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1 Introduction

1.1 Problem definition

A computer’s USB interface is hard to secure. Though overall security is quite good today, the
USB interface has not received enough attention. In particular HIDs are a problem, as they
are naturally very highly privileged. Off-the-shelf USB HID attack tools exist. In particular
from a security point of view extremely bad ideas such as WebUSB[23] are set to increase this
already large attack surface even further.

1.2 Contributions

This work includes three key contributions. First, it demonstrates a practical implementation
of a complete, backwards-compatible secure USB system using QubesOS and a single new
piece of security hardware. Second, it shows a novel interactive user-friendly cryptographic
handshaking scheme based on out-of-band communication. Third, it shows and proposes some
techniques for the design of general secure protocols that are not limited to USB alone.

2 The state of the art in mitigation
Several ways to secure the USB interface have been proposed that can be broadly categorized
as follows.

• USB firewalls are software or hardware that protects the host from requests deemed invalid
similar to a network firewall[20, 1, 6, 19, 11].

• USB device authentication uses some sort of user feedback or public key infrastructure
to authenticate the device when it connects[3, 4, 22, 5].

• USB bus encryption encrypts the raw USB payloads to ward off eavesdroppers[12, 24].

• For wireless protocols, every conceivable pairing model has been tried. However, not
many have been applied to USB[10, 21, 8, 15].

• Compartmentalized systems such as QubesOS separate vulnerable components with large
attack surface such as the USB device drivers into VMs to not inhibit exploitation but
mitigate its consequences.
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Attacks Eavesdropping Backwards
compatibleHID Host

exploit
Device
exploit

Bus-
level

Physical
layer

Firewalls © 4 × 4 × ©
Device authentication © × × 4 × ×
Bus encryption 4 × × © © ×
Plain QubesOS setup1 4 4 4 4 × ©
Our work © © © © © ©

Table 1: Comparison of approaches to USB security

We compare these approaches w.r.t. several attacks in 1. Overall we found that Qube-
sOS is the only advance towards securing this interface that is both practical and effective.
Other approaches have not been successful so far likely due to market inertia and backwards-
incompatibility. QubesOS approaches the problem by running a separate VM with the USB
host controllers mapped through via IOMMU. This VM runs a linux kernel with a small set of
white-listed USB device drivers (HID and mass storage device) and a USB-over-IP backend. A
set of Qubes services pass through any HID input arriving inside this VM into dom0, and coor-
dinate exporting USB mass storage devices as Xen block devices. Any other USB devices can
be passed-through to other VMs through USB-over-IP-over-QubesRPC, a Xen vChan-based
inter-VM communication system. QubesOS is still lacking in that it’s compartmentalization
becomes essentially useless when it is used with a USB HID keyboard that does not have its own
dedicated PCIe USB host controller, as any normal desktop and most recent laptop computers.
The issue here is that USB HID is neither authenticated nor encrypted, and the untrusted USB
VM sits in the middle of this data stream, which thus allows it trivial privilege escalation via
keystroke injection.

2.1 Usage scenarios

Today USB’s level security is still adequate for most everyday users. In general, attacks against
USB either require special malicious hardware or require re-flashing of existing peripherals with
custom malicious firmware. Today’s low-level cybercrime targeting everyday users is still fo-
cused on much easier tasks such as stealing passwords through phishing, installing cryptolocker
malware by means of malicious email attachments and extracting sensitive user data with ma-
licious browser addons. Fortunately, we have not yet entered an age where average computer
users need to worry about the type of attack this work defends against. Still, it can be expected
that with the general increase of overall computer security, eventually attackers will have to
graduate to more advanced means–and since at this time the landscape of effective defenses
against USB attacks is very sparse, your author considers it important to explore the avenues
to effective defence ealier rather than later in order to be prepared for evolving attacks.

Despite the banality of everyday cybersecurity described above, there already are some
people and organizations who face advanced attacks including USB attacks. Due to their
exceedingly simple execution, USB HID attacks are a very attractive way to perform targeted

1Requires separate USB host controller for HIDs
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attacks. For this reason, specialized USB attack hardware is already available commercially
at low cost. For users facing targeted attacks like this, SecureHID might already provide
practical benefits. The users most at risk of targeted attacks are those either working with
highly sensitive data or working with highly privileged access. The former group would include
people such as journalists working with their sources and politicians working with confidential
information. The latter group would include law enforcement officials, often being endowed
with wide-ranging electronic access to databases and other confidential information. Further,
system administrators and computer programmers are often provided highly privileged access
to critical systems for software deployment using systems such as Ansible or uploading software
packages into software repositories such as PyPI.

In all of these scenarios there are many users with very poweful adversaries. In case of
a software developer or systems administrator that would be competing companies or foreign
intelligence agencies trying to gain access to internal networks to steal confidential information.
In case of a journalist that would be whoever they are writing about and here the most inter-
esting articles might come with the most powerful enemies. Finally, a security researcher would
by nature of their work, out of academic interest specifically be looking for the most dangerous
targets they could find.

Some users might be able to reduce their attack surface to USB attacks by reducing their
use of untrusted USB devices, but in many everyday scenarios such as those described above
this is not an option. A security researcher needs to connect to untrusted devices in order to
analyze them, and using a second, isolated machine for this is very inconvenient. A journalist
or politician will frequently have to read USB flash drives with documents for their work, and
again simply solving the problem by air-gapping is an effective but impractical mitigation. In
all of these cases, SecureHID would be an effective mitigation.

3 Approach

3.1 System overview

The goal of SecureHID is to enable the first reasonably secure system using both HID and
arbitrary untrusted devices on the same USB host controller, based on QubesOS. SecureHID
consists of a USB HID encryption box to be put between keyboard and computer and a piece
of software run inside QubesOS. After initial pairing with the host software, the encryption
box will encrypt and sign any USB HID input arriving from the keyboard and forward the
encrypted data to the host. The host software running outside the untrusted USB VM will
receive the encrypted and signed data from the untrusted USB VM, verify and decrypt it, and
inject the received HID input events into Qubes’s input event handling system.

A schematic diagram of a system employing SecureHID is shown in figure 1. Two major
points that can be seen here are that first, SecureHID requires no specialized hardware on either
end and transparently plugs into the existing USB stack. Second, a SecureHID-protected setup
has two well-defined security boundaries, one inside the SecureHID device between host and de-
vice side, and one in the host operating system between USB driver VM and hypervisor. These
security boundaries allow a clean separation of a SecureHID setup into untrusted and trusted
domains and greatly simpliefies reasoning about overall system security. Communication across
these security boundaries is limited to the simple SecureHID protocol. We describe the design
of the SecureHID protocol in section 4.1 and elaborate its security properties in section 4.2.
The security of the protocol’s core components has been formally verified in the past and the
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protocol has been kept simple enough to allow exhaustive verification and testing.

3.2 System security properties

This system is sufficient to secure any USB setup, especially unmodified desktop PCs or laptops
where a USB host controller is shared between both HIDs and other devices. Attack surface
is reduced such that a full compromise of the system becomes unlikely, since plain HID is no
longer supported. The remaining attack surface consists only of a compromise of the USB VM.
This attack surface is small enough that other sensitive devices such as USB audio devices
can safely be connected. A compromise of the USB driver VM no longer gives full system
access, but at best allows listening in on the microphone. Since a compromised USB VM in
general does not have network access, such an attack will be mostly harmless in most scenarios.
Additionally, the most likely attacking devices would be custom hardware or a compromised
smartphone. Custom hardware can easily be outfitted with a microphone, essentially turning
it into a bug irrespective of USB functionality, and smartphones already have microphones by
definition.

A practical mitigation for potential information leakage through microphones, webcams and
other sensitive devices would be to simply unplug them when not used. Microphones could also
be connected to a PCIe-based sound card (such as the integrated sound card of most laptops)
and webcams could potentially be isolated to a separate USB host controller.

3.3 USB physical-level and bus-level attacks

Since sensitive HIDs are isolated from other USB devices effectively on a separate bus, bus-
level attacks such as Neugschwandtner, Beitler, and Kurmus [12] are entirely prevented. The
much scarier physical attacks on USB such as Su et al. [18] can be prevented thanks to the
clear security boundary inside the SecureHID device. Since there is only four wires needed
between the trusted and untrusted sides (Ground, VCC, serial RX and serial TX) and the
serial link is running at a comparatively low speed (115.2kBd easily suffice), analog filtering
is a viable measure against sidechannels. On the ground and VCC rails extensive filtering
using series inductors and large capacitors can be used to decouple both sides. Additionally,
both sides’ microcontrollers can optionally be fed from separate voltage regulators powered off
the USB 5V rail to reduce side-channels. The serial link can be filtered to limit its analog
bandwidth to above serial speeds (50kHz) but much below the trusted microcontroller’s system
clock (72MHz). Finally, on the untrusted microcontroller choosing UART pins that are not
multiplexed to its internal ADC elminates the risk of direct measurements by a compromised
microcontroller firmware and leaves only indirect measurements of power supplies or coupling
into other pins’ signals. This means that with a few very inexpensive hardware countermeasures
(an additional voltage regulator and a handful of capacitors, inductors and resistors for filtering)
any analog side-channels between trusted and untrusted side can be ruled out.

4 Cryptographic design

4.1 Protocol description

The basic protocol consists of two stages: pairing and data. When the device powers up, it
enters pairing state. When the host enumerates a new device, it enters pairing state. If any
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Figure 1: Diagram of a SecureHID-protected system
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fatal communication errors occur, both host and device re-enter pairing state. To make the
implementation robust against host software crashing, devices being unplugged etc. without
opening it up to attacks, the host can request the device to re-enter pairing state a limited
number of times after powerup.

pairing state consists of a number of substates as set by Perrin [13]. The device runs
noise’s XX scheme, i.e. both host and device each contribute both one ephemeral key e and
one static key s to the handshake, and the public halves of the static keys are transmitted
during handshake encrypted by the emphemeral keys.

The cryptographic primitives instantiated in the prototype are X25519 for the ECDH primi-
tive, BLAKE2s as a hash and ChaCha20-Poly1305 as AEAD for the data phase. ECDH instead
of traditional DH was chosen for its small key size and fast computation. Since no variant of
RSA is used, key generation is fast. An ad-hoc prototype device-side random number generator
has been implemented based on BLAKE2s and the STM32’s internal hardware RNG.

Keyboard SecureHID Host

COBS sync (null byte)

Initiate Handshake

Handshake, e
Handshake, e, ee, s, es

Handshake, s, se

Noise XX handshakeNoise XX handshake

Pairing Start

keystroke Pairing Input, E(keystroke)

keystroke

...
Pairing Input, E(keystroke)

...

enter Pairing Success

PairingPairing Triggered by user interaction after unsuccessful handshake

keystroke

...

Data, E(keystroke)

...

Input passthroughInput passthrough Started after successful handshake or pairing

Figure 2: A successful prototype protocol pairing

A successful pairing looks like this:
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1. Handshake. device is connected to host

2. host initiates pairing by sending initiate handshake to device

3. device and host follow noise state machine for the XX handshake. See figure 3 for a
complete flowchart of cryptographic operations during this handshake. The handshake
and subsequent Noise protocol communication are specified in Perrin [13] and their secu-
rity properties are formally verified in Kobeissi and Bhargavan [7]. Section 4.2.1 analyzes
the implications of these security properties for this research.

4. After the handshake completes, both device and host have received each other’s static
public key rs and established a shared secret connection key. At this point, the possibility
of an MITM attacker having actively intercepted the handshake remains. At this point
device and host will both notice they do not yet know each other’s static keys. host
will respond to this by showing the pairing GUI dialog. deivce will sound an alarm to
indicate an untrusted connection to the user.

5. Channel binding. Both device and host calculate the handshake hash as per noise
spec[13]. This hash uniquely identifies this session and depends on both local and remote
ephemeral and static keys le, re, ls, rs. Both parties encode a 64-bit part of this hash into
a sequence of english words by dictionary lookup. This sequence of words is called the
fingerprint of the connection.

6. host prompts the user to enter the fingerprint into a keyboard connected to device. The
user presses the physical pairing button on device to stop the alarm and start pairing.
This step prevents an attacker from being able to cause the device to send unencrypted
input without user interaction by starting pairing.

7. As the user enters the fingerprint, device relays any input over the yet-unauthenticated
encrypted noise channel to host. host displays the received user input in plain text in
a regular input field in the pairing GUI. This display is only for user convenience and not
relevant to the cryptographic handshake. A consequence of this is that a MITM could
observe the fingerprint2. We show in section 4.2 that this does not reduce the protocol’s
security.

8. When the user has completed entering the fingerprint, the device checks the calculated
fingerprint against the entered data. If both match, the host is signalled success and
data phase is entered. If they do not match, the host is signalled failure3 and pairing
state is re-entered unless the maximum number of tries since powerup has been exceeded.
Failure is indicated to the user by device through a very annoying beep accompanied
by angrily flashing LEDs.

9. Data phase. host asks the user for confirmation of pairing in case the device did not
sound an alarm by pressing a button on the GUI. When the user does this, the host
enters data state and starts input passthrough.

2A MITM could also modify the fingerprint information sent from device to host. This would be very
obvious to the user, since the fingerprint appearing on the host screen would differ from what she types.

3Note that this means a MITM could intercept the failure message and forge a success message. This
means both are just for user convenience absent an attacker. If an attacker is present, she will be caught in the
next pairing step.
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Roughly speaking, this protocol is secure given that the only way to MITM a (EC)DH key
exchange is to perform two (EC)DH key exchanges with both parties, then relay messages. Since
both parties have different static keys, the resulting two (EC)DH sessions will have different
handshake hashes under the noise framework. The channel binding step reliably detects this
condition through an out-of-band transmission of the host handshake hash to device. The
only specialty here is that this OOB transmission is relayed back from device to host allowing
the MITM to intercept it. This is only done for user convenience absent a MITM and the result
is discarded by host. Since the handshake hash does as a hash does not leak any sensitive
information about the keys used during the handshake, it being exposed does not impact
protocol security.

4.2 Protocol verifictation

4.2.1 Noise security properties

According to Perrin [13] and proven by Kobeissi and Bhargavan [7] Noise’s XX pattern provides
strong forward-secrecy, sender and receiver authentication and key compromise impersonation
resistance. Strong forward secrecy means an attacker can only decrypt messages by compromis-
ing the receivers private key and performing an active impersonation. Strong forward secrecy
rules out both physical and protocol-level eavesdropping attacks by malicious USB devices and
implies that an attacker can never decrypt past protocol sessions. An implication of the static
key checks done on both sides of the connection is that an attacker would need to compromise
both host and device in order to remain undetected for e.g. keylogging. Compromising only one
party the worst that can be done is impersonating the SecureHID device to perform a classical
HID attack. In this case, the attacker cannot read user input and the user would notice this
by SecureHID indicating a not connected status and thus the keyboard not working.

To verify that these security properties extend to the overall SecureHID protocol it suffices
to show the following three properties.

1. The SecureHID implementation of Noise XX adheres to the Noise specification, i.e. the
handshake is performed correctly.

2. Both sides’ static keys are verified.

3. All sensitive data is encapsulated in Noise messages after the handshake has ended, and
none is sent before.

1 has been validated by manual code review and cross-validation of our implementation
against other Noise implementations. 2 has been validated by manual code review. Since all
sensitive data in our application is handled on the device in a single place (the USB HID request
handling routine), 3 is easily validated by code review. USB HID reports are only transmitted
either encrypted after the handshake has been completed or in plain during pairing. Since the
host will only inject reports into the input subsystem that have been properly authenticated
and encrypted (and not the unauthenticated reports sent during pairing), the protocol is secure
in this regard. Since pairing keyboard input is only passed through after the host’s pairing
request has been acknowledged by the user with SecureUSB’s physical pairing button the user
would certainly notice an attack trying to exfiltrate data this way. Were pairing input passed
through automatically without explicit user acknowledgement, an attacker could start pairing
mode just as the user starts typing in a password prompt such as the one of sudo or a password
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field and might not notice the attack until they have typed out their entire password to the
attacker.

4.2.2 Handshake hash non-secrecy

To analyze the impact of disclosing the handshake hash to an adversary we must consider its
definition. The noise protocol specification does not guarantee that the handshake hash can
be disclosed to an adversary without compromising security. Figure 3 is a flowchart of the
derivation of both initiator-transmit and initiator-receive symmetric encryption keys k1,2 and
the handshake hash h during the Noise handshake. Following are the definitions of MixHash
and MixKey according to the Noise protocol specification.

MixHash(h, input) = h′ = H(h||input) (1)
MixKey(ck, input) = (ck′, ktemp) = HKDF(ck, input, 2) (2)

(3)

Noise’s hash-based key derivation function (HKDF) is defined using the HMAC defined in
RFC2104[9]. The hash function H employed here depends on the cipher spec used. SecureHID
uses BLAKE2s.

HMAC(K, input) = H
(
(K ⊕ opad) ||H

(
(K ⊕ ipad) ||input

))
(4)

The HKDF is defined for two and three outputs as follows.

HKDF(ck, input, nout) =

{
(q0, q1) : nout = 2
(q0, q1, q2) : nout = 3

(5)

The outputs qi are derived from chained HMAC invocations. First, a temporary key t′ is
derived from the chaining key ck and the input data using the HMAC, then depending on nout

the HMAC is chained twice or thrice to produce q{0,1,2}.

t′ = HMAC(ck, input) (6)

HMAC
(
t′,HMAC

(
t′,HMAC(t′, 116)︸ ︷︷ ︸

q0

||216
)

︸ ︷︷ ︸
q1

||316
)

︸ ︷︷ ︸
q2

(7)

Relevant to this protocol implementation’s security are the following two properties, both
of which can be derived from figure 3:

1. Initiator and responder ephemeral and static keys are all mixed into the handshake hash
at least once.

2. Knowledge of the handshake hash does not yield any information on the symmetric AEAD
keys k1 and k2.
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"Noise_XX_25519_ChaChaPoly_BLAKE2s"

H

ckh ei er si sr

MixHash ""
No preamble,

use empty string

MixHashe→

MixHash ""
EncryptAndHash
No payload and

k unset

MixHashe←

MixKeyee← ECDH

MixHash Es←

MixKeyes← ECDH

MixHash E ""
DecryptAndHash

No payload

MixHash Es→

MixKeyse→ ECDH

MixHash E ""
EncryptAndHash

No payload

HKDF

k1 k2

""

h

Split

setup

0

1

2

fin

Figure 3: Cryptographic flowchart of Noise XX handshake.

10



1 is evident since ei and er are mixed in directly and si and sr are mixed in after encryption
with temporary encryption keys derived from ck at the s → and s ← steps during the hand-
shake. We can see 2 applies by following the derivation of h backwards. If an attacker learned
anything about k1 or k2 during an attack by (also) observing h that they did not learn before,
we could construct an oracle allowing both reversal of H in the final invocation of MixHash
and breaking E using this attacker. The attacker would have to reverse H at some point since
h = H(. . .) in the final invocation of MixHash. The attacker would have to recover the key of
E in at least one invocation since si and sr are only mixed into h after either being encrypted
using E or being used after ECDH to generate a key for E. Since the result of ECDH on ei and
er is mixed into h in the ee← and following DecryptAndHash steps, h is blinded to an attacker
so that they cannot even determine a given k1 and k2 match a given h without compromising
ECDH security. This means that given the underlying primitives are secure, we do not leak
any information on k1 or k2 by disclosing h.

4.3 Alternative uses for interactive public channel binding

The channel binding method described above can be used in any scenario where a secure channel
between two systems must be established where one party has a display of some sort and the
other party has an input device of some sort.

Relation to screen-to-photodiode interfaces There have been many systems using a
flashing graphic on a screen to transmit data to a receiver containing a photodiode held against
the screen. Such systems have been used to distribute software over broadcast television but
have also been used for cryptographic purposes. One widely-deployed example is the “Flicker-
tan” system used for wire transfer authorization in Germany where a smartcard reader with five
photodiodes is held against a flickering image on the bank website’s wire transfer form[16, 17, 2].
Systems such as this one do not benefit from the interactive channel binding process described
in this paper since they do not require any direct user interaction. They could however be used
as an alternative means for channel binding in any system also supporting interactive pairing
as described above. The handshake fingerprint would simply be encoded into the flicker signal
and transmitted to the other endpoint in that way. Similarly, QR-codes or other barcodes could
be used to a device containing a camera. The primary advantage of photodiode-based systems
is that they incur lower implementation complexity and don’t require a potentially expensive
camera.

Adaption for SSH identity distribution Our interactive channel binding method using
a passphrase could be used for key establishment in an SSH setup. SSH includes a powerful
built-in public-key authentication system, but does not include key management functionality.
To grant and revoke public key-based access to a host or account, SSH expects the user to
manually manage a textual authorized_keys file containing all public keys allowed to login to
a particular host or account. Mutual authentification is supported by default, using a trust on
first use system storing host key fingerprints in a known_hosts file. SSH’s identity management
system is well-tested and can be considered secure for almost any purpose. It is however
very simplistic and shifts the burden of access management and identity synchronization to
the user. Except in very simple use cases, the user will have to provide their own identity
management layer on top of the primitives provided by SSH. Common implementations of
this include offloading authorized_keys functionality to LDAP or automatically generating
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authorized_keys files from a configuration management system. The secure implementation of
any such system incurs a large organizational overhead. SSH keys are too long to be practically
read-out aloud which in case of small organizations often leads ot insecure practices such as
sharing of SSH public keys through chat, email or wiki pages for initial access during say,
onboarding of a new employee. Though such out-of-band key distribution schemes may well be
secure often the OOB channel’s security is not adequately considered in advance.

The interactive channel binding method described in this paper could be used to interac-
tively transfer an SSH key’s public to another host by simply establishing a secure channel
from source to target machine in the fashion outlined above, then copying the key through it.
Compared to current common practice this approach would allow two users to transfer a key
by simply reading out aloud the channel binding fingerprint. This reduces the problem of a
digital out-of-band channel trusted for direct transfer of manipulation-sensitive key material to
the problem of two users being sure whether they’re actually talking to each other instead of
an impostor.

A scenario using the SecureHID hardware to improve SSH security would be to terminate the
SSH connection inside the SecureHID hardware and this way prevent a compromised host from
compromising the SSH remote. This approach has the primary drawback that it would incur a
large implementation overhead providing new attack surface. Additionally this approach would
only work when the user is solely interacting with the remote system through keyboard input
and would break workflows that require copying files to the remote host, or running commands
in an automated fashion like a configuration management system such as ansible would do.

5 Hardware implementation

5.1 Hardware overview

To demonstrate the practicality of this approach and to evaluate its usability in an everyday
scenario, a hardware prototype has been built. Based on an initial prototype consisting of a
microcontroller development board and a bundle of wires a custom PCB fitting an off-the-shelf
case has been produced that allows future usability testing in practical settings.

The hardware implementation consists of two ARM microcontrollers, one for the untrusted
host side and one for the trusted device side. Both are linked using a simple UART interface.
Both microcontrollers have been chosen by their USB functionality. For the integrated USB
host controller, we had to chose a rather powerful microcontroller on the trusted device side
even though a much less powerful one would have sufficed even though we are doing serious
cryptography on this microcontroller. AES encryption is done on every data packet and must
compelete in time for the overall system to meet its latency requirement, but is fast enough by
a large margin. Similarly, the hash and ECDH operations during the cryptographic handshake
are fast enough by a large margin. Additionally, those operations are only invoked infrequently
any time the device is disconnected or the host suspends.

5.2 Hardware security measures

5.3 Usability considerations

Implementation robustness In many systems such as common TLS-based systems, overall
system security heavily depends on implementation details such as certificate checking and user
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interface details such as the precise structure of security warning messages and how they can
be overridden. The complexity of these components in practice often leads to insecure systems,
such as a system using TLS checking a certificate’s internal validity but omitting checks on
the certificate’s chain of trust. A nice property of the key estabilishment system outlined in
this paper is that it is both very simple, reducing surface for errors and it tightly couples the
critical channel binding step during key establishment to the overall system’s user interface. In
a system using either keyboard or mouse-based interactive channel binding, an implementation
that does not perform the channel binding step correctly would simply not work. If the host
does not display the correct fingerprint the user cannot enter it and the device will not complete
the binding step. If the device does not relay fingerprint data correctly during pairing the host
application would clearly indicate to the user things are amiss with the input not matching the
fingerprint. Since the channel fingerprint is computed in a cryptographically well-defined way
based on entropy contributed by both partners during pairing a implementer would not even
be able to accidentially degrade fingerprint security.

The critical point from an UI perspective in this pairing scheme is that the host application
must display correct instructions to the user for them to complete pairing. In particular the
host application must put emphasis on the user actually checking whether the device raised
an alarm before confirming pairing after fingerprint input. Even if it didn’t the user would
notice the device not functioning, but an attacker might have gained unauthorized access in
the meantime. Likewise, the device needs a clearly understandable method of indicating pairing
failure to the user. In practice a loud buzzer and a few bright LEDs would likely suffice for
this.

Adaption to mice Instead of a keyboard, a mouse can be used for pairing without compro-
mising protocol security. In a basic scheme, the host would encode the fingerprint bit string
into a permutation σ(i) : {n ∈ N, n ≤ m} → {n ∈ N, n ≤ m} for an integer security parameter
m > 0 and then display the sequence σ(i) in a grid of buttons similar to a minesweeper field
with an emualted mouse cursor driven by pairing input on top. The user would then click the
buttons on the grid in numeric order. The device would do the same mouse emulation invisible
to the user and would be able to observe the permutation this way. The fingerprint can finally
be checked by decoding the permutation into a bit string and comparing. The security level
for this method in bits is η = log2(m!) or better than 80bit for m = 25 in case of a 5x5 grid.
See figure 4 for a mockup of what such a system might look like.

Gamification A second, slightly more complex approach to a mouse-based interface would
be to adapt the popular game Minesweeper to compare fingerprints in our interactive setting.
In Minesweeper, the user is presented with a fixed-size, say 20× 20 x− y grid of fields. Under
each of n of the x × y fields a mine is hidden. The user is tasked with uncovering all fields
without mines while flagging those fields that contain mines. Every time the user uncovers a
field, the number of mines on adjacent fields is shown. If there are no mines on adjacent fields,
all adjacent fields are automatically uncovered by the game in a recusive fashion. The user
wins when all mine-free fields have been uncovered and all fields with mines flagged, and looses
when they try to uncover a field with a mine on it.

The fundamental approach to use minesweeper as a pairing method would be to encode the
fingerprint into the minesweeper field. The host would encode the fingerprint, then let the user
play the game using their mouse with the usual on-screen graphical representation of the game
field. The device would besides forwarding all mouse input events to the host simultaneously
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Figure 4: A mockup of what mouse-based interactive pairing might look like

trace all user actions in order to Both host and device would emulate the game field and after a
successful run the user will have marked all locations of mines, thereby out-of-band transferring
the field configuration chosen by the host to the device.

Minesweeper is very well-known and can be parametrized to be easily solved by most people.
Compared to the task of sequentially clicking buttons as presented in the previous paragraph a
user might prefer playing a game of minesweeper instead. While various problems surrounding
minesweeper are computationally hard[demaine01], field generation is easy. To place n mines
on a x by y grid one simply chooses an unordered subset of n elements, of which there are

(
xy
n

)
.

For the three default difficulty levels provided by the minesweeper game included in Windows
XP the field state contains ≈ 40, ≈ 156 and ≈ 348 bits of entropy respectively. This means
even just two rounds on beginner difficulty, or a single round on intermediate difficulty already
provide a cryptographically significant 80 bit security level. In the context of the interactive
pairing protocol presented in this work, even a single beginner-level round of minesweeper
already reduces the chance of an undetected man in the middle attack to a negligible level.

A usability concern in this minesweeper-based pairing scheme would be user error. To
improve user experience it would be wise to still consider a round, even if the user makes a
mistake and looses the game. A simple way to do this that also intuitively handles user-set
game difficulty levels would be to set a target entropy such as 40 bit, then repeat games until the
target entropy is reached with each game’s outcome contributing to the entropy level depending
on the outcome’s probability. with a multivariate hypergeometric distribution here, jk

Adaption to button input Adaption to button input using few buttons is a little bit harder.
The obvious but impractical solution here is to have the user enter a very long numeric string.
Entering an 80-bit number on a two-button binary keyboard is not user-friendly. One other
option would be to emulate an on-screen keyboard similar to the ones used in arcade and
console video games for joystick input. This would be more user-friendly and would likely be
a natural interface to many users familiar with such games. One possible attack here is that
if the host were to ignore dropped input packets, an attacker might selectively drop packets in
order to cause a desynchronization of host and device fingerprint input states. The user would
likely chalk up this behavior to sticky or otherwise unreliable keys and while they might find
it inconvenient, they might not actually abort the procedure. Thus it is imperative that the
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host verify there are no dropped packets during pairing. This same observation is also true
for keyboard or mouse-based pairing as explained above, but an attack would be much more
noticeable there to users as mice and keyboards are generally regarded reliable by most users.

6 Evaluation

7 Future work
The aspects outlined in section 4.3 provide potential future research directions. The adaption
of the system to mouse input might be an interesting target for a user experience study, par-
ticularly in comparison with a purely keyboard-based system. The SSH key exchange method
would be an interesting target for a general-use systems administration tool. Though we have
done some basic security arguments in this paper, a more rigurous formalization might be in-
terresting for future use of this technology. We have soundly argued about the user experience
benefits of our method, but we have not performed any field experiments to back up these
arguments. Future research might analyze the practical security a system as outlined in this
paper yields under real-world conditions. The various trade-offs of e.g. keyboard vs. mouse
input, fingerprint length and design details of the pairing UI might be analyzed with respect
to practical usability and security.

8 Conclusion
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A Project state
A working prototype has been completed.

A.1 Completed

• Rough protocol design
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• Protocol implementation based on Perrin [13] using noise-c (microcontroller) and noise-
protocol (python/host)

• SRAM-based key storage with SRAM wear levelling

• host/device signature checking

• host/device key generation

• proper circuit design (see appendix ??)

A.2 Open issues

• Both noise-c and noiseprotocol have poor code and API quality. Since most noise function-
ality is not needed, just implement the protocol in bare C/python based on cryptographic
primitives and scrap higher-level protocol implementations (though they’ve been useful
so far during prototyping).

• Implement HID mouse host support

• Test USB hub support

• Replace the serial link with a custom USB link using an STM32F103 instead of the
CH340G USB/serial converter

• Properly integrate prototype host client with qubes infrastructure

• Implement photodiode/monitor-based pairing side-channel

B Possible directions
• Elaborate possible DisplayPort/HDMI-based display encryption → Bunnie’s NeTV2 w/

HDMI/eDP converter

• Create custom hardware prototype

• Benchmark cryptography routines (will likely turn out to be “wayyy fast” for HID, fast
enough for full-speed USB. High-speed cannot be done with the current architecture as
we can’t get data out the chip at high-speed data rates. Ravi et al. [14] raise the issue
of running crypto on embedded systems, but in this case it turns out with somewhat
modern hardware and cryptography there is no problem at all.
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