/* ---------------------------------------------------------------------- * Project: CMSIS DSP Library * Title: arm_correlate_fast_opt_q15.c * Description: Fast Q15 Correlation * * $Date: 27. January 2017 * $Revision: V.1.5.1 * * Target Processor: Cortex-M cores * -------------------------------------------------------------------- */ /* * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "arm_math.h" /** * @ingroup groupFilters */ /** * @addtogroup Corr * @{ */ /** * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4. * @param[in] *pSrcA points to the first input sequence. * @param[in] srcALen length of the first input sequence. * @param[in] *pSrcB points to the second input sequence. * @param[in] srcBLen length of the second input sequence. * @param[out] *pDst points to the location where the output result is written. Length 2 * max(srcALen, srcBLen) - 1. * @param[in] *pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. * @return none. * * * \par Restrictions * If the silicon does not support unaligned memory access enable the macro UNALIGNED_SUPPORT_DISABLE * In this case input, output, scratch buffers should be aligned by 32-bit * * * Scaling and Overflow Behavior: * * \par * This fast version uses a 32-bit accumulator with 2.30 format. * The accumulator maintains full precision of the intermediate multiplication results but provides only a single guard bit. * There is no saturation on intermediate additions. * Thus, if the accumulator overflows it wraps around and distorts the result. * The input signals should be scaled down to avoid intermediate overflows. * Scale down one of the inputs by 1/min(srcALen, srcBLen) to avoid overflow since a * maximum of min(srcALen, srcBLen) number of additions is carried internally. * The 2.30 accumulator is right shifted by 15 bits and then saturated to 1.15 format to yield the final result. * * \par * See arm_correlate_q15() for a slower implementation of this function which uses a 64-bit accumulator to avoid wrap around distortion. */ void arm_correlate_fast_opt_q15( q15_t * pSrcA, uint32_t srcALen, q15_t * pSrcB, uint32_t srcBLen, q15_t * pDst, q15_t * pScratch) { q15_t *pIn1; /* inputA pointer */ q15_t *pIn2; /* inputB pointer */ q31_t acc0, acc1, acc2, acc3; /* Accumulators */ q15_t *py; /* Intermediate inputB pointer */ q31_t x1, x2, x3; /* temporary variables for holding input and coefficient values */ uint32_t j, blkCnt, outBlockSize; /* loop counter */ int32_t inc = 1; /* Destination address modifier */ uint32_t tapCnt; q31_t y1, y2; q15_t *pScr; /* Intermediate pointers */ q15_t *pOut = pDst; /* output pointer */ #ifdef UNALIGNED_SUPPORT_DISABLE q15_t a, b; #endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */ /* The algorithm implementation is based on the lengths of the inputs. */ /* srcB is always made to slide across srcA. */ /* So srcBLen is always considered as shorter or equal to srcALen */ /* But CORR(x, y) is reverse of CORR(y, x) */ /* So, when srcBLen > srcALen, output pointer is made to point to the end of the output buffer */ /* and the destination pointer modifier, inc is set to -1 */ /* If srcALen > srcBLen, zero pad has to be done to srcB to make the two inputs of same length */ /* But to improve the performance, * we include zeroes in the output instead of zero padding either of the the inputs*/ /* If srcALen > srcBLen, * (srcALen - srcBLen) zeroes has to included in the starting of the output buffer */ /* If srcALen < srcBLen, * (srcALen - srcBLen) zeroes has to included in the ending of the output buffer */ if (srcALen >= srcBLen) { /* Initialization of inputA pointer */ pIn1 = (pSrcA); /* Initialization of inputB pointer */ pIn2 = (pSrcB); /* Number of output samples is calculated */ outBlockSize = (2U * srcALen) - 1U; /* When srcALen > srcBLen, zero padding is done to srcB * to make their lengths equal. * Instead, (outBlockSize - (srcALen + srcBLen - 1)) * number of output samples are made zero */ j = outBlockSize - (srcALen + (srcBLen - 1U)); /* Updating the pointer position to non zero value */ pOut += j; } else { /* Initialization of inputA pointer */ pIn1 = (pSrcB); /* Initialization of inputB pointer */ pIn2 = (pSrcA); /* srcBLen is always considered as shorter or equal to srcALen */ j = srcBLen; srcBLen = srcALen; srcALen = j; /* CORR(x, y) = Reverse order(CORR(y, x)) */ /* Hence set the destination pointer to point to the last output sample */ pOut = pDst + ((srcALen + srcBLen) - 2U); /* Destination address modifier is set to -1 */ inc = -1; } pScr = pScratch; /* Fill (srcBLen - 1U) zeros in scratch buffer */ arm_fill_q15(0, pScr, (srcBLen - 1U)); /* Update temporary scratch pointer */ pScr += (srcBLen - 1U); #ifndef UNALIGNED_SUPPORT_DISABLE /* Copy (srcALen) samples in scratch buffer */ arm_copy_q15(pIn1, pScr, srcALen); /* Update pointers */ pScr += srcALen; #else /* Apply loop unrolling and do 4 Copies simultaneously. */ j = srcALen >> 2U; /* First part of the processing with loop unrolling copies 4 data points at a time. ** a second loop below copies for the remaining 1 to 3 samples. */ while (j > 0U) { /* copy second buffer in reversal manner */ *pScr++ = *pIn1++; *pScr++ = *pIn1++; *pScr++ = *pIn1++; *pScr++ = *pIn1++; /* Decrement the loop counter */ j--; } /* If the count is not a multiple of 4, copy remaining samples here. ** No loop unrolling is used. */ j = srcALen % 0x4U; while (j > 0U) { /* copy second buffer in reversal manner for remaining samples */ *pScr++ = *pIn1++; /* Decrement the loop counter */ j--; } #endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */ #ifndef UNALIGNED_SUPPORT_DISABLE /* Fill (srcBLen - 1U) zeros at end of scratch buffer */ arm_fill_q15(0, pScr, (srcBLen - 1U)); /* Update pointer */ pScr += (srcBLen - 1U); #else /* Apply loop unrolling and do 4 Copies simultaneously. */ j = (srcBLen - 1U) >> 2U; /* First part of the processing with loop unrolling copies 4 data points at a time. ** a second loop below copies for the remaining 1 to 3 samples. */ while (j > 0U) { /* copy second buffer in reversal manner */ *pScr++ = 0; *pScr++ = 0; *pScr++ = 0; *pScr++ = 0; /* Decrement the loop counter */ j--; } /* If the count is not a multiple of 4, copy remaining samples here. ** No loop unrolling is used. */ j = (srcBLen - 1U) % 0x4U; while (j > 0U) { /* copy second buffer in reversal manner for remaining samples */ *pScr++ = 0; /* Decrement the loop counter */ j--; } #endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */ /* Temporary pointer for scratch2 */ py = pIn2; /* Actual correlation process starts here */ blkCnt = (srcALen + srcBLen - 1U) >> 2; while (blkCnt > 0) { /* Initialze temporary scratch pointer as scratch1 */ pScr = pScratch; /* Clear Accumlators */ acc0 = 0; acc1 = 0; acc2 = 0; acc3 = 0; /* Read four samples from scratch1 buffer */ x1 = *__SIMD32(pScr)++; /* Read next four samples from scratch1 buffer */ x2 = *__SIMD32(pScr)++; tapCnt = (srcBLen) >> 2U; while (tapCnt > 0U) { #ifndef UNALIGNED_SUPPORT_DISABLE /* Read four samples from smaller buffer */ y1 = _SIMD32_OFFSET(pIn2); y2 = _SIMD32_OFFSET(pIn2 + 2U); acc0 = __SMLAD(x1, y1, acc0); acc2 = __SMLAD(x2, y1, acc2); #ifndef ARM_MATH_BIG_ENDIAN x3 = __PKHBT(x2, x1, 0); #else x3 = __PKHBT(x1, x2, 0); #endif acc1 = __SMLADX(x3, y1, acc1); x1 = _SIMD32_OFFSET(pScr); acc0 = __SMLAD(x2, y2, acc0); acc2 = __SMLAD(x1, y2, acc2); #ifndef ARM_MATH_BIG_ENDIAN x3 = __PKHBT(x1, x2, 0); #else x3 = __PKHBT(x2, x1, 0); #endif acc3 = __SMLADX(x3, y1, acc3); acc1 = __SMLADX(x3, y2, acc1); x2 = _SIMD32_OFFSET(pScr + 2U); #ifndef ARM_MATH_BIG_ENDIAN x3 = __PKHBT(x2, x1, 0); #else x3 = __PKHBT(x1, x2, 0); #endif acc3 = __SMLADX(x3, y2, acc3); #else /* Read four samples from smaller buffer */ a = *pIn2; b = *(pIn2 + 1); #ifndef ARM_MATH_BIG_ENDIAN y1 = __PKHBT(a, b, 16); #else y1 = __PKHBT(b, a, 16); #endif a = *(pIn2 + 2); b = *(pIn2 + 3); #ifndef ARM_MATH_BIG_ENDIAN y2 = __PKHBT(a, b, 16); #else y2 = __PKHBT(b, a, 16); #endif acc0 = __SMLAD(x1, y1, acc0); acc2 = __SMLAD(x2, y1, acc2); #ifndef ARM_MATH_BIG_ENDIAN x3 = __PKHBT(x2, x1, 0); #else x3 = __PKHBT(x1, x2, 0); #endif acc1 = __SMLADX(x3, y1, acc1); a = *pScr; b = *(pScr + 1); #ifndef ARM_MATH_BIG_ENDIAN x1 = __PKHBT(a, b, 16); #else x1 = __PKHBT(b, a, 16); #endif acc0 = __SMLAD(x2, y2, acc0); acc2 = __SMLAD(x1, y2, acc2); #ifndef ARM_MATH_BIG_ENDIAN x3 = __PKHBT(x1, x2, 0); #else x3 = __PKHBT(x2, x1, 0); #endif acc3 = __SMLADX(x3, y1, acc3); acc1 = __SMLADX(x3, y2, acc1); a = *(pScr + 2); b = *(pScr + 3); #ifndef ARM_MATH_BIG_ENDIAN x2 = __PKHBT(a, b, 16); #else x2 = __PKHBT(b, a, 16); #endif #ifndef ARM_MATH_BIG_ENDIAN x3 = __PKHBT(x2, x1, 0); #else x3 = __PKHBT(x1, x2, 0); #endif acc3 = __SMLADX(x3, y2, acc3); #endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */ pIn2 += 4U; pScr += 4U; /* Decrement the loop counter */ tapCnt--; } /* Update scratch pointer for remaining samples of smaller length sequence */ pScr -= 4U; /* apply same above for remaining samples of smaller length sequence */ tapCnt = (srcBLen) & 3U; while (tapCnt > 0U) { /* accumlate the results */ acc0 += (*pScr++ * *pIn2); acc1 += (*pScr++ * *pIn2); acc2 += (*pScr++ * *pIn2); acc3 += (*pScr++ * *pIn2++); pScr -= 3U; /* Decrement the loop counter */ tapCnt--; } blkCnt--; /* Store the results in the accumulators in the destination buffer. */ *pOut = (__SSAT(acc0 >> 15U, 16)); pOut += inc; *pOut = (__SSAT(acc1 >> 15U, 16)); pOut += inc; *pOut = (__SSAT(acc2 >> 15U, 16)); pOut += inc; *pOut = (__SSAT(acc3 >> 15U, 16)); pOut += inc; /* Initialization of inputB pointer */ pIn2 = py; pScratch += 4U; } blkCnt = (srcALen + srcBLen - 1U) & 0x3; /* Calculate correlation for remaining samples of Bigger length sequence */ while (blkCnt > 0) { /* Initialze temporary scratch pointer as scratch1 */ pScr = pScratch; /* Clear Accumlators */ acc0 = 0; tapCnt = (srcBLen) >> 1U; while (tapCnt > 0U) { acc0 += (*pScr++ * *pIn2++); acc0 += (*pScr++ * *pIn2++); /* Decrement the loop counter */ tapCnt--; } tapCnt = (srcBLen) & 1U; /* apply same above for remaining samples of smaller length sequence */ while (tapCnt > 0U) { /* accumlate the results */ acc0 += (*pScr++ * *pIn2++); /* Decrement the loop counter */ tapCnt--; } blkCnt--; /* Store the result in the accumulator in the destination buffer. */ *pOut = (q15_t) (__SSAT((acc0 >> 15), 16)); pOut += inc; /* Initialization of inputB pointer */ pIn2 = py; pScratch += 1U; } } /** * @} end of Corr group */