/* ---------------------------------------------------------------------- * Project: CMSIS DSP Library * Title: arm_fir_q15.c * Description: Q15 FIR filter processing function * * $Date: 27. January 2017 * $Revision: V.1.5.1 * * Target Processor: Cortex-M cores * -------------------------------------------------------------------- */ /* * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "arm_math.h" /** * @ingroup groupFilters */ /** * @addtogroup FIR * @{ */ /** * @brief Processing function for the Q15 FIR filter. * @param[in] *S points to an instance of the Q15 FIR structure. * @param[in] *pSrc points to the block of input data. * @param[out] *pDst points to the block of output data. * @param[in] blockSize number of samples to process per call. * @return none. * * * \par Restrictions * If the silicon does not support unaligned memory access enable the macro UNALIGNED_SUPPORT_DISABLE * In this case input, output, state buffers should be aligned by 32-bit * * Scaling and Overflow Behavior: * \par * The function is implemented using a 64-bit internal accumulator. * Both coefficients and state variables are represented in 1.15 format and multiplications yield a 2.30 result. * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format. * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved. * After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits. * Lastly, the accumulator is saturated to yield a result in 1.15 format. * * \par * Refer to the function arm_fir_fast_q15() for a faster but less precise implementation of this function. */ #if defined (ARM_MATH_DSP) /* Run the below code for Cortex-M4 and Cortex-M3 */ #ifndef UNALIGNED_SUPPORT_DISABLE void arm_fir_q15( const arm_fir_instance_q15 * S, q15_t * pSrc, q15_t * pDst, uint32_t blockSize) { q15_t *pState = S->pState; /* State pointer */ q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */ q15_t *pStateCurnt; /* Points to the current sample of the state */ q15_t *px1; /* Temporary q15 pointer for state buffer */ q15_t *pb; /* Temporary pointer for coefficient buffer */ q31_t x0, x1, x2, x3, c0; /* Temporary variables to hold SIMD state and coefficient values */ q63_t acc0, acc1, acc2, acc3; /* Accumulators */ uint32_t numTaps = S->numTaps; /* Number of taps in the filter */ uint32_t tapCnt, blkCnt; /* Loop counters */ /* S->pState points to state array which contains previous frame (numTaps - 1) samples */ /* pStateCurnt points to the location where the new input data should be written */ pStateCurnt = &(S->pState[(numTaps - 1U)]); /* Apply loop unrolling and compute 4 output values simultaneously. * The variables acc0 ... acc3 hold output values that are being computed: * * acc0 = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0] * acc1 = b[numTaps-1] * x[n-numTaps] + b[numTaps-2] * x[n-numTaps-1] + b[numTaps-3] * x[n-numTaps-2] +...+ b[0] * x[1] * acc2 = b[numTaps-1] * x[n-numTaps+1] + b[numTaps-2] * x[n-numTaps] + b[numTaps-3] * x[n-numTaps-1] +...+ b[0] * x[2] * acc3 = b[numTaps-1] * x[n-numTaps+2] + b[numTaps-2] * x[n-numTaps+1] + b[numTaps-3] * x[n-numTaps] +...+ b[0] * x[3] */ blkCnt = blockSize >> 2; /* First part of the processing with loop unrolling. Compute 4 outputs at a time. ** a second loop below computes the remaining 1 to 3 samples. */ while (blkCnt > 0U) { /* Copy four new input samples into the state buffer. ** Use 32-bit SIMD to move the 16-bit data. Only requires two copies. */ *__SIMD32(pStateCurnt)++ = *__SIMD32(pSrc)++; *__SIMD32(pStateCurnt)++ = *__SIMD32(pSrc)++; /* Set all accumulators to zero */ acc0 = 0; acc1 = 0; acc2 = 0; acc3 = 0; /* Initialize state pointer of type q15 */ px1 = pState; /* Initialize coeff pointer of type q31 */ pb = pCoeffs; /* Read the first two samples from the state buffer: x[n-N], x[n-N-1] */ x0 = _SIMD32_OFFSET(px1); /* Read the third and forth samples from the state buffer: x[n-N-1], x[n-N-2] */ x1 = _SIMD32_OFFSET(px1 + 1U); px1 += 2U; /* Loop over the number of taps. Unroll by a factor of 4. ** Repeat until we've computed numTaps-4 coefficients. */ tapCnt = numTaps >> 2; while (tapCnt > 0U) { /* Read the first two coefficients using SIMD: b[N] and b[N-1] coefficients */ c0 = *__SIMD32(pb)++; /* acc0 += b[N] * x[n-N] + b[N-1] * x[n-N-1] */ acc0 = __SMLALD(x0, c0, acc0); /* acc1 += b[N] * x[n-N-1] + b[N-1] * x[n-N-2] */ acc1 = __SMLALD(x1, c0, acc1); /* Read state x[n-N-2], x[n-N-3] */ x2 = _SIMD32_OFFSET(px1); /* Read state x[n-N-3], x[n-N-4] */ x3 = _SIMD32_OFFSET(px1 + 1U); /* acc2 += b[N] * x[n-N-2] + b[N-1] * x[n-N-3] */ acc2 = __SMLALD(x2, c0, acc2); /* acc3 += b[N] * x[n-N-3] + b[N-1] * x[n-N-4] */ acc3 = __SMLALD(x3, c0, acc3); /* Read coefficients b[N-2], b[N-3] */ c0 = *__SIMD32(pb)++; /* acc0 += b[N-2] * x[n-N-2] + b[N-3] * x[n-N-3] */ acc0 = __SMLALD(x2, c0, acc0); /* acc1 += b[N-2] * x[n-N-3] + b[N-3] * x[n-N-4] */ acc1 = __SMLALD(x3, c0, acc1); /* Read state x[n-N-4], x[n-N-5] */ x0 = _SIMD32_OFFSET(px1 + 2U); /* Read state x[n-N-5], x[n-N-6] */ x1 = _SIMD32_OFFSET(px1 + 3U); /* acc2 += b[N-2] * x[n-N-4] + b[N-3] * x[n-N-5] */ acc2 = __SMLALD(x0, c0, acc2); /* acc3 += b[N-2] * x[n-N-5] + b[N-3] * x[n-N-6] */ acc3 = __SMLALD(x1, c0, acc3); px1 += 4U; tapCnt--; } /* If the filter length is not a multiple of 4, compute the remaining filter taps. ** This is always be 2 taps since the filter length is even. */ if ((numTaps & 0x3U) != 0U) { /* Read 2 coefficients */ c0 = *__SIMD32(pb)++; /* Fetch 4 state variables */ x2 = _SIMD32_OFFSET(px1); x3 = _SIMD32_OFFSET(px1 + 1U); /* Perform the multiply-accumulates */ acc0 = __SMLALD(x0, c0, acc0); px1 += 2U; acc1 = __SMLALD(x1, c0, acc1); acc2 = __SMLALD(x2, c0, acc2); acc3 = __SMLALD(x3, c0, acc3); } /* The results in the 4 accumulators are in 2.30 format. Convert to 1.15 with saturation. ** Then store the 4 outputs in the destination buffer. */ #ifndef ARM_MATH_BIG_ENDIAN *__SIMD32(pDst)++ = __PKHBT(__SSAT((acc0 >> 15), 16), __SSAT((acc1 >> 15), 16), 16); *__SIMD32(pDst)++ = __PKHBT(__SSAT((acc2 >> 15), 16), __SSAT((acc3 >> 15), 16), 16); #else *__SIMD32(pDst)++ = __PKHBT(__SSAT((acc1 >> 15), 16), __SSAT((acc0 >> 15), 16), 16); *__SIMD32(pDst)++ = __PKHBT(__SSAT((acc3 >> 15), 16), __SSAT((acc2 >> 15), 16), 16); #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ /* Advance the state pointer by 4 to process the next group of 4 samples */ pState = pState + 4; /* Decrement the loop counter */ blkCnt--; } /* If the blockSize is not a multiple of 4, compute any remaining output samples here. ** No loop unrolling is used. */ blkCnt = blockSize % 0x4U; while (blkCnt > 0U) { /* Copy two samples into state buffer */ *pStateCurnt++ = *pSrc++; /* Set the accumulator to zero */ acc0 = 0; /* Initialize state pointer of type q15 */ px1 = pState; /* Initialize coeff pointer of type q31 */ pb = pCoeffs; tapCnt = numTaps >> 1; do { c0 = *__SIMD32(pb)++; x0 = *__SIMD32(px1)++; acc0 = __SMLALD(x0, c0, acc0); tapCnt--; } while (tapCnt > 0U); /* The result is in 2.30 format. Convert to 1.15 with saturation. ** Then store the output in the destination buffer. */ *pDst++ = (q15_t) (__SSAT((acc0 >> 15), 16)); /* Advance state pointer by 1 for the next sample */ pState = pState + 1; /* Decrement the loop counter */ blkCnt--; } /* Processing is complete. ** Now copy the last numTaps - 1 samples to the satrt of the state buffer. ** This prepares the state buffer for the next function call. */ /* Points to the start of the state buffer */ pStateCurnt = S->pState; /* Calculation of count for copying integer writes */ tapCnt = (numTaps - 1U) >> 2; while (tapCnt > 0U) { /* Copy state values to start of state buffer */ *__SIMD32(pStateCurnt)++ = *__SIMD32(pState)++; *__SIMD32(pStateCurnt)++ = *__SIMD32(pState)++; tapCnt--; } /* Calculation of count for remaining q15_t data */ tapCnt = (numTaps - 1U) % 0x4U; /* copy remaining data */ while (tapCnt > 0U) { *pStateCurnt++ = *pState++; /* Decrement the loop counter */ tapCnt--; } } #else /* UNALIGNED_SUPPORT_DISABLE */ void arm_fir_q15( const arm_fir_instance_q15 * S, q15_t * pSrc, q15_t * pDst, uint32_t blockSize) { q15_t *pState = S->pState; /* State pointer */ q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */ q15_t *pStateCurnt; /* Points to the current sample of the state */ q63_t acc0, acc1, acc2, acc3; /* Accumulators */ q15_t *pb; /* Temporary pointer for coefficient buffer */ q15_t *px; /* Temporary q31 pointer for SIMD state buffer accesses */ q31_t x0, x1, x2, c0; /* Temporary variables to hold SIMD state and coefficient values */ uint32_t numTaps = S->numTaps; /* Number of taps in the filter */ uint32_t tapCnt, blkCnt; /* Loop counters */ /* S->pState points to state array which contains previous frame (numTaps - 1) samples */ /* pStateCurnt points to the location where the new input data should be written */ pStateCurnt = &(S->pState[(numTaps - 1U)]); /* Apply loop unrolling and compute 4 output values simultaneously. * The variables acc0 ... acc3 hold output values that are being computed: * * acc0 = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0] * acc1 = b[numTaps-1] * x[n-numTaps] + b[numTaps-2] * x[n-numTaps-1] + b[numTaps-3] * x[n-numTaps-2] +...+ b[0] * x[1] * acc2 = b[numTaps-1] * x[n-numTaps+1] + b[numTaps-2] * x[n-numTaps] + b[numTaps-3] * x[n-numTaps-1] +...+ b[0] * x[2] * acc3 = b[numTaps-1] * x[n-numTaps+2] + b[numTaps-2] * x[n-numTaps+1] + b[numTaps-3] * x[n-numTaps] +...+ b[0] * x[3] */ blkCnt = blockSize >> 2; /* First part of the processing with loop unrolling. Compute 4 outputs at a time. ** a second loop below computes the remaining 1 to 3 samples. */ while (blkCnt > 0U) { /* Copy four new input samples into the state buffer. ** Use 32-bit SIMD to move the 16-bit data. Only requires two copies. */ *pStateCurnt++ = *pSrc++; *pStateCurnt++ = *pSrc++; *pStateCurnt++ = *pSrc++; *pStateCurnt++ = *pSrc++; /* Set all accumulators to zero */ acc0 = 0; acc1 = 0; acc2 = 0; acc3 = 0; /* Typecast q15_t pointer to q31_t pointer for state reading in q31_t */ px = pState; /* Typecast q15_t pointer to q31_t pointer for coefficient reading in q31_t */ pb = pCoeffs; /* Read the first two samples from the state buffer: x[n-N], x[n-N-1] */ x0 = *__SIMD32(px)++; /* Read the third and forth samples from the state buffer: x[n-N-2], x[n-N-3] */ x2 = *__SIMD32(px)++; /* Loop over the number of taps. Unroll by a factor of 4. ** Repeat until we've computed numTaps-(numTaps%4) coefficients. */ tapCnt = numTaps >> 2; while (tapCnt > 0) { /* Read the first two coefficients using SIMD: b[N] and b[N-1] coefficients */ c0 = *__SIMD32(pb)++; /* acc0 += b[N] * x[n-N] + b[N-1] * x[n-N-1] */ acc0 = __SMLALD(x0, c0, acc0); /* acc2 += b[N] * x[n-N-2] + b[N-1] * x[n-N-3] */ acc2 = __SMLALD(x2, c0, acc2); /* pack x[n-N-1] and x[n-N-2] */ #ifndef ARM_MATH_BIG_ENDIAN x1 = __PKHBT(x2, x0, 0); #else x1 = __PKHBT(x0, x2, 0); #endif /* Read state x[n-N-4], x[n-N-5] */ x0 = _SIMD32_OFFSET(px); /* acc1 += b[N] * x[n-N-1] + b[N-1] * x[n-N-2] */ acc1 = __SMLALDX(x1, c0, acc1); /* pack x[n-N-3] and x[n-N-4] */ #ifndef ARM_MATH_BIG_ENDIAN x1 = __PKHBT(x0, x2, 0); #else x1 = __PKHBT(x2, x0, 0); #endif /* acc3 += b[N] * x[n-N-3] + b[N-1] * x[n-N-4] */ acc3 = __SMLALDX(x1, c0, acc3); /* Read coefficients b[N-2], b[N-3] */ c0 = *__SIMD32(pb)++; /* acc0 += b[N-2] * x[n-N-2] + b[N-3] * x[n-N-3] */ acc0 = __SMLALD(x2, c0, acc0); /* Read state x[n-N-6], x[n-N-7] with offset */ x2 = _SIMD32_OFFSET(px + 2U); /* acc2 += b[N-2] * x[n-N-4] + b[N-3] * x[n-N-5] */ acc2 = __SMLALD(x0, c0, acc2); /* acc1 += b[N-2] * x[n-N-3] + b[N-3] * x[n-N-4] */ acc1 = __SMLALDX(x1, c0, acc1); /* pack x[n-N-5] and x[n-N-6] */ #ifndef ARM_MATH_BIG_ENDIAN x1 = __PKHBT(x2, x0, 0); #else x1 = __PKHBT(x0, x2, 0); #endif /* acc3 += b[N-2] * x[n-N-5] + b[N-3] * x[n-N-6] */ acc3 = __SMLALDX(x1, c0, acc3); /* Update state pointer for next state reading */ px += 4U; /* Decrement tap count */ tapCnt--; } /* If the filter length is not a multiple of 4, compute the remaining filter taps. ** This is always be 2 taps since the filter length is even. */ if ((numTaps & 0x3U) != 0U) { /* Read last two coefficients */ c0 = *__SIMD32(pb)++; /* Perform the multiply-accumulates */ acc0 = __SMLALD(x0, c0, acc0); acc2 = __SMLALD(x2, c0, acc2); /* pack state variables */ #ifndef ARM_MATH_BIG_ENDIAN x1 = __PKHBT(x2, x0, 0); #else x1 = __PKHBT(x0, x2, 0); #endif /* Read last state variables */ x0 = *__SIMD32(px); /* Perform the multiply-accumulates */ acc1 = __SMLALDX(x1, c0, acc1); /* pack state variables */ #ifndef ARM_MATH_BIG_ENDIAN x1 = __PKHBT(x0, x2, 0); #else x1 = __PKHBT(x2, x0, 0); #endif /* Perform the multiply-accumulates */ acc3 = __SMLALDX(x1, c0, acc3); } /* The results in the 4 accumulators are in 2.30 format. Convert to 1.15 with saturation. ** Then store the 4 outputs in the destination buffer. */ #ifndef ARM_MATH_BIG_ENDIAN *__SIMD32(pDst)++ = __PKHBT(__SSAT((acc0 >> 15), 16), __SSAT((acc1 >> 15), 16), 16); *__SIMD32(pDst)++ = __PKHBT(__SSAT((acc2 >> 15), 16), __SSAT((acc3 >> 15), 16), 16); #else *__SIMD32(pDst)++ = __PKHBT(__SSAT((acc1 >> 15), 16), __SSAT((acc0 >> 15), 16), 16); *__SIMD32(pDst)++ = __PKHBT(__SSAT((acc3 >> 15), 16), __SSAT((acc2 >> 15), 16), 16); #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ /* Advance the state pointer by 4 to process the next group of 4 samples */ pState = pState + 4; /* Decrement the loop counter */ blkCnt--; } /* If the blockSize is not a multiple of 4, compute any remaining output samples here. ** No loop unrolling is used. */ blkCnt = blockSize % 0x4U; while (blkCnt > 0U) { /* Copy two samples into state buffer */ *pStateCurnt++ = *pSrc++; /* Set the accumulator to zero */ acc0 = 0; /* Use SIMD to hold states and coefficients */ px = pState; pb = pCoeffs; tapCnt = numTaps >> 1U; do { acc0 += (q31_t) * px++ * *pb++; acc0 += (q31_t) * px++ * *pb++; tapCnt--; } while (tapCnt > 0U); /* The result is in 2.30 format. Convert to 1.15 with saturation. ** Then store the output in the destination buffer. */ *pDst++ = (q15_t) (__SSAT((acc0 >> 15), 16)); /* Advance state pointer by 1 for the next sample */ pState = pState + 1U; /* Decrement the loop counter */ blkCnt--; } /* Processing is complete. ** Now copy the last numTaps - 1 samples to the satrt of the state buffer. ** This prepares the state buffer for the next function call. */ /* Points to the start of the state buffer */ pStateCurnt = S->pState; /* Calculation of count for copying integer writes */ tapCnt = (numTaps - 1U) >> 2; while (tapCnt > 0U) { *pStateCurnt++ = *pState++; *pStateCurnt++ = *pState++; *pStateCurnt++ = *pState++; *pStateCurnt++ = *pState++; tapCnt--; } /* Calculation of count for remaining q15_t data */ tapCnt = (numTaps - 1U) % 0x4U; /* copy remaining data */ while (tapCnt > 0U) { *pStateCurnt++ = *pState++; /* Decrement the loop counter */ tapCnt--; } } #endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */ #else /* ARM_MATH_CM0_FAMILY */ /* Run the below code for Cortex-M0 */ void arm_fir_q15( const arm_fir_instance_q15 * S, q15_t * pSrc, q15_t * pDst, uint32_t blockSize) { q15_t *pState = S->pState; /* State pointer */ q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */ q15_t *pStateCurnt; /* Points to the current sample of the state */ q15_t *px; /* Temporary pointer for state buffer */ q15_t *pb; /* Temporary pointer for coefficient buffer */ q63_t acc; /* Accumulator */ uint32_t numTaps = S->numTaps; /* Number of nTaps in the filter */ uint32_t tapCnt, blkCnt; /* Loop counters */ /* S->pState buffer contains previous frame (numTaps - 1) samples */ /* pStateCurnt points to the location where the new input data should be written */ pStateCurnt = &(S->pState[(numTaps - 1U)]); /* Initialize blkCnt with blockSize */ blkCnt = blockSize; while (blkCnt > 0U) { /* Copy one sample at a time into state buffer */ *pStateCurnt++ = *pSrc++; /* Set the accumulator to zero */ acc = 0; /* Initialize state pointer */ px = pState; /* Initialize Coefficient pointer */ pb = pCoeffs; tapCnt = numTaps; /* Perform the multiply-accumulates */ do { /* acc = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0] */ acc += (q31_t) * px++ * *pb++; tapCnt--; } while (tapCnt > 0U); /* The result is in 2.30 format. Convert to 1.15 ** Then store the output in the destination buffer. */ *pDst++ = (q15_t) __SSAT((acc >> 15U), 16); /* Advance state pointer by 1 for the next sample */ pState = pState + 1; /* Decrement the samples loop counter */ blkCnt--; } /* Processing is complete. ** Now copy the last numTaps - 1 samples to the satrt of the state buffer. ** This prepares the state buffer for the next function call. */ /* Points to the start of the state buffer */ pStateCurnt = S->pState; /* Copy numTaps number of values */ tapCnt = (numTaps - 1U); /* copy data */ while (tapCnt > 0U) { *pStateCurnt++ = *pState++; /* Decrement the loop counter */ tapCnt--; } } #endif /* #if defined (ARM_MATH_DSP) */ /** * @} end of FIR group */