/* ---------------------------------------------------------------------- * Project: CMSIS DSP Library * Title: arm_shift_q15.c * Description: Shifts the elements of a Q15 vector by a specified number of bits * * $Date: 27. January 2017 * $Revision: V.1.5.1 * * Target Processor: Cortex-M cores * -------------------------------------------------------------------- */ /* * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "arm_math.h" /** * @ingroup groupMath */ /** * @addtogroup shift * @{ */ /** * @brief Shifts the elements of a Q15 vector a specified number of bits. * @param[in] *pSrc points to the input vector * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right. * @param[out] *pDst points to the output vector * @param[in] blockSize number of samples in the vector * @return none. * * Scaling and Overflow Behavior: * \par * The function uses saturating arithmetic. * Results outside of the allowable Q15 range [0x8000 0x7FFF] will be saturated. */ void arm_shift_q15( q15_t * pSrc, int8_t shiftBits, q15_t * pDst, uint32_t blockSize) { uint32_t blkCnt; /* loop counter */ uint8_t sign; /* Sign of shiftBits */ #if defined (ARM_MATH_DSP) /* Run the below code for Cortex-M4 and Cortex-M3 */ q15_t in1, in2; /* Temporary variables */ /*loop Unrolling */ blkCnt = blockSize >> 2U; /* Getting the sign of shiftBits */ sign = (shiftBits & 0x80); /* If the shift value is positive then do right shift else left shift */ if (sign == 0U) { /* First part of the processing with loop unrolling. Compute 4 outputs at a time. ** a second loop below computes the remaining 1 to 3 samples. */ while (blkCnt > 0U) { /* Read 2 inputs */ in1 = *pSrc++; in2 = *pSrc++; /* C = A << shiftBits */ /* Shift the inputs and then store the results in the destination buffer. */ #ifndef ARM_MATH_BIG_ENDIAN *__SIMD32(pDst)++ = __PKHBT(__SSAT((in1 << shiftBits), 16), __SSAT((in2 << shiftBits), 16), 16); #else *__SIMD32(pDst)++ = __PKHBT(__SSAT((in2 << shiftBits), 16), __SSAT((in1 << shiftBits), 16), 16); #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ in1 = *pSrc++; in2 = *pSrc++; #ifndef ARM_MATH_BIG_ENDIAN *__SIMD32(pDst)++ = __PKHBT(__SSAT((in1 << shiftBits), 16), __SSAT((in2 << shiftBits), 16), 16); #else *__SIMD32(pDst)++ = __PKHBT(__SSAT((in2 << shiftBits), 16), __SSAT((in1 << shiftBits), 16), 16); #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ /* Decrement the loop counter */ blkCnt--; } /* If the blockSize is not a multiple of 4, compute any remaining output samples here. ** No loop unrolling is used. */ blkCnt = blockSize % 0x4U; while (blkCnt > 0U) { /* C = A << shiftBits */ /* Shift and then store the results in the destination buffer. */ *pDst++ = __SSAT((*pSrc++ << shiftBits), 16); /* Decrement the loop counter */ blkCnt--; } } else { /* First part of the processing with loop unrolling. Compute 4 outputs at a time. ** a second loop below computes the remaining 1 to 3 samples. */ while (blkCnt > 0U) { /* Read 2 inputs */ in1 = *pSrc++; in2 = *pSrc++; /* C = A >> shiftBits */ /* Shift the inputs and then store the results in the destination buffer. */ #ifndef ARM_MATH_BIG_ENDIAN *__SIMD32(pDst)++ = __PKHBT((in1 >> -shiftBits), (in2 >> -shiftBits), 16); #else *__SIMD32(pDst)++ = __PKHBT((in2 >> -shiftBits), (in1 >> -shiftBits), 16); #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ in1 = *pSrc++; in2 = *pSrc++; #ifndef ARM_MATH_BIG_ENDIAN *__SIMD32(pDst)++ = __PKHBT((in1 >> -shiftBits), (in2 >> -shiftBits), 16); #else *__SIMD32(pDst)++ = __PKHBT((in2 >> -shiftBits), (in1 >> -shiftBits), 16); #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ /* Decrement the loop counter */ blkCnt--; } /* If the blockSize is not a multiple of 4, compute any remaining output samples here. ** No loop unrolling is used. */ blkCnt = blockSize % 0x4U; while (blkCnt > 0U) { /* C = A >> shiftBits */ /* Shift the inputs and then store the results in the destination buffer. */ *pDst++ = (*pSrc++ >> -shiftBits); /* Decrement the loop counter */ blkCnt--; } } #else /* Run the below code for Cortex-M0 */ /* Getting the sign of shiftBits */ sign = (shiftBits & 0x80); /* If the shift value is positive then do right shift else left shift */ if (sign == 0U) { /* Initialize blkCnt with number of samples */ blkCnt = blockSize; while (blkCnt > 0U) { /* C = A << shiftBits */ /* Shift and then store the results in the destination buffer. */ *pDst++ = __SSAT(((q31_t) * pSrc++ << shiftBits), 16); /* Decrement the loop counter */ blkCnt--; } } else { /* Initialize blkCnt with number of samples */ blkCnt = blockSize; while (blkCnt > 0U) { /* C = A >> shiftBits */ /* Shift the inputs and then store the results in the destination buffer. */ *pDst++ = (*pSrc++ >> -shiftBits); /* Decrement the loop counter */ blkCnt--; } } #endif /* #if defined (ARM_MATH_DSP) */ } /** * @} end of shift group */