/* ---------------------------------------------------------------------- * Project: CMSIS DSP Library * Title: arm_fir_decimate_fast_q15.c * Description: Fast Q15 FIR Decimator * * $Date: 27. January 2017 * $Revision: V.1.5.1 * * Target Processor: Cortex-M cores * -------------------------------------------------------------------- */ /* * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "arm_math.h" /** * @ingroup groupFilters */ /** * @addtogroup FIR_decimate * @{ */ /** * @brief Processing function for the Q15 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4. * @param[in] *S points to an instance of the Q15 FIR decimator structure. * @param[in] *pSrc points to the block of input data. * @param[out] *pDst points to the block of output data * @param[in] blockSize number of input samples to process per call. * @return none * * \par Restrictions * If the silicon does not support unaligned memory access enable the macro UNALIGNED_SUPPORT_DISABLE * In this case input, output, state buffers should be aligned by 32-bit * * Scaling and Overflow Behavior: * \par * This fast version uses a 32-bit accumulator with 2.30 format. * The accumulator maintains full precision of the intermediate multiplication results but provides only a single guard bit. * Thus, if the accumulator result overflows it wraps around and distorts the result. * In order to avoid overflows completely the input signal must be scaled down by log2(numTaps) bits (log2 is read as log to the base 2). * The 2.30 accumulator is then truncated to 2.15 format and saturated to yield the 1.15 result. * * \par * Refer to the function arm_fir_decimate_q15() for a slower implementation of this function which uses 64-bit accumulation to avoid wrap around distortion. * Both the slow and the fast versions use the same instance structure. * Use the function arm_fir_decimate_init_q15() to initialize the filter structure. */ #ifndef UNALIGNED_SUPPORT_DISABLE void arm_fir_decimate_fast_q15( const arm_fir_decimate_instance_q15 * S, q15_t * pSrc, q15_t * pDst, uint32_t blockSize) { q15_t *pState = S->pState; /* State pointer */ q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */ q15_t *pStateCurnt; /* Points to the current sample of the state */ q15_t *px; /* Temporary pointer for state buffer */ q15_t *pb; /* Temporary pointer coefficient buffer */ q31_t x0, x1, c0, c1; /* Temporary variables to hold state and coefficient values */ q31_t sum0; /* Accumulators */ q31_t acc0, acc1; q15_t *px0, *px1; uint32_t blkCntN3; uint32_t numTaps = S->numTaps; /* Number of taps */ uint32_t i, blkCnt, tapCnt, outBlockSize = blockSize / S->M; /* Loop counters */ /* S->pState buffer contains previous frame (numTaps - 1) samples */ /* pStateCurnt points to the location where the new input data should be written */ pStateCurnt = S->pState + (numTaps - 1U); /* Total number of output samples to be computed */ blkCnt = outBlockSize / 2; blkCntN3 = outBlockSize - (2 * blkCnt); while (blkCnt > 0U) { /* Copy decimation factor number of new input samples into the state buffer */ i = 2 * S->M; do { *pStateCurnt++ = *pSrc++; } while (--i); /* Set accumulator to zero */ acc0 = 0; acc1 = 0; /* Initialize state pointer */ px0 = pState; px1 = pState + S->M; /* Initialize coeff pointer */ pb = pCoeffs; /* Loop unrolling. Process 4 taps at a time. */ tapCnt = numTaps >> 2; /* Loop over the number of taps. Unroll by a factor of 4. ** Repeat until we've computed numTaps-4 coefficients. */ while (tapCnt > 0U) { /* Read the Read b[numTaps-1] and b[numTaps-2] coefficients */ c0 = *__SIMD32(pb)++; /* Read x[n-numTaps-1] and x[n-numTaps-2]sample */ x0 = *__SIMD32(px0)++; x1 = *__SIMD32(px1)++; /* Perform the multiply-accumulate */ acc0 = __SMLAD(x0, c0, acc0); acc1 = __SMLAD(x1, c0, acc1); /* Read the b[numTaps-3] and b[numTaps-4] coefficient */ c0 = *__SIMD32(pb)++; /* Read x[n-numTaps-2] and x[n-numTaps-3] sample */ x0 = *__SIMD32(px0)++; x1 = *__SIMD32(px1)++; /* Perform the multiply-accumulate */ acc0 = __SMLAD(x0, c0, acc0); acc1 = __SMLAD(x1, c0, acc1); /* Decrement the loop counter */ tapCnt--; } /* If the filter length is not a multiple of 4, compute the remaining filter taps */ tapCnt = numTaps % 0x4U; while (tapCnt > 0U) { /* Read coefficients */ c0 = *pb++; /* Fetch 1 state variable */ x0 = *px0++; x1 = *px1++; /* Perform the multiply-accumulate */ acc0 = __SMLAD(x0, c0, acc0); acc1 = __SMLAD(x1, c0, acc1); /* Decrement the loop counter */ tapCnt--; } /* Advance the state pointer by the decimation factor * to process the next group of decimation factor number samples */ pState = pState + S->M * 2; /* Store filter output, smlad returns the values in 2.14 format */ /* so downsacle by 15 to get output in 1.15 */ *pDst++ = (q15_t) (__SSAT((acc0 >> 15), 16)); *pDst++ = (q15_t) (__SSAT((acc1 >> 15), 16)); /* Decrement the loop counter */ blkCnt--; } while (blkCntN3 > 0U) { /* Copy decimation factor number of new input samples into the state buffer */ i = S->M; do { *pStateCurnt++ = *pSrc++; } while (--i); /*Set sum to zero */ sum0 = 0; /* Initialize state pointer */ px = pState; /* Initialize coeff pointer */ pb = pCoeffs; /* Loop unrolling. Process 4 taps at a time. */ tapCnt = numTaps >> 2; /* Loop over the number of taps. Unroll by a factor of 4. ** Repeat until we've computed numTaps-4 coefficients. */ while (tapCnt > 0U) { /* Read the Read b[numTaps-1] and b[numTaps-2] coefficients */ c0 = *__SIMD32(pb)++; /* Read x[n-numTaps-1] and x[n-numTaps-2]sample */ x0 = *__SIMD32(px)++; /* Read the b[numTaps-3] and b[numTaps-4] coefficient */ c1 = *__SIMD32(pb)++; /* Perform the multiply-accumulate */ sum0 = __SMLAD(x0, c0, sum0); /* Read x[n-numTaps-2] and x[n-numTaps-3] sample */ x0 = *__SIMD32(px)++; /* Perform the multiply-accumulate */ sum0 = __SMLAD(x0, c1, sum0); /* Decrement the loop counter */ tapCnt--; } /* If the filter length is not a multiple of 4, compute the remaining filter taps */ tapCnt = numTaps % 0x4U; while (tapCnt > 0U) { /* Read coefficients */ c0 = *pb++; /* Fetch 1 state variable */ x0 = *px++; /* Perform the multiply-accumulate */ sum0 = __SMLAD(x0, c0, sum0); /* Decrement the loop counter */ tapCnt--; } /* Advance the state pointer by the decimation factor * to process the next group of decimation factor number samples */ pState = pState + S->M; /* Store filter output, smlad returns the values in 2.14 format */ /* so downsacle by 15 to get output in 1.15 */ *pDst++ = (q15_t) (__SSAT((sum0 >> 15), 16)); /* Decrement the loop counter */ blkCntN3--; } /* Processing is complete. ** Now copy the last numTaps - 1 samples to the satrt of the state buffer. ** This prepares the state buffer for the next function call. */ /* Points to the start of the state buffer */ pStateCurnt = S->pState; i = (numTaps - 1U) >> 2U; /* copy data */ while (i > 0U) { *__SIMD32(pStateCurnt)++ = *__SIMD32(pState)++; *__SIMD32(pStateCurnt)++ = *__SIMD32(pState)++; /* Decrement the loop counter */ i--; } i = (numTaps - 1U) % 0x04U; /* copy data */ while (i > 0U) { *pStateCurnt++ = *pState++; /* Decrement the loop counter */ i--; } } #else void arm_fir_decimate_fast_q15( const arm_fir_decimate_instance_q15 * S, q15_t * pSrc, q15_t * pDst, uint32_t blockSize) { q15_t *pState = S->pState; /* State pointer */ q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */ q15_t *pStateCurnt; /* Points to the current sample of the state */ q15_t *px; /* Temporary pointer for state buffer */ q15_t *pb; /* Temporary pointer coefficient buffer */ q15_t x0, x1, c0; /* Temporary variables to hold state and coefficient values */ q31_t sum0; /* Accumulators */ q31_t acc0, acc1; q15_t *px0, *px1; uint32_t blkCntN3; uint32_t numTaps = S->numTaps; /* Number of taps */ uint32_t i, blkCnt, tapCnt, outBlockSize = blockSize / S->M; /* Loop counters */ /* S->pState buffer contains previous frame (numTaps - 1) samples */ /* pStateCurnt points to the location where the new input data should be written */ pStateCurnt = S->pState + (numTaps - 1U); /* Total number of output samples to be computed */ blkCnt = outBlockSize / 2; blkCntN3 = outBlockSize - (2 * blkCnt); while (blkCnt > 0U) { /* Copy decimation factor number of new input samples into the state buffer */ i = 2 * S->M; do { *pStateCurnt++ = *pSrc++; } while (--i); /* Set accumulator to zero */ acc0 = 0; acc1 = 0; /* Initialize state pointer */ px0 = pState; px1 = pState + S->M; /* Initialize coeff pointer */ pb = pCoeffs; /* Loop unrolling. Process 4 taps at a time. */ tapCnt = numTaps >> 2; /* Loop over the number of taps. Unroll by a factor of 4. ** Repeat until we've computed numTaps-4 coefficients. */ while (tapCnt > 0U) { /* Read the Read b[numTaps-1] coefficients */ c0 = *pb++; /* Read x[n-numTaps-1] for sample 0 and for sample 1 */ x0 = *px0++; x1 = *px1++; /* Perform the multiply-accumulate */ acc0 += x0 * c0; acc1 += x1 * c0; /* Read the b[numTaps-2] coefficient */ c0 = *pb++; /* Read x[n-numTaps-2] for sample 0 and sample 1 */ x0 = *px0++; x1 = *px1++; /* Perform the multiply-accumulate */ acc0 += x0 * c0; acc1 += x1 * c0; /* Read the b[numTaps-3] coefficients */ c0 = *pb++; /* Read x[n-numTaps-3] for sample 0 and sample 1 */ x0 = *px0++; x1 = *px1++; /* Perform the multiply-accumulate */ acc0 += x0 * c0; acc1 += x1 * c0; /* Read the b[numTaps-4] coefficient */ c0 = *pb++; /* Read x[n-numTaps-4] for sample 0 and sample 1 */ x0 = *px0++; x1 = *px1++; /* Perform the multiply-accumulate */ acc0 += x0 * c0; acc1 += x1 * c0; /* Decrement the loop counter */ tapCnt--; } /* If the filter length is not a multiple of 4, compute the remaining filter taps */ tapCnt = numTaps % 0x4U; while (tapCnt > 0U) { /* Read coefficients */ c0 = *pb++; /* Fetch 1 state variable */ x0 = *px0++; x1 = *px1++; /* Perform the multiply-accumulate */ acc0 += x0 * c0; acc1 += x1 * c0; /* Decrement the loop counter */ tapCnt--; } /* Advance the state pointer by the decimation factor * to process the next group of decimation factor number samples */ pState = pState + S->M * 2; /* Store filter output, smlad returns the values in 2.14 format */ /* so downsacle by 15 to get output in 1.15 */ *pDst++ = (q15_t) (__SSAT((acc0 >> 15), 16)); *pDst++ = (q15_t) (__SSAT((acc1 >> 15), 16)); /* Decrement the loop counter */ blkCnt--; } while (blkCntN3 > 0U) { /* Copy decimation factor number of new input samples into the state buffer */ i = S->M; do { *pStateCurnt++ = *pSrc++; } while (--i); /*Set sum to zero */ sum0 = 0; /* Initialize state pointer */ px = pState; /* Initialize coeff pointer */ pb = pCoeffs; /* Loop unrolling. Process 4 taps at a time. */ tapCnt = numTaps >> 2; /* Loop over the number of taps. Unroll by a factor of 4. ** Repeat until we've computed numTaps-4 coefficients. */ while (tapCnt > 0U) { /* Read the Read b[numTaps-1] coefficients */ c0 = *pb++; /* Read x[n-numTaps-1] and sample */ x0 = *px++; /* Perform the multiply-accumulate */ sum0 += x0 * c0; /* Read the b[numTaps-2] coefficient */ c0 = *pb++; /* Read x[n-numTaps-2] and sample */ x0 = *px++; /* Perform the multiply-accumulate */ sum0 += x0 * c0; /* Read the b[numTaps-3] coefficients */ c0 = *pb++; /* Read x[n-numTaps-3] sample */ x0 = *px++; /* Perform the multiply-accumulate */ sum0 += x0 * c0; /* Read the b[numTaps-4] coefficient */ c0 = *pb++; /* Read x[n-numTaps-4] sample */ x0 = *px++; /* Perform the multiply-accumulate */ sum0 += x0 * c0; /* Decrement the loop counter */ tapCnt--; } /* If the filter length is not a multiple of 4, compute the remaining filter taps */ tapCnt = numTaps % 0x4U; while (tapCnt > 0U) { /* Read coefficients */ c0 = *pb++; /* Fetch 1 state variable */ x0 = *px++; /* Perform the multiply-accumulate */ sum0 += x0 * c0; /* Decrement the loop counter */ tapCnt--; } /* Advance the state pointer by the decimation factor * to process the next group of decimation factor number samples */ pState = pState + S->M; /* Store filter output, smlad returns the values in 2.14 format */ /* so downsacle by 15 to get output in 1.15 */ *pDst++ = (q15_t) (__SSAT((sum0 >> 15), 16)); /* Decrement the loop counter */ blkCntN3--; } /* Processing is complete. ** Now copy the last numTaps - 1 samples to the satrt of the state buffer. ** This prepares the state buffer for the next function call. */ /* Points to the start of the state buffer */ pStateCurnt = S->pState; i = (numTaps - 1U) >> 2U; /* copy data */ while (i > 0U) { *pStateCurnt++ = *pState++; *pStateCurnt++ = *pState++; *pStateCurnt++ = *pState++; *pStateCurnt++ = *pState++; /* Decrement the loop counter */ i--; } i = (numTaps - 1U) % 0x04U; /* copy data */ while (i > 0U) { *pStateCurnt++ = *pState++; /* Decrement the loop counter */ i--; } } #endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */ /** * @} end of FIR_decimate group */