/** ****************************************************************************** * @file stm32f0xx_hal_adc.c * @author MCD Application Team * @brief This file provides firmware functions to manage the following * functionalities of the Analog to Digital Convertor (ADC) * peripheral: * + Initialization and de-initialization functions * ++ Initialization and Configuration of ADC * + Operation functions * ++ Start, stop, get result of conversions of regular * group, using 3 possible modes: polling, interruption or DMA. * + Control functions * ++ Channels configuration on regular group * ++ Analog Watchdog configuration * + State functions * ++ ADC state machine management * ++ Interrupts and flags management * Other functions (extended functions) are available in file * "stm32f0xx_hal_adc_ex.c". * @verbatim ============================================================================== ##### ADC peripheral features ##### ============================================================================== [..] (+) 12-bit, 10-bit, 8-bit or 6-bit configurable resolution (+) Interrupt generation at the end of regular conversion and in case of analog watchdog or overrun events. (+) Single and continuous conversion modes. (+) Scan mode for conversion of several channels sequentially. (+) Data alignment with in-built data coherency. (+) Programmable sampling time (common for all channels) (+) ADC conversion of regular group. (+) External trigger (timer or EXTI) with configurable polarity (+) DMA request generation for transfer of conversions data of regular group. (+) ADC calibration (+) ADC supply requirements: 2.4 V to 3.6 V at full speed and down to 1.8 V at slower speed. (+) ADC input range: from Vref- (connected to Vssa) to Vref+ (connected to Vdda or to an external voltage reference). ##### How to use this driver ##### ============================================================================== [..] *** Configuration of top level parameters related to ADC *** ============================================================ [..] (#) Enable the ADC interface (++) As prerequisite, ADC clock must be configured at RCC top level. Caution: On STM32F0, ADC clock frequency max is 14MHz (refer to device datasheet). Therefore, ADC clock prescaler must be configured in function of ADC clock source frequency to remain below this maximum frequency. (++) Two clock settings are mandatory: (+++) ADC clock (core clock, also possibly conversion clock). (+++) ADC clock (conversions clock). Two possible clock sources: synchronous clock derived from APB clock or asynchronous clock derived from ADC dedicated HSI RC oscillator 14MHz. If asynchronous clock is selected, parameter "HSI14State" must be set either: - to "...HSI14State = RCC_HSI14_ADC_CONTROL" to let the ADC control the HSI14 oscillator enable/disable (if not used to supply the main system clock): feature used if ADC mode LowPowerAutoPowerOff is enabled. - to "...HSI14State = RCC_HSI14_ON" to maintain the HSI14 oscillator always enabled: can be used to supply the main system clock. (+++) Example: Into HAL_ADC_MspInit() (recommended code location) or with other device clock parameters configuration: (+++) __HAL_RCC_ADC1_CLK_ENABLE(); (mandatory) HI14 enable or let under control of ADC: (optional: if asynchronous clock selected) (+++) RCC_OscInitTypeDef RCC_OscInitStructure; (+++) RCC_OscInitStructure.OscillatorType = RCC_OSCILLATORTYPE_HSI14; (+++) RCC_OscInitStructure.HSI14CalibrationValue = RCC_HSI14CALIBRATION_DEFAULT; (+++) RCC_OscInitStructure.HSI14State = RCC_HSI14_ADC_CONTROL; (+++) RCC_OscInitStructure.PLL... (optional if used for system clock) (+++) HAL_RCC_OscConfig(&RCC_OscInitStructure); (++) ADC clock source and clock prescaler are configured at ADC level with parameter "ClockPrescaler" using function HAL_ADC_Init(). (#) ADC pins configuration (++) Enable the clock for the ADC GPIOs using macro __HAL_RCC_GPIOx_CLK_ENABLE() (++) Configure these ADC pins in analog mode using function HAL_GPIO_Init() (#) Optionally, in case of usage of ADC with interruptions: (++) Configure the NVIC for ADC using function HAL_NVIC_EnableIRQ(ADCx_IRQn) (++) Insert the ADC interruption handler function HAL_ADC_IRQHandler() into the function of corresponding ADC interruption vector ADCx_IRQHandler(). (#) Optionally, in case of usage of DMA: (++) Configure the DMA (DMA channel, mode normal or circular, ...) using function HAL_DMA_Init(). (++) Configure the NVIC for DMA using function HAL_NVIC_EnableIRQ(DMAx_Channelx_IRQn) (++) Insert the ADC interruption handler function HAL_ADC_IRQHandler() into the function of corresponding DMA interruption vector DMAx_Channelx_IRQHandler(). *** Configuration of ADC, group regular, channels parameters *** ================================================================ [..] (#) Configure the ADC parameters (resolution, data alignment, ...) and regular group parameters (conversion trigger, sequencer, ...) using function HAL_ADC_Init(). (#) Configure the channels for regular group parameters (channel number, channel rank into sequencer, ..., into regular group) using function HAL_ADC_ConfigChannel(). (#) Optionally, configure the analog watchdog parameters (channels monitored, thresholds, ...) using function HAL_ADC_AnalogWDGConfig(). *** Execution of ADC conversions *** ==================================== [..] (#) Optionally, perform an automatic ADC calibration to improve the conversion accuracy using function HAL_ADCEx_Calibration_Start(). (#) ADC driver can be used among three modes: polling, interruption, transfer by DMA. (++) ADC conversion by polling: (+++) Activate the ADC peripheral and start conversions using function HAL_ADC_Start() (+++) Wait for ADC conversion completion using function HAL_ADC_PollForConversion() (+++) Retrieve conversion results using function HAL_ADC_GetValue() (+++) Stop conversion and disable the ADC peripheral using function HAL_ADC_Stop() (++) ADC conversion by interruption: (+++) Activate the ADC peripheral and start conversions using function HAL_ADC_Start_IT() (+++) Wait for ADC conversion completion by call of function HAL_ADC_ConvCpltCallback() (this function must be implemented in user program) (+++) Retrieve conversion results using function HAL_ADC_GetValue() (+++) Stop conversion and disable the ADC peripheral using function HAL_ADC_Stop_IT() (++) ADC conversion with transfer by DMA: (+++) Activate the ADC peripheral and start conversions using function HAL_ADC_Start_DMA() (+++) Wait for ADC conversion completion by call of function HAL_ADC_ConvCpltCallback() or HAL_ADC_ConvHalfCpltCallback() (these functions must be implemented in user program) (+++) Conversion results are automatically transferred by DMA into destination variable address. (+++) Stop conversion and disable the ADC peripheral using function HAL_ADC_Stop_DMA() [..] (@) Callback functions must be implemented in user program: (+@) HAL_ADC_ErrorCallback() (+@) HAL_ADC_LevelOutOfWindowCallback() (callback of analog watchdog) (+@) HAL_ADC_ConvCpltCallback() (+@) HAL_ADC_ConvHalfCpltCallback *** Deinitialization of ADC *** ============================================================ [..] (#) Disable the ADC interface (++) ADC clock can be hard reset and disabled at RCC top level. (++) Hard reset of ADC peripherals using macro __ADCx_FORCE_RESET(), __ADCx_RELEASE_RESET(). (++) ADC clock disable using the equivalent macro/functions as configuration step. (+++) Example: Into HAL_ADC_MspDeInit() (recommended code location) or with other device clock parameters configuration: (+++) RCC_OscInitStructure.OscillatorType = RCC_OSCILLATORTYPE_HSI14; (+++) RCC_OscInitStructure.HSI14State = RCC_HSI14_OFF; (if not used for system clock) (+++) HAL_RCC_OscConfig(&RCC_OscInitStructure); (#) ADC pins configuration (++) Disable the clock for the ADC GPIOs using macro __HAL_RCC_GPIOx_CLK_DISABLE() (#) Optionally, in case of usage of ADC with interruptions: (++) Disable the NVIC for ADC using function HAL_NVIC_DisableIRQ(ADCx_IRQn) (#) Optionally, in case of usage of DMA: (++) Deinitialize the DMA using function HAL_DMA_DeInit(). (++) Disable the NVIC for DMA using function HAL_NVIC_DisableIRQ(DMAx_Channelx_IRQn) [..] *** Callback registration *** ============================================= [..] The compilation flag USE_HAL_ADC_REGISTER_CALLBACKS, when set to 1, allows the user to configure dynamically the driver callbacks. Use Functions @ref HAL_ADC_RegisterCallback() to register an interrupt callback. [..] Function @ref HAL_ADC_RegisterCallback() allows to register following callbacks: (+) ConvCpltCallback : ADC conversion complete callback (+) ConvHalfCpltCallback : ADC conversion DMA half-transfer callback (+) LevelOutOfWindowCallback : ADC analog watchdog 1 callback (+) ErrorCallback : ADC error callback (+) MspInitCallback : ADC Msp Init callback (+) MspDeInitCallback : ADC Msp DeInit callback This function takes as parameters the HAL peripheral handle, the Callback ID and a pointer to the user callback function. [..] Use function @ref HAL_ADC_UnRegisterCallback to reset a callback to the default weak function. [..] @ref HAL_ADC_UnRegisterCallback takes as parameters the HAL peripheral handle, and the Callback ID. This function allows to reset following callbacks: (+) ConvCpltCallback : ADC conversion complete callback (+) ConvHalfCpltCallback : ADC conversion DMA half-transfer callback (+) LevelOutOfWindowCallback : ADC analog watchdog 1 callback (+) ErrorCallback : ADC error callback (+) MspInitCallback : ADC Msp Init callback (+) MspDeInitCallback : ADC Msp DeInit callback [..] By default, after the @ref HAL_ADC_Init() and when the state is @ref HAL_ADC_STATE_RESET all callbacks are set to the corresponding weak functions: examples @ref HAL_ADC_ConvCpltCallback(), @ref HAL_ADC_ErrorCallback(). Exception done for MspInit and MspDeInit functions that are reset to the legacy weak functions in the @ref HAL_ADC_Init()/ @ref HAL_ADC_DeInit() only when these callbacks are null (not registered beforehand). [..] If MspInit or MspDeInit are not null, the @ref HAL_ADC_Init()/ @ref HAL_ADC_DeInit() keep and use the user MspInit/MspDeInit callbacks (registered beforehand) whatever the state. [..] Callbacks can be registered/unregistered in @ref HAL_ADC_STATE_READY state only. Exception done MspInit/MspDeInit functions that can be registered/unregistered in @ref HAL_ADC_STATE_READY or @ref HAL_ADC_STATE_RESET state, thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit. [..] Then, the user first registers the MspInit/MspDeInit user callbacks using @ref HAL_ADC_RegisterCallback() before calling @ref HAL_ADC_DeInit() or @ref HAL_ADC_Init() function. [..] When the compilation flag USE_HAL_ADC_REGISTER_CALLBACKS is set to 0 or not defined, the callback registration feature is not available and all callbacks are set to the corresponding weak functions. @endverbatim ****************************************************************************** * @attention * *

© Copyright (c) 2016 STMicroelectronics. * All rights reserved.

* * This software component is licensed by ST under BSD 3-Clause license, * the "License"; You may not use this file except in compliance with the * License. You may obtain a copy of the License at: * opensource.org/licenses/BSD-3-Clause * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "stm32f0xx_hal.h" /** @addtogroup STM32F0xx_HAL_Driver * @{ */ /** @defgroup ADC ADC * @brief ADC HAL module driver * @{ */ #ifdef HAL_ADC_MODULE_ENABLED /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /** @defgroup ADC_Private_Constants ADC Private Constants * @{ */ /* Fixed timeout values for ADC calibration, enable settling time, disable */ /* settling time. */ /* Values defined to be higher than worst cases: low clock frequency, */ /* maximum prescaler. */ /* Ex of profile low frequency : Clock source at 0.1 MHz, ADC clock */ /* prescaler 4, sampling time 7.5 ADC clock cycles, resolution 12 bits. */ /* Unit: ms */ #define ADC_ENABLE_TIMEOUT ( 2U) #define ADC_DISABLE_TIMEOUT ( 2U) #define ADC_STOP_CONVERSION_TIMEOUT ( 2U) /* Delay for ADC stabilization time. */ /* Maximum delay is 1us (refer to device datasheet, parameter tSTAB). */ /* Unit: us */ #define ADC_STAB_DELAY_US ( 1U) /* Delay for temperature sensor stabilization time. */ /* Maximum delay is 10us (refer to device datasheet, parameter tSTART). */ /* Unit: us */ #define ADC_TEMPSENSOR_DELAY_US ( 10U) /** * @} */ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Private function prototypes -----------------------------------------------*/ /** @defgroup ADC_Private_Functions ADC Private Functions * @{ */ static HAL_StatusTypeDef ADC_Enable(ADC_HandleTypeDef* hadc); static HAL_StatusTypeDef ADC_Disable(ADC_HandleTypeDef* hadc); static HAL_StatusTypeDef ADC_ConversionStop(ADC_HandleTypeDef* hadc); static void ADC_DMAConvCplt(DMA_HandleTypeDef *hdma); static void ADC_DMAHalfConvCplt(DMA_HandleTypeDef *hdma); static void ADC_DMAError(DMA_HandleTypeDef *hdma); /** * @} */ /* Exported functions ---------------------------------------------------------*/ /** @defgroup ADC_Exported_Functions ADC Exported Functions * @{ */ /** @defgroup ADC_Exported_Functions_Group1 Initialization/de-initialization functions * @brief Initialization and Configuration functions * @verbatim =============================================================================== ##### Initialization and de-initialization functions ##### =============================================================================== [..] This section provides functions allowing to: (+) Initialize and configure the ADC. (+) De-initialize the ADC @endverbatim * @{ */ /** * @brief Initializes the ADC peripheral and regular group according to * parameters specified in structure "ADC_InitTypeDef". * @note As prerequisite, ADC clock must be configured at RCC top level * depending on both possible clock sources: APB clock of HSI clock. * See commented example code below that can be copied and uncommented * into HAL_ADC_MspInit(). * @note Possibility to update parameters on the fly: * This function initializes the ADC MSP (HAL_ADC_MspInit()) only when * coming from ADC state reset. Following calls to this function can * be used to reconfigure some parameters of ADC_InitTypeDef * structure on the fly, without modifying MSP configuration. If ADC * MSP has to be modified again, HAL_ADC_DeInit() must be called * before HAL_ADC_Init(). * The setting of these parameters is conditioned to ADC state. * For parameters constraints, see comments of structure * "ADC_InitTypeDef". * @note This function configures the ADC within 2 scopes: scope of entire * ADC and scope of regular group. For parameters details, see comments * of structure "ADC_InitTypeDef". * @param hadc ADC handle * @retval HAL status */ HAL_StatusTypeDef HAL_ADC_Init(ADC_HandleTypeDef* hadc) { HAL_StatusTypeDef tmp_hal_status = HAL_OK; uint32_t tmpCFGR1 = 0U; /* Check ADC handle */ if(hadc == NULL) { return HAL_ERROR; } /* Check the parameters */ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); assert_param(IS_ADC_CLOCKPRESCALER(hadc->Init.ClockPrescaler)); assert_param(IS_ADC_RESOLUTION(hadc->Init.Resolution)); assert_param(IS_ADC_DATA_ALIGN(hadc->Init.DataAlign)); assert_param(IS_ADC_SCAN_MODE(hadc->Init.ScanConvMode)); assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode)); assert_param(IS_FUNCTIONAL_STATE(hadc->Init.DiscontinuousConvMode)); assert_param(IS_ADC_EXTTRIG_EDGE(hadc->Init.ExternalTrigConvEdge)); assert_param(IS_ADC_EXTTRIG(hadc->Init.ExternalTrigConv)); assert_param(IS_FUNCTIONAL_STATE(hadc->Init.DMAContinuousRequests)); assert_param(IS_ADC_EOC_SELECTION(hadc->Init.EOCSelection)); assert_param(IS_ADC_OVERRUN(hadc->Init.Overrun)); assert_param(IS_FUNCTIONAL_STATE(hadc->Init.LowPowerAutoWait)); assert_param(IS_FUNCTIONAL_STATE(hadc->Init.LowPowerAutoPowerOff)); /* As prerequisite, into HAL_ADC_MspInit(), ADC clock must be configured */ /* at RCC top level depending on both possible clock sources: */ /* APB clock or HSI clock. */ /* Refer to header of this file for more details on clock enabling procedure*/ /* Actions performed only if ADC is coming from state reset: */ /* - Initialization of ADC MSP */ /* - ADC voltage regulator enable */ if (hadc->State == HAL_ADC_STATE_RESET) { /* Initialize ADC error code */ ADC_CLEAR_ERRORCODE(hadc); /* Allocate lock resource and initialize it */ hadc->Lock = HAL_UNLOCKED; #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) /* Init the ADC Callback settings */ hadc->ConvCpltCallback = HAL_ADC_ConvCpltCallback; /* Legacy weak callback */ hadc->ConvHalfCpltCallback = HAL_ADC_ConvHalfCpltCallback; /* Legacy weak callback */ hadc->LevelOutOfWindowCallback = HAL_ADC_LevelOutOfWindowCallback; /* Legacy weak callback */ hadc->ErrorCallback = HAL_ADC_ErrorCallback; /* Legacy weak callback */ if (hadc->MspInitCallback == NULL) { hadc->MspInitCallback = HAL_ADC_MspInit; /* Legacy weak MspInit */ } /* Init the low level hardware */ hadc->MspInitCallback(hadc); #else /* Init the low level hardware */ HAL_ADC_MspInit(hadc); #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ } /* Configuration of ADC parameters if previous preliminary actions are */ /* correctly completed. */ /* and if there is no conversion on going on regular group (ADC can be */ /* enabled anyway, in case of call of this function to update a parameter */ /* on the fly). */ if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL) && (tmp_hal_status == HAL_OK) && (ADC_IS_CONVERSION_ONGOING_REGULAR(hadc) == RESET) ) { /* Set ADC state */ ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_REG_BUSY, HAL_ADC_STATE_BUSY_INTERNAL); /* Parameters update conditioned to ADC state: */ /* Parameters that can be updated only when ADC is disabled: */ /* - ADC clock mode */ /* - ADC clock prescaler */ /* - ADC resolution */ if (ADC_IS_ENABLE(hadc) == RESET) { /* Some parameters of this register are not reset, since they are set */ /* by other functions and must be kept in case of usage of this */ /* function on the fly (update of a parameter of ADC_InitTypeDef */ /* without needing to reconfigure all other ADC groups/channels */ /* parameters): */ /* - internal measurement paths: Vbat, temperature sensor, Vref */ /* (set into HAL_ADC_ConfigChannel() ) */ /* Configuration of ADC resolution */ MODIFY_REG(hadc->Instance->CFGR1, ADC_CFGR1_RES , hadc->Init.Resolution ); /* Configuration of ADC clock mode: clock source AHB or HSI with */ /* selectable prescaler */ MODIFY_REG(hadc->Instance->CFGR2 , ADC_CFGR2_CKMODE , hadc->Init.ClockPrescaler ); } /* Configuration of ADC: */ /* - discontinuous mode */ /* - LowPowerAutoWait mode */ /* - LowPowerAutoPowerOff mode */ /* - continuous conversion mode */ /* - overrun */ /* - external trigger to start conversion */ /* - external trigger polarity */ /* - data alignment */ /* - resolution */ /* - scan direction */ /* - DMA continuous request */ hadc->Instance->CFGR1 &= ~( ADC_CFGR1_DISCEN | ADC_CFGR1_AUTOFF | ADC_CFGR1_AUTDLY | ADC_CFGR1_CONT | ADC_CFGR1_OVRMOD | ADC_CFGR1_EXTSEL | ADC_CFGR1_EXTEN | ADC_CFGR1_ALIGN | ADC_CFGR1_SCANDIR | ADC_CFGR1_DMACFG ); tmpCFGR1 |= (ADC_CFGR1_AUTOWAIT((uint32_t)hadc->Init.LowPowerAutoWait) | ADC_CFGR1_AUTOOFF((uint32_t)hadc->Init.LowPowerAutoPowerOff) | ADC_CFGR1_CONTINUOUS((uint32_t)hadc->Init.ContinuousConvMode) | ADC_CFGR1_OVERRUN(hadc->Init.Overrun) | hadc->Init.DataAlign | ADC_SCANDIR(hadc->Init.ScanConvMode) | ADC_CFGR1_DMACONTREQ((uint32_t)hadc->Init.DMAContinuousRequests) ); /* Enable discontinuous mode only if continuous mode is disabled */ if (hadc->Init.DiscontinuousConvMode == ENABLE) { if (hadc->Init.ContinuousConvMode == DISABLE) { /* Enable the selected ADC group regular discontinuous mode */ tmpCFGR1 |= ADC_CFGR1_DISCEN; } else { /* ADC regular group discontinuous was intended to be enabled, */ /* but ADC regular group modes continuous and sequencer discontinuous */ /* cannot be enabled simultaneously. */ /* Update ADC state machine to error */ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG); /* Set ADC error code to ADC IP internal error */ SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); } } /* Enable external trigger if trigger selection is different of software */ /* start. */ /* Note: This configuration keeps the hardware feature of parameter */ /* ExternalTrigConvEdge "trigger edge none" equivalent to */ /* software start. */ if (hadc->Init.ExternalTrigConv != ADC_SOFTWARE_START) { tmpCFGR1 |= ( hadc->Init.ExternalTrigConv | hadc->Init.ExternalTrigConvEdge ); } /* Update ADC configuration register with previous settings */ hadc->Instance->CFGR1 |= tmpCFGR1; /* Channel sampling time configuration */ /* Management of parameters "SamplingTimeCommon" and "SamplingTime" */ /* (obsolete): sampling time set in this function if parameter */ /* "SamplingTimeCommon" has been set to a valid sampling time. */ /* Otherwise, sampling time is set into ADC channel initialization */ /* structure with parameter "SamplingTime" (obsolete). */ if (IS_ADC_SAMPLE_TIME(hadc->Init.SamplingTimeCommon)) { /* Channel sampling time configuration */ /* Clear the old sample time */ hadc->Instance->SMPR &= ~(ADC_SMPR_SMP); /* Set the new sample time */ hadc->Instance->SMPR |= ADC_SMPR_SET(hadc->Init.SamplingTimeCommon); } /* Check back that ADC registers have effectively been configured to */ /* ensure of no potential problem of ADC core IP clocking. */ /* Check through register CFGR1 (excluding analog watchdog configuration: */ /* set into separate dedicated function, and bits of ADC resolution set */ /* out of temporary variable 'tmpCFGR1'). */ if ((hadc->Instance->CFGR1 & ~(ADC_CFGR1_AWDCH | ADC_CFGR1_AWDEN | ADC_CFGR1_AWDSGL | ADC_CFGR1_RES)) == tmpCFGR1) { /* Set ADC error code to none */ ADC_CLEAR_ERRORCODE(hadc); /* Set the ADC state */ ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_BUSY_INTERNAL, HAL_ADC_STATE_READY); } else { /* Update ADC state machine to error */ ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_BUSY_INTERNAL, HAL_ADC_STATE_ERROR_INTERNAL); /* Set ADC error code to ADC IP internal error */ SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); tmp_hal_status = HAL_ERROR; } } else { /* Update ADC state machine to error */ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL); tmp_hal_status = HAL_ERROR; } /* Return function status */ return tmp_hal_status; } /** * @brief Deinitialize the ADC peripheral registers to their default reset * values, with deinitialization of the ADC MSP. * @note For devices with several ADCs: reset of ADC common registers is done * only if all ADCs sharing the same common group are disabled. * If this is not the case, reset of these common parameters reset is * bypassed without error reporting: it can be the intended behaviour in * case of reset of a single ADC while the other ADCs sharing the same * common group is still running. * @param hadc ADC handle * @retval HAL status */ HAL_StatusTypeDef HAL_ADC_DeInit(ADC_HandleTypeDef* hadc) { HAL_StatusTypeDef tmp_hal_status = HAL_OK; /* Check ADC handle */ if(hadc == NULL) { return HAL_ERROR; } /* Check the parameters */ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); /* Set ADC state */ SET_BIT(hadc->State, HAL_ADC_STATE_BUSY_INTERNAL); /* Stop potential conversion on going, on regular group */ tmp_hal_status = ADC_ConversionStop(hadc); /* Disable ADC peripheral if conversions are effectively stopped */ if (tmp_hal_status == HAL_OK) { /* Disable the ADC peripheral */ tmp_hal_status = ADC_Disable(hadc); /* Check if ADC is effectively disabled */ if (tmp_hal_status != HAL_ERROR) { /* Change ADC state */ hadc->State = HAL_ADC_STATE_READY; } } /* Configuration of ADC parameters if previous preliminary actions are */ /* correctly completed. */ if (tmp_hal_status != HAL_ERROR) { /* ========== Reset ADC registers ========== */ /* Reset register IER */ __HAL_ADC_DISABLE_IT(hadc, (ADC_IT_AWD | ADC_IT_OVR | ADC_IT_EOS | ADC_IT_EOC | ADC_IT_EOSMP | ADC_IT_RDY ) ); /* Reset register ISR */ __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_AWD | ADC_FLAG_OVR | ADC_FLAG_EOS | ADC_FLAG_EOC | ADC_FLAG_EOSMP | ADC_FLAG_RDY ) ); /* Reset register CR */ /* Bits ADC_CR_ADCAL, ADC_CR_ADSTP, ADC_CR_ADSTART are in access mode */ /* "read-set": no direct reset applicable. */ /* Reset register CFGR1 */ hadc->Instance->CFGR1 &= ~(ADC_CFGR1_AWDCH | ADC_CFGR1_AWDEN | ADC_CFGR1_AWDSGL | ADC_CFGR1_DISCEN | ADC_CFGR1_AUTOFF | ADC_CFGR1_WAIT | ADC_CFGR1_CONT | ADC_CFGR1_OVRMOD | ADC_CFGR1_EXTEN | ADC_CFGR1_EXTSEL | ADC_CFGR1_ALIGN | ADC_CFGR1_RES | ADC_CFGR1_SCANDIR | ADC_CFGR1_DMACFG | ADC_CFGR1_DMAEN ); /* Reset register CFGR2 */ /* Note: Update of ADC clock mode is conditioned to ADC state disabled: */ /* already done above. */ hadc->Instance->CFGR2 &= ~ADC_CFGR2_CKMODE; /* Reset register SMPR */ hadc->Instance->SMPR &= ~ADC_SMPR_SMP; /* Reset register TR1 */ hadc->Instance->TR &= ~(ADC_TR_HT | ADC_TR_LT); /* Reset register CHSELR */ hadc->Instance->CHSELR &= ~(ADC_CHSELR_CHSEL18 | ADC_CHSELR_CHSEL17 | ADC_CHSELR_CHSEL16 | ADC_CHSELR_CHSEL15 | ADC_CHSELR_CHSEL14 | ADC_CHSELR_CHSEL13 | ADC_CHSELR_CHSEL12 | ADC_CHSELR_CHSEL11 | ADC_CHSELR_CHSEL10 | ADC_CHSELR_CHSEL9 | ADC_CHSELR_CHSEL8 | ADC_CHSELR_CHSEL7 | ADC_CHSELR_CHSEL6 | ADC_CHSELR_CHSEL5 | ADC_CHSELR_CHSEL4 | ADC_CHSELR_CHSEL3 | ADC_CHSELR_CHSEL2 | ADC_CHSELR_CHSEL1 | ADC_CHSELR_CHSEL0 ); /* Reset register DR */ /* bits in access mode read only, no direct reset applicable*/ /* Reset register CCR */ ADC->CCR &= ~(ADC_CCR_ALL); /* ========== Hard reset ADC peripheral ========== */ /* Performs a global reset of the entire ADC peripheral: ADC state is */ /* forced to a similar state after device power-on. */ /* If needed, copy-paste and uncomment the following reset code into */ /* function "void HAL_ADC_MspInit(ADC_HandleTypeDef* hadc)": */ /* */ /* __HAL_RCC_ADC1_FORCE_RESET() */ /* __HAL_RCC_ADC1_RELEASE_RESET() */ #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) if (hadc->MspDeInitCallback == NULL) { hadc->MspDeInitCallback = HAL_ADC_MspDeInit; /* Legacy weak MspDeInit */ } /* DeInit the low level hardware */ hadc->MspDeInitCallback(hadc); #else /* DeInit the low level hardware */ HAL_ADC_MspDeInit(hadc); #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ /* Set ADC error code to none */ ADC_CLEAR_ERRORCODE(hadc); /* Set ADC state */ hadc->State = HAL_ADC_STATE_RESET; } /* Process unlocked */ __HAL_UNLOCK(hadc); /* Return function status */ return tmp_hal_status; } /** * @brief Initializes the ADC MSP. * @param hadc ADC handle * @retval None */ __weak void HAL_ADC_MspInit(ADC_HandleTypeDef* hadc) { /* Prevent unused argument(s) compilation warning */ UNUSED(hadc); /* NOTE : This function should not be modified. When the callback is needed, function HAL_ADC_MspInit must be implemented in the user file. */ } /** * @brief DeInitializes the ADC MSP. * @param hadc ADC handle * @retval None */ __weak void HAL_ADC_MspDeInit(ADC_HandleTypeDef* hadc) { /* Prevent unused argument(s) compilation warning */ UNUSED(hadc); /* NOTE : This function should not be modified. When the callback is needed, function HAL_ADC_MspDeInit must be implemented in the user file. */ } #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) /** * @brief Register a User ADC Callback * To be used instead of the weak predefined callback * @param hadc Pointer to a ADC_HandleTypeDef structure that contains * the configuration information for the specified ADC. * @param CallbackID ID of the callback to be registered * This parameter can be one of the following values: * @arg @ref HAL_ADC_CONVERSION_COMPLETE_CB_ID ADC conversion complete callback ID * @arg @ref HAL_ADC_CONVERSION_HALF_CB_ID ADC conversion complete callback ID * @arg @ref HAL_ADC_LEVEL_OUT_OF_WINDOW_1_CB_ID ADC analog watchdog 1 callback ID * @arg @ref HAL_ADC_ERROR_CB_ID ADC error callback ID * @arg @ref HAL_ADC_INJ_CONVERSION_COMPLETE_CB_ID ADC group injected conversion complete callback ID * @arg @ref HAL_ADC_MSPINIT_CB_ID ADC Msp Init callback ID * @arg @ref HAL_ADC_MSPDEINIT_CB_ID ADC Msp DeInit callback ID * @arg @ref HAL_ADC_MSPINIT_CB_ID MspInit callback ID * @arg @ref HAL_ADC_MSPDEINIT_CB_ID MspDeInit callback ID * @param pCallback pointer to the Callback function * @retval HAL status */ HAL_StatusTypeDef HAL_ADC_RegisterCallback(ADC_HandleTypeDef *hadc, HAL_ADC_CallbackIDTypeDef CallbackID, pADC_CallbackTypeDef pCallback) { HAL_StatusTypeDef status = HAL_OK; if (pCallback == NULL) { /* Update the error code */ hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK; return HAL_ERROR; } if ((hadc->State & HAL_ADC_STATE_READY) != 0) { switch (CallbackID) { case HAL_ADC_CONVERSION_COMPLETE_CB_ID : hadc->ConvCpltCallback = pCallback; break; case HAL_ADC_CONVERSION_HALF_CB_ID : hadc->ConvHalfCpltCallback = pCallback; break; case HAL_ADC_LEVEL_OUT_OF_WINDOW_1_CB_ID : hadc->LevelOutOfWindowCallback = pCallback; break; case HAL_ADC_ERROR_CB_ID : hadc->ErrorCallback = pCallback; break; case HAL_ADC_MSPINIT_CB_ID : hadc->MspInitCallback = pCallback; break; case HAL_ADC_MSPDEINIT_CB_ID : hadc->MspDeInitCallback = pCallback; break; default : /* Update the error code */ hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK; /* Return error status */ status = HAL_ERROR; break; } } else if (HAL_ADC_STATE_RESET == hadc->State) { switch (CallbackID) { case HAL_ADC_MSPINIT_CB_ID : hadc->MspInitCallback = pCallback; break; case HAL_ADC_MSPDEINIT_CB_ID : hadc->MspDeInitCallback = pCallback; break; default : /* Update the error code */ hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK; /* Return error status */ status = HAL_ERROR; break; } } else { /* Update the error code */ hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK; /* Return error status */ status = HAL_ERROR; } return status; } /** * @brief Unregister a ADC Callback * ADC callback is redirected to the weak predefined callback * @param hadc Pointer to a ADC_HandleTypeDef structure that contains * the configuration information for the specified ADC. * @param CallbackID ID of the callback to be unregistered * This parameter can be one of the following values: * @arg @ref HAL_ADC_CONVERSION_COMPLETE_CB_ID ADC conversion complete callback ID * @arg @ref HAL_ADC_CONVERSION_HALF_CB_ID ADC conversion complete callback ID * @arg @ref HAL_ADC_LEVEL_OUT_OF_WINDOW_1_CB_ID ADC analog watchdog 1 callback ID * @arg @ref HAL_ADC_ERROR_CB_ID ADC error callback ID * @arg @ref HAL_ADC_INJ_CONVERSION_COMPLETE_CB_ID ADC group injected conversion complete callback ID * @arg @ref HAL_ADC_MSPINIT_CB_ID ADC Msp Init callback ID * @arg @ref HAL_ADC_MSPDEINIT_CB_ID ADC Msp DeInit callback ID * @arg @ref HAL_ADC_MSPINIT_CB_ID MspInit callback ID * @arg @ref HAL_ADC_MSPDEINIT_CB_ID MspDeInit callback ID * @retval HAL status */ HAL_StatusTypeDef HAL_ADC_UnRegisterCallback(ADC_HandleTypeDef *hadc, HAL_ADC_CallbackIDTypeDef CallbackID) { HAL_StatusTypeDef status = HAL_OK; if ((hadc->State & HAL_ADC_STATE_READY) != 0) { switch (CallbackID) { case HAL_ADC_CONVERSION_COMPLETE_CB_ID : hadc->ConvCpltCallback = HAL_ADC_ConvCpltCallback; break; case HAL_ADC_CONVERSION_HALF_CB_ID : hadc->ConvHalfCpltCallback = HAL_ADC_ConvHalfCpltCallback; break; case HAL_ADC_LEVEL_OUT_OF_WINDOW_1_CB_ID : hadc->LevelOutOfWindowCallback = HAL_ADC_LevelOutOfWindowCallback; break; case HAL_ADC_ERROR_CB_ID : hadc->ErrorCallback = HAL_ADC_ErrorCallback; break; case HAL_ADC_MSPINIT_CB_ID : hadc->MspInitCallback = HAL_ADC_MspInit; /* Legacy weak MspInit */ break; case HAL_ADC_MSPDEINIT_CB_ID : hadc->MspDeInitCallback = HAL_ADC_MspDeInit; /* Legacy weak MspDeInit */ break; default : /* Update the error code */ hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK; /* Return error status */ status = HAL_ERROR; break; } } else if (HAL_ADC_STATE_RESET == hadc->State) { switch (CallbackID) { case HAL_ADC_MSPINIT_CB_ID : hadc->MspInitCallback = HAL_ADC_MspInit; /* Legacy weak MspInit */ break; case HAL_ADC_MSPDEINIT_CB_ID : hadc->MspDeInitCallback = HAL_ADC_MspDeInit; /* Legacy weak MspDeInit */ break; default : /* Update the error code */ hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK; /* Return error status */ status = HAL_ERROR; break; } } else { /* Update the error code */ hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK; /* Return error status */ status = HAL_ERROR; } return status; } #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ /** * @} */ /** @defgroup ADC_Exported_Functions_Group2 IO operation functions * @brief IO operation functions * @verbatim =============================================================================== ##### IO operation functions ##### =============================================================================== [..] This section provides functions allowing to: (+) Start conversion of regular group. (+) Stop conversion of regular group. (+) Poll for conversion complete on regular group. (+) Poll for conversion event. (+) Get result of regular channel conversion. (+) Start conversion of regular group and enable interruptions. (+) Stop conversion of regular group and disable interruptions. (+) Handle ADC interrupt request (+) Start conversion of regular group and enable DMA transfer. (+) Stop conversion of regular group and disable ADC DMA transfer. @endverbatim * @{ */ /** * @brief Enables ADC, starts conversion of regular group. * Interruptions enabled in this function: None. * @param hadc ADC handle * @retval HAL status */ HAL_StatusTypeDef HAL_ADC_Start(ADC_HandleTypeDef* hadc) { HAL_StatusTypeDef tmp_hal_status = HAL_OK; /* Check the parameters */ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); /* Perform ADC enable and conversion start if no conversion is on going */ if (ADC_IS_CONVERSION_ONGOING_REGULAR(hadc) == RESET) { /* Process locked */ __HAL_LOCK(hadc); /* Enable the ADC peripheral */ /* If low power mode AutoPowerOff is enabled, power-on/off phases are */ /* performed automatically by hardware. */ if (hadc->Init.LowPowerAutoPowerOff != ENABLE) { tmp_hal_status = ADC_Enable(hadc); } /* Start conversion if ADC is effectively enabled */ if (tmp_hal_status == HAL_OK) { /* Set ADC state */ /* - Clear state bitfield related to regular group conversion results */ /* - Set state bitfield related to regular operation */ ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC | HAL_ADC_STATE_REG_OVR | HAL_ADC_STATE_REG_EOSMP, HAL_ADC_STATE_REG_BUSY); /* Reset ADC all error code fields */ ADC_CLEAR_ERRORCODE(hadc); /* Process unlocked */ /* Unlock before starting ADC conversions: in case of potential */ /* interruption, to let the process to ADC IRQ Handler. */ __HAL_UNLOCK(hadc); /* Clear regular group conversion flag and overrun flag */ /* (To ensure of no unknown state from potential previous ADC */ /* operations) */ __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS | ADC_FLAG_OVR)); /* Enable conversion of regular group. */ /* If software start has been selected, conversion starts immediately. */ /* If external trigger has been selected, conversion will start at next */ /* trigger event. */ hadc->Instance->CR |= ADC_CR_ADSTART; } } else { tmp_hal_status = HAL_BUSY; } /* Return function status */ return tmp_hal_status; } /** * @brief Stop ADC conversion of regular group, disable ADC peripheral. * @param hadc ADC handle * @retval HAL status. */ HAL_StatusTypeDef HAL_ADC_Stop(ADC_HandleTypeDef* hadc) { HAL_StatusTypeDef tmp_hal_status = HAL_OK; /* Check the parameters */ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); /* Process locked */ __HAL_LOCK(hadc); /* 1. Stop potential conversion on going, on regular group */ tmp_hal_status = ADC_ConversionStop(hadc); /* Disable ADC peripheral if conversions are effectively stopped */ if (tmp_hal_status == HAL_OK) { /* 2. Disable the ADC peripheral */ tmp_hal_status = ADC_Disable(hadc); /* Check if ADC is effectively disabled */ if (tmp_hal_status == HAL_OK) { /* Set ADC state */ ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_REG_BUSY, HAL_ADC_STATE_READY); } } /* Process unlocked */ __HAL_UNLOCK(hadc); /* Return function status */ return tmp_hal_status; } /** * @brief Wait for regular group conversion to be completed. * @note ADC conversion flags EOS (end of sequence) and EOC (end of * conversion) are cleared by this function, with an exception: * if low power feature "LowPowerAutoWait" is enabled, flags are * not cleared to not interfere with this feature until data register * is read using function HAL_ADC_GetValue(). * @note This function cannot be used in a particular setup: ADC configured * in DMA mode and polling for end of each conversion (ADC init * parameter "EOCSelection" set to ADC_EOC_SINGLE_CONV). * In this case, DMA resets the flag EOC and polling cannot be * performed on each conversion. Nevertheless, polling can still * be performed on the complete sequence (ADC init * parameter "EOCSelection" set to ADC_EOC_SEQ_CONV). * @param hadc ADC handle * @param Timeout Timeout value in millisecond. * @retval HAL status */ HAL_StatusTypeDef HAL_ADC_PollForConversion(ADC_HandleTypeDef* hadc, uint32_t Timeout) { uint32_t tickstart; uint32_t tmp_Flag_EOC; /* Check the parameters */ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); /* If end of conversion selected to end of sequence */ if (hadc->Init.EOCSelection == ADC_EOC_SEQ_CONV) { tmp_Flag_EOC = ADC_FLAG_EOS; } /* If end of conversion selected to end of each conversion */ else /* ADC_EOC_SINGLE_CONV */ { /* Verification that ADC configuration is compliant with polling for */ /* each conversion: */ /* Particular case is ADC configured in DMA mode and ADC sequencer with */ /* several ranks and polling for end of each conversion. */ /* For code simplicity sake, this particular case is generalized to */ /* ADC configured in DMA mode and and polling for end of each conversion. */ if (HAL_IS_BIT_SET(hadc->Instance->CFGR1, ADC_CFGR1_DMAEN)) { /* Update ADC state machine to error */ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG); /* Process unlocked */ __HAL_UNLOCK(hadc); return HAL_ERROR; } else { tmp_Flag_EOC = (ADC_FLAG_EOC | ADC_FLAG_EOS); } } /* Get tick count */ tickstart = HAL_GetTick(); /* Wait until End of Conversion flag is raised */ while(HAL_IS_BIT_CLR(hadc->Instance->ISR, tmp_Flag_EOC)) { /* Check if timeout is disabled (set to infinite wait) */ if(Timeout != HAL_MAX_DELAY) { if((Timeout == 0) || ((HAL_GetTick()-tickstart) > Timeout)) { /* Update ADC state machine to timeout */ SET_BIT(hadc->State, HAL_ADC_STATE_TIMEOUT); /* Process unlocked */ __HAL_UNLOCK(hadc); return HAL_TIMEOUT; } } } /* Update ADC state machine */ SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC); /* Determine whether any further conversion upcoming on group regular */ /* by external trigger, continuous mode or scan sequence on going. */ if(ADC_IS_SOFTWARE_START_REGULAR(hadc) && (hadc->Init.ContinuousConvMode == DISABLE) ) { /* If End of Sequence is reached, disable interrupts */ if( __HAL_ADC_GET_FLAG(hadc, ADC_FLAG_EOS) ) { /* Allowed to modify bits ADC_IT_EOC/ADC_IT_EOS only if bit */ /* ADSTART==0 (no conversion on going) */ if (ADC_IS_CONVERSION_ONGOING_REGULAR(hadc) == RESET) { /* Disable ADC end of single conversion interrupt on group regular */ /* Note: Overrun interrupt was enabled with EOC interrupt in */ /* HAL_Start_IT(), but is not disabled here because can be used */ /* by overrun IRQ process below. */ __HAL_ADC_DISABLE_IT(hadc, ADC_IT_EOC | ADC_IT_EOS); /* Set ADC state */ ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_REG_BUSY, HAL_ADC_STATE_READY); } else { /* Change ADC state to error state */ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG); /* Set ADC error code to ADC IP internal error */ SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); } } } /* Clear end of conversion flag of regular group if low power feature */ /* "LowPowerAutoWait " is disabled, to not interfere with this feature */ /* until data register is read using function HAL_ADC_GetValue(). */ if (hadc->Init.LowPowerAutoWait == DISABLE) { /* Clear regular group conversion flag */ __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS)); } /* Return ADC state */ return HAL_OK; } /** * @brief Poll for conversion event. * @param hadc ADC handle * @param EventType the ADC event type. * This parameter can be one of the following values: * @arg ADC_AWD_EVENT: ADC Analog watchdog event * @arg ADC_OVR_EVENT: ADC Overrun event * @param Timeout Timeout value in millisecond. * @retval HAL status */ HAL_StatusTypeDef HAL_ADC_PollForEvent(ADC_HandleTypeDef* hadc, uint32_t EventType, uint32_t Timeout) { uint32_t tickstart=0; /* Check the parameters */ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); assert_param(IS_ADC_EVENT_TYPE(EventType)); /* Get tick count */ tickstart = HAL_GetTick(); /* Check selected event flag */ while(__HAL_ADC_GET_FLAG(hadc, EventType) == RESET) { /* Check if timeout is disabled (set to infinite wait) */ if(Timeout != HAL_MAX_DELAY) { if((Timeout == 0U) || ((HAL_GetTick()-tickstart) > Timeout)) { /* Update ADC state machine to timeout */ SET_BIT(hadc->State, HAL_ADC_STATE_TIMEOUT); /* Process unlocked */ __HAL_UNLOCK(hadc); return HAL_TIMEOUT; } } } switch(EventType) { /* Analog watchdog (level out of window) event */ case ADC_AWD_EVENT: /* Set ADC state */ SET_BIT(hadc->State, HAL_ADC_STATE_AWD1); /* Clear ADC analog watchdog flag */ __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD); break; /* Overrun event */ default: /* Case ADC_OVR_EVENT */ /* If overrun is set to overwrite previous data, overrun event is not */ /* considered as an error. */ /* (cf ref manual "Managing conversions without using the DMA and without */ /* overrun ") */ if (hadc->Init.Overrun == ADC_OVR_DATA_PRESERVED) { /* Set ADC state */ SET_BIT(hadc->State, HAL_ADC_STATE_REG_OVR); /* Set ADC error code to overrun */ SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_OVR); } /* Clear ADC Overrun flag */ __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_OVR); break; } /* Return ADC state */ return HAL_OK; } /** * @brief Enables ADC, starts conversion of regular group with interruption. * Interruptions enabled in this function: * - EOC (end of conversion of regular group) or EOS (end of * sequence of regular group) depending on ADC initialization * parameter "EOCSelection" * - overrun (if available) * Each of these interruptions has its dedicated callback function. * @param hadc ADC handle * @retval HAL status */ HAL_StatusTypeDef HAL_ADC_Start_IT(ADC_HandleTypeDef* hadc) { HAL_StatusTypeDef tmp_hal_status = HAL_OK; /* Check the parameters */ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); /* Perform ADC enable and conversion start if no conversion is on going */ if (ADC_IS_CONVERSION_ONGOING_REGULAR(hadc) == RESET) { /* Process locked */ __HAL_LOCK(hadc); /* Enable the ADC peripheral */ /* If low power mode AutoPowerOff is enabled, power-on/off phases are */ /* performed automatically by hardware. */ if (hadc->Init.LowPowerAutoPowerOff != ENABLE) { tmp_hal_status = ADC_Enable(hadc); } /* Start conversion if ADC is effectively enabled */ if (tmp_hal_status == HAL_OK) { /* Set ADC state */ /* - Clear state bitfield related to regular group conversion results */ /* - Set state bitfield related to regular operation */ ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC | HAL_ADC_STATE_REG_OVR | HAL_ADC_STATE_REG_EOSMP, HAL_ADC_STATE_REG_BUSY); /* Reset ADC all error code fields */ ADC_CLEAR_ERRORCODE(hadc); /* Process unlocked */ /* Unlock before starting ADC conversions: in case of potential */ /* interruption, to let the process to ADC IRQ Handler. */ __HAL_UNLOCK(hadc); /* Clear regular group conversion flag and overrun flag */ /* (To ensure of no unknown state from potential previous ADC */ /* operations) */ __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS | ADC_FLAG_OVR)); /* Enable ADC end of conversion interrupt */ /* Enable ADC overrun interrupt */ switch(hadc->Init.EOCSelection) { case ADC_EOC_SEQ_CONV: __HAL_ADC_DISABLE_IT(hadc, ADC_IT_EOC); __HAL_ADC_ENABLE_IT(hadc, (ADC_IT_EOS | ADC_IT_OVR)); break; /* case ADC_EOC_SINGLE_CONV */ default: __HAL_ADC_ENABLE_IT(hadc, (ADC_IT_EOC | ADC_IT_EOS | ADC_IT_OVR)); break; } /* Enable conversion of regular group. */ /* If software start has been selected, conversion starts immediately. */ /* If external trigger has been selected, conversion will start at next */ /* trigger event. */ hadc->Instance->CR |= ADC_CR_ADSTART; } } else { tmp_hal_status = HAL_BUSY; } /* Return function status */ return tmp_hal_status; } /** * @brief Stop ADC conversion of regular group, disable interruption of * end-of-conversion, disable ADC peripheral. * @param hadc ADC handle * @retval HAL status. */ HAL_StatusTypeDef HAL_ADC_Stop_IT(ADC_HandleTypeDef* hadc) { HAL_StatusTypeDef tmp_hal_status = HAL_OK; /* Check the parameters */ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); /* Process locked */ __HAL_LOCK(hadc); /* 1. Stop potential conversion on going, on regular group */ tmp_hal_status = ADC_ConversionStop(hadc); /* Disable ADC peripheral if conversions are effectively stopped */ if (tmp_hal_status == HAL_OK) { /* Disable ADC end of conversion interrupt for regular group */ /* Disable ADC overrun interrupt */ __HAL_ADC_DISABLE_IT(hadc, (ADC_IT_EOC | ADC_IT_EOS | ADC_IT_OVR)); /* 2. Disable the ADC peripheral */ tmp_hal_status = ADC_Disable(hadc); /* Check if ADC is effectively disabled */ if (tmp_hal_status == HAL_OK) { /* Set ADC state */ ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_REG_BUSY, HAL_ADC_STATE_READY); } } /* Process unlocked */ __HAL_UNLOCK(hadc); /* Return function status */ return tmp_hal_status; } /** * @brief Enables ADC, starts conversion of regular group and transfers result * through DMA. * Interruptions enabled in this function: * - DMA transfer complete * - DMA half transfer * - overrun * Each of these interruptions has its dedicated callback function. * @param hadc ADC handle * @param pData The destination Buffer address. * @param Length The length of data to be transferred from ADC peripheral to memory. * @retval None */ HAL_StatusTypeDef HAL_ADC_Start_DMA(ADC_HandleTypeDef* hadc, uint32_t* pData, uint32_t Length) { HAL_StatusTypeDef tmp_hal_status = HAL_OK; /* Check the parameters */ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); /* Perform ADC enable and conversion start if no conversion is on going */ if (ADC_IS_CONVERSION_ONGOING_REGULAR(hadc) == RESET) { /* Process locked */ __HAL_LOCK(hadc); /* Enable the ADC peripheral */ /* If low power mode AutoPowerOff is enabled, power-on/off phases are */ /* performed automatically by hardware. */ if (hadc->Init.LowPowerAutoPowerOff != ENABLE) { tmp_hal_status = ADC_Enable(hadc); } /* Start conversion if ADC is effectively enabled */ if (tmp_hal_status == HAL_OK) { /* Set ADC state */ /* - Clear state bitfield related to regular group conversion results */ /* - Set state bitfield related to regular operation */ ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC | HAL_ADC_STATE_REG_OVR | HAL_ADC_STATE_REG_EOSMP, HAL_ADC_STATE_REG_BUSY); /* Reset ADC all error code fields */ ADC_CLEAR_ERRORCODE(hadc); /* Process unlocked */ /* Unlock before starting ADC conversions: in case of potential */ /* interruption, to let the process to ADC IRQ Handler. */ __HAL_UNLOCK(hadc); /* Set the DMA transfer complete callback */ hadc->DMA_Handle->XferCpltCallback = ADC_DMAConvCplt; /* Set the DMA half transfer complete callback */ hadc->DMA_Handle->XferHalfCpltCallback = ADC_DMAHalfConvCplt; /* Set the DMA error callback */ hadc->DMA_Handle->XferErrorCallback = ADC_DMAError; /* Manage ADC and DMA start: ADC overrun interruption, DMA start, ADC */ /* start (in case of SW start): */ /* Clear regular group conversion flag and overrun flag */ /* (To ensure of no unknown state from potential previous ADC */ /* operations) */ __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS | ADC_FLAG_OVR)); /* Enable ADC overrun interrupt */ __HAL_ADC_ENABLE_IT(hadc, ADC_IT_OVR); /* Enable ADC DMA mode */ hadc->Instance->CFGR1 |= ADC_CFGR1_DMAEN; /* Start the DMA channel */ HAL_DMA_Start_IT(hadc->DMA_Handle, (uint32_t)&hadc->Instance->DR, (uint32_t)pData, Length); /* Enable conversion of regular group. */ /* If software start has been selected, conversion starts immediately. */ /* If external trigger has been selected, conversion will start at next */ /* trigger event. */ hadc->Instance->CR |= ADC_CR_ADSTART; } } else { tmp_hal_status = HAL_BUSY; } /* Return function status */ return tmp_hal_status; } /** * @brief Stop ADC conversion of regular group, disable ADC DMA transfer, disable * ADC peripheral. * Each of these interruptions has its dedicated callback function. * @param hadc ADC handle * @retval HAL status. */ HAL_StatusTypeDef HAL_ADC_Stop_DMA(ADC_HandleTypeDef* hadc) { HAL_StatusTypeDef tmp_hal_status = HAL_OK; /* Check the parameters */ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); /* Process locked */ __HAL_LOCK(hadc); /* 1. Stop potential conversion on going, on regular group */ tmp_hal_status = ADC_ConversionStop(hadc); /* Disable ADC peripheral if conversions are effectively stopped */ if (tmp_hal_status == HAL_OK) { /* Disable ADC DMA (ADC DMA configuration ADC_CFGR_DMACFG is kept) */ hadc->Instance->CFGR1 &= ~ADC_CFGR1_DMAEN; /* Disable the DMA channel (in case of DMA in circular mode or stop while */ /* while DMA transfer is on going) */ tmp_hal_status = HAL_DMA_Abort(hadc->DMA_Handle); /* Check if DMA channel effectively disabled */ if (tmp_hal_status != HAL_OK) { /* Update ADC state machine to error */ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_DMA); } /* Disable ADC overrun interrupt */ __HAL_ADC_DISABLE_IT(hadc, ADC_IT_OVR); /* 2. Disable the ADC peripheral */ /* Update "tmp_hal_status" only if DMA channel disabling passed, to keep */ /* in memory a potential failing status. */ if (tmp_hal_status == HAL_OK) { tmp_hal_status = ADC_Disable(hadc); } else { ADC_Disable(hadc); } /* Check if ADC is effectively disabled */ if (tmp_hal_status == HAL_OK) { /* Set ADC state */ ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_REG_BUSY, HAL_ADC_STATE_READY); } } /* Process unlocked */ __HAL_UNLOCK(hadc); /* Return function status */ return tmp_hal_status; } /** * @brief Get ADC regular group conversion result. * @note Reading register DR automatically clears ADC flag EOC * (ADC group regular end of unitary conversion). * @note This function does not clear ADC flag EOS * (ADC group regular end of sequence conversion). * Occurrence of flag EOS rising: * - If sequencer is composed of 1 rank, flag EOS is equivalent * to flag EOC. * - If sequencer is composed of several ranks, during the scan * sequence flag EOC only is raised, at the end of the scan sequence * both flags EOC and EOS are raised. * To clear this flag, either use function: * in programming model IT: @ref HAL_ADC_IRQHandler(), in programming * model polling: @ref HAL_ADC_PollForConversion() * or @ref __HAL_ADC_CLEAR_FLAG(&hadc, ADC_FLAG_EOS). * @param hadc ADC handle * @retval ADC group regular conversion data */ uint32_t HAL_ADC_GetValue(ADC_HandleTypeDef* hadc) { /* Check the parameters */ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); /* Note: EOC flag is not cleared here by software because automatically */ /* cleared by hardware when reading register DR. */ /* Return ADC converted value */ return hadc->Instance->DR; } /** * @brief Handles ADC interrupt request. * @param hadc ADC handle * @retval None */ void HAL_ADC_IRQHandler(ADC_HandleTypeDef* hadc) { /* Check the parameters */ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode)); assert_param(IS_ADC_EOC_SELECTION(hadc->Init.EOCSelection)); /* ========== Check End of Conversion flag for regular group ========== */ if( (__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_EOC) && __HAL_ADC_GET_IT_SOURCE(hadc, ADC_IT_EOC)) || (__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_EOS) && __HAL_ADC_GET_IT_SOURCE(hadc, ADC_IT_EOS)) ) { /* Update state machine on conversion status if not in error state */ if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL)) { /* Set ADC state */ SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC); } /* Determine whether any further conversion upcoming on group regular */ /* by external trigger, continuous mode or scan sequence on going. */ if(ADC_IS_SOFTWARE_START_REGULAR(hadc) && (hadc->Init.ContinuousConvMode == DISABLE) ) { /* If End of Sequence is reached, disable interrupts */ if( __HAL_ADC_GET_FLAG(hadc, ADC_FLAG_EOS) ) { /* Allowed to modify bits ADC_IT_EOC/ADC_IT_EOS only if bit */ /* ADSTART==0 (no conversion on going) */ if (ADC_IS_CONVERSION_ONGOING_REGULAR(hadc) == RESET) { /* Disable ADC end of single conversion interrupt on group regular */ /* Note: Overrun interrupt was enabled with EOC interrupt in */ /* HAL_Start_IT(), but is not disabled here because can be used */ /* by overrun IRQ process below. */ __HAL_ADC_DISABLE_IT(hadc, ADC_IT_EOC | ADC_IT_EOS); /* Set ADC state */ ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_REG_BUSY, HAL_ADC_STATE_READY); } else { /* Change ADC state to error state */ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG); /* Set ADC error code to ADC IP internal error */ SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); } } } /* Note: into callback, to determine if conversion has been triggered */ /* from EOC or EOS, possibility to use: */ /* " if( __HAL_ADC_GET_FLAG(&hadc, ADC_FLAG_EOS)) " */ #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) hadc->ConvCpltCallback(hadc); #else HAL_ADC_ConvCpltCallback(hadc); #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ /* Clear regular group conversion flag */ /* Note: in case of overrun set to ADC_OVR_DATA_PRESERVED, end of */ /* conversion flags clear induces the release of the preserved data.*/ /* Therefore, if the preserved data value is needed, it must be */ /* read preliminarily into HAL_ADC_ConvCpltCallback(). */ __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS) ); } /* ========== Check Analog watchdog flags ========== */ if(__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_AWD) && __HAL_ADC_GET_IT_SOURCE(hadc, ADC_IT_AWD)) { /* Set ADC state */ SET_BIT(hadc->State, HAL_ADC_STATE_AWD1); #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) hadc->LevelOutOfWindowCallback(hadc); #else HAL_ADC_LevelOutOfWindowCallback(hadc); #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ /* Clear ADC Analog watchdog flag */ __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD); } /* ========== Check Overrun flag ========== */ if(__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_OVR) && __HAL_ADC_GET_IT_SOURCE(hadc, ADC_IT_OVR)) { /* If overrun is set to overwrite previous data (default setting), */ /* overrun event is not considered as an error. */ /* (cf ref manual "Managing conversions without using the DMA and without */ /* overrun ") */ /* Exception for usage with DMA overrun event always considered as an */ /* error. */ if ((hadc->Init.Overrun == ADC_OVR_DATA_PRESERVED) || HAL_IS_BIT_SET(hadc->Instance->CFGR1, ADC_CFGR1_DMAEN) ) { /* Set ADC error code to overrun */ SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_OVR); /* Clear ADC overrun flag */ __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_OVR); #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) hadc->ErrorCallback(hadc); #else HAL_ADC_ErrorCallback(hadc); #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ } /* Clear the Overrun flag */ __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_OVR); } } /** * @brief Conversion complete callback in non blocking mode * @param hadc ADC handle * @retval None */ __weak void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc) { /* Prevent unused argument(s) compilation warning */ UNUSED(hadc); /* NOTE : This function should not be modified. When the callback is needed, function HAL_ADC_ConvCpltCallback must be implemented in the user file. */ } /** * @brief Conversion DMA half-transfer callback in non blocking mode * @param hadc ADC handle * @retval None */ __weak void HAL_ADC_ConvHalfCpltCallback(ADC_HandleTypeDef* hadc) { /* Prevent unused argument(s) compilation warning */ UNUSED(hadc); /* NOTE : This function should not be modified. When the callback is needed, function HAL_ADC_ConvHalfCpltCallback must be implemented in the user file. */ } /** * @brief Analog watchdog callback in non blocking mode. * @param hadc ADC handle * @retval None */ __weak void HAL_ADC_LevelOutOfWindowCallback(ADC_HandleTypeDef* hadc) { /* Prevent unused argument(s) compilation warning */ UNUSED(hadc); /* NOTE : This function should not be modified. When the callback is needed, function HAL_ADC_LevelOoutOfWindowCallback must be implemented in the user file. */ } /** * @brief ADC error callback in non blocking mode * (ADC conversion with interruption or transfer by DMA) * @param hadc ADC handle * @retval None */ __weak void HAL_ADC_ErrorCallback(ADC_HandleTypeDef *hadc) { /* Prevent unused argument(s) compilation warning */ UNUSED(hadc); /* NOTE : This function should not be modified. When the callback is needed, function HAL_ADC_ErrorCallback must be implemented in the user file. */ } /** * @} */ /** @defgroup ADC_Exported_Functions_Group3 Peripheral Control functions * @brief Peripheral Control functions * @verbatim =============================================================================== ##### Peripheral Control functions ##### =============================================================================== [..] This section provides functions allowing to: (+) Configure channels on regular group (+) Configure the analog watchdog @endverbatim * @{ */ /** * @brief Configures the the selected channel to be linked to the regular * group. * @note In case of usage of internal measurement channels: * VrefInt/Vbat/TempSensor. * Sampling time constraints must be respected (sampling time can be * adjusted in function of ADC clock frequency and sampling time * setting). * Refer to device datasheet for timings values, parameters TS_vrefint, * TS_vbat, TS_temp (values rough order: 5us to 17us). * These internal paths can be be disabled using function * HAL_ADC_DeInit(). * @note Possibility to update parameters on the fly: * This function initializes channel into regular group, following * calls to this function can be used to reconfigure some parameters * of structure "ADC_ChannelConfTypeDef" on the fly, without reseting * the ADC. * The setting of these parameters is conditioned to ADC state. * For parameters constraints, see comments of structure * "ADC_ChannelConfTypeDef". * @param hadc ADC handle * @param sConfig Structure of ADC channel for regular group. * @retval HAL status */ HAL_StatusTypeDef HAL_ADC_ConfigChannel(ADC_HandleTypeDef* hadc, ADC_ChannelConfTypeDef* sConfig) { HAL_StatusTypeDef tmp_hal_status = HAL_OK; __IO uint32_t wait_loop_index = 0U; /* Check the parameters */ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); assert_param(IS_ADC_CHANNEL(sConfig->Channel)); assert_param(IS_ADC_RANK(sConfig->Rank)); if (! IS_ADC_SAMPLE_TIME(hadc->Init.SamplingTimeCommon)) { assert_param(IS_ADC_SAMPLE_TIME(sConfig->SamplingTime)); } /* Process locked */ __HAL_LOCK(hadc); /* Parameters update conditioned to ADC state: */ /* Parameters that can be updated when ADC is disabled or enabled without */ /* conversion on going on regular group: */ /* - Channel number */ /* - Channel sampling time */ /* - Management of internal measurement channels: VrefInt/TempSensor/Vbat */ if (ADC_IS_CONVERSION_ONGOING_REGULAR(hadc) == RESET) { /* Configure channel: depending on rank setting, add it or remove it from */ /* ADC conversion sequencer. */ if (sConfig->Rank != ADC_RANK_NONE) { /* Regular sequence configuration */ /* Set the channel selection register from the selected channel */ hadc->Instance->CHSELR |= ADC_CHSELR_CHANNEL(sConfig->Channel); /* Channel sampling time configuration */ /* Management of parameters "SamplingTimeCommon" and "SamplingTime" */ /* (obsolete): sampling time set in this function with */ /* parameter "SamplingTime" (obsolete) only if not already set into */ /* ADC initialization structure with parameter "SamplingTimeCommon". */ if (! IS_ADC_SAMPLE_TIME(hadc->Init.SamplingTimeCommon)) { /* Modify sampling time if needed (not needed in case of reoccurrence */ /* for several channels programmed consecutively into the sequencer) */ if (sConfig->SamplingTime != ADC_GET_SAMPLINGTIME(hadc)) { /* Channel sampling time configuration */ /* Clear the old sample time */ hadc->Instance->SMPR &= ~(ADC_SMPR_SMP); /* Set the new sample time */ hadc->Instance->SMPR |= ADC_SMPR_SET(sConfig->SamplingTime); } } /* Management of internal measurement channels: VrefInt/TempSensor/Vbat */ /* internal measurement paths enable: If internal channel selected, */ /* enable dedicated internal buffers and path. */ /* Note: these internal measurement paths can be disabled using */ /* HAL_ADC_DeInit() or removing the channel from sequencer with */ /* channel configuration parameter "Rank". */ if(ADC_IS_CHANNEL_INTERNAL(sConfig->Channel)) { /* If Channel_16 is selected, enable Temp. sensor measurement path. */ /* If Channel_17 is selected, enable VREFINT measurement path. */ /* If Channel_18 is selected, enable VBAT measurement path. */ ADC->CCR |= ADC_CHANNEL_INTERNAL_PATH(sConfig->Channel); /* If Temp. sensor is selected, wait for stabilization delay */ if (sConfig->Channel == ADC_CHANNEL_TEMPSENSOR) { /* Delay for temperature sensor stabilization time */ /* Compute number of CPU cycles to wait for */ wait_loop_index = (ADC_TEMPSENSOR_DELAY_US * (SystemCoreClock / 1000000U)); while(wait_loop_index != 0U) { wait_loop_index--; } } } } else { /* Regular sequence configuration */ /* Reset the channel selection register from the selected channel */ hadc->Instance->CHSELR &= ~ADC_CHSELR_CHANNEL(sConfig->Channel); /* Management of internal measurement channels: VrefInt/TempSensor/Vbat */ /* internal measurement paths disable: If internal channel selected, */ /* disable dedicated internal buffers and path. */ if(ADC_IS_CHANNEL_INTERNAL(sConfig->Channel)) { /* If Channel_16 is selected, disable Temp. sensor measurement path. */ /* If Channel_17 is selected, disable VREFINT measurement path. */ /* If Channel_18 is selected, disable VBAT measurement path. */ ADC->CCR &= ~ADC_CHANNEL_INTERNAL_PATH(sConfig->Channel); } } } /* If a conversion is on going on regular group, no update on regular */ /* channel could be done on neither of the channel configuration structure */ /* parameters. */ else { /* Update ADC state machine to error */ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG); tmp_hal_status = HAL_ERROR; } /* Process unlocked */ __HAL_UNLOCK(hadc); /* Return function status */ return tmp_hal_status; } /** * @brief Configures the analog watchdog. * @note Possibility to update parameters on the fly: * This function initializes the selected analog watchdog, following * calls to this function can be used to reconfigure some parameters * of structure "ADC_AnalogWDGConfTypeDef" on the fly, without reseting * the ADC. * The setting of these parameters is conditioned to ADC state. * For parameters constraints, see comments of structure * "ADC_AnalogWDGConfTypeDef". * @param hadc ADC handle * @param AnalogWDGConfig Structure of ADC analog watchdog configuration * @retval HAL status */ HAL_StatusTypeDef HAL_ADC_AnalogWDGConfig(ADC_HandleTypeDef* hadc, ADC_AnalogWDGConfTypeDef* AnalogWDGConfig) { HAL_StatusTypeDef tmp_hal_status = HAL_OK; uint32_t tmpAWDHighThresholdShifted; uint32_t tmpAWDLowThresholdShifted; /* Check the parameters */ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); assert_param(IS_ADC_ANALOG_WATCHDOG_MODE(AnalogWDGConfig->WatchdogMode)); assert_param(IS_FUNCTIONAL_STATE(AnalogWDGConfig->ITMode)); /* Verify if threshold is within the selected ADC resolution */ assert_param(IS_ADC_RANGE(ADC_GET_RESOLUTION(hadc), AnalogWDGConfig->HighThreshold)); assert_param(IS_ADC_RANGE(ADC_GET_RESOLUTION(hadc), AnalogWDGConfig->LowThreshold)); if(AnalogWDGConfig->WatchdogMode == ADC_ANALOGWATCHDOG_SINGLE_REG) { assert_param(IS_ADC_CHANNEL(AnalogWDGConfig->Channel)); } /* Process locked */ __HAL_LOCK(hadc); /* Parameters update conditioned to ADC state: */ /* Parameters that can be updated when ADC is disabled or enabled without */ /* conversion on going on regular group: */ /* - Analog watchdog channels */ /* - Analog watchdog thresholds */ if (ADC_IS_CONVERSION_ONGOING_REGULAR(hadc) == RESET) { /* Configuration of analog watchdog: */ /* - Set the analog watchdog enable mode: one or overall group of */ /* channels. */ /* - Set the Analog watchdog channel (is not used if watchdog */ /* mode "all channels": ADC_CFGR_AWD1SGL=0). */ hadc->Instance->CFGR1 &= ~( ADC_CFGR1_AWDSGL | ADC_CFGR1_AWDEN | ADC_CFGR1_AWDCH ); hadc->Instance->CFGR1 |= ( AnalogWDGConfig->WatchdogMode | ADC_CFGR_AWDCH(AnalogWDGConfig->Channel) ); /* Shift the offset in function of the selected ADC resolution: Thresholds*/ /* have to be left-aligned on bit 11, the LSB (right bits) are set to 0 */ tmpAWDHighThresholdShifted = ADC_AWD1THRESHOLD_SHIFT_RESOLUTION(hadc, AnalogWDGConfig->HighThreshold); tmpAWDLowThresholdShifted = ADC_AWD1THRESHOLD_SHIFT_RESOLUTION(hadc, AnalogWDGConfig->LowThreshold); /* Set the high and low thresholds */ hadc->Instance->TR &= ~(ADC_TR_HT | ADC_TR_LT); hadc->Instance->TR |= ( ADC_TRX_HIGHTHRESHOLD (tmpAWDHighThresholdShifted) | tmpAWDLowThresholdShifted ); /* Clear the ADC Analog watchdog flag (in case of left enabled by */ /* previous ADC operations) to be ready to use for HAL_ADC_IRQHandler() */ /* or HAL_ADC_PollForEvent(). */ __HAL_ADC_CLEAR_FLAG(hadc, ADC_IT_AWD); /* Configure ADC Analog watchdog interrupt */ if(AnalogWDGConfig->ITMode == ENABLE) { /* Enable the ADC Analog watchdog interrupt */ __HAL_ADC_ENABLE_IT(hadc, ADC_IT_AWD); } else { /* Disable the ADC Analog watchdog interrupt */ __HAL_ADC_DISABLE_IT(hadc, ADC_IT_AWD); } } /* If a conversion is on going on regular group, no update could be done */ /* on neither of the AWD configuration structure parameters. */ else { /* Update ADC state machine to error */ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG); tmp_hal_status = HAL_ERROR; } /* Process unlocked */ __HAL_UNLOCK(hadc); /* Return function status */ return tmp_hal_status; } /** * @} */ /** @defgroup ADC_Exported_Functions_Group4 Peripheral State functions * @brief Peripheral State functions * @verbatim =============================================================================== ##### Peripheral State and Errors functions ##### =============================================================================== [..] This subsection provides functions to get in run-time the status of the peripheral. (+) Check the ADC state (+) Check the ADC error code @endverbatim * @{ */ /** * @brief Return the ADC state * @note ADC state machine is managed by bitfields, ADC status must be * compared with states bits. * For example: * " if (HAL_IS_BIT_SET(HAL_ADC_GetState(hadc1), HAL_ADC_STATE_REG_BUSY)) " * " if (HAL_IS_BIT_SET(HAL_ADC_GetState(hadc1), HAL_ADC_STATE_AWD1) ) " * @param hadc ADC handle * @retval HAL state */ uint32_t HAL_ADC_GetState(ADC_HandleTypeDef* hadc) { /* Check the parameters */ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); /* Return ADC state */ return hadc->State; } /** * @brief Return the ADC error code * @param hadc ADC handle * @retval ADC Error Code */ uint32_t HAL_ADC_GetError(ADC_HandleTypeDef *hadc) { return hadc->ErrorCode; } /** * @} */ /** * @} */ /** @defgroup ADC_Private_Functions ADC Private Functions * @{ */ /** * @brief Enable the selected ADC. * @note Prerequisite condition to use this function: ADC must be disabled * and voltage regulator must be enabled (done into HAL_ADC_Init()). * @note If low power mode AutoPowerOff is enabled, power-on/off phases are * performed automatically by hardware. * In this mode, this function is useless and must not be called because * flag ADC_FLAG_RDY is not usable. * Therefore, this function must be called under condition of * "if (hadc->Init.LowPowerAutoPowerOff != ENABLE)". * @param hadc ADC handle * @retval HAL status. */ static HAL_StatusTypeDef ADC_Enable(ADC_HandleTypeDef* hadc) { uint32_t tickstart = 0U; __IO uint32_t wait_loop_index = 0U; /* ADC enable and wait for ADC ready (in case of ADC is disabled or */ /* enabling phase not yet completed: flag ADC ready not yet set). */ /* Timeout implemented to not be stuck if ADC cannot be enabled (possible */ /* causes: ADC clock not running, ...). */ if (ADC_IS_ENABLE(hadc) == RESET) { /* Check if conditions to enable the ADC are fulfilled */ if (ADC_ENABLING_CONDITIONS(hadc) == RESET) { /* Update ADC state machine to error */ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL); /* Set ADC error code to ADC IP internal error */ SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); return HAL_ERROR; } /* Enable the ADC peripheral */ __HAL_ADC_ENABLE(hadc); /* Delay for ADC stabilization time */ /* Compute number of CPU cycles to wait for */ wait_loop_index = (ADC_STAB_DELAY_US * (SystemCoreClock / 1000000U)); while(wait_loop_index != 0U) { wait_loop_index--; } /* Get tick count */ tickstart = HAL_GetTick(); /* Wait for ADC effectively enabled */ while(__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_RDY) == RESET) { if((HAL_GetTick() - tickstart) > ADC_ENABLE_TIMEOUT) { /* Update ADC state machine to error */ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL); /* Set ADC error code to ADC IP internal error */ SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); return HAL_ERROR; } } } /* Return HAL status */ return HAL_OK; } /** * @brief Disable the selected ADC. * @note Prerequisite condition to use this function: ADC conversions must be * stopped. * @param hadc ADC handle * @retval HAL status. */ static HAL_StatusTypeDef ADC_Disable(ADC_HandleTypeDef* hadc) { uint32_t tickstart = 0U; /* Verification if ADC is not already disabled: */ /* Note: forbidden to disable ADC (set bit ADC_CR_ADDIS) if ADC is already */ /* disabled. */ if (ADC_IS_ENABLE(hadc) != RESET) { /* Check if conditions to disable the ADC are fulfilled */ if (ADC_DISABLING_CONDITIONS(hadc) != RESET) { /* Disable the ADC peripheral */ __HAL_ADC_DISABLE(hadc); } else { /* Update ADC state machine to error */ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL); /* Set ADC error code to ADC IP internal error */ SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); return HAL_ERROR; } /* Wait for ADC effectively disabled */ /* Get tick count */ tickstart = HAL_GetTick(); while(HAL_IS_BIT_SET(hadc->Instance->CR, ADC_CR_ADEN)) { if((HAL_GetTick() - tickstart) > ADC_DISABLE_TIMEOUT) { /* Update ADC state machine to error */ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL); /* Set ADC error code to ADC IP internal error */ SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); return HAL_ERROR; } } } /* Return HAL status */ return HAL_OK; } /** * @brief Stop ADC conversion. * @note Prerequisite condition to use this function: ADC conversions must be * stopped to disable the ADC. * @param hadc ADC handle * @retval HAL status. */ static HAL_StatusTypeDef ADC_ConversionStop(ADC_HandleTypeDef* hadc) { uint32_t tickstart = 0U; /* Check the parameters */ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); /* Verification if ADC is not already stopped on regular group to bypass */ /* this function if not needed. */ if (ADC_IS_CONVERSION_ONGOING_REGULAR(hadc)) { /* Stop potential conversion on going on regular group */ /* Software is allowed to set ADSTP only when ADSTART=1 and ADDIS=0 */ if (HAL_IS_BIT_SET(hadc->Instance->CR, ADC_CR_ADSTART) && HAL_IS_BIT_CLR(hadc->Instance->CR, ADC_CR_ADDIS) ) { /* Stop conversions on regular group */ hadc->Instance->CR |= ADC_CR_ADSTP; } /* Wait for conversion effectively stopped */ /* Get tick count */ tickstart = HAL_GetTick(); while((hadc->Instance->CR & ADC_CR_ADSTART) != RESET) { if((HAL_GetTick() - tickstart) > ADC_STOP_CONVERSION_TIMEOUT) { /* Update ADC state machine to error */ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL); /* Set ADC error code to ADC IP internal error */ SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); return HAL_ERROR; } } } /* Return HAL status */ return HAL_OK; } /** * @brief DMA transfer complete callback. * @param hdma pointer to DMA handle. * @retval None */ static void ADC_DMAConvCplt(DMA_HandleTypeDef *hdma) { /* Retrieve ADC handle corresponding to current DMA handle */ ADC_HandleTypeDef* hadc = ( ADC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; /* Update state machine on conversion status if not in error state */ if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL | HAL_ADC_STATE_ERROR_DMA)) { /* Set ADC state */ SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC); /* Determine whether any further conversion upcoming on group regular */ /* by external trigger, continuous mode or scan sequence on going. */ if(ADC_IS_SOFTWARE_START_REGULAR(hadc) && (hadc->Init.ContinuousConvMode == DISABLE) ) { /* If End of Sequence is reached, disable interrupts */ if( __HAL_ADC_GET_FLAG(hadc, ADC_FLAG_EOS) ) { /* Allowed to modify bits ADC_IT_EOC/ADC_IT_EOS only if bit */ /* ADSTART==0 (no conversion on going) */ if (ADC_IS_CONVERSION_ONGOING_REGULAR(hadc) == RESET) { /* Disable ADC end of single conversion interrupt on group regular */ /* Note: Overrun interrupt was enabled with EOC interrupt in */ /* HAL_Start_IT(), but is not disabled here because can be used */ /* by overrun IRQ process below. */ __HAL_ADC_DISABLE_IT(hadc, ADC_IT_EOC | ADC_IT_EOS); /* Set ADC state */ ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_REG_BUSY, HAL_ADC_STATE_READY); } else { /* Change ADC state to error state */ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG); /* Set ADC error code to ADC IP internal error */ SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); } } } /* Conversion complete callback */ #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) hadc->ConvCpltCallback(hadc); #else HAL_ADC_ConvCpltCallback(hadc); #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ } else { /* Call DMA error callback */ hadc->DMA_Handle->XferErrorCallback(hdma); } } /** * @brief DMA half transfer complete callback. * @param hdma pointer to DMA handle. * @retval None */ static void ADC_DMAHalfConvCplt(DMA_HandleTypeDef *hdma) { /* Retrieve ADC handle corresponding to current DMA handle */ ADC_HandleTypeDef* hadc = ( ADC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; /* Half conversion callback */ #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) hadc->ConvHalfCpltCallback(hadc); #else HAL_ADC_ConvHalfCpltCallback(hadc); #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ } /** * @brief DMA error callback * @param hdma pointer to DMA handle. * @retval None */ static void ADC_DMAError(DMA_HandleTypeDef *hdma) { /* Retrieve ADC handle corresponding to current DMA handle */ ADC_HandleTypeDef* hadc = ( ADC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; /* Set ADC state */ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_DMA); /* Set ADC error code to DMA error */ SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_DMA); /* Error callback */ #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) hadc->ErrorCallback(hadc); #else HAL_ADC_ErrorCallback(hadc); #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ } /** * @} */ #endif /* HAL_ADC_MODULE_ENABLED */ /** * @} */ /** * @} */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/