
社団法人 電子情報通信学会
THE INSTITUTE OF ELECTRONICS,

INFORMATION AND COMMUNICATION ENGINEERS

信学技報
TECHNICAL REPORT OF IEICE.

SecureHID: USBインタフェースのセキュリティ

ゲッテ　ヤン† 矢内 直人†† 森 達哉†,†††

† 早稲田大学大学院 基幹理工学研究科 〒169–8555 東京都新宿区大久保 3–4–1

†† 大阪大学大学院 情報科学研究科 〒565–0871 大阪府吹田市山田丘 1-5

E-mail: †code@jaseg.net, ††yanai@ist.osaka-u.ac.jp, †††mori@nsl.cs.waseda.ac.jp

あらまし USBインターフェースは世の中で広く使われているため，そのセキュリティ対策を確立することは重

要な意義がある．これまで多数の USBセキュリティ技術が提案・開発されてきたが，互換性の欠如や不十分なセ

キュリティ保証など，未解決の課題がある．本論文は Noiseプロトコルフレームワーク [15]を用いてバス通信を

暗号化することにより，USBセキュリティを実現する汎用的な方法を提案する．提案手法は既存の USBデバイ

スとの互換性を確保し，また誤った利用方法によって攻撃が成功してしまうリスクを避けるための直感的なユー

ザインタフェースを提供する．仮想OSである QubeOS と統合された形で動作するハードウェアプロトタイプ実

装を通じて，提案手法の有効性を実証する．　

キーワード USB, ハードウェアセキュリティ, バス暗号化, 仮想化, USB HID攻撃, 防御

SecureHID: Securing the USB Interface

Jan GOETTE†, Naoto YANAI††, and Tatsuya MORI†,†††

† Deapartment of Computer Science, Waseda University 3–4–1 Okubo, Shinjuku-ku, Tokyo, 169–8555

Japan

†† Information Security Engineering, Multimedia Engineering, Osaka University 1–5 Yamada, Suita-shi,

565–0871 Japan

E-mail: †code@jaseg.net, ††yanai@ist.osaka-u.ac.jp, †††mori@nsl.cs.waseda.ac.jp

Abstract The USB interface poses an increasing security concern. Various security techniques have been pro-

posed with disadvantages ranging from incompatibility with existing devices to insufficient security guarantees.

In this paper, we propose a novel approach to generic USB security using bus encryption based on the Noise

protocol framework [15]. Our approach is compatible with any existing USB device and provides an intuitive

user interface reducing the risk of accidential compromise. We demonstrate the viability of our approach with

a fully-working hardware prototype with integration into QubesOS.

Key words USB, hardware security, bus encryption, virtualization, USB HID attacks, defense

1. Introduction

A computer’s USB interface is hard to secure. Though

overall security is quite good today, the USB interface has

not received enough attention. In particular HIDs are

a problem, as they are naturally very highly privileged.

Off-the-shelf USB HID attack tools exist. In particular

from a security point of view extremely bad ideas such as

WebUSB[24] are set to increase this already large attack

surface even further.

Several ways to secure the USB interface have been pro-

posed. USB firewalls are software or hardware that pro-

tects the host from requests deemed invalid similar to a

network firewall [21, 1, 8, 20, 13]. USB device authentica-

tion uses some sort of user feedback or public key infras-

tructure to authenticate the device when it connects [3, 5,

23, 6]. USB bus encryption encrypts the raw USB pay-

loads to ward off eavesdroppers[14, 25]. Eskandarian et al.

— 1 —

Attacks Eavesdropping Backwards

compatibleHID Host

exploit

Device

exploit

Bus-level Physical

layer

Firewalls ⃝ △ × △ × ⃝

Device authentication ⃝ × × △ × ×

Bus encryption △ × × ⃝ ⃝ ×

Plain QubesOS setup（注1） △ △ △ △ × ⃝

Our work ⃝ ⃝ ⃝ ⃝ ⃝ ⃝

表 1 Comparison of approaches to USB security

[4] propose a more high-level system that protects certain

types of sensitive application data such as payment in-

formation based on trusted execution (SGX). For wireless

protocols, every conceivable pairing model has been tried.

However, not many have been applied to USB [12, 22, 10,

16]. As we shall discuss in short, although these counter-

measures mitigate a certain kinds of attacks, they cannot

mitigate entire attack vectors against USB interface.

With this background in mind, this work provides the

following three key contributions. First, we present a prac-

tical implementation of a complete, backwards-compatible

secure USB system using QubesOS and a single new piece

of security hardware. Second, we provide a novel in-

teractive user-friendly cryptographic handshaking scheme

based on out-of-band communication. Third, we provide

some techniques for the design of general secure protocols

that are not limited to USB alone. The key idea of our

approach is to leverage the compartmentalization provided

by the QubeOS[7]. QubesOS is a hypervirtualized operat-

ing system using Xen to keep domains of an user’s digital

life in separate Linux or Windows-based virtual machines

while providing full GUI integration. Prior to our work,

QubesOS cannot easily be secured against malicious USB

devices.

2. Background

2. 1 Comparison between the existing ap-

proaches and our work

We compare several approaches to USB interface secu-

rity in Table 1. Overall we found existing systems to lack

either practicality or effectiveness. The most prominent

issue seems to be backwards-incompatibility. Presently,

QubesOS approaches USB security by mapping the USB

host controller into a dedicated Linux VM. HID input is

passed from this VM into dom0. Mass storage devices are

forwarded as Xen block devices. Other USB devices are

passed through using USB-over-IP over Xen vChan. USB

HID devices pose a security challenge here since a compro-

mised USB VM could emulate any HID input if USB HID

is enabled.

2. 2 Threat Model

The security level of today’s USB may be adequate for

most everyday users. USB attacks require malicious hard-

ware or firmware. The bulk of cybercrime is phishing,

banking troyans and ransomware. With the general ad-

vance of computer security, eventually attacks will have

to advance too. Our target is to prepare for such evolved

attacks.

Everyday cybersecurity being fairly mundane there are

people and organizations facing advanced attacks. Ex-

ceedingly simple USB HID attacks are an attractive way

to perform such targeted attacks and specialized attack

hardware is commercially available at low cost. For users

working with highly sensitive data such as journalists or

politicians as well as users with highly privileged access

such as law enforcement officials or system administrators

our approach might already yield practical benefits. We

are concerned with very powerful adversaries. A software

developer or systems administrator might have to defend

against competing companies or foreign intelligence agen-

cies. A journalist might be targeted by whoever they are

writing about–the most interesting articles might come

with the most powerful enemies.

Some can reduce their attack surface by not using un-

trusted USB devices, but in many scenarios this is not

an option. A security researcher needs to connect to un-

trusted devices for analysis and a journalist or politician

has to use USB flash drives with documents for their work.

Air-gaps solve this problem but are impractical. Our work

provides an effective mitigation.

3. System Specification

3. 1 System overview

The goal of our work is to enable the first reasonably

secure system using both HID and arbitrary untrusted de-

vices on the same USB host controller（注2）, based on Qube-

sOS (Figure 1). After initial pairing, in our setup USB

HID requests are encrypted by a security device between

keyboard and computer and authenticated and decrypted

by a piece of software inside the QubesOS dom0. Here,

HID requests are passed through the untrusted parts of the

USB stack (hardware and the driver VM) inside AEAD.

Our setup transparently plugs into the existing USB

stack and works with any USB device and host. This setup

（注1）Requires separate USB host controller for HIDs

（注2）Many laptops only have one USB host controller, and using a

separate trusted controller for HID devices might not be practical.

— 2 —

図 1 Diagram of a system secured using our approach.

has two well-defined security boundaries: One inside the

security device and one inside the hypervisor surrounding

the USB driver VM. These security boundaries allow clean

separation of trusted and untrusted components, simplify-

ing reasoning about overall system security. Communica-

tion across security boundaries is limited to the easy-to-

audit protocol described in section 4. 1 and analyzed for

security in section 4. 2.

3. 2 System security properties

Our system is sufficient to secure any USB setup such as

a desktop PCs or a laptop sharing a USB host controller

between privileged HID and other unprivileged devices.

Full compromise of the system becomes unlikely due to

limited attack surface. A possible compromise of the USB

driver VM would not pose a large risk anymore. Con-

sidering a scenario where a sensitive USB audio device is

connected to the USB driver VM, an attacker cannot es-

calate their privileges into dom0 from there anymore and

since the USB VM does not have network access this com-

promise would be harmless in most scenarios.

3. 3 USB physical-level and bus-level attacks

Since sensitive HIDs are isolated from other USB de-

vices effectively on a separate bus, bus-level attacks such

as Neugschwandtner, Beitler, and Kurmus [14] are entirely

prevented. The much scarier physical attacks on USB such

as Su et al. [19] can be prevented thanks to the clear se-

curity boundary inside the security device. Since there is

only four wires needed between the trusted and untrusted

sides (Ground, VCC, serial RX and serial TX) and the se-

rial link is running at a comparatively low speed (115.2kBd

easily suffice), analog filtering is a viable measure against

sidechannels. On the ground and VCC rails extensive fil-

tering using series inductors and large capacitors can be

used to decouple both sides. Additionally, both sides’ mi-

crocontrollers can optionally be fed from separate voltage

regulators powered off the USB 5V rail to reduce side-

channels. The serial link can be filtered to limit its analog

bandwidth to above serial speeds (50kHz) but much be-

low the trusted microcontroller’s system clock (72MHz).

Finally, on the untrusted microcontroller choosing UART

pins that are not multiplexed to its internal ADC elminates

the risk of direct measurements by a compromised micro-

controller firmware and leaves only indirect measurements

of power supplies or coupling into other pins’ signals. This

means that with a few very inexpensive hardware counter-

measures (an additional voltage regulator and a handful of

capacitors, inductors and resistors for filtering) any analog

side-channels between trusted and untrusted side can be

ruled out.

4. Cryptographic design

4. 1 Protocol description

The basic protocol consists of two stages: pairing and

data. When the device powers up, it enters pairing state.

When the host enumerates a new device, it enters pairing

state. If any fatal communication errors occur, both host

and device re-enter pairing state. To make the implemen-

tation robust against host software crashing, devices being

unplugged etc. without opening it up to attacks, the host

can request the device to re-enter pairing state a limited

number of times after powerup.

pairing state consists of a number of substates as set

by Perrin [15]. The device runs the Noise XX scheme, i.e.

both host and device each contribute both one ephemeral

key e and one static key s to the handshake, and the static

public keys are transmitted during handshake encrypted

by the emphemeral keys.

A successful pairing looks like this:

（ 1） Handshake. device is connected to host

（ 2） host initiates pairing by sending initiate hand-

— 3 —

Keyboard Security Device Host

COBS sync (null byte)

Initiate Handshake

Handshake, e

Handshake, e, ee, s, es

Handshake, s, se

Noise XX handshakeNoise XX handshake

Pairing Start

keystroke Pairing Input, E(keystroke)

keystroke

...
Pairing Input, E(keystroke)

...

enter Pairing Success

PairingPairing Triggered by user interaction after unsuccessful handshake

keystroke

...

Data, E(keystroke)

...

Input passthroughInput passthrough Started after successful handshake or pairing

n

図 2 A successful prototype protocol pairing

shake to device

（ 3） device and host follow noise state machine for

the Noise XX handshake. See Figure 3 for a complete

flowchart of cryptographic operations during this hand-

shake. The handshake and subsequent Noise protocol com-

munication are specified in Perrin [15] and their security

properties are formally verified in Kobeissi and Bharga-

van [9]. Section 4. 2. 1 analyzes the implications of these

security properties for this research.

（ 4） After the handshake completes, both device and

host have received each other’s static public key rs and

established a shared secret connection key. At this point,

the possibility of an MITM attacker having actively inter-

cepted the handshake remains. At this point device and

host will both notice they do not yet know each other’s

static keys. host will respond to this by showing the pair-

ing GUI dialog. deivce will sound an alarm to indicate

an untrusted connection to the user.

（ 5） Channel binding. Both device and host cal-

culate the handshake hash as per noise spec[15]. This hash

uniquely identifies this session and depends on both local

and remote ephemeral and static keys le, re, ls, rs. Boteh

parties encode a 64-bit part of this hash into a sequence

of english words by dictionary lookup. This sequence of

words is called the fingerprint of the connection.

（ 6） host prompts the user to enter the fingerprint

into a keyboard connected to device. The user presses

the physical pairing button on device to stop the alarm

and start pairing. This step prevents an attacker from

being able to cause the device to send unencrypted input

without user interaction by starting pairing.

（ 7） As the user enters the fingerprint, device relays

any input over the yet-unauthenticated encrypted noise

channel to host. host displays the received user input in

plain text in a regular input field in the pairing GUI. This

display is only for user convenience and not relevant to the

cryptographic handshake. A consequence of this is that a

MITM could observe the fingerprint（注3）. We show in sec-

tion 4. 2 that this does not reduce the protocol’s security.

（ 8） When the user has completed entering the finger-

print, the device checks the calculated fingerprint against

the entered data. If both match, the host is signalled suc-

cess and data phase is entered. If they do not match,

the host is signalled failure
（注4） and pairing state is re-

entered unless the maximum number of tries since powerup

has been exceeded. Failure is indicated to the user by de-

vice through a very annoying beep accompanied by an-

grily flashing LEDs.

（ 9） Data phase. host asks the user for confirma-

tion of pairing in case the device did not sound an alarm

by pressing a button on the GUI. When the user does this,

the host enters data state and starts input passthrough.

Roughly speaking, this protocol is secure given that the

only way to MITM a (EC)DH key exchange is to per-

form two (EC)DH key exchanges with both parties, then

relay messages. Since both parties have different static

keys, the resulting two (EC)DH sessions will have different

handshake hashes under the noise framework. The chan-

nel binding step reliably detects this condition through an

out-of-band transmission of the host handshake hash to

device. The only specialty here is that this OOB trans-

mission is relayed back from device to host allowing the

MITM to intercept it. This is only done for user con-

venience absent a MITM and the result is discarded by

host. Since the handshake hash does as a hash does not

leak any sensitive information about the keys used during

the handshake, it being exposed does not impact protocol

security.

4. 2 Protocol verifictation

4. 2. 1 Noise protocol security properties

According to Perrin [15] and proven by Kobeissi and

（注3）A MITM could also modify the fingerprint information sent

from device to host. This would be very obvious to the user, since

the fingerprint appearing on the host screen would differ from what

she types.

（注4）Note that this means a MITM could intercept the failure mes-

sage and forge a success message. This means both are just for user

convenience absent an attacker. If an attacker is present, she will

be caught in the next pairing step.

— 4 —

Bhargavan [9] the Noise XX pattern provides strong

forward-secrecy, sender and receiver authentication and

key compromise impersonation resistance. Strong forward

secrecy means an attacker can only decrypt messages by

compromising the receivers private key and performing an

active impersonation. Strong forward secrecy rules out

both physical and protocol-level eavesdropping attacks by

malicious USB devices and implies that an attacker can

never decrypt past protocol sessions. An implication of

the static key checks done on both sides of the connection

is that an attacker would need to compromise both host

and device in order to remain undetected for e.g. keylog-

ging. Compromising only one party the worst that can

be done is impersonating the security device to perform

a classical HID attack. In this case, the attacker cannot

read user input and the user would notice this by the se-

curity device indicating a not connected status and thus

the keyboard not working.

4. 2. 2 Implementation correctness

To verify that these security properties extend to our im-

plementation it suffices to show the following three prop-

erties.

（ 1） Our implementation of Noise XX adheres to the

Noise specification, i.e. the handshake is performed cor-

rectly.

（ 2） Both sides verify each other’s static key.

（ 3） All sensitive data is encapsulated in Noise mes-

sages after the handshake has ended, and none is sent be-

fore. I.e. no sensitive data is transmitted outside the Noise

protocol.

1 has been validated by manual code review and cross-

validation of our noise-c-based implementation against

noiseprotocol, a noise implementation in python. 2 has

been validated by manual code review. Since all sensitive

data in our application is handled on the device in a single

place (the USB HID request handling routine), 3 is eas-

ily validated by code review. USB HID reports are only

transmitted either encrypted after the handshake has been

completed or in plain during pairing. Since the host will

only inject reports into the input subsystem that have been

properly authenticated and encrypted (and not the unau-

thenticated reports sent during pairing), the protocol is

secure in this regard. Since pairing keyboard input is only

passed through after the host’s pairing request has been

acknowledged by the user with the physical pairing button

the user would certainly notice an attack trying to exfil-

trate data this way. Were pairing input passed through

"Noise XX 25519 ChaChaPoly BLAKE2s"

H

ckh ei er si sr

MixHash ""
No preamble,

use empty string

MixHashe→

MixHash ""

EncryptAndHash

No payload and

k unset

MixHashe←

MixKeyee← ECDH

MixHash Es←

MixKeyes← ECDH

MixHash E ""
DecryptAndHash

No payload

MixHash Es→

MixKeyse→ ECDH

MixHash E ""
EncryptAndHash

No payload

HKDF

k1 k2

""

h

Split

setup

0

1

2

fin

図 3 Cryptographic flowchart of Noise XX handshake.

automatically without explicit user acknowledgement, an

attacker could start pairing mode just as the user starts

typing in a password prompt such as the one of sudo or a

password field and might not notice the attack until they

have typed out their entire password to the attacker.

4. 2. 3 Handshake hash non-secrecy

To analyze the impact of disclosing the handshake hash

to an adversary we must consider its definition. The noise

protocol specification does not guarantee that the hand-

shake hash can be disclosed to an adversary without com-

promising security. Figure 3 is a flowchart of the derivation

of both initiator-transmit and initiator-receive symmetric

encryption keys k1,2 and the handshake hash h during the

Noise handshake. Following are the definitions of MixHash

and MixKey according to the Noise protocol specification.

MixHash(h, input) = h
′ = H(h||input)

MixKey(ck, input) = (ck′
, ktemp) = HKDF(ck, input, 2)

Noise’s hash-based key derivation function (HKDF) is de-

fined using the HMAC defined in RFC2104[11]. The hash

functionH employed here depends on the cipher spec used.

In this work we use BLAKE2s.

HMAC(K, input) =

— 5 —

H
(

(K ⊕ opad) ||H
(
(K ⊕ ipad) ||input

))

The HKDF is defined for two and three outputs as follows.

HKDF(ck, input, nout) =







(q0, q1) : nout = 2

(q0, q1, q2) : nout = 3

The outputs qi are derived from chained HMAC invoca-

tions. First, a temporary key t′ is derived from the chain-

ing key ck and the input data using the HMAC, then

depending on nout the HMAC is chained twice or thrice to

produce q{0,1,2}.

t
′ = HMAC(ck, input)

HMAC
(

t
′
,HMAC

(
t
′
,HMAC(t′, 116)
︸ ︷︷ ︸

q0

||216
)

︸ ︷︷ ︸

q1

||316
)

︸ ︷︷ ︸

q2

Relevant to this protocol implementation’s security are

the following two properties, both of which can be derived

from Figure 3:

（ 1） Initiator and responder ephemeral and static keys

are all mixed into the handshake hash at least once.

（ 2） Knowledge of the handshake hash does not yield

any information on the symmetric AEAD keys k1 and k2.

1 is evident since ei and er are mixed in directly and

si and sr are mixed in after encryption with temporary

encryption keys derived from ck at the s→ and s← steps

during the handshake. We can see 2 applies by follow-

ing the derivation of h backwards. If an attacker learned

anything about k1 or k2 during an attack by (also) observ-

ing h that they did not learn before, we could construct

an oracle allowing both reversal of H in the final invo-

cation of MixHash and breaking E using this attacker.

The attacker would have to reverse H at some point since

h = H(. . .) in the final invocation of MixHash. The at-

tacker would have to recover the key of E in at least one

invocation since si and sr are only mixed into h after ei-

ther being encrypted using E or being used after ECDH to

generate a key for E. Since the result of ECDH on ei and

er is mixed into h in the ee← and following DecryptAnd-

Hash steps, an attacker cannot even determine a given k1

and k2 match a given h without reversing ECDH. This

means that if the underlying primitives are secure, we do

not leak any information on k1 or k2 by disclosing h.

5. Implementation

5. 1 Hardware prototype

To demonstrate the practicality of our approach we built

図 4 Hardware prototype PCB front view

a hardware prototype of the security device (Figure 4).

Our prototype consists of two ARM microcontrollers with

USB peripherals, one for the untrusted host side and one

for the trusted device side. Both are linked using a simple

UART interface. Despite the tough cryptography on the

trusted microcontroller the primary constraint was not its

computational power but its USB host peripheral.

5. 2 Hardware security measures

To provide some level of defence against physical-level

USB attacks as outlined in Su et al. [19] the security device

hardware prototype uses separate voltage regulators for its

trusted and untrusted sides. In addition, the PCB layout

is prepared to allow easy insertion of additional conducted

EMI filtering on the two communication and two power

lines between the trusted and untrusted sides if practical

measurements show a problem there.

5. 3 Cryptographic parametrization

The cryptographic primitives instantiated in the proto-

type are X25519 for the ECDH primitive, BLAKE2s as

a hash and ChaCha20-Poly1305 as AEAD for the data

phase. ECDH instead of traditional DH was chosen for

its small key size and fast computation. Since no variant

of RSA is used, key generation is fast. An ad-hoc proto-

type device-side random number generator has been im-

plemented based on BLAKE2s and the STM32’s internal

hardware RNG.

5. 4 Usability considerations

a) Implementation robustness

A common problem is that overall system security heav-

ily depends on implementation details such as certificate

checking, and user interface details such as the precise

structure of security warning messages. The complexity of

these components in practice often leads to insecure sys-

tems, such as a system using TLS checking a certificate’s

internal validity but omitting checks on the certificate’s

chain of trust. A nice property of the key estabilishment

— 6 —

system outlined in this paper is that it is both very simple,

reducing surface for errors and it tightly couples the crit-

ical channel binding step during key establishment to the

overall system’s user interface. In a system using either

keyboard or mouse-based interactive channel binding, an

implementation that does not perform the channel bind-

ing step correctly would simply not work. If the host does

not display the correct fingerprint the user cannot enter

it and the device will not complete the binding step. If

the device does not relay fingerprint data correctly during

pairing the host application would clearly indicate to the

user things are amiss with the input not matching the fin-

gerprint. Since the channel fingerprint is computed in a

cryptographically well-defined way based on entropy con-

tributed by both partners during pairing a implementer

would not even be able to accidentially degrade fingerprint

security.

The critical point from an UI perspective in this pairing

scheme is that the host application must display correct

instructions to the user for them to complete pairing. It

should make sure the user actually checks whether the de-

vice raised an alarm before confirming pairing after finger-

print input. If it didn’t the user would eventually notice

their keyboard and mouse not functioning, but an attacker

might have gained unauthorized access in the meantime.

The device needs a clearly understandable method of indi-

cating pairing failure to the user. In practice a loud buzzer

and a few bright LEDs are a good solution.

6. Discussion

In this section, we discuss future research topics that

need to be explored on top of the SecureHID framework.

6. 1 Variations on the pairing technique

a) Screen-to-photodiode interfaces

Numerous systems use a flashing graphic on a screen

to transmit data to a photodiode held against the screen,

e.g. to distribute software over broadcast televisiong. One

widely-deployed system is the “Flickertan” system used

for wire transfer authorization in Germany where a smart-

card reader with five photodiodes is held against a flick-

ering image on the bank website’s wire transfer form[17,

18, 2]. This approach could be used as a non-interactive

alternative to the pairing protocol described above.

b) Adaption to mice

Instead of a keyboard, a mouse could also be used for

pairing. In a basic scheme, the host would encode the fin-

gerprint into a permutation σ(i) : {n ∈ N, n ≤ m} → {n ∈

N, n ≤ m} for an integer security parameter m > 0 and

then display the sequence σ(i) in a grid of buttons with

an emulated mouse cursor. The user would then click the

buttons on the grid in numeric order. Invisible to the user,

the device would emulate the cursor and observe the per-

mutation this way. The fingerprint is then checked against

this permutation. If m is the number of grid buttons used

this method provides a security level of η = log2(m!) bits.

A 5-by-5 grid yields better than 80bit security.

c) Gamification

A second mouse-based approach would be to adapt

Minesweeper to compare fingerprints in our setting. The

host would encode the fingerprint into the minesweeper

field, then let the user play the game using their mouse.

The security device would forward all mouse input while

internally emulating the mouse pointer. A the end of the

game the security device knows which locations the user

marked as mines and can decode the fingerprint from this..

Minesweeper is well-known and can be parametrized to

be easily solved by most people. The number of ways to

place n mines on a x by y field is
(
xy

n

)
, the number of

unordered subsets of n elements. The default difficulties

in by Windows XP minesweeper provide ≈ 40 to ≈ 348

bit of entropy. Two rounds at beginner difficulty or one

round at intermediate difficulty already suffice for an 80

bit security level.

d) Adaption to button input

Adaption to button input using few buttons is complex.

Entering an 80-bit number on a two-button binary key-

board is not user-friendly. A potentially user-friendly op-

tion would be to emulate an on-screen keyboard similar to

the ones used in arcade and console video games for joy-

stick input. One possible attack here is that if an attacker

can selectively drop packets they can cause a desynchro-

nization of host and device fingerprint input states. To

the user this might seem like unreliable keys and they

might not actually abort the procedure. This observa-

tion is also true for keyboard or mouse-based pairing as

explained above, but packet loss would be much more no-

ticeable there.

6. 2 Alternative uses for interactive public chan-

nel binding

a) Adaption for SSH identity distribution

Our interactive channel binding method using a

passphrase could be used for key establishment in an SSH

setup. SSH includes a simple public-key mutual authenti-

cation system, but does not include key management func-

— 7 —

tionality. In most cases the user will have to provide their

own identity management layer on top of the primitives

provided by SSH.

The interactive channel binding method described in

this paper could be used to interactively transfer an SSH

key’s public to another host by establishing a secure chan-

nel, then transferring the key through it. This would allow

two users to transfer a key by simply reading out aloud

the channel binding fingerprint. This reduces the key ex-

change problem to the problem of two users being sure

whether they’re actually talking to each other instead of

an impostor.

A second scenario using the security device to improve

SSH security would be to terminate the SSH connection

inside the security device. This would reduce the scope of

host compromise but would pose much new firmware at-

tack surface. Additionally this approach would only work

for keyboard input and would break things like scp or

scripted SSH as used in configuration management sys-

tems such as ansible.

b) Continuous authentication

systems analyze a user’s behavior such as mouse move-

ments and keystroke timings to detect malicious activity.

Using the security device as a trust anchor to authenticate

user input against a monitoring server could be used to

build a remote continuous authentication system, placing

no trust in the (potentially compromised) user’s machine.

7. Conclusion

In this paper, we have demonstrated a fully working pro-

totype of a system secured against all known USB attacks

based on QubesOS and a simple hardware device. We

have elaborated on protocol design as a key component

of overall system security. We have shown that an intu-

itive interactive pairing process built on top of the Noise

protocol framework satisfies all our security requirements.

We outlined several directions for future work. A user

experience study could explore variations on the pairing

scheme. Our SSH key exchange concept is interesting for

systems administration. We have done an informal secu-

rity arguments in this paper. This argument should be

formalized before practical deployment of a security sys-

tem like this.

References

[1] Sebastian Angel et al. “Defending against Malicious Peripher-

als with Cinch”. In: Proceedings of the 25th USENIX Security

Symposium (Aug. 2016), pp. 397–414.

[2] Lars-Dominik Braun. “chipTAN Flickercodes”. In: (2012). url:

https://web.archive.org/web/20181213014441/https://6xq.net/flickercodes/.

[3] Bob Dunstan, Abdul Ismail, and Stephanie Wallick, eds. Uni-

versal Serial Bus Type-C Authentication Specification. 2017.

[4] Saba Eskandarian et al. “Fidelius: Protecting User Secrets from

Compromised Browsers”. In: CoRR abs/1809.04774 (2018). url:

http://arxiv.org/abs/1809.04774.

[5] Federico Griscioli, Maurizio Pizzonia, and Marco Sacchetti.

“USBCheckIn: Preventing BadUSB Attacks by Forcing Human-

Device Interaction”. In: (2017).

[6] Debiao He et al. “Enhanced Three-factor Security Protocol for

Consumer USB Mass Storage Devices”. In: IEEE Transactions

on Consumer Electronics 60.1 (Feb. 2014), pp. 30–37.

[7] Rafal Wojtczuk Joanna Rutkowska. Qubes OS Architecture.

2010. url: https://www.qubes-os.org/attachment/wiki/QubesArchitecture/

arch-spec-0.3.pdf.

[8] Myung Kang and Hossein Saiedian. “USBWall: A novel secu-

rity mechanism to protect against maliciously reprogrammed

USB devices”. In: Information Security Journal ”A Global Per-

spective” 26.4 (2017), pp. 166–185.

[9] Nadim Kobeissi and Karthikeyan Bhargavan. “Noise Explorer:

Fully Automated Modeling and Verification for Arbitrary Noise

Protocols”. In: (Dec. 2018). url: https://eprint.iacr.org/2018/

766.pdf.

[10] Alfred Kobsa et al. “Serial Hook-ups: A Comparative Usability

Study of Secure Device Pairing Methods”. In: Symposium on

Usable Privacy and Security (SOUPS) (July 2009).

[11] H. Krawczyk, M. Bellare, and R. Canetti. RFC2104 - HMAC:

Keyed-Hashing for Message Authentication. Feb. 1997. url:

https://tools.ietf.org/html/rfc2104.

[12] Arun Kumar et al. “Caveat Emptor: A Comparative Study of

Secure Device Pairing Methods”. In: (2009).

[13] Edwin Lupito Loe et al. “SandUSB: An Installation-Free Sand-

box For USB Peripherals”. In: (2016).

[14] Matthias Neugschwandtner, Anton Beitler, and Anil Kurmus.

“A Transparent Defense Against USB Eavesdropping Attacks”.

In: EUROSEC’16 (Apr. 2016).

[15] Trevor Perrin. The Noise Protocol Framework. Tech. rep. Rev.

34. July 2018.

[16] Nitesh Saxena et al. “Secure Device Pairing based on a Visual

Channel”. In: Proceedings of the 2006 IEEE Symposium on Se-

curity and Privacy (S&P’06) (2006).

[17] TAN-Generatoren mit optischer Schnittstelle (Flickercode). 2009.

url: http://web.archive.org/web/20130309011417/http://www.hbci-zka.

de/dokumente/spezifikation_deutsch/Belegungsrichtlinien%20TAN-Generator

%20ve1.3%20final%20version.pdf.

[18] Andreas Schiermeier. Vom Überweisungsauftrag zur TAN.

2018. url: https://web.archive.org/web/20181213014203/https://

wiki.ccc-ffm.de/projekte:tangenerator:start.

[19] Yang Su et al. “USB Snooping Made Easy: Crosstalk Leakage

Attacks on USB Hubs”. In: Proceedings of the 26th USENIX Se-

curity Symposium (Aug. 2017), pp. 1145–1161.

[20] Dave (Jing) Tian, Adam Bates, and Kevin Butler. “Defending

Against Malicious USB Firmware with GoodUSB”. In: ACSAC

(Dec. 2015).

[21] Dave Tian et al. Making USB Great Again with USBFILTER.

Austin, Texas, Aug. 2016.

[22] Ersin Uzun, Kristiina Karvonen, and N. Asokan. Usability Anal-

ysis of Secure Pairing Methods. Tech. rep. Helsinki, Finland:

Nokia Research Center, 2007.

[23] Zhaohui Wang, Ryan Johnson, and Angelos Stavrou. “Attesta-

tion & Authentication for USB Communications”. In: (2012).

[24] WebUSB API. 2018. url: https://wicg.github.io/webusb/.

[25] David Weinstein, Xeno Kovah, and Scott Dyer. “SeRPEnT: Se-

cure Remote Peripheral Encryption Tunnel”. In: (2012).

— 8 —

