while (colCnt) { + q31_t inV1, inM1; + inV1 = *__SIMD32(pA)++; + inM1 = *__SIMD32(pB)++; + sum = __SMLAD(inV1, inM1, sum); + + inV1 = *__SIMD32(pA)++; + inM1 = *__SIMD32(pB)++; + sum = __SMLAD(inV1, inM1, sum); + + colCnt--; + } + + /* left-over of the vector */ + colCnt = dim_vec & 0x3; + while(colCnt) { + q15_t inV = *pA++; + q15_t inM = *pB++; + + sum += inV * inM; + + colCnt--; + } + + *pO++ = (q15_t) (__SSAT((sum >> out_shift), 16)); + + rowCnt --; + } + +#else + int i, j; + /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ + for (i = 0; i < num_of_rows; i++) + { + int ip_out = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift); + for (j = 0; j < dim_vec; j++) + { + ip_out += pV[j] * pM[i * dim_vec + j]; + } + pOut[i] = (q15_t) __SSAT((ip_out >> out_shift), 16); + } + +#endif /* ARM_MATH_DSP */ + + /* Return to application */ + return (ARM_MATH_SUCCESS); + +} + +/** + * @} end of FC group + */ diff --git a/NN/Source/FullyConnectedFunctions/arm_fully_connected_q15_opt.c b/NN/Source/FullyConnectedFunctions/arm_fully_connected_q15_opt.c new file mode 100644 index 0000000..f7a3915 --- /dev/null +++ b/NN/Source/FullyConnectedFunctions/arm_fully_connected_q15_opt.c @@ -0,0 +1,332 @@ +/* + * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_fully_connected_q15_opt.c + * Description: Q15 opt fully-connected layer function + * + * $Date: 17. January 2018 + * $Revision: V.1.0.0 + * + * Target Processor: Cortex-M cores + * + * -------------------------------------------------------------------- */ + +#include "arm_math.h" +#include "arm_nnfunctions.h" + +/** + * @ingroup groupNN + */ + +/** + * @addtogroup FC + * @{ + */ + + /** + * @brief Q15 opt fully-connected layer function + * @param[in] pV pointer to input vector + * @param[in] pM pointer to matrix weights + * @param[in] dim_vec length of the vector + * @param[in] num_of_rows number of rows in weight matrix + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in] bias pointer to bias + * @param[in,out] pOut pointer to output vector + * @param[in,out] vec_buffer pointer to buffer space for input + * @return The function returns <code>ARM_MATH_SUCCESS</code> + * + * + * @details + * + * <b>Buffer size:</b> + * + * vec_buffer size: 0 + * + * Here we use only one pointer to read 4 rows in the weight + * matrix. So if the original matrix looks like this: + * + * | a11 | a12 | a13 | + * + * | a21 | a22 | a23 | + * + * | a31 | a32 | a33 | + * + * | a41 | a42 | a43 | + * + * | a51 | a52 | a53 | + * + * | a61 | a62 | a63 | + * + * We operates on multiple-of-4 rows, so the first four rows becomes + * + * | a11 | a12 | a21 | a22 | a31 | a32 | a41 | a42 | + * + * | a13 | a23 | a33 | a43 | + * + * Remaining rows are kept the same original order. + * + * So the stored weight matrix looks like this: + * + * + * | a11 | a12 | a21 | a22 | a31 | a32 | a41 | a42 | + * + * | a13 | a23 | a33 | a43 | a51 | a52 | a53 | a61 | + * + * | a62 | a63 | + */ + +arm_status +arm_fully_connected_q15_opt(const q15_t * pV, + const q15_t * pM, + const uint16_t dim_vec, + const uint16_t num_of_rows, + const uint16_t bias_shift, + const uint16_t out_shift, + const q15_t * bias, + q15_t * pOut, + q15_t * vec_buffer) +{ + +#if defined (ARM_MATH_DSP) + /* Run the following code for Cortex-M4 and Cortex-M7 */ + + const q15_t *pB = pM; + q15_t *pO = pOut; + const q15_t *pBias = bias; + const q15_t *pA = pV; + + uint16_t rowCnt = num_of_rows >> 2; + + while (rowCnt) + { + q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum3 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + + uint16_t colCnt = dim_vec >> 1; + + pA = pV; + +#ifdef USE_INTRINSIC + + while (colCnt) + { + q31_t inM11, inM12, inM13, inM14; + q31_t inV; + + inV = *__SIMD32(pA)++; + inM11 = *__SIMD32(pB)++; + sum = __SMLAD(inV, inM11, sum); + inM12 = *__SIMD32(pB)++; + sum2 = __SMLAD(inV, inM12, sum2); + inM13 = *__SIMD32(pB)++; + sum3 = __SMLAD(inV, inM13, sum3); + inM14 = *__SIMD32(pB)++; + sum4 = __SMLAD(inV, inM14, sum4); + colCnt--; + } + +#else + + /* + * register needed: + * loop counter: colCnt + * accumulators: sum, sum2, sum3, sum4 + * pointers: pB, pA + * weight data: inM11, inM12, inM13, inM14 + * activation data: inV + */ + + asm volatile ("COL_LOOP_%=:\n" + "ldr.w r4, [%[pA]], #4\n" + "ldr.w r0, [%[pB]], #16\n" + "smlad %[sum], r4, r0, %[sum]\n" + "ldr.w r1, [%[pB] , #-12]\n" + "smlad %[sum2], r4, r1, %[sum2]\n" + "ldr.w r2, [%[pB] , #-8]\n" + "smlad %[sum3], r4, r2, %[sum3]\n" + "ldr.w r3, [%[pB] , #-4]\n" + "smlad %[sum4], r4, r3, %[sum4]\n" + "subs %[colCnt], #1\n" + "bne COL_LOOP_%=\n":[sum] "+r"(sum), + [sum2] "+r"(sum2),[sum3] "+r"(sum3), + [sum4] "+r"(sum4),[pB] "+r"(pB),[pA] "+r"(pA):[colCnt] "r"(colCnt):"r0", "r1", "r2", "r3", "r4"); + +#endif /* USE_INTRINSIC */ + + colCnt = dim_vec & 0x1; + while (colCnt) + { + + q15_t inV = *pA++; + q15_t inM = *pB++; + q15_t inM2 = *pB++; + q15_t inM3 = *pB++; + q15_t inM4 = *pB++; + + sum += inV * inM; + sum2 += inV * inM2; + sum3 += inV * inM3; + sum4 += inV * inM4; + colCnt--; + } /* while over colCnt */ + *pO++ = (q15_t) (__SSAT((sum >> out_shift), 16)); + *pO++ = (q15_t) (__SSAT((sum2 >> out_shift), 16)); + *pO++ = (q15_t) (__SSAT((sum3 >> out_shift), 16)); + *pO++ = (q15_t) (__SSAT((sum4 >> out_shift), 16)); + + /* adjust the pointers and counters */ + rowCnt--; + } + + /* left-over part of the rows */ + rowCnt = num_of_rows & 0x3; + + while (rowCnt) + { + q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + + uint16_t colCnt = dim_vec >> 2; + + pA = pV; + + while (colCnt) + { + q31_t inV1, inV2, inM1, inM2; + + inM1 = *__SIMD32(pB)++; + inV1 = *__SIMD32(pA)++; + sum = __SMLAD(inV1, inM1, sum); + + inM2 = *__SIMD32(pB)++; + inV2 = *__SIMD32(pA)++; + sum = __SMLAD(inV2, inM2, sum); + + colCnt--; + } + + /* left-over of the vector */ + colCnt = dim_vec & 0x3; + while (colCnt) + { + q15_t inV = *pA++; + q15_t inM = *pB++; + sum += inV * inM; + colCnt--; + } + + *pO++ = (q15_t) (__SSAT((sum >> out_shift), 16)); + + rowCnt--; + } + +#else + /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ + uint16_t rowCnt = num_of_rows >> 2; + const q15_t *pB = pM; + const q15_t *pA; + q15_t *pO = pOut; + const q15_t *pBias = bias; + + while (rowCnt) + { + q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum3 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + + uint16_t colCnt = dim_vec >> 1; + + pA = pV; + while (colCnt) + { + q15_t inA1 = *pA++; + q15_t inA2 = *pA++; + + q15_t inB1 = *pB++; + q15_t inB2 = *pB++; + sum += inA1 * inB1 + inA2 * inB2; + + inB1 = *pB++; + inB2 = *pB++; + sum2 += inA1 * inB1 + inA2 * inB2; + + inB1 = *pB++; + inB2 = *pB++; + sum3 += inA1 * inB1 + inA2 * inB2; + + inB1 = *pB++; + inB2 = *pB++; + sum4 += inA1 * inB1 + inA2 * inB2; + + colCnt--; + } + colCnt = dim_vec & 0x1; + while (colCnt) + { + q15_t inA = *pA++; + q15_t inB = *pB++; + sum += inA * inB; + inB = *pB++; + sum2 += inA * inB; + inB = *pB++; + sum3 += inA * inB; + inB = *pB++; + sum4 += inA * inB; + colCnt--; + } + *pO++ = (q15_t) __SSAT((sum >> out_shift), 16); + *pO++ = (q15_t) __SSAT((sum2 >> out_shift), 16); + *pO++ = (q15_t) __SSAT((sum3 >> out_shift), 16); + *pO++ = (q15_t) __SSAT((sum4 >> out_shift), 16); + + rowCnt--; + } + rowCnt = num_of_rows & 0x3; + + while (rowCnt) + { + int ip_out = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + int j; + + pA = pV; + for (j = 0; j < dim_vec; j++) + { + q15_t inA = *pA++; + q15_t inB = *pB++; + ip_out += inA * inB; + } + *pO++ = (q15_t) __SSAT((ip_out >> out_shift), 16); + + rowCnt--; + } + +#endif /* ARM_MATH_DSP */ + + /* Return to ARM_MATH_SUCCESS */ + return (ARM_MATH_SUCCESS); + +} + +/** + * @} end of FC group + */ diff --git a/NN/Source/FullyConnectedFunctions/arm_fully_connected_q7.c b/NN/Source/FullyConnectedFunctions/arm_fully_connected_q7.c new file mode 100644 index 0000000..d8efc04 --- /dev/null +++ b/NN/Source/FullyConnectedFunctions/arm_fully_connected_q7.c @@ -0,0 +1,198 @@ +/* + * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_fully_connected_q7.c + * Description: Q7 basic fully-connected layer function + * + * $Date: 17. January 2018 + * $Revision: V.1.0.0 + * + * Target Processor: Cortex-M cores + * + * -------------------------------------------------------------------- */ + +#include "arm_math.h" +#include "arm_nnfunctions.h" + +/** + * @ingroup groupNN + */ + +/** + * @addtogroup FC + * @{ + */ + + /** + * @brief Q7 basic fully-connected layer function + * @param[in] pV pointer to input vector + * @param[in] pM pointer to matrix weights + * @param[in] dim_vec length of the vector + * @param[in] num_of_rows number of rows in weight matrix + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in] bias pointer to bias + * @param[in,out] pOut pointer to output vector + * @param[in,out] vec_buffer pointer to buffer space for input + * @return The function returns <code>ARM_MATH_SUCCESS</code> + * + * @details + * + * <b>Buffer size:</b> + * + * vec_buffer size: dim_vec + * + * This basic function is designed to work with regular weight + * matrix without interleaving. + * + */ + +arm_status +arm_fully_connected_q7(const q7_t * pV, + const q7_t * pM, + const uint16_t dim_vec, + const uint16_t num_of_rows, + const uint16_t bias_shift, + const uint16_t out_shift, const q7_t * bias, q7_t * pOut, q15_t * vec_buffer) +{ + +#if defined (ARM_MATH_DSP) + /* Run the following code for Cortex-M4 and Cortex-M7 */ + + const q7_t *pB = pM; + const q7_t *pB2; + q7_t *pO = pOut; + const q7_t *pBias = bias; + q15_t *pA; + uint16_t rowCnt = num_of_rows >> 1; + + /* expand the vector into the buffer */ + arm_q7_to_q15_reordered_no_shift(pV, vec_buffer, dim_vec); + + while (rowCnt) + { + q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + uint16_t colCnt = dim_vec >> 2; + + pA = vec_buffer; + pB2 = pB + dim_vec; + + while (colCnt) + { + q31_t inV, inM11, inM12, inM21, inM22; + pB = (q7_t *) read_and_pad_reordered((void *)pB, &inM11, &inM12); + pB2 = (q7_t *) read_and_pad_reordered((void *)pB2, &inM21, &inM22); + + inV = *__SIMD32(pA)++; + + sum = __SMLAD(inV, inM11, sum); + sum2 = __SMLAD(inV, inM21, sum2); + + inV = *__SIMD32(pA)++; + + sum = __SMLAD(inV, inM12, sum); + sum2 = __SMLAD(inV, inM22, sum2); + + colCnt--; + } + colCnt = dim_vec & 0x3; + while (colCnt) + { + q7_t inV = *pA++; + q15_t inM = *pB++; + q15_t inM2 = *pB2++; + + sum += inV * inM; + sum2 += inV * inM2; + colCnt--; + } /* while over colCnt */ + *pO++ = (q7_t) (__SSAT((sum >> out_shift), 8)); + *pO++ = (q7_t) (__SSAT((sum2 >> out_shift), 8)); + + /* adjust the pointers and counters */ + pB += dim_vec; + rowCnt--; + } + + /* left-over part of the rows */ + rowCnt = num_of_rows & 0x1; + + while (rowCnt) + { + uint16_t colCnt = dim_vec >> 2; + q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + + pA = vec_buffer; + + while (colCnt) + { + q31_t inV1, inV2, inM11, inM12; + + pB = (q7_t *) read_and_pad_reordered((void *)pB, &inM11, &inM12); + + inV1 = *__SIMD32(pA)++; + sum = __SMLAD(inV1, inM11, sum); + + inV2 = *__SIMD32(pA)++; + sum = __SMLAD(inV2, inM12, sum); + + colCnt--; + } + + /* left-over of the vector */ + colCnt = dim_vec & 0x3; + while (colCnt) + { + q7_t inV = *pA++; + q15_t inM = *pB++; + sum += inV * inM; + colCnt--; + } + + *pO++ = (q7_t) (__SSAT((sum >> out_shift), 8)); + + rowCnt--; + } + +#else + int i, j; + + /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ + for (i = 0; i < num_of_rows; i++) + { + int ip_out = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift); + for (j = 0; j < dim_vec; j++) + { + ip_out += pV[j] * pM[i * dim_vec + j]; + } + pOut[i] = (q7_t) __SSAT((ip_out >> out_shift), 8); + } + +#endif /* ARM_MATH_DSP */ + + /* Return to ARM_MATH_SUCCESS */ + return (ARM_MATH_SUCCESS); + +} + +/** + * @} end of FC group + */ diff --git a/NN/Source/FullyConnectedFunctions/arm_fully_connected_q7_opt.c b/NN/Source/FullyConnectedFunctions/arm_fully_connected_q7_opt.c new file mode 100644 index 0000000..e3d0874 --- /dev/null +++ b/NN/Source/FullyConnectedFunctions/arm_fully_connected_q7_opt.c @@ -0,0 +1,484 @@ +/* + * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_fully_connected_q7_opt.c + * Description: Q7 basic fully-connected layer function + * + * $Date: 17. January 2018 + * $Revision: V.1.0.0 + * + * Target Processor: Cortex-M cores + * + * -------------------------------------------------------------------- */ + +#include "arm_math.h" +#include "arm_nnfunctions.h" + +/** + * @ingroup groupNN + */ + +/** + * @addtogroup FC + * @{ + */ + + /** + * @brief Q7 opt fully-connected layer function + * @param[in] pV pointer to input vector + * @param[in] pM pointer to matrix weights + * @param[in] dim_vec length of the vector + * @param[in] num_of_rows number of rows in weight matrix + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in] bias pointer to bias + * @param[in,out] pOut pointer to output vector + * @param[in,out] vec_buffer pointer to buffer space for input + * @return The function returns <code>ARM_MATH_SUCCESS</code> + * + * @details + * + * <b>Buffer size:</b> + * + * vec_buffer size: dim_vec + * + * This opt function is designed to work with interleaved weight + * matrix. The vector input is assumed in q7_t format, we call + * arm_q7_to_q15_no_shift_shuffle function to expand into + * q15_t format with certain weight re-ordering, refer to the function + * comments for more details. + * Here we use only one pointer to read 4 rows in the weight + * matrix. So if the original q7_t matrix looks like this: + * + * | a11 | a12 | a13 | a14 | a15 | a16 | a17 | + * + * | a21 | a22 | a23 | a24 | a25 | a26 | a27 | + * + * | a31 | a32 | a33 | a34 | a35 | a36 | a37 | + * + * | a41 | a42 | a43 | a44 | a45 | a46 | a47 | + * + * | a51 | a52 | a53 | a54 | a55 | a56 | a57 | + * + * | a61 | a62 | a63 | a64 | a65 | a66 | a67 | + * + * + * We operates on multiple-of-4 rows, so the first four rows becomes + * + * | a11 | a21 | a13 | a23 | a31 | a41 | a33 | a43 | + * + * | a12 | a22 | a14 | a24 | a32 | a42 | a34 | a44 | + * + * | a15 | a25 | a35 | a45 | a16 | a26 | a36 | a46 | + * + * So within the kernel, we first read the re-ordered vector in as: + * + * | b1 | b3 | and | b2 | b4 | + * + * the four q31_t weights will look like + * + * | a11 | a13 |, | a21 | a23 |, | a31 | a33 |, | a41 | a43 | + * + * | a12 | a14 |, | a22 | a24 |, | a32 | a34 |, | a42 | a44 | + * + * The column left over will be in-order. + * which is: + * + * | a17 | a27 | a37 | a47 | + * + * For the left-over rows, we do 1x1 computation, so the data remains + * as its original order. + * + * So the stored weight matrix looks like this: + * + * | a11 | a21 | a13 | a23 | a31 | a41 | + * + * | a33 | a43 | a12 | a22 | a14 | a24 | + * + * | a32 | a42 | a34 | a44 | a15 | a25 | + * + * | a35 | a45 | a16 | a26 | a36 | a46 | + * + * | a17 | a27 | a37 | a47 | a51 | a52 | + * + * | a53 | a54 | a55 | a56 | a57 | a61 | + * + * | a62 | a63 | a64 | a65 | a66 | a67 | + * + * + */ + +arm_status +arm_fully_connected_q7_opt(const q7_t * pV, + const q7_t * pM, + const uint16_t dim_vec, + const uint16_t num_of_rows, + const uint16_t bias_shift, + const uint16_t out_shift, + const q7_t * bias, + q7_t * pOut, + q15_t * vec_buffer) +{ + +#if defined (ARM_MATH_DSP) + /* Run the following code for Cortex-M4 and Cortex-M7 */ + + const q7_t *pB = pM; + q7_t *pO = pOut; + const q7_t *pBias = bias; + q15_t *pA; + uint16_t rowCnt = num_of_rows >> 2; + + arm_q7_to_q15_reordered_no_shift(pV, vec_buffer, dim_vec); + + while (rowCnt) + { + + q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum3 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + + uint16_t colCnt = dim_vec >> 2; + + pA = vec_buffer; + +#ifdef USE_INTRINSIC + +#ifndef ARM_MATH_BIG_ENDIAN + while (colCnt) + { + q31_t inM11, inM12, inM13, inM14; + q31_t inV; + + inV = *__SIMD32(pA)++; + inM11 = *__SIMD32(pB)++; + inM12 = __SXTB16(__ROR(inM11, 8)); + inM11 = __SXTB16(inM11); + sum = __SMLAD(inM11, inV, sum); + sum2 = __SMLAD(inM12, inV, sum2); + inM13 = *__SIMD32(pB)++; + inM14 = __SXTB16(__ROR(inM13, 8)); + inM13 = __SXTB16(inM13); + sum3 = __SMLAD(inM13, inV, sum3); + sum4 = __SMLAD(inM14, inV, sum4); + + inV = *__SIMD32(pA)++; + inM11 = *__SIMD32(pB)++; + inM12 = __SXTB16(__ROR(inM11, 8)); + inM11 = __SXTB16(inM11); + sum = __SMLAD(inM11, inV, sum); + sum2 = __SMLAD(inM12, inV, sum2); + inM13 = *__SIMD32(pB)++; + inM14 = __SXTB16(__ROR(inM13, 8)); + inM13 = __SXTB16(inM13); + sum3 = __SMLAD(inM13, inV, sum3); + sum4 = __SMLAD(inM14, inV, sum4); + colCnt--; + } +#else + while (colCnt) + { + q31_t inM11, inM12, inM13, inM14; + q31_t inV; + + inV = *__SIMD32(pA)++; + inM11 = *__SIMD32(pB)++; + inM12 = __SXTB16(__ROR(inM11, 8)); + inM11 = __SXTB16(inM11); + sum = __SMLAD(inM12, inV, sum); + sum2 = __SMLAD(inM11, inV, sum2); + inM13 = *__SIMD32(pB)++; + inM14 = __SXTB16(__ROR(inM13, 8)); + inM13 = __SXTB16(inM13); + sum3 = __SMLAD(inM14, inV, sum3); + sum4 = __SMLAD(inM13, inV, sum4); + + inV = *__SIMD32(pA)++; + inM11 = *__SIMD32(pB)++; + inM12 = __SXTB16(__ROR(inM11, 8)); + inM11 = __SXTB16(inM11); + sum = __SMLAD(inM12, inV, sum); + sum2 = __SMLAD(inM11, inV, sum2); + inM13 = *__SIMD32(pB)++; + inM14 = __SXTB16(__ROR(inM13, 8)); + inM13 = __SXTB16(inM13); + sum3 = __SMLAD(inM14, inV, sum3); + sum4 = __SMLAD(inM13, inV, sum4); + colCnt--; + } +#endif /* ARM_MATH_BIG_ENDIAN */ + +#else + + /* + * register needed: + * loop counter: colCnt + * accumulators: sum, sum2, sum3, sum4 + * pointers: pB, pA + * weight data: inM11, inM12, inM13, inM14 + * activation data: inV + */ + +#ifndef ARM_MATH_BIG_ENDIAN + asm volatile ("COL_LOOP_%=:\n" + "ldr.w r4, [%[pA]], #8\n" + "ldr.w r1, [%[pB]], #16\n" + "mov.w r0, r1, ror #8\n" + "sxtb16 r0, r0\n" + "sxtb16 r1, r1\n" + "smlad %[sum], r4, r1, %[sum]\n" + "smlad %[sum2], r4, r0, %[sum2]\n" + "ldr.w r3, [%[pB], #-12]\n" + "mov.w r2, r3, ror #8\n" + "sxtb16 r2, r2\n" + "sxtb16 r3, r3\n" + "smlad %[sum3], r4, r3, %[sum3]\n" + "smlad %[sum4], r4, r2, %[sum4]\n" + "ldr.w r4, [%[pA], #-4]\n" + "ldr.w r1, [%[pB], #-8]\n" + "mov.w r0, r1, ror #8\n" + "sxtb16 r0, r0\n" + "sxtb16 r1, r1\n" + "smlad %[sum], r4, r1, %[sum]\n" + "smlad %[sum2], r4, r0, %[sum2]\n" + "ldr.w r3, [%[pB], #-4]\n" + "mov.w r2, r3, ror #8\n" + "sxtb16 r2, r2\n" + "sxtb16 r3, r3\n" + "smlad %[sum3], r4, r3, %[sum3]\n" + "smlad %[sum4], r4, r2, %[sum4]\n" + "subs %[colCnt], #1\n" + "bne COL_LOOP_%=\n":[sum] "+r"(sum), + [sum2] "+r"(sum2),[sum3] "+r"(sum3), + [sum4] "+r"(sum4),[pB] "+r"(pB),[pA] "+r"(pA):[colCnt] "r"(colCnt):"r0", "r1", "r2", "r3", "r4"); +#else + asm volatile ("COL_LOOP_%=:\n" + "ldr.w r4, [%[pA]], #8\n" + "ldr.w r1, [%[pB]], #16\n" + "mov.w r0, r1, ror #8\n" + "sxtb16 r0, r0\n" + "sxtb16 r1, r1\n" + "smlad %[sum], r4, r0, %[sum]\n" + "smlad %[sum2], r4, r1, %[sum2]\n" + "ldr.w r3, [%[pB], #-12]\n" + "mov.w r2, r3, ror #8\n" + "sxtb16 r2, r2\n" + "sxtb16 r3, r3\n" + "smlad %[sum3], r4, r2, %[sum3]\n" + "smlad %[sum4], r4, r3, %[sum4]\n" + "ldr.w r4, [%[pA], #-4]\n" + "ldr.w r1, [%[pB], #-8]\n" + "mov.w r0, r1, ror #8\n" + "sxtb16 r0, r0\n" + "sxtb16 r1, r1\n" + "smlad %[sum], r4, r0, %[sum]\n" + "smlad %[sum2], r4, r1, %[sum2]\n" + "ldr.w r3, [%[pB], #-4]\n" + "mov.w r2, r3, ror #8\n" + "sxtb16 r2, r2\n" + "sxtb16 r3, r3\n" + "smlad %[sum3], r4, r2, %[sum3]\n" + "smlad %[sum4], r4, r3, %[sum4]\n" + "subs %[colCnt], #1\n" + "bne COL_LOOP_%=\n":[sum] "+r"(sum), + [sum2] "+r"(sum2),[sum3] "+r"(sum3), + [sum4] "+r"(sum4),[pB] "+r"(pB),[pA] "+r"(pA):[colCnt] "r"(colCnt):"r0", "r1", "r2", "r3", "r4"); +#endif /* ARM_MATH_BIG_ENDIAN */ + +#endif /* USE_INTRINSIC */ + + colCnt = dim_vec & 0x3; + while (colCnt) + { + q15_t inV = *pA++; + q7_t inM = *pB++; + q7_t inM2 = *pB++; + q7_t inM3 = *pB++; + q7_t inM4 = *pB++; + + sum += inV * inM; + sum2 += inV * inM2; + sum3 += inV * inM3; + sum4 += inV * inM4; + colCnt--; + } /* while over colCnt */ + *pO++ = (q7_t) (__SSAT((sum >> out_shift), 8)); + *pO++ = (q7_t) (__SSAT((sum2 >> out_shift), 8)); + *pO++ = (q7_t) (__SSAT((sum3 >> out_shift), 8)); + *pO++ = (q7_t) (__SSAT((sum4 >> out_shift), 8)); + + /* adjust the pointers and counters */ + rowCnt--; + } + + /* left-over part of the rows */ + rowCnt = num_of_rows & 0x3; + + while (rowCnt) + { + q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + uint16_t colCnt = dim_vec >> 2; + + pA = vec_buffer; + + while (colCnt) + { + q31_t inV1, inV2, inM11, inM12; + + pB = (q7_t *) read_and_pad_reordered((void *)pB, &inM11, &inM12); + + inV1 = *__SIMD32(pA)++; + sum = __SMLAD(inV1, inM11, sum); + + inV2 = *__SIMD32(pA)++; + sum = __SMLAD(inV2, inM12, sum); + + colCnt--; + } + + /* left-over of the vector */ + colCnt = dim_vec & 0x3; + while (colCnt) + { + q15_t inV = *pA++; + q7_t inM = *pB++; + sum += inV * inM; + colCnt--; + } + + *pO++ = (q7_t) (__SSAT((sum >> out_shift), 8)); + + rowCnt--; + } + +#else + /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ + uint16_t rowCnt = num_of_rows >> 2; + const q7_t *pB = pM; + const q7_t *pA; + q7_t *pO = pOut; + const q7_t *pBias = bias; + + while (rowCnt) + { + q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum3 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + + uint16_t colCnt = dim_vec >> 2; + + pA = pV; + + while (colCnt) + { + q7_t inA1 = *pA++; + q7_t inA3 = *pA++; + q7_t inA2 = *pA++; + q7_t inA4 = *pA++; + + q7_t inB1 = *pB++; + q7_t inB3 = *pB++; + q7_t inB2 = *pB++; + q7_t inB4 = *pB++; + + sum += inA1 * inB1 + inA2 * inB2; + sum2 += inA1 * inB3 + inA2 * inB4; + + inB1 = *pB++; + inB3 = *pB++; + inB2 = *pB++; + inB4 = *pB++; + + sum3 += inA1 * inB1 + inA2 * inB2; + sum4 += inA1 * inB3 + inA2 * inB4; + + inB1 = *pB++; + inB3 = *pB++; + inB2 = *pB++; + inB4 = *pB++; + + sum += inA3 * inB1 + inA4 * inB2; + sum2 += inA3 * inB3 + inA4 * inB4; + + inB1 = *pB++; + inB3 = *pB++; + inB2 = *pB++; + inB4 = *pB++; + + sum3 += inA3 * inB1 + inA4 * inB2; + sum4 += inA3 * inB3 + inA4 * inB4; + + colCnt--; + } + colCnt = dim_vec & 0x3; + while (colCnt) + { + q7_t inA = *pA++; + q7_t inB = *pB++; + sum += inA * inB; + inB = *pB++; + sum2 += inA * inB; + inB = *pB++; + sum3 += inA * inB; + inB = *pB++; + sum4 += inA * inB; + + colCnt--; + } + *pO++ = (q7_t) __SSAT((sum >> out_shift), 8); + *pO++ = (q7_t) __SSAT((sum2 >> out_shift), 8); + *pO++ = (q7_t) __SSAT((sum3 >> out_shift), 8); + *pO++ = (q7_t) __SSAT((sum4 >> out_shift), 8); + + rowCnt--; + } + + rowCnt = num_of_rows & 0x3; + + while (rowCnt) + { + int ip_out = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + + int j; + + pA = pV; + for (j = 0; j < dim_vec; j++) + { + q7_t inA = *pA++; + q7_t inB = *pB++; + ip_out += inA * inB; + } + *pO++ = (q7_t) __SSAT((ip_out >> out_shift), 8); + + rowCnt--; + } + +#endif /* ARM_MATH_DSP */ + + /* Return to ARM_MATH_SUCCESS */ + return (ARM_MATH_SUCCESS); + +} + +/** + * @} end of FC group + */ |