/* Megumin LED display firmware * Copyright (C) 2018 Sebastian Götte * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "global.h" #define RTC_INITIALIZED_REGISTER_HIGH BKP->DR1 #define RTC_INITIALIZED_REGISTER_LOW BKP->DR2 #define REBOOT_REGISTER BKP->DR3 #define DAY_SECONDS (24*3600) void RTC_IRQHandler(void); uint32_t pcg32_random_r() { // *Really* minimal PCG32 code / (c) 2014 M.E. O'Neill / pcg-random.org // Licensed under Apache License 2.0 (NO WARRANTY, etc. see website) static uint64_t state = 0xbc422715d3aef60f; static uint64_t inc = 0x6605e3bc6d1a869b; uint64_t oldstate = state; // Advance internal state state = oldstate * 6364136223846793005ULL + (inc|1); // Calculate output function (XSH RR), uses old state for max ILP uint32_t xorshifted = ((oldstate >> 18u) ^ oldstate) >> 27u; uint32_t rot = oldstate >> 59u; return (xorshifted >> rot) | (xorshifted << ((-rot) & 31)); } unsigned char dumb_random() { static unsigned char x=0x66, a=0x05, b=0xe3, c=0xbc; x++; //x is incremented every round and is not affected by any other variable a = (a ^ c ^ x); //note the mix of addition and XOR b = (b + a); //And the use of very few instructions c = (((c + (b >> 1)) ^ a)); // the AES S-Box Operation ensures an even distributon of entropy return (c); } void rtc_write(volatile uint32_t *reg, uint32_t val) { while (!(RTC->CRL & RTC_CRL_RTOFF)) ; RTC->CRL |= RTC_CRL_CNF; reg[0] = val>>16; reg[1] = val&0xffff; RTC->CRL &= ~RTC_CRL_CNF; while (!(RTC->CRL & RTC_CRL_RTOFF)) ; } void rtc_alarm_reset(void) { RTC->CRL &= ~RTC_CRL_ALRF; } void rtc_init(void) { RTC->CRH = RTC_CRH_ALRIE; /* Cold boot config */ if (((RTC_INITIALIZED_REGISTER_HIGH<<16) | RTC_INITIALIZED_REGISTER_LOW) != COMPILE_TIME) { /* RTC clock config */ RCC->BDCR = RCC_BDCR_RTCEN | (1<BDCR & RCC_BDCR_LSERDY)) ; rtc_write(&RTC->PRLH, 32768-1); rtc_write(&RTC->CNTH, COMPILE_TIME); RTC_INITIALIZED_REGISTER_HIGH = COMPILE_TIME>>16; RTC_INITIALIZED_REGISTER_LOW = COMPILE_TIME&0xffff; REBOOT_REGISTER = 0; } /* Synchronize RTC registers from backup domain */ RTC->CRL &= ~RTC_CRL_RSF; } void rtc_set_alarm_sec(uint32_t value) { rtc_write(&RTC->ALRH, value); } uint32_t rtc_time(void) { /* Wait for register synchronization after bootup */ while (!(RTC->CRL & RTC_CRL_RSF)) ; return RTC->CNTH<<16 | RTC->CNTL; } void rtc_set_alarm_rel_sec(uint32_t value) { rtc_set_alarm_sec(rtc_time() + value); } int main(void){ /* We're starting out from HSI@8MHz */ SystemCoreClockUpdate(); SCB->SCR &= (~SCB_SCR_SLEEPONEXIT_Msk) & (~SCB_SCR_SLEEPDEEP_Msk); /* Disable for now */ for (int i=0; i<50000; i++) asm volatile ("nop"); /* Turn on lots of neat things */ RCC->APB2ENR |= RCC_APB2ENR_IOPCEN | RCC_APB2ENR_IOPBEN; RCC->APB1ENR |= RCC_APB1ENR_BKPEN | RCC_APB1ENR_PWREN; PWR->CR = PWR_CR_DBP; GPIOC->CRH |= (0<CRH = (0<ODR |= 1<<13; /* LED */ GPIOB->ODR &= ~(1<<8); /* MOSFET */ rtc_init(); rtc_alarm_reset(); NVIC_ClearPendingIRQ(RTC_IRQn); //NVIC_EnableIRQ(RTC_IRQn); //NVIC_SetPriority(RTC_IRQn, 1); rtc_set_alarm_rel_sec(1); if (!(PWR->CSR & PWR_CSR_WUF)) /* This reset wasn't caused by the RTC alarm */ REBOOT_REGISTER++; SCB->SCR |= SCB_SCR_SEVONPEND_Msk; //SCB->SCR &= (~SCB_SCR_SLEEPONEXIT_Msk) & (~SCB_SCR_SLEEPDEEP_Msk); //PWR->CR &= (~PWR_CR_PDDS) & (~PWR_CR_LPDS); while (42) { RTC_IRQHandler(); PWR->CR |= PWR_CR_CWUF; /* This has 2 cycles latency, thus the NOPs */ asm volatile ("nop"); asm volatile ("nop"); asm volatile ("wfe"); } //while (42) // asm volatile ("wfi"); } void RTC_IRQHandler(void) { rtc_alarm_reset(); rtc_set_alarm_rel_sec(1); uint32_t now = rtc_time(); bool switch_on = false; if (REBOOT_REGISTER > 1) { /* We have rebooted since initial bring-up */ /* Give status indication and active output as fail-safe */ if ((now&3) == 0) { GPIOC->ODR &= ~(1<<13); for (int i=0; i<5000; i++) asm volatile ("nop"); GPIOC->ODR |= 1<<13; } switch_on = true; } else { switch_on = (now >= TARGET_DATE - (DAY_SECONDS*24) && now < TARGET_DATE); } if (switch_on && (now/2) % 3 == 0) { GPIOB->ODR |= 1<<8; /* Go to sleep mode to keep GPIO active */ PWR->CR &= ~PWR_CR_PDDS; SCB->SCR &= ~(SCB_SCR_SLEEPDEEP_Msk); /* Use deep sleep mode */ } else { GPIOB->ODR &= ~(1<<8); /* Go to standby mode to reduce power consumption */ PWR->CR = PWR_CR_PDDS; SCB->SCR |= SCB_SCR_SLEEPDEEP_Msk; /* Use deep sleep mode */ } GPIOC->ODR &= ~(1<<13); for (int i=0; i<5000; i++) asm volatile ("nop"); GPIOC->ODR |= 1<<13; } void gdb_dump(void) { /* debugger hook */ } void NMI_Handler(void) { asm volatile ("bkpt"); } void HardFault_Handler(void) __attribute__((naked)); void HardFault_Handler() { asm volatile ("bkpt"); } void SVC_Handler(void) { asm volatile ("bkpt"); } void PendSV_Handler(void) { asm volatile ("bkpt"); } void SysTick_Handler(void) { asm volatile ("bkpt"); }