/* ---------------------------------------------------------------------- * Project: CMSIS DSP Library * Title: arm_biquad_cascade_df1_fast_q31.c * Description: Processing function for the Q31 Fast Biquad cascade DirectFormI(DF1) filter * * $Date: 27. January 2017 * $Revision: V.1.5.1 * * Target Processor: Cortex-M cores * -------------------------------------------------------------------- */ /* * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "arm_math.h" /** * @ingroup groupFilters */ /** * @addtogroup BiquadCascadeDF1 * @{ */ /** * @details * * @param[in] *S points to an instance of the Q31 Biquad cascade structure. * @param[in] *pSrc points to the block of input data. * @param[out] *pDst points to the block of output data. * @param[in] blockSize number of samples to process per call. * @return none. * * Scaling and Overflow Behavior: * \par * This function is optimized for speed at the expense of fixed-point precision and overflow protection. * The result of each 1.31 x 1.31 multiplication is truncated to 2.30 format. * These intermediate results are added to a 2.30 accumulator. * Finally, the accumulator is saturated and converted to a 1.31 result. * The fast version has the same overflow behavior as the standard version and provides less precision since it discards the low 32 bits of each multiplication result. * In order to avoid overflows completely the input signal must be scaled down by two bits and lie in the range [-0.25 +0.25). Use the intialization function * arm_biquad_cascade_df1_init_q31() to initialize filter structure. * * \par * Refer to the function arm_biquad_cascade_df1_q31() for a slower implementation of this function which uses 64-bit accumulation to provide higher precision. Both the slow and the fast versions use the same instance structure. * Use the function arm_biquad_cascade_df1_init_q31() to initialize the filter structure. */ void arm_biquad_cascade_df1_fast_q31( const arm_biquad_casd_df1_inst_q31 * S, q31_t * pSrc, q31_t * pDst, uint32_t blockSize) { q31_t acc = 0; /* accumulator */ q31_t Xn1, Xn2, Yn1, Yn2; /* Filter state variables */ q31_t b0, b1, b2, a1, a2; /* Filter coefficients */ q31_t *pIn = pSrc; /* input pointer initialization */ q31_t *pOut = pDst; /* output pointer initialization */ q31_t *pState = S->pState; /* pState pointer initialization */ q31_t *pCoeffs = S->pCoeffs; /* coeff pointer initialization */ q31_t Xn; /* temporary input */ int32_t shift = (int32_t) S->postShift + 1; /* Shift to be applied to the output */ uint32_t sample, stage = S->numStages; /* loop counters */ do { /* Reading the coefficients */ b0 = *pCoeffs++; b1 = *pCoeffs++; b2 = *pCoeffs++; a1 = *pCoeffs++; a2 = *pCoeffs++; /* Reading the state values */ Xn1 = pState[0]; Xn2 = pState[1]; Yn1 = pState[2]; Yn2 = pState[3]; /* Apply loop unrolling and compute 4 output values simultaneously. */ /* The variables acc ... acc3 hold output values that are being computed: * * acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */ sample = blockSize >> 2U; /* First part of the processing with loop unrolling. Compute 4 outputs at a time. ** a second loop below computes the remaining 1 to 3 samples. */ while (sample > 0U) { /* Read the input */ Xn = *pIn; /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */ /* acc = b0 * x[n] */ /*acc = (q31_t) (((q63_t) b1 * Xn1) >> 32);*/ mult_32x32_keep32_R(acc, b1, Xn1); /* acc += b1 * x[n-1] */ /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b0 * (Xn))) >> 32);*/ multAcc_32x32_keep32_R(acc, b0, Xn); /* acc += b[2] * x[n-2] */ /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b2 * (Xn2))) >> 32);*/ multAcc_32x32_keep32_R(acc, b2, Xn2); /* acc += a1 * y[n-1] */ /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a1 * (Yn1))) >> 32);*/ multAcc_32x32_keep32_R(acc, a1, Yn1); /* acc += a2 * y[n-2] */ /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a2 * (Yn2))) >> 32);*/ multAcc_32x32_keep32_R(acc, a2, Yn2); /* The result is converted to 1.31 , Yn2 variable is reused */ Yn2 = acc << shift; /* Read the second input */ Xn2 = *(pIn + 1U); /* Store the output in the destination buffer. */ *pOut = Yn2; /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */ /* acc = b0 * x[n] */ /*acc = (q31_t) (((q63_t) b0 * (Xn2)) >> 32);*/ mult_32x32_keep32_R(acc, b0, Xn2); /* acc += b1 * x[n-1] */ /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b1 * (Xn))) >> 32);*/ multAcc_32x32_keep32_R(acc, b1, Xn); /* acc += b[2] * x[n-2] */ /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b2 * (Xn1))) >> 32);*/ multAcc_32x32_keep32_R(acc, b2, Xn1); /* acc += a1 * y[n-1] */ /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a1 * (Yn2))) >> 32);*/ multAcc_32x32_keep32_R(acc, a1, Yn2); /* acc += a2 * y[n-2] */ /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a2 * (Yn1))) >> 32);*/ multAcc_32x32_keep32_R(acc, a2, Yn1); /* The result is converted to 1.31, Yn1 variable is reused */ Yn1 = acc << shift; /* Read the third input */ Xn1 = *(pIn + 2U); /* Store the output in the destination buffer. */ *(pOut + 1U) = Yn1; /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */ /* acc = b0 * x[n] */ /*acc = (q31_t) (((q63_t) b0 * (Xn1)) >> 32);*/ mult_32x32_keep32_R(acc, b0, Xn1); /* acc += b1 * x[n-1] */ /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b1 * (Xn2))) >> 32);*/ multAcc_32x32_keep32_R(acc, b1, Xn2); /* acc += b[2] * x[n-2] */ /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b2 * (Xn))) >> 32);*/ multAcc_32x32_keep32_R(acc, b2, Xn); /* acc += a1 * y[n-1] */ /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a1 * (Yn1))) >> 32);*/ multAcc_32x32_keep32_R(acc, a1, Yn1); /* acc += a2 * y[n-2] */ /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a2 * (Yn2))) >> 32);*/ multAcc_32x32_keep32_R(acc, a2, Yn2); /* The result is converted to 1.31, Yn2 variable is reused */ Yn2 = acc << shift; /* Read the forth input */ Xn = *(pIn + 3U); /* Store the output in the destination buffer. */ *(pOut + 2U) = Yn2; pIn += 4U; /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */ /* acc = b0 * x[n] */ /*acc = (q31_t) (((q63_t) b0 * (Xn)) >> 32);*/ mult_32x32_keep32_R(acc, b0, Xn); /* acc += b1 * x[n-1] */ /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b1 * (Xn1))) >> 32);*/ multAcc_32x32_keep32_R(acc, b1, Xn1); /* acc += b[2] * x[n-2] */ /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b2 * (Xn2))) >> 32);*/ multAcc_32x32_keep32_R(acc, b2, Xn2); /* acc += a1 * y[n-1] */ /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a1 * (Yn2))) >> 32);*/ multAcc_32x32_keep32_R(acc, a1, Yn2); /* acc += a2 * y[n-2] */ /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a2 * (Yn1))) >> 32);*/ multAcc_32x32_keep32_R(acc, a2, Yn1); /* Every time after the output is computed state should be updated. */ /* The states should be updated as: */ /* Xn2 = Xn1 */ Xn2 = Xn1; /* The result is converted to 1.31, Yn1 variable is reused */ Yn1 = acc << shift; /* Xn1 = Xn */ Xn1 = Xn; /* Store the output in the destination buffer. */ *(pOut + 3U) = Yn1; pOut += 4U; /* decrement the loop counter */ sample--; } /* If the blockSize is not a multiple of 4, compute any remaining output samples here. ** No loop unrolling is used. */ sample = (blockSize & 0x3U); while (sample > 0U) { /* Read the input */ Xn = *pIn++; /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */ /* acc = b0 * x[n] */ /*acc = (q31_t) (((q63_t) b0 * (Xn)) >> 32);*/ mult_32x32_keep32_R(acc, b0, Xn); /* acc += b1 * x[n-1] */ /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b1 * (Xn1))) >> 32);*/ multAcc_32x32_keep32_R(acc, b1, Xn1); /* acc += b[2] * x[n-2] */ /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b2 * (Xn2))) >> 32);*/ multAcc_32x32_keep32_R(acc, b2, Xn2); /* acc += a1 * y[n-1] */ /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a1 * (Yn1))) >> 32);*/ multAcc_32x32_keep32_R(acc, a1, Yn1); /* acc += a2 * y[n-2] */ /*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a2 * (Yn2))) >> 32);*/ multAcc_32x32_keep32_R(acc, a2, Yn2); /* The result is converted to 1.31 */ acc = acc << shift; /* Every time after the output is computed state should be updated. */ /* The states should be updated as: */ /* Xn2 = Xn1 */ /* Xn1 = Xn */ /* Yn2 = Yn1 */ /* Yn1 = acc */ Xn2 = Xn1; Xn1 = Xn; Yn2 = Yn1; Yn1 = acc; /* Store the output in the destination buffer. */ *pOut++ = acc; /* decrement the loop counter */ sample--; } /* The first stage goes from the input buffer to the output buffer. */ /* Subsequent stages occur in-place in the output buffer */ pIn = pDst; /* Reset to destination pointer */ pOut = pDst; /* Store the updated state variables back into the pState array */ *pState++ = Xn1; *pState++ = Xn2; *pState++ = Yn1; *pState++ = Yn2; } while (--stage); } /** * @} end of BiquadCascadeDF1 group */