from os import path import json import functools import numpy as np import numbers import math from scipy import signal as sig import scipy.fftpack sampling_rate = 10 # sp/s # From https://github.com/mubeta06/python/blob/master/signal_processing/sp/gold.py preferred_pairs = {5:[[2],[1,2,3]], 6:[[5],[1,4,5]], 7:[[4],[4,5,6]], 8:[[1,2,3,6,7],[1,2,7]], 9:[[5],[3,5,6]], 10:[[2,5,9],[3,4,6,8,9]], 11:[[9],[3,6,9]]} def gen_gold(seq1, seq2): gold = [seq1, seq2] for shift in range(len(seq1)): gold.append(seq1 ^ np.roll(seq2, -shift)) return gold def gold(n): n = int(n) if not n in preferred_pairs: raise KeyError('preferred pairs for %s bits unknown' % str(n)) t0, t1 = preferred_pairs[n] (seq0, _st0), (seq1, _st1) = sig.max_len_seq(n, taps=t0), sig.max_len_seq(n, taps=t1) return gen_gold(seq0, seq1) def modulate(data, nbits=5): # 0, 1 -> -1, 1 mask = np.array(gold(nbits))*2 - 1 sel = mask[data>>1] data_lsb_centered = ((data&1)*2 - 1) signal = (np.multiply(sel, np.tile(data_lsb_centered, (2**nbits-1, 1)).T).flatten() + 1) // 2 return np.hstack([ np.zeros(len(mask)), signal, np.zeros(len(mask)) ]) def load_noise_meas_params(capture_file): with open(capture_file, 'rb') as f: meas_data = np.copy(np.frombuffer(f.read(), dtype='float32')) meas_data -= np.mean(meas_data) return (meas_data,) def mains_noise_measured(seed, n, meas_data): last_valid = len(meas_data) - n st = np.random.RandomState(seed) start = st.randint(last_valid) return meas_data[start:start+n] + 50.00 def load_noise_synth_params(specfile): with open(specfile) as f: d = json.load(f) return {'spl_x': np.linspace(*d['x_spec']), 'spl_N': d['x_spec'][2], 'psd_spl': (d['t'], d['c'], d['k']) } def mains_noise_synthetic(seed, n, psd_spl, spl_N, spl_x): st = np.random.RandomState(seed) noise = st.normal(size=spl_N) * 2 spec = scipy.fftpack.fft(noise) **2 spec *= np.exp(scipy.interpolate.splev(spl_x, psd_spl)) spec **= 1/2 renoise = scipy.fftpack.ifft(spec) return renoise[10000:][:n] + 50.00 @functools.lru_cache() def load_noise_gen(url): schema, refpath = url.split('://') if not path.isabs(refpath): refpath = path.abspath(path.join(path.dirname(__file__), refpath)) if schema == 'meas': return mains_noise_measured, load_noise_meas_params(refpath) elif schema == 'synth': return mains_noise_synthetic, load_noise_synth_params(refpath) else: raise ValueError('Invalid schema', schema)