/* * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* ---------------------------------------------------------------------- * Project: CMSIS NN Library * Title: arm_convolve_1x1_HWC_q7_fast_nonsquare.c * Description: Fast Q7 version of 1x1 convolution (non-square shape) * * $Date: 17. January 2018 * $Revision: V.1.0.0 * * Target Processor: Cortex-M cores * * -------------------------------------------------------------------- */ #include "arm_math.h" #include "arm_nnfunctions.h" /** * @ingroup groupNN */ /** * @addtogroup NNConv * @{ */ /** * @brief Fast Q7 version of 1x1 convolution (non-sqaure shape) * @param[in] Im_in pointer to input tensor * @param[in] dim_im_in_x input tensor dimention x * @param[in] dim_im_in_y input tensor dimention y * @param[in] ch_im_in number of input tensor channels * @param[in] wt pointer to kernel weights * @param[in] ch_im_out number of filters, i.e., output tensor channels * @param[in] dim_kernel_x filter kernel size x * @param[in] dim_kernel_y filter kernel size y * @param[in] padding_x padding size x * @param[in] padding_y padding size y * @param[in] stride_x convolution stride x * @param[in] stride_y convolution stride y * @param[in] bias pointer to bias * @param[in] bias_shift amount of left-shift for bias * @param[in] out_shift amount of right-shift for output * @param[in,out] Im_out pointer to output tensor * @param[in] dim_im_out_x output tensor dimension x * @param[in] dim_im_out_y output tensor dimension y * @param[in,out] bufferA pointer to buffer space for input * @param[in,out] bufferB pointer to buffer space for output * @return The function returns either * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking. * * This function is optimized for convolution with 1x1 kernel size (i.e., dim_kernel_x=1 * and dim_kernel_y=1). It can be used for the second half of MobileNets [1] after depthwise * separable convolution. * * This function is the version with full list of optimization tricks, but with * some contraints: * ch_im_in is multiple of 4 * ch_im_out is multiple of 2 * * [1] MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications * https://arxiv.org/abs/1704.04861 */ arm_status arm_convolve_1x1_HWC_q7_fast_nonsquare(const q7_t * Im_in, const uint16_t dim_im_in_x, const uint16_t dim_im_in_y, const uint16_t ch_im_in, const q7_t * wt, const uint16_t ch_im_out, const uint16_t dim_kernel_x, const uint16_t dim_kernel_y, const uint16_t padding_x, const uint16_t padding_y, const uint16_t stride_x, const uint16_t stride_y, const q7_t * bias, const uint16_t bias_shift, const uint16_t out_shift, q7_t * Im_out, const uint16_t dim_im_out_x, const uint16_t dim_im_out_y, q15_t * bufferA, q7_t * bufferB) { #if defined (ARM_MATH_DSP) /* Run the following code for Cortex-M4 and Cortex-M7 */ int16_t i_out_y, i_out_x; int16_t i_ch_out; /* ----------------------- * Here we use bufferA as q15_t internally as computation are done with q15_t level * im2col are done to output in q15_t format from q7_t input */ q15_t *pBuffer = bufferA; q7_t *pOut = Im_out; if (ch_im_in % 4 != 0 || ch_im_out % 2 != 0 || dim_kernel_x != 1 || dim_kernel_y != 1 || padding_x != 0 || padding_y != 0 || stride_x != 1 || stride_y != 1) { /* check if the input dimension meets the constraints */ return ARM_MATH_SIZE_MISMATCH; } for (i_out_y = 0; i_out_y < dim_im_out_y; i_out_y++) { for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++) { /* This part implements the im2col function */ arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in + (i_out_y * dim_im_in_x + i_out_x) * ch_im_in, pBuffer, ch_im_in); pBuffer += ch_im_in; if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_x * dim_kernel_y) { pOut = arm_nn_mat_mult_kernel_q7_q15_reordered(wt, bufferA, ch_im_out, ch_im_in, bias_shift, out_shift, bias, pOut); /* counter reset */ pBuffer = bufferA; } } } /* check if there is left-over for compute */ if (pBuffer != bufferA) { const q7_t *pA = wt; for (i_ch_out = 0; i_ch_out < ch_im_out; i_ch_out++) { q31_t sum = ((q31_t)(bias[i_ch_out]) << bias_shift) + NN_ROUND(out_shift); q15_t *pB = bufferA; /* basically each time it process 4 entries */ uint16_t colCnt = ch_im_in * dim_kernel_x * dim_kernel_y >> 2; while (colCnt) { q31_t inA1, inA2; q31_t inB1, inB2; pA = (const q7_t *)read_and_pad_reordered((void *)pA, &inA1, &inA2); inB1 = *__SIMD32(pB)++; sum = __SMLAD(inA1, inB1, sum); inB2 = *__SIMD32(pB)++; sum = __SMLAD(inA2, inB2, sum); colCnt--; } colCnt = ch_im_in * dim_kernel_y * dim_kernel_x & 0x3; while (colCnt) { q7_t inA1 = *pA++; q15_t inB1 = *pB++; sum += inA1 * inB1; colCnt--; } *pOut = (q7_t) __SSAT((sum >> out_shift), 8); pOut++; } } #else /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ int i, j, k, l, m, n; int conv_out; int in_row, in_col; if (ch_im_in % 4 != 0 || ch_im_out % 2 != 0 || dim_kernel_x != 1 || dim_kernel_y != 1 || padding_x != 0 || padding_y != 0 || stride_x != 1 || stride_y != 1) { /* check if the input dimension meets the constraints */ return ARM_MATH_SIZE_MISMATCH; } for (i = 0; i < ch_im_out; i++) { for (j = 0; j < dim_im_out_y; j++) { for (k = 0; k < dim_im_out_x; k++) { conv_out = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift); for (m = 0; m < dim_kernel_y; m++) { for (n = 0; n < dim_kernel_x; n++) { // if-for implementation in_row = stride_y * j + m - padding_y; in_col = stride_x * k + n - padding_x; if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in_y && in_col < dim_im_in_x) { for (l = 0; l < ch_im_in; l++) { conv_out += Im_in[(in_row * dim_im_in_x + in_col) * ch_im_in + l] * wt[i * ch_im_in * dim_kernel_y * dim_kernel_x + (m * dim_kernel_y + n) * ch_im_in + l]; } } } } Im_out[i + (j * dim_im_out_x + k) * ch_im_out] = (q7_t) __SSAT((conv_out >> out_shift), 8); } } } #endif /* ARM_MATH_DSP */ /* Return to application */ return ARM_MATH_SUCCESS; } /** * @} end of NNConv group */