/* ---------------------------------------------------------------------- * Project: CMSIS DSP Library * Title: arm_conv_partial_opt_q7.c * Description: Partial convolution of Q7 sequences * * $Date: 27. January 2017 * $Revision: V.1.5.1 * * Target Processor: Cortex-M cores * -------------------------------------------------------------------- */ /* * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "arm_math.h" /** * @ingroup groupFilters */ /** * @addtogroup PartialConv * @{ */ /** * @brief Partial convolution of Q7 sequences. * @param[in] *pSrcA points to the first input sequence. * @param[in] srcALen length of the first input sequence. * @param[in] *pSrcB points to the second input sequence. * @param[in] srcBLen length of the second input sequence. * @param[out] *pDst points to the location where the output result is written. * @param[in] firstIndex is the first output sample to start with. * @param[in] numPoints is the number of output points to be computed. * @param[in] *pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. * @param[in] *pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen). * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. * * \par Restrictions * If the silicon does not support unaligned memory access enable the macro UNALIGNED_SUPPORT_DISABLE * In this case input, output, scratch1 and scratch2 buffers should be aligned by 32-bit * * * */ #ifndef UNALIGNED_SUPPORT_DISABLE arm_status arm_conv_partial_opt_q7( q7_t * pSrcA, uint32_t srcALen, q7_t * pSrcB, uint32_t srcBLen, q7_t * pDst, uint32_t firstIndex, uint32_t numPoints, q15_t * pScratch1, q15_t * pScratch2) { q15_t *pScr2, *pScr1; /* Intermediate pointers for scratch pointers */ q15_t x4; /* Temporary input variable */ q7_t *pIn1, *pIn2; /* inputA and inputB pointer */ uint32_t j, k, blkCnt, tapCnt; /* loop counter */ q7_t *px; /* Temporary input1 pointer */ q15_t *py; /* Temporary input2 pointer */ q31_t acc0, acc1, acc2, acc3; /* Accumulator */ q31_t x1, x2, x3, y1; /* Temporary input variables */ arm_status status; q7_t *pOut = pDst; /* output pointer */ q7_t out0, out1, out2, out3; /* temporary variables */ /* Check for range of output samples to be calculated */ if ((firstIndex + numPoints) > ((srcALen + (srcBLen - 1U)))) { /* Set status as ARM_MATH_ARGUMENT_ERROR */ status = ARM_MATH_ARGUMENT_ERROR; } else { /* The algorithm implementation is based on the lengths of the inputs. */ /* srcB is always made to slide across srcA. */ /* So srcBLen is always considered as shorter or equal to srcALen */ if (srcALen >= srcBLen) { /* Initialization of inputA pointer */ pIn1 = pSrcA; /* Initialization of inputB pointer */ pIn2 = pSrcB; } else { /* Initialization of inputA pointer */ pIn1 = pSrcB; /* Initialization of inputB pointer */ pIn2 = pSrcA; /* srcBLen is always considered as shorter or equal to srcALen */ j = srcBLen; srcBLen = srcALen; srcALen = j; } /* pointer to take end of scratch2 buffer */ pScr2 = pScratch2; /* points to smaller length sequence */ px = pIn2 + srcBLen - 1; /* Apply loop unrolling and do 4 Copies simultaneously. */ k = srcBLen >> 2U; /* First part of the processing with loop unrolling copies 4 data points at a time. ** a second loop below copies for the remaining 1 to 3 samples. */ while (k > 0U) { /* copy second buffer in reversal manner */ x4 = (q15_t) * px--; *pScr2++ = x4; x4 = (q15_t) * px--; *pScr2++ = x4; x4 = (q15_t) * px--; *pScr2++ = x4; x4 = (q15_t) * px--; *pScr2++ = x4; /* Decrement the loop counter */ k--; } /* If the count is not a multiple of 4, copy remaining samples here. ** No loop unrolling is used. */ k = srcBLen % 0x4U; while (k > 0U) { /* copy second buffer in reversal manner for remaining samples */ x4 = (q15_t) * px--; *pScr2++ = x4; /* Decrement the loop counter */ k--; } /* Initialze temporary scratch pointer */ pScr1 = pScratch1; /* Fill (srcBLen - 1U) zeros in scratch buffer */ arm_fill_q15(0, pScr1, (srcBLen - 1U)); /* Update temporary scratch pointer */ pScr1 += (srcBLen - 1U); /* Copy (srcALen) samples in scratch buffer */ /* Apply loop unrolling and do 4 Copies simultaneously. */ k = srcALen >> 2U; /* First part of the processing with loop unrolling copies 4 data points at a time. ** a second loop below copies for the remaining 1 to 3 samples. */ while (k > 0U) { /* copy second buffer in reversal manner */ x4 = (q15_t) * pIn1++; *pScr1++ = x4; x4 = (q15_t) * pIn1++; *pScr1++ = x4; x4 = (q15_t) * pIn1++; *pScr1++ = x4; x4 = (q15_t) * pIn1++; *pScr1++ = x4; /* Decrement the loop counter */ k--; } /* If the count is not a multiple of 4, copy remaining samples here. ** No loop unrolling is used. */ k = srcALen % 0x4U; while (k > 0U) { /* copy second buffer in reversal manner for remaining samples */ x4 = (q15_t) * pIn1++; *pScr1++ = x4; /* Decrement the loop counter */ k--; } /* Fill (srcBLen - 1U) zeros at end of scratch buffer */ arm_fill_q15(0, pScr1, (srcBLen - 1U)); /* Update pointer */ pScr1 += (srcBLen - 1U); /* Temporary pointer for scratch2 */ py = pScratch2; /* Initialization of pIn2 pointer */ pIn2 = (q7_t *) py; pScr2 = py; pOut = pDst + firstIndex; pScratch1 += firstIndex; /* Actual convolution process starts here */ blkCnt = (numPoints) >> 2; while (blkCnt > 0) { /* Initialze temporary scratch pointer as scratch1 */ pScr1 = pScratch1; /* Clear Accumlators */ acc0 = 0; acc1 = 0; acc2 = 0; acc3 = 0; /* Read two samples from scratch1 buffer */ x1 = *__SIMD32(pScr1)++; /* Read next two samples from scratch1 buffer */ x2 = *__SIMD32(pScr1)++; tapCnt = (srcBLen) >> 2U; while (tapCnt > 0U) { /* Read four samples from smaller buffer */ y1 = _SIMD32_OFFSET(pScr2); /* multiply and accumlate */ acc0 = __SMLAD(x1, y1, acc0); acc2 = __SMLAD(x2, y1, acc2); /* pack input data */ #ifndef ARM_MATH_BIG_ENDIAN x3 = __PKHBT(x2, x1, 0); #else x3 = __PKHBT(x1, x2, 0); #endif /* multiply and accumlate */ acc1 = __SMLADX(x3, y1, acc1); /* Read next two samples from scratch1 buffer */ x1 = *__SIMD32(pScr1)++; /* pack input data */ #ifndef ARM_MATH_BIG_ENDIAN x3 = __PKHBT(x1, x2, 0); #else x3 = __PKHBT(x2, x1, 0); #endif acc3 = __SMLADX(x3, y1, acc3); /* Read four samples from smaller buffer */ y1 = _SIMD32_OFFSET(pScr2 + 2U); acc0 = __SMLAD(x2, y1, acc0); acc2 = __SMLAD(x1, y1, acc2); acc1 = __SMLADX(x3, y1, acc1); x2 = *__SIMD32(pScr1)++; #ifndef ARM_MATH_BIG_ENDIAN x3 = __PKHBT(x2, x1, 0); #else x3 = __PKHBT(x1, x2, 0); #endif acc3 = __SMLADX(x3, y1, acc3); pScr2 += 4U; /* Decrement the loop counter */ tapCnt--; } /* Update scratch pointer for remaining samples of smaller length sequence */ pScr1 -= 4U; /* apply same above for remaining samples of smaller length sequence */ tapCnt = (srcBLen) & 3U; while (tapCnt > 0U) { /* accumlate the results */ acc0 += (*pScr1++ * *pScr2); acc1 += (*pScr1++ * *pScr2); acc2 += (*pScr1++ * *pScr2); acc3 += (*pScr1++ * *pScr2++); pScr1 -= 3U; /* Decrement the loop counter */ tapCnt--; } blkCnt--; /* Store the result in the accumulator in the destination buffer. */ out0 = (q7_t) (__SSAT(acc0 >> 7U, 8)); out1 = (q7_t) (__SSAT(acc1 >> 7U, 8)); out2 = (q7_t) (__SSAT(acc2 >> 7U, 8)); out3 = (q7_t) (__SSAT(acc3 >> 7U, 8)); *__SIMD32(pOut)++ = __PACKq7(out0, out1, out2, out3); /* Initialization of inputB pointer */ pScr2 = py; pScratch1 += 4U; } blkCnt = (numPoints) & 0x3; /* Calculate convolution for remaining samples of Bigger length sequence */ while (blkCnt > 0) { /* Initialze temporary scratch pointer as scratch1 */ pScr1 = pScratch1; /* Clear Accumlators */ acc0 = 0; tapCnt = (srcBLen) >> 1U; while (tapCnt > 0U) { /* Read next two samples from scratch1 buffer */ x1 = *__SIMD32(pScr1)++; /* Read two samples from smaller buffer */ y1 = *__SIMD32(pScr2)++; acc0 = __SMLAD(x1, y1, acc0); /* Decrement the loop counter */ tapCnt--; } tapCnt = (srcBLen) & 1U; /* apply same above for remaining samples of smaller length sequence */ while (tapCnt > 0U) { /* accumlate the results */ acc0 += (*pScr1++ * *pScr2++); /* Decrement the loop counter */ tapCnt--; } blkCnt--; /* Store the result in the accumulator in the destination buffer. */ *pOut++ = (q7_t) (__SSAT(acc0 >> 7U, 8)); /* Initialization of inputB pointer */ pScr2 = py; pScratch1 += 1U; } /* set status as ARM_MATH_SUCCESS */ status = ARM_MATH_SUCCESS; } return (status); } #else arm_status arm_conv_partial_opt_q7( q7_t * pSrcA, uint32_t srcALen, q7_t * pSrcB, uint32_t srcBLen, q7_t * pDst, uint32_t firstIndex, uint32_t numPoints, q15_t * pScratch1, q15_t * pScratch2) { q15_t *pScr2, *pScr1; /* Intermediate pointers for scratch pointers */ q15_t x4; /* Temporary input variable */ q7_t *pIn1, *pIn2; /* inputA and inputB pointer */ uint32_t j, k, blkCnt, tapCnt; /* loop counter */ q7_t *px; /* Temporary input1 pointer */ q15_t *py; /* Temporary input2 pointer */ q31_t acc0, acc1, acc2, acc3; /* Accumulator */ arm_status status; q7_t *pOut = pDst; /* output pointer */ q15_t x10, x11, x20, x21; /* Temporary input variables */ q15_t y10, y11; /* Temporary input variables */ /* Check for range of output samples to be calculated */ if ((firstIndex + numPoints) > ((srcALen + (srcBLen - 1U)))) { /* Set status as ARM_MATH_ARGUMENT_ERROR */ status = ARM_MATH_ARGUMENT_ERROR; } else { /* The algorithm implementation is based on the lengths of the inputs. */ /* srcB is always made to slide across srcA. */ /* So srcBLen is always considered as shorter or equal to srcALen */ if (srcALen >= srcBLen) { /* Initialization of inputA pointer */ pIn1 = pSrcA; /* Initialization of inputB pointer */ pIn2 = pSrcB; } else { /* Initialization of inputA pointer */ pIn1 = pSrcB; /* Initialization of inputB pointer */ pIn2 = pSrcA; /* srcBLen is always considered as shorter or equal to srcALen */ j = srcBLen; srcBLen = srcALen; srcALen = j; } /* pointer to take end of scratch2 buffer */ pScr2 = pScratch2; /* points to smaller length sequence */ px = pIn2 + srcBLen - 1; /* Apply loop unrolling and do 4 Copies simultaneously. */ k = srcBLen >> 2U; /* First part of the processing with loop unrolling copies 4 data points at a time. ** a second loop below copies for the remaining 1 to 3 samples. */ while (k > 0U) { /* copy second buffer in reversal manner */ x4 = (q15_t) * px--; *pScr2++ = x4; x4 = (q15_t) * px--; *pScr2++ = x4; x4 = (q15_t) * px--; *pScr2++ = x4; x4 = (q15_t) * px--; *pScr2++ = x4; /* Decrement the loop counter */ k--; } /* If the count is not a multiple of 4, copy remaining samples here. ** No loop unrolling is used. */ k = srcBLen % 0x4U; while (k > 0U) { /* copy second buffer in reversal manner for remaining samples */ x4 = (q15_t) * px--; *pScr2++ = x4; /* Decrement the loop counter */ k--; } /* Initialze temporary scratch pointer */ pScr1 = pScratch1; /* Fill (srcBLen - 1U) zeros in scratch buffer */ arm_fill_q15(0, pScr1, (srcBLen - 1U)); /* Update temporary scratch pointer */ pScr1 += (srcBLen - 1U); /* Copy (srcALen) samples in scratch buffer */ /* Apply loop unrolling and do 4 Copies simultaneously. */ k = srcALen >> 2U; /* First part of the processing with loop unrolling copies 4 data points at a time. ** a second loop below copies for the remaining 1 to 3 samples. */ while (k > 0U) { /* copy second buffer in reversal manner */ x4 = (q15_t) * pIn1++; *pScr1++ = x4; x4 = (q15_t) * pIn1++; *pScr1++ = x4; x4 = (q15_t) * pIn1++; *pScr1++ = x4; x4 = (q15_t) * pIn1++; *pScr1++ = x4; /* Decrement the loop counter */ k--; } /* If the count is not a multiple of 4, copy remaining samples here. ** No loop unrolling is used. */ k = srcALen % 0x4U; while (k > 0U) { /* copy second buffer in reversal manner for remaining samples */ x4 = (q15_t) * pIn1++; *pScr1++ = x4; /* Decrement the loop counter */ k--; } /* Apply loop unrolling and do 4 Copies simultaneously. */ k = (srcBLen - 1U) >> 2U; /* First part of the processing with loop unrolling copies 4 data points at a time. ** a second loop below copies for the remaining 1 to 3 samples. */ while (k > 0U) { /* copy second buffer in reversal manner */ *pScr1++ = 0; *pScr1++ = 0; *pScr1++ = 0; *pScr1++ = 0; /* Decrement the loop counter */ k--; } /* If the count is not a multiple of 4, copy remaining samples here. ** No loop unrolling is used. */ k = (srcBLen - 1U) % 0x4U; while (k > 0U) { /* copy second buffer in reversal manner for remaining samples */ *pScr1++ = 0; /* Decrement the loop counter */ k--; } /* Temporary pointer for scratch2 */ py = pScratch2; /* Initialization of pIn2 pointer */ pIn2 = (q7_t *) py; pScr2 = py; pOut = pDst + firstIndex; pScratch1 += firstIndex; /* Actual convolution process starts here */ blkCnt = (numPoints) >> 2; while (blkCnt > 0) { /* Initialze temporary scratch pointer as scratch1 */ pScr1 = pScratch1; /* Clear Accumlators */ acc0 = 0; acc1 = 0; acc2 = 0; acc3 = 0; /* Read two samples from scratch1 buffer */ x10 = *pScr1++; x11 = *pScr1++; /* Read next two samples from scratch1 buffer */ x20 = *pScr1++; x21 = *pScr1++; tapCnt = (srcBLen) >> 2U; while (tapCnt > 0U) { /* Read four samples from smaller buffer */ y10 = *pScr2; y11 = *(pScr2 + 1U); /* multiply and accumlate */ acc0 += (q31_t) x10 *y10; acc0 += (q31_t) x11 *y11; acc2 += (q31_t) x20 *y10; acc2 += (q31_t) x21 *y11; acc1 += (q31_t) x11 *y10; acc1 += (q31_t) x20 *y11; /* Read next two samples from scratch1 buffer */ x10 = *pScr1; x11 = *(pScr1 + 1U); /* multiply and accumlate */ acc3 += (q31_t) x21 *y10; acc3 += (q31_t) x10 *y11; /* Read next two samples from scratch2 buffer */ y10 = *(pScr2 + 2U); y11 = *(pScr2 + 3U); /* multiply and accumlate */ acc0 += (q31_t) x20 *y10; acc0 += (q31_t) x21 *y11; acc2 += (q31_t) x10 *y10; acc2 += (q31_t) x11 *y11; acc1 += (q31_t) x21 *y10; acc1 += (q31_t) x10 *y11; /* Read next two samples from scratch1 buffer */ x20 = *(pScr1 + 2); x21 = *(pScr1 + 3); /* multiply and accumlate */ acc3 += (q31_t) x11 *y10; acc3 += (q31_t) x20 *y11; /* update scratch pointers */ pScr1 += 4U; pScr2 += 4U; /* Decrement the loop counter */ tapCnt--; } /* Update scratch pointer for remaining samples of smaller length sequence */ pScr1 -= 4U; /* apply same above for remaining samples of smaller length sequence */ tapCnt = (srcBLen) & 3U; while (tapCnt > 0U) { /* accumlate the results */ acc0 += (*pScr1++ * *pScr2); acc1 += (*pScr1++ * *pScr2); acc2 += (*pScr1++ * *pScr2); acc3 += (*pScr1++ * *pScr2++); pScr1 -= 3U; /* Decrement the loop counter */ tapCnt--; } blkCnt--; /* Store the result in the accumulator in the destination buffer. */ *pOut++ = (q7_t) (__SSAT(acc0 >> 7U, 8)); *pOut++ = (q7_t) (__SSAT(acc1 >> 7U, 8)); *pOut++ = (q7_t) (__SSAT(acc2 >> 7U, 8)); *pOut++ = (q7_t) (__SSAT(acc3 >> 7U, 8)); /* Initialization of inputB pointer */ pScr2 = py; pScratch1 += 4U; } blkCnt = (numPoints) & 0x3; /* Calculate convolution for remaining samples of Bigger length sequence */ while (blkCnt > 0) { /* Initialze temporary scratch pointer as scratch1 */ pScr1 = pScratch1; /* Clear Accumlators */ acc0 = 0; tapCnt = (srcBLen) >> 1U; while (tapCnt > 0U) { /* Read next two samples from scratch1 buffer */ x10 = *pScr1++; x11 = *pScr1++; /* Read two samples from smaller buffer */ y10 = *pScr2++; y11 = *pScr2++; /* multiply and accumlate */ acc0 += (q31_t) x10 *y10; acc0 += (q31_t) x11 *y11; /* Decrement the loop counter */ tapCnt--; } tapCnt = (srcBLen) & 1U; /* apply same above for remaining samples of smaller length sequence */ while (tapCnt > 0U) { /* accumlate the results */ acc0 += (*pScr1++ * *pScr2++); /* Decrement the loop counter */ tapCnt--; } blkCnt--; /* Store the result in the accumulator in the destination buffer. */ *pOut++ = (q7_t) (__SSAT(acc0 >> 7U, 8)); /* Initialization of inputB pointer */ pScr2 = py; pScratch1 += 1U; } /* set status as ARM_MATH_SUCCESS */ status = ARM_MATH_SUCCESS; } return (status); } #endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */ /** * @} end of PartialConv group */