summaryrefslogtreecommitdiff
path: root/NN/Scripts
diff options
context:
space:
mode:
authorAli Labbene <ali.labbene@st.com>2019-12-11 08:59:21 +0100
committerAli Labbene <ali.labbene@st.com>2019-12-16 16:35:24 +0100
commit9f95ff5b6ba01db09552b84a0ab79607060a2666 (patch)
tree8a6e0dda832555c692307869aed49d07ee7facfe /NN/Scripts
parent76177aa280494bb36d7a0bcbda1078d4db717020 (diff)
downloadst-cmsis-core-lowfat-9f95ff5b6ba01db09552b84a0ab79607060a2666.tar.gz
st-cmsis-core-lowfat-9f95ff5b6ba01db09552b84a0ab79607060a2666.tar.bz2
st-cmsis-core-lowfat-9f95ff5b6ba01db09552b84a0ab79607060a2666.zip
Official ARM version: v5.4.0
Add CMSIS V5.4.0, please refer to index.html available under \docs folder. Note: content of \CMSIS\Core\Include has been copied under \Include to keep the same structure used in existing projects, and thus avoid projects mass update Note: the following components have been removed from ARM original delivery (as not used in ST packages) - CMSIS_EW2018.pdf - .gitattributes - .gitignore - \Device - \CMSIS - \CoreValidation - \DAP - \Documentation - \DoxyGen - \Driver - \Pack - \RTOS\CMSIS_RTOS_Tutorial.pdf - \RTOS\RTX - \RTOS\Template - \RTOS2\RTX - \Utilities - All ARM/GCC projects files are deleted from \DSP, \RTOS and \RTOS2 Change-Id: Ia026c3f0f0d016627a4fb5a9032852c33d24b4d3
Diffstat (limited to 'NN/Scripts')
-rw-r--r--NN/Scripts/NNFunctions/fully_connected_opt_weight_generation.py146
-rw-r--r--NN/Scripts/NNFunctions/table_gen.py116
2 files changed, 262 insertions, 0 deletions
diff --git a/NN/Scripts/NNFunctions/fully_connected_opt_weight_generation.py b/NN/Scripts/NNFunctions/fully_connected_opt_weight_generation.py
new file mode 100644
index 0000000..0319e83
--- /dev/null
+++ b/NN/Scripts/NNFunctions/fully_connected_opt_weight_generation.py
@@ -0,0 +1,146 @@
+#!/usr/bin/env python
+
+import numpy as np
+
+def convert_to_x4_q7_weights(weights):
+ [r, h, w, c] = weights.shape
+ weights = np.reshape(weights, (r, h*w*c))
+ num_of_rows = r
+ num_of_cols = h*w*c
+ new_weights = np.copy(weights)
+ new_weights = np.reshape(new_weights, (r*h*w*c))
+ counter = 0
+ for i in range(int(num_of_rows)/4):
+ # we only need to do the re-ordering for every 4 rows
+ row_base = 4*i
+ for j in range (int(num_of_cols)/4):
+ # for each 4 entries
+ column_base = 4*j
+ new_weights[counter] = weights[row_base ][column_base ]
+ new_weights[counter+1] = weights[row_base+1][column_base ]
+ new_weights[counter+2] = weights[row_base ][column_base+2]
+ new_weights[counter+3] = weights[row_base+1][column_base+2]
+ new_weights[counter+4] = weights[row_base+2][column_base ]
+ new_weights[counter+5] = weights[row_base+3][column_base ]
+ new_weights[counter+6] = weights[row_base+2][column_base+2]
+ new_weights[counter+7] = weights[row_base+3][column_base+2]
+
+ new_weights[counter+8] = weights[row_base ][column_base+1]
+ new_weights[counter+9] = weights[row_base+1][column_base+1]
+ new_weights[counter+10] = weights[row_base ][column_base+3]
+ new_weights[counter+11] = weights[row_base+1][column_base+3]
+ new_weights[counter+12] = weights[row_base+2][column_base+1]
+ new_weights[counter+13] = weights[row_base+3][column_base+1]
+ new_weights[counter+14] = weights[row_base+2][column_base+3]
+ new_weights[counter+15] = weights[row_base+3][column_base+3]
+ counter = counter + 16
+ # the remaining ones are in order
+ for j in range((int)(num_of_cols-num_of_cols%4), int(num_of_cols)):
+ new_weights[counter] = weights[row_base][j]
+ new_weights[counter+1] = weights[row_base+1][j]
+ new_weights[counter+2] = weights[row_base+2][j]
+ new_weights[counter+3] = weights[row_base+3][j]
+ counter = counter + 4
+ return new_weights
+
+def convert_to_x4_q15_weights(weights):
+ [r, h, w, c] = weights.shape
+ weights = np.reshape(weights, (r, h*w*c))
+ num_of_rows = r
+ num_of_cols = h*w*c
+ new_weights = np.copy(weights)
+ new_weights = np.reshape(new_weights, (r*h*w*c))
+ counter = 0
+ for i in range(int(num_of_rows)/4):
+ # we only need to do the re-ordering for every 4 rows
+ row_base = 4*i
+ for j in range (int(num_of_cols)/2):
+ # for each 2 entries
+ column_base = 2*j
+ new_weights[counter] = weights[row_base ][column_base ]
+ new_weights[counter+1] = weights[row_base ][column_base+1]
+ new_weights[counter+2] = weights[row_base+1][column_base ]
+ new_weights[counter+3] = weights[row_base+1][column_base+1]
+ new_weights[counter+4] = weights[row_base+2][column_base ]
+ new_weights[counter+5] = weights[row_base+2][column_base+1]
+ new_weights[counter+6] = weights[row_base+3][column_base ]
+ new_weights[counter+7] = weights[row_base+3][column_base+1]
+
+ counter = counter + 8
+ # the remaining ones are in order
+ for j in range((int)(num_of_cols-num_of_cols%2), int(num_of_cols)):
+ new_weights[counter] = weights[row_base][j]
+ new_weights[counter+1] = weights[row_base+1][j]
+ new_weights[counter+2] = weights[row_base+2][j]
+ new_weights[counter+3] = weights[row_base+3][j]
+ counter = counter + 4
+ return new_weights
+
+def convert_q7_q15_weights(weights):
+ [r, h, w, c] = weights.shape
+ weights = np.reshape(weights, (r, h*w*c))
+ num_of_rows = r
+ num_of_cols = h*w*c
+ new_weights = np.copy(weights)
+ new_weights = np.reshape(new_weights, (r*h*w*c))
+ counter = 0
+ for i in range(int(num_of_rows)/4):
+ # we only need to do the re-ordering for every 4 rows
+ row_base = 4*i
+ for j in range (int(num_of_cols)/2):
+ # for each 2 entries
+ column_base = 2*j
+ new_weights[counter] = weights[row_base ][column_base ]
+ new_weights[counter+1] = weights[row_base+1][column_base ]
+ new_weights[counter+2] = weights[row_base ][column_base+1]
+ new_weights[counter+3] = weights[row_base+1][column_base+1]
+ new_weights[counter+4] = weights[row_base+2][column_base ]
+ new_weights[counter+5] = weights[row_base+3][column_base ]
+ new_weights[counter+6] = weights[row_base+2][column_base+1]
+ new_weights[counter+7] = weights[row_base+3][column_base+1]
+
+ counter = counter + 8
+ # the remaining ones are in order
+ for j in range((int)(num_of_cols-num_of_cols%2), int(num_of_cols)):
+ new_weights[counter] = weights[row_base][j]
+ new_weights[counter+1] = weights[row_base+1][j]
+ new_weights[counter+2] = weights[row_base+2][j]
+ new_weights[counter+3] = weights[row_base+3][j]
+ counter = counter + 4
+ return new_weights
+
+# input dimensions
+vec_dim = 127
+row_dim = 127
+
+weight = np.zeros((row_dim,vec_dim), dtype=int)
+
+# generate random inputs
+for i in range(row_dim):
+ for j in range(vec_dim):
+ weight[i][j] = np.random.randint(256)-128
+
+weight = np.reshape(weight, (row_dim, vec_dim, 1, 1))
+
+outfile = open("../Ref_Implementations/fully_connected_testing_weights.h", "w")
+outfile.write("#define IP2_WEIGHT {")
+weight.tofile(outfile,sep=",",format="%d")
+outfile.write("}\n\n")
+
+new_weight = convert_to_x4_q7_weights(weight)
+outfile.write("#define IP4_WEIGHT {")
+new_weight.tofile(outfile,sep=",",format="%d")
+outfile.write("}\n\n")
+
+new_weight = convert_q7_q15_weights(weight)
+outfile.write("#define IP4_q7_q15_WEIGHT {")
+new_weight.tofile(outfile,sep=",",format="%d")
+outfile.write("}\n\n")
+
+new_weight = convert_to_x4_q15_weights(weight)
+outfile.write("#define IP4_WEIGHT_Q15 {")
+new_weight.tofile(outfile,sep=",",format="%d")
+outfile.write("}\n\n")
+
+
+outfile.close()
diff --git a/NN/Scripts/NNFunctions/table_gen.py b/NN/Scripts/NNFunctions/table_gen.py
new file mode 100644
index 0000000..5db6d3e
--- /dev/null
+++ b/NN/Scripts/NNFunctions/table_gen.py
@@ -0,0 +1,116 @@
+#!/usr/bin/python
+
+import math
+
+class Table(object):
+
+ def __init__(self, table_entry=256, table_range=8):
+ self.table_entry = table_entry
+ self.table_range = table_range
+ pass
+
+ def sigmoid(self, x):
+ return 1 / (1 + math.exp(-1*x))
+
+ def tanh(self, x):
+ return (math.exp(2*x)-1) / (math.exp(2*x)+1)
+
+ def fp2q7(self, x):
+ x_int = math.floor(x*(2**7)+0.5)
+ if x_int >= 128 :
+ x_int = 127
+ if x_int < -128 :
+ x_int = -128
+ if x_int >= 0 :
+ return x_int
+ else :
+ return 0x100 + x_int
+
+ def fp2q15(self, x):
+ x_int = math.floor(x*(2**15)+0.5)
+ if x_int >= 2**15 :
+ x_int = 2**15-1
+ if x_int < -1*2**15 :
+ x_int = -1*2**15
+ if x_int >= 0 :
+ return x_int
+ else :
+ return 0x10000 + x_int
+
+ def table_gen(self):
+ outfile = open("NNCommonTable.c", "wb")
+
+ outfile.write("/*\n * Common tables for NN\n *\n *\n *\n *\n */\n\n#include \"arm_math.h\"\n#include \"NNCommonTable.h\"\n\n/*\n * Table for sigmoid\n */\n")
+
+ for function_type in ["sigmoid", "tanh"]:
+ for data_type in [7, 15]:
+ out_type = "q"+str(data_type)+"_t"
+ act_func = getattr(self, function_type)
+ quan_func = getattr(self, 'fp2q'+str(data_type))
+
+ # unified table
+ outfile.write('const %s %sTable_q%d[%d] = {\n' % (out_type, function_type, data_type, self.table_entry) )
+ for i in range(self.table_entry):
+ # convert into actual value
+ if i < self.table_entry/2:
+ value_q7 = self.table_range * (i)
+ else:
+ value_q7 = self.table_range * (i - self.table_entry)
+
+ if data_type == 7:
+ #outfile.write('%f, ' % (act_func(float(value_q7)/256)))
+ outfile.write('0x%02x, ' % (quan_func(act_func(float(value_q7)/self.table_entry))))
+ else:
+ #outfile.write('%f, ' % (act_func(float(value_q7)/256)))
+ outfile.write('0x%04x, ' % (quan_func(act_func(float(value_q7)/self.table_entry))))
+ if i % 8 == 7:
+ outfile.write("\n")
+ outfile.write("};\n\n")
+
+ for data_type in [15]:
+ out_type = "q"+str(data_type)+"_t"
+ act_func = getattr(self, function_type)
+ quan_func = getattr(self, 'fp2q'+str(data_type))
+
+ # H-L tables
+ outfile.write('const %s %sLTable_q%d[%d] = {\n' % (out_type, function_type, data_type, self.table_entry/2))
+ for i in range(self.table_entry/2):
+ # convert into actual value, max value is 16*self.table_entry/4 / 4
+ # which is equivalent to self.table_entry / self.table_entry/2 = 2, i.e., 1/4 of 8
+ if i < self.table_entry/4:
+ value_q7 = self.table_range * i / 4
+ else:
+ value_q7 = self.table_range * (i - self.table_entry/2) / 4
+ if data_type == 7:
+ #outfile.write('%f, ' % (act_func(float(value_q7)/256)))
+ outfile.write('0x%02x, ' % (quan_func(act_func(float(value_q7)/(self.table_entry/2)))))
+ else:
+ #outfile.write('%f, ' % (act_func(float(value_q7)/256)))
+ outfile.write('0x%04x, ' % (quan_func(act_func(float(value_q7)/(self.table_entry/2)))))
+ if i % 8 == 7:
+ outfile.write("\n")
+ outfile.write("};\n\n")
+
+ outfile.write('const %s %sHTable_q%d[%d] = {\n' % (out_type, function_type, data_type, 3*self.table_entry/4))
+ for i in range(3 * self.table_entry/4):
+ # convert into actual value, tageting range (2, 8)
+ if i < 3*self.table_entry/8 :
+ value_q7 = self.table_range * ( i + self.table_entry/8 )
+ else:
+ value_q7 = self.table_range * ( i + self.table_entry/8 - self.table_entry)
+ if data_type == 7:
+ #outfile.write('%f, ' % (act_func(float(value_q7)/256)))
+ outfile.write('0x%02x, ' % (quan_func(act_func(float(value_q7)/self.table_entry))))
+ else:
+ #outfile.write('%f, ' % (act_func(float(value_q7)/256)))
+ outfile.write('0x%04x, ' % (quan_func(act_func(float(value_q7)/self.table_entry))))
+ if i % 8 == 7:
+ outfile.write("\n")
+ outfile.write("};\n\n")
+
+ outfile.close()
+
+
+mytable = Table(table_entry=256, table_range=16)
+
+mytable.table_gen()