
Research directions in secure USB devices

Sebastian Götte <secureusb@jaseg.net> @Mori lab, Waseda University

November 19 2018

1 Problem definition
A computer’s USB interface is hard to secure. Though overall security is quite good today, the
USB interface has not received enough attention. In particular HIDs are a problem, as they
are naturally very highly privileged. Off-the-shelf USB HID attack tools exist. In particular
from a security point of view extremely bad ideas such as WebUSB[18] are set to increase this
already large attack surface even further.

2 State of the art
Research exists in various directions.

• USB firewalls have been proposed[15, 1, 5, 14, 8].

• USB device authentication has been proposed[2, 3, 17, 4].

• USB bus encryption has been proposed[9, 19].

• For wireless protocols, every conceivable pairing model has been tried. However, not
many have been applied to USB[7, 16, 6, 12].

• Compartmentalized systems such as QubesOS have been implemented

Attacks Eavesdropping Backwards
compatibleHID Host

exploit
Device
exploit

Bus-
level

Physical
layer

Firewalls © 4 × 4 × ©
Device authentication © × × 4 × ×
Bus encryption 4 × × © © ×
Plain QubesOS setup1 4 4 4 4 × ©
Our work © © © © © ©

Table 1: Comparison of approaches to USB security

1



Overall, QubesOS is the only significant practical advance towards securing this interface.
Other approaches have not been successful so far. A likely reason for this is large market inertia
and necessary backwards-compatibility.

QubesOS approaches the problem by running a separate VM with the USB host controllers
mapped through via IOMMU. This VM runs a linux kernel with a small set of white-listed
USB device drivers (HID and mass storage device) and a USB-over-IP backend. A set of
Qubes services pass through any HID input arriving inside this VM into dom0, and coordinate
exporting USB mass storage devices as Xen block devices. Any other USB devices can be
passed-through to other VMs through USB-over-IP-over-QubesRPC, a Xen vChan-based inter-
VM communication system.

QubesOS is still lacking in that it’s compartmentalization becomes essentially useless when
it is used with a USB HID keyboard that does not have its own dedicated PCIe USB host
controller, as any normal desktop and most recent laptop computers. The issue here is that
USB HID is neither authenticated nor encrypted, and the untrusted USB VM sits in the middle
of this data stream, which thus allows it trivial privilege escalation.

3 Project goal
The goal of SecureHID is to enable the first reasonably secure system using both HID and
arbitrary untrusted devices on the same USB host controller, based on QubesOS. SecureHID
consists of a USB HID encryption box to be put between keyboard and computer and a piece
of software run inside QubesOS. After initial pairing with the host software, the encryption
box will encrypt and sign any USB HID input arriving from the keyboard and forward the
encrypted data to the host. The host software running outside the untrusted USB VM will
receive the encrypted and signed data from the untrusted USB VM, verify and decrypt it, and
inject the received HID input events into Qubes’s input event handling system.

3.1 Audio and other sensitive USB devices

This system is sufficient to secure any USB setup, especially unmodified desktop PCs or laptops
where a USB host controller is shared between both HIDs and other devices. Attack surface
is reduced such that a full compromise of the system becomes unlikely, since plain HID is no
longer supported. The remaining attack surface consists only of a compromise of the USB VM.
This attack surface is small enough that other sensitive devices such as USB audio devices can
safely be connected. A compromise of the USB driver VM no longer gives full system access,
but at best allows listening in on the microphone. Since a compromised USB VM does not have
network access, such an attack will be mostly harmless in most scenarios. Additionally, the
most likely attacking devices would be custom hardware or a smartphone. Custom hardware
can easily be outfitted with a microphone, essentially turning it into a bug irrespective of USB
functionality, and smartphones already have microphones by definition.

A practical mitigation to this issue would be to simply connect microphones either to a
PCIe-based sound card as in most laptops, or to simply unplug the microphone when not used.

1Requires separate USB host controller for HIDs

2



3.2 USB physical-level and bus-level attacks

Since sensitive HIDs are isolated from other USB devices effectively on a separate bus, bus-level
attacks such as Neugschwandtner, Beitler, and Kurmus [9] are entirely prevented. Even much
scarier physical attacks on USB such as Su et al. [13] are prevented given an adequate hardware
implementation, which fortunately is no too complicated.

3.3 Diagram of a conventional setup

Figure 1: Diagram of a conventional unprotected system

3



3.4 Diagram of a SecureHID-protected system

Figure 2: Diagram of a SecureHID-protected system

4



3.5 Key points

• A practical example of a complete, secure USB system using Qubes

• A novel interactive user-friendly side channel-based cryptographic handshaking scheme

• An example of a secure USB-based protocol

4 Project state
A working prototype has been completed.

4.1 Completed

• Rough protocol design

• Protocol implementation based on Perrin [10] using noise-c (microcontroller) and noise-
protocol (python/host)

• SRAM-based key storage with SRAM wear prevention

• host/device signature checking

• host/device key generation

• proper circuit design because I was bored last weekend (see appendix B)

4.2 Open issues

• Both noise-c and noiseprotocol have poor code and API quality. Since most noise function-
ality is not needed, just implement the protocol in bare C/python based on cryptographic
primitives and scrap higher-level protocol implementations (though they’ve been useful
so far during prototyping).

• Implement HID mouse host support

• Test USB hub support

• Replace the serial link with a custom USB link using an STM32F103 instead of the
CH340G USB/serial converter

• Properly integrate prototype host client with qubes infrastructure

• Implement photodiode/monitor-based pairing side-channel

5



5 Possible directions
• Elaborate handshake security properties

– Possibly investigate other applications of this type of interactive handshake

– Possibly contrast to carmera/other backchannel systems

– IMHO the pairing scheme is the most interesting part of this project from a scientific
point of view

• Elaborate overall security properties of QubesOS-based system

• Elaborate possible DisplayPort/HDMI-based display encryption

• Elaborate possible encrypted remote input (SSH) setups

– This might turn out to be really interesting

– For this to be usable the host needs to tell the device at least which keyslot to use
which could turn out to be complex to implement securely

– Considering complexity, this might turn into its own research project

• Create custom hardware prototype

• Showcase secure hardware interface design, contrast with wireguard protocol design

– Formally derive handshake security properties

– Formally derive host/device protocol security properties using noise spec

– Formally verify and thouroughly unit-test the host/device protocol implementation
on all layers

– IMHO this is the most interesting part of this project from an engineering point of
view

• Benchmark cryptography routines (will likely turn out to be “wayyy fast” for HID, fast
enough for full-speed USB. High-speed cannot be done with the current architecture as
we can’t get data out the chip at high-speed data rates. Ravi et al. [11] raise the issue
of running crypto on embedded systems, but in this case it turns out with somewhat
modern hardware and cryptography there is no problem at all.

6



Keyboard SecureHID Host

COBS sync (null byte)

Initiate Handshake

Handshake, e
Handshake, e, ee, s, es

Handshake, s, se

Noise XX handshakeNoise XX handshake

Pairing Start

keystroke Pairing Input, E(keystroke)

keystroke

...
Pairing Input, E(keystroke)

...

enter Pairing Success

PairingPairing Triggered by user interaction after unsuccessful handshake

keystroke

...

Data, E(keystroke)

...

Input passthroughInput passthrough Started after successful handshake or pairing

Figure 3: A successful prototype protocol pairing

A High-level protocol design
The basic protocol consists of two stages: pairing and data. When the device powers up, it
enters pairing state. When the host enumerates a new device, it enters pairing state. If any
fatal communication errors occur, both host and device re-enter pairing state. To make the
implementation robust against host software crashing, devices being unplugged etc. without
opening it up to attacks, the host can request the device to re-enter pairing state a limited
number of times after powerup.

pairing state consists of a number of substates as set by Perrin [10]. The device runs
noise’s XX scheme, i.e. both host and device each contribute both one ephemeral key e and
one static key s to the handshake, and the public halves of the static keys are transmitted
during handshake encrypted by the emphemeral keys. This scheme provides forward-secrecy
without MITM protection.

The cryptographic primitives instantiated in the prototype are X25519 for the ECDH primi-

7



tive, BLAKE2s as a hash and ChaCha20-Poly1305 as AEAD for the data phase. ECDH instead
of traditional DH was chosen for its small key size and fast computation. Since no variant of
RSA is used, key generation is fast. An ad-hoc prototype device-side random number generator
has been implemented based on BLAKE2s and the STM32’s internal hardware RNG.

A successful protocol run always starts like this:

1. Handshake. device is connected to host

2. host initiates pairing by sending initiate handshake to device

3. device and host follow noise state machine for XX handshake

4. After the handshake completes, both device and host have received each other’s static
public key rs and established a shared secret connection key. At this point, the possibility
of an MITM attacker having actively intercepted the handshake remains.

5. Channel binding. Both device and host calculate the handshake hash as per noise
spec[10]. This hash uniquely identifies this session and depends on both local and remote
ephemeral and static keys le, re, ls, rs. Both parties encode a 64-bit part of this hash into
a sequence of english words by dictionary lookup. This sequence of words is called the
fingerprint of the connection.

6. host prompts the user to enter the fingerprint into a keyboard connected to device.

7. As the user enters the fingerprint, device relays any input over the yet-unauthenticated
encrypted noise channel to host. host displays the received user input in plain text in
a regular input field in the pairing GUI. This display is only for user convenience and not
relevant to the cryptographic handshake. A consequence of this is that a MITM could
observe the fingerprint2.

8. When the user has completed entering the fingerprint, the device checks the calculated
fingerprint against the entered data. If both match, the host is signalled success and
data phase is entered. If they do not match, the host is signalled failure3 and pairing
state is re-entered unless the maximum number of tries since powerup has been exceeded.
Failure is indicated to the user by device through a very annoying beep accompanied
by angrily flashing LEDs.

9. Data phase. host asks the user for confirmation of pairing in case the device did not
sound an alarm by pressing a button on the GUI. When the user does this, the host
enters data state and starts input passthrough.

Roughly speaking, this protocol is secure given that the only way to MITM a (EC)DH key
exchange is to perform two (EC)DH key exchanges with both parties, then relay messages. Since
both parties have different static keys, the resulting two (EC)DH sessions will have different
handshake hashes under the noise framework. The channel binding step reliably detects this
condition through an out-of-band transmission of the host handshake hash to device.

2A MITM could also modify the fingerprint information sent from device to host. This would be very
obvious to the user, since the fingerprint appearing on the host screen would differ from what she types.

3Note that this means a MITM could intercept the failure message and forge a success message. This
means both are just for user convenience absent an attacker. If an attacker is present, she will be caught in the
next pairing step.

8



The only specialty here is that this OOB transmission is relayed back from device to host
allowing the MITM to intercept it. This is only done for user convenience absent a MITM
and the result is discarded by host. Since the handshake hash does as a hash does not leak
any sensitive information about the keys used during the handshake, it being exposed does not
impact protocol security.

B PCB design renderings

(a) PCB front

(b) PCB back

Figure 4: PCB design 3D renderings

9



Figure 5: Off-the-shelf enclosure the PCB is made to fit

References
[1] Sebastian Angel et al. “Defending against Malicious Peripherals with Cinch”. In: Proceed-

ings of the 25th USENIX Security Symposium (Aug. 2016), pp. 397–414.

[2] Bob Dunstan, Abdul Ismail, and Stephanie Wallick, eds. Universal Serial Bus Type-C
Authentication Specification. 2017.

[3] Federico Griscioli, Maurizio Pizzonia, and Marco Sacchetti. “USBCheckIn: Preventing
BadUSB Attacks by Forcing Human-Device Interaction”. In: (2017).

[4] Debiao He et al. “Enhanced Three-factor Security Protocol for Consumer USB Mass Stor-
age Devices”. In: IEEE Transactions on Consumer Electronics 60.1 (Feb. 2014), pp. 30–
37.

[5] Myung Kang and Hossein Saiedian. “USBWall: A novel security mechanism to protect
against maliciously reprogrammed USB devices”. In: Information Security Journal "A
Global Perspective" 26.4 (2017), pp. 166–185.

[6] Alfred Kobsa et al. “Serial Hook-ups: A Comparative Usability Study of Secure Device
Pairing Methods”. In: Symposium on Usable Privacy and Security (SOUPS) (July 2009).

[7] Arun Kumar et al. “Caveat Emptor: A Comparative Study of Secure Device Pairing
Methods”. In: (2009).

[8] Edwin Lupito Loe et al. “SandUSB: An Installation-Free Sandbox For USB Peripherals”.
In: (2016).

[9] Matthias Neugschwandtner, Anton Beitler, and Anil Kurmus. “A Transparent Defense
Against USB Eavesdropping Attacks”. In: EUROSEC’16 (Apr. 2016).

[10] Trevor Perrin. The Noise Protocol Framework. Tech. rep. Rev. 34. July 2018.

[11] Srivaths Ravi et al. “Security in Embedded Systems: Design Challenges”. In: ACM Trans-
actions on Embedded Computing Systems 3.3 (Aug. 2004), pp. 461–491.

10



[12] Nitesh Saxena et al. “Secure Device Pairing based on a Visual Channel”. In: Proceedings
of the 2006 IEEE Symposium on Security and Privacy (S&P’06) (2006).

[13] Yang Su et al. “USB Snooping Made Easy: Crosstalk Leakage Attacks on USB Hubs”. In:
Proceedings of the 26th USENIX Security Symposium (Aug. 2017), pp. 1145–1161.

[14] Dave (Jing) Tian, Adam Bates, and Kevin Butler. “Defending Against Malicious USB
Firmware with GoodUSB”. In: ACSAC (Dec. 2015).

[15] Dave Tian et al. Making USB Great Again with USBFILTER. Austin, Texas, Aug. 2016.

[16] Ersin Uzun, Kristiina Karvonen, and N. Asokan. Usability Analysis of Secure Pairing
Methods. Tech. rep. Helsinki, Finland: Nokia Research Center, 2007.

[17] Zhaohui Wang, Ryan Johnson, and Angelos Stavrou. “Attestation & Authentication for
USB Communications”. In: (2012).

[18] WebUSB API. 2018. url: https://wicg.github.io/webusb/.

[19] David Weinstein, Xeno Kovah, and Scott Dyer. “SeRPEnT: Secure Remote Peripheral
Encryption Tunnel”. In: (2012).

11

https://wicg.github.io/webusb/

	Problem definition
	State of the art
	Project goal
	Audio and other sensitive USB devices
	USB physical-level and bus-level attacks
	Diagram of a conventional setup
	Diagram of a SecureHID-protected system
	Key points

	Project state
	Completed
	Open issues

	Possible directions
	High-level protocol design
	PCB design renderings

