/* * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* ---------------------------------------------------------------------- * Project: CMSIS NN Library * Title: arm_convolve_HWC_q15_fast.c * Description: Fast Q15 version of convolution * * $Date: 24. May 2018 * $Revision: V.1.0.0 * * Target Processor: Cortex-M cores * * -------------------------------------------------------------------- */ #include "arm_math.h" #include "arm_nnfunctions.h" /** * @ingroup groupNN */ /** * @addtogroup NNConv * @{ */ /** * @brief Fast Q15 convolution function (non-sqaure shape) * @param[in] Im_in pointer to input tensor * @param[in] dim_im_in_x input tensor dimention x * @param[in] dim_im_in_y input tensor dimention y * @param[in] ch_im_in number of input tensor channels * @param[in] wt pointer to kernel weights * @param[in] ch_im_out number of filters, i.e., output tensor channels * @param[in] dim_kernel_x filter kernel size x * @param[in] dim_kernel_y filter kernel size y * @param[in] padding_x padding size x * @param[in] padding_y padding size y * @param[in] stride_x convolution stride x * @param[in] stride_y convolution stride y * @param[in] bias pointer to bias * @param[in] bias_shift amount of left-shift for bias * @param[in] out_shift amount of right-shift for output * @param[in,out] Im_out pointer to output tensor * @param[in] dim_im_out_x output tensor dimension x * @param[in] dim_im_out_y output tensor dimension y * @param[in,out] bufferA pointer to buffer space for input * @param[in,out] bufferB pointer to buffer space for output * @return The function returns either * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking. * * @details * * Buffer size: * * bufferA size: 2*ch_im_in*dim_kernel*dim_kernel * * bufferB size: 0 * * Input dimension constraints: * * ch_im_in is multiple of 2 * * ch_im_out is multipe of 2 * */ arm_status arm_convolve_HWC_q15_fast_nonsquare(const q15_t * Im_in, const uint16_t dim_im_in_x, const uint16_t dim_im_in_y, const uint16_t ch_im_in, const q15_t * wt, const uint16_t ch_im_out, const uint16_t dim_kernel_x, const uint16_t dim_kernel_y, const uint16_t padding_x, const uint16_t padding_y, const uint16_t stride_x, const uint16_t stride_y, const q15_t * bias, const uint16_t bias_shift, const uint16_t out_shift, q15_t * Im_out, const uint16_t dim_im_out_x, const uint16_t dim_im_out_y, q15_t * bufferA, q7_t * bufferB) { #if defined (ARM_MATH_DSP) int16_t i_out_y, i_out_x, i_ker_y, i_ker_x; q15_t *pBuffer = bufferA; q15_t *im_buffer = bufferA; q15_t *pOut = Im_out; if (ch_im_in % 2 != 0 || ch_im_out % 2 != 0) { /* check if the input dimension meets the constraints */ return ARM_MATH_SIZE_MISMATCH; } /* Run the following code for Cortex-M4 and Cortex-M7 */ /* This part implements the im2col function */ for (i_out_y = 0; i_out_y < dim_im_out_y; i_out_y++) { for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++) { for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y; i_ker_y++) { for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x; i_ker_x++) { if (i_ker_y < 0 || i_ker_y >= dim_im_in_y || i_ker_x < 0 || i_ker_x >= dim_im_in_x) { /* arm_fill_q15(0, pBuffer, ch_im_in); */ memset(pBuffer, 0, sizeof(q15_t)*ch_im_in); } else { /* arm_copy_q15((q15_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, pBuffer, ch_im_in); */ memcpy(pBuffer, (q15_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, sizeof(q15_t)*ch_im_in); } pBuffer += ch_im_in; } } if (i_out_x & 0x1) { int i; /* initialize the matrix pointers for A */ const q15_t *pA = wt; /* set up the second output pointers */ q15_t *pOut2 = pOut + ch_im_out; /* this loop over rows in A */ for (i = 0; i < ch_im_out; i += 2) { /* setup pointers for B */ q15_t *pB = im_buffer; const q15_t *pB2 = pB + ch_im_in * dim_kernel_y * dim_kernel_x; /* aling the second pointer for A */ const q15_t *pA2 = pA + ch_im_in * dim_kernel_y * dim_kernel_x; /* init the sum with bias */ q31_t sum = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift); q31_t sum2 = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift); q31_t sum3 = ((q31_t)bias[i + 1] << bias_shift) + NN_ROUND(out_shift); q31_t sum4 = ((q31_t)bias[i + 1] << bias_shift) + NN_ROUND(out_shift); uint16_t colCnt = ch_im_in * dim_kernel_y * dim_kernel_x >> 1; /* accumulate over the vector */ while (colCnt) { q31_t inA1 = *__SIMD32(pA)++; q31_t inB1 = *__SIMD32(pB)++; q31_t inA2 = *__SIMD32(pA2)++; q31_t inB2 = *__SIMD32(pB2)++; sum = __SMLAD(inA1, inB1, sum); sum2 = __SMLAD(inA1, inB2, sum2); sum3 = __SMLAD(inA2, inB1, sum3); sum4 = __SMLAD(inA2, inB2, sum4); colCnt--; } /* while over colCnt */ colCnt = ch_im_in * dim_kernel_y * dim_kernel_x & 0x1; while (colCnt) { q15_t inA1 = *pA++; q15_t inB1 = *pB++; q15_t inA2 = *pA2++; q15_t inB2 = *pB2++; sum += inA1 * inB1; sum2 += inA1 * inB2; sum3 += inA2 * inB1; sum4 += inA2 * inB2; colCnt--; } /* while over colCnt */ *pOut++ = (q15_t) __SSAT(sum >> out_shift, 16); *pOut++ = (q15_t) __SSAT(sum3 >> out_shift, 16); *pOut2++ = (q15_t) __SSAT(sum2 >> out_shift, 16); *pOut2++ = (q15_t) __SSAT(sum4 >> out_shift, 16); /* skip the row computed with A2 */ pA += ch_im_in * dim_kernel_y * dim_kernel_x; } /* for over ch_im_out */ pOut += ch_im_out; /* counter reset */ pBuffer = im_buffer; } } } #else /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ uint16_t i, j, k, l, m, n; int conv_out; signed char in_row, in_col; if (ch_im_in % 2 != 0 || ch_im_out % 2 != 0) { /* check if the input dimension meets the constraints */ return ARM_MATH_SIZE_MISMATCH; } for (i = 0; i < ch_im_out; i++) { for (j = 0; j < dim_im_out_y; j++) { for (k = 0; k < dim_im_out_x; k++) { conv_out = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift); for (m = 0; m < dim_kernel_y; m++) { for (n = 0; n < dim_kernel_x; n++) { in_row = stride_y * j + m - padding_y; in_col = stride_x * k + n - padding_x; if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in_y && in_col < dim_im_in_x) { for (l = 0; l < ch_im_in; l++) { conv_out += Im_in[(in_row * dim_im_in_x + in_col) * ch_im_in + l] * wt[i * ch_im_in * dim_kernel_x * dim_kernel_y + (m * dim_kernel_x + n) * ch_im_in + l]; } } } } Im_out[i + (j * dim_im_out_x + k) * ch_im_out] = (q15_t) __SSAT((conv_out >> out_shift), 16); } } } #endif /* ARM_MATH_DSP */ /* Return to application */ return ARM_MATH_SUCCESS; } /** * @} end of NNConv group */