/* ---------------------------------------------------------------------- * Project: CMSIS DSP Library * Title: arm_cfft_q15.c * Description: Combined Radix Decimation in Q15 Frequency CFFT processing function * * $Date: 27. January 2017 * $Revision: V.1.5.1 * * Target Processor: Cortex-M cores * -------------------------------------------------------------------- */ /* * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "arm_math.h" extern void arm_radix4_butterfly_q15( q15_t * pSrc, uint32_t fftLen, q15_t * pCoef, uint32_t twidCoefModifier); extern void arm_radix4_butterfly_inverse_q15( q15_t * pSrc, uint32_t fftLen, q15_t * pCoef, uint32_t twidCoefModifier); extern void arm_bitreversal_16( uint16_t * pSrc, const uint16_t bitRevLen, const uint16_t * pBitRevTable); void arm_cfft_radix4by2_q15( q15_t * pSrc, uint32_t fftLen, const q15_t * pCoef); void arm_cfft_radix4by2_inverse_q15( q15_t * pSrc, uint32_t fftLen, const q15_t * pCoef); /** * @ingroup groupTransforms */ /** * @addtogroup ComplexFFT * @{ */ /** * @details * @brief Processing function for the Q15 complex FFT. * @param[in] *S points to an instance of the Q15 CFFT structure. * @param[in, out] *p1 points to the complex data buffer of size 2*fftLen. Processing occurs in-place. * @param[in] ifftFlag flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. * @param[in] bitReverseFlag flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. * @return none. */ void arm_cfft_q15( const arm_cfft_instance_q15 * S, q15_t * p1, uint8_t ifftFlag, uint8_t bitReverseFlag) { uint32_t L = S->fftLen; if (ifftFlag == 1U) { switch (L) { case 16: case 64: case 256: case 1024: case 4096: arm_radix4_butterfly_inverse_q15 ( p1, L, (q15_t*)S->pTwiddle, 1 ); break; case 32: case 128: case 512: case 2048: arm_cfft_radix4by2_inverse_q15 ( p1, L, S->pTwiddle ); break; } } else { switch (L) { case 16: case 64: case 256: case 1024: case 4096: arm_radix4_butterfly_q15 ( p1, L, (q15_t*)S->pTwiddle, 1 ); break; case 32: case 128: case 512: case 2048: arm_cfft_radix4by2_q15 ( p1, L, S->pTwiddle ); break; } } if ( bitReverseFlag ) arm_bitreversal_16((uint16_t*)p1,S->bitRevLength,S->pBitRevTable); } /** * @} end of ComplexFFT group */ void arm_cfft_radix4by2_q15( q15_t * pSrc, uint32_t fftLen, const q15_t * pCoef) { uint32_t i; uint32_t n2; q15_t p0, p1, p2, p3; #if defined (ARM_MATH_DSP) q31_t T, S, R; q31_t coeff, out1, out2; const q15_t *pC = pCoef; q15_t *pSi = pSrc; q15_t *pSl = pSrc + fftLen; #else uint32_t ia, l; q15_t xt, yt, cosVal, sinVal; #endif n2 = fftLen >> 1; #if defined (ARM_MATH_DSP) for (i = n2; i > 0; i--) { coeff = _SIMD32_OFFSET(pC); pC += 2; T = _SIMD32_OFFSET(pSi); T = __SHADD16(T, 0); // this is just a SIMD arithmetic shift right by 1 S = _SIMD32_OFFSET(pSl); S = __SHADD16(S, 0); // this is just a SIMD arithmetic shift right by 1 R = __QSUB16(T, S); _SIMD32_OFFSET(pSi) = __SHADD16(T, S); pSi += 2; #ifndef ARM_MATH_BIG_ENDIAN out1 = __SMUAD(coeff, R) >> 16; out2 = __SMUSDX(coeff, R); #else out1 = __SMUSDX(R, coeff) >> 16U; out2 = __SMUAD(coeff, R); #endif // #ifndef ARM_MATH_BIG_ENDIAN _SIMD32_OFFSET(pSl) = (q31_t) ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF); pSl += 2; } #else // #if defined (ARM_MATH_DSP) ia = 0; for (i = 0; i < n2; i++) { cosVal = pCoef[ia * 2]; sinVal = pCoef[(ia * 2) + 1]; ia++; l = i + n2; xt = (pSrc[2 * i] >> 1U) - (pSrc[2 * l] >> 1U); pSrc[2 * i] = ((pSrc[2 * i] >> 1U) + (pSrc[2 * l] >> 1U)) >> 1U; yt = (pSrc[2 * i + 1] >> 1U) - (pSrc[2 * l + 1] >> 1U); pSrc[2 * i + 1] = ((pSrc[2 * l + 1] >> 1U) + (pSrc[2 * i + 1] >> 1U)) >> 1U; pSrc[2U * l] = (((int16_t) (((q31_t) xt * cosVal) >> 16)) + ((int16_t) (((q31_t) yt * sinVal) >> 16))); pSrc[2U * l + 1U] = (((int16_t) (((q31_t) yt * cosVal) >> 16)) - ((int16_t) (((q31_t) xt * sinVal) >> 16))); } #endif // #if defined (ARM_MATH_DSP) // first col arm_radix4_butterfly_q15( pSrc, n2, (q15_t*)pCoef, 2U); // second col arm_radix4_butterfly_q15( pSrc + fftLen, n2, (q15_t*)pCoef, 2U); for (i = 0; i < fftLen >> 1; i++) { p0 = pSrc[4*i+0]; p1 = pSrc[4*i+1]; p2 = pSrc[4*i+2]; p3 = pSrc[4*i+3]; p0 <<= 1; p1 <<= 1; p2 <<= 1; p3 <<= 1; pSrc[4*i+0] = p0; pSrc[4*i+1] = p1; pSrc[4*i+2] = p2; pSrc[4*i+3] = p3; } } void arm_cfft_radix4by2_inverse_q15( q15_t * pSrc, uint32_t fftLen, const q15_t * pCoef) { uint32_t i; uint32_t n2; q15_t p0, p1, p2, p3; #if defined (ARM_MATH_DSP) q31_t T, S, R; q31_t coeff, out1, out2; const q15_t *pC = pCoef; q15_t *pSi = pSrc; q15_t *pSl = pSrc + fftLen; #else uint32_t ia, l; q15_t xt, yt, cosVal, sinVal; #endif n2 = fftLen >> 1; #if defined (ARM_MATH_DSP) for (i = n2; i > 0; i--) { coeff = _SIMD32_OFFSET(pC); pC += 2; T = _SIMD32_OFFSET(pSi); T = __SHADD16(T, 0); // this is just a SIMD arithmetic shift right by 1 S = _SIMD32_OFFSET(pSl); S = __SHADD16(S, 0); // this is just a SIMD arithmetic shift right by 1 R = __QSUB16(T, S); _SIMD32_OFFSET(pSi) = __SHADD16(T, S); pSi += 2; #ifndef ARM_MATH_BIG_ENDIAN out1 = __SMUSD(coeff, R) >> 16; out2 = __SMUADX(coeff, R); #else out1 = __SMUADX(R, coeff) >> 16U; out2 = __SMUSD(__QSUB(0, coeff), R); #endif // #ifndef ARM_MATH_BIG_ENDIAN _SIMD32_OFFSET(pSl) = (q31_t) ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF); pSl += 2; } #else // #if defined (ARM_MATH_DSP) ia = 0; for (i = 0; i < n2; i++) { cosVal = pCoef[ia * 2]; sinVal = pCoef[(ia * 2) + 1]; ia++; l = i + n2; xt = (pSrc[2 * i] >> 1U) - (pSrc[2 * l] >> 1U); pSrc[2 * i] = ((pSrc[2 * i] >> 1U) + (pSrc[2 * l] >> 1U)) >> 1U; yt = (pSrc[2 * i + 1] >> 1U) - (pSrc[2 * l + 1] >> 1U); pSrc[2 * i + 1] = ((pSrc[2 * l + 1] >> 1U) + (pSrc[2 * i + 1] >> 1U)) >> 1U; pSrc[2U * l] = (((int16_t) (((q31_t) xt * cosVal) >> 16)) - ((int16_t) (((q31_t) yt * sinVal) >> 16))); pSrc[2U * l + 1U] = (((int16_t) (((q31_t) yt * cosVal) >> 16)) + ((int16_t) (((q31_t) xt * sinVal) >> 16))); } #endif // #if defined (ARM_MATH_DSP) // first col arm_radix4_butterfly_inverse_q15( pSrc, n2, (q15_t*)pCoef, 2U); // second col arm_radix4_butterfly_inverse_q15( pSrc + fftLen, n2, (q15_t*)pCoef, 2U); for (i = 0; i < fftLen >> 1; i++) { p0 = pSrc[4*i+0]; p1 = pSrc[4*i+1]; p2 = pSrc[4*i+2]; p3 = pSrc[4*i+3]; p0 <<= 1; p1 <<= 1; p2 <<= 1; p3 <<= 1; pSrc[4*i+0] = p0; pSrc[4*i+1] = p1; pSrc[4*i+2] = p2; pSrc[4*i+3] = p3; } }