/* ---------------------------------------------------------------------- * Project: CMSIS DSP Library * Title: arm_mat_mult_q31.c * Description: Q31 matrix multiplication * * $Date: 27. January 2017 * $Revision: V.1.5.1 * * Target Processor: Cortex-M cores * -------------------------------------------------------------------- */ /* * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "arm_math.h" /** * @ingroup groupMatrix */ /** * @addtogroup MatrixMult * @{ */ /** * @brief Q31 matrix multiplication * @param[in] *pSrcA points to the first input matrix structure * @param[in] *pSrcB points to the second input matrix structure * @param[out] *pDst points to output matrix structure * @return The function returns either * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking. * * @details * Scaling and Overflow Behavior: * * \par * The function is implemented using an internal 64-bit accumulator. * The accumulator has a 2.62 format and maintains full precision of the intermediate * multiplication results but provides only a single guard bit. There is no saturation * on intermediate additions. Thus, if the accumulator overflows it wraps around and * distorts the result. The input signals should be scaled down to avoid intermediate * overflows. The input is thus scaled down by log2(numColsA) bits * to avoid overflows, as a total of numColsA additions are performed internally. * The 2.62 accumulator is right shifted by 31 bits and saturated to 1.31 format to yield the final result. * * \par * See arm_mat_mult_fast_q31() for a faster but less precise implementation of this function for Cortex-M3 and Cortex-M4. * */ arm_status arm_mat_mult_q31( const arm_matrix_instance_q31 * pSrcA, const arm_matrix_instance_q31 * pSrcB, arm_matrix_instance_q31 * pDst) { q31_t *pIn1 = pSrcA->pData; /* input data matrix pointer A */ q31_t *pIn2 = pSrcB->pData; /* input data matrix pointer B */ q31_t *pInA = pSrcA->pData; /* input data matrix pointer A */ q31_t *pOut = pDst->pData; /* output data matrix pointer */ q31_t *px; /* Temporary output data matrix pointer */ q63_t sum; /* Accumulator */ uint16_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */ uint16_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */ uint16_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */ #if defined (ARM_MATH_DSP) /* Run the below code for Cortex-M4 and Cortex-M3 */ uint16_t col, i = 0U, j, row = numRowsA, colCnt; /* loop counters */ arm_status status; /* status of matrix multiplication */ q31_t a0, a1, a2, a3, b0, b1, b2, b3; #ifdef ARM_MATH_MATRIX_CHECK /* Check for matrix mismatch condition */ if ((pSrcA->numCols != pSrcB->numRows) || (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols)) { /* Set status as ARM_MATH_SIZE_MISMATCH */ status = ARM_MATH_SIZE_MISMATCH; } else #endif /* #ifdef ARM_MATH_MATRIX_CHECK */ { /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */ /* row loop */ do { /* Output pointer is set to starting address of the row being processed */ px = pOut + i; /* For every row wise process, the column loop counter is to be initiated */ col = numColsB; /* For every row wise process, the pIn2 pointer is set ** to the starting address of the pSrcB data */ pIn2 = pSrcB->pData; j = 0U; /* column loop */ do { /* Set the variable sum, that acts as accumulator, to zero */ sum = 0; /* Initiate the pointer pIn1 to point to the starting address of pInA */ pIn1 = pInA; /* Apply loop unrolling and compute 4 MACs simultaneously. */ colCnt = numColsA >> 2; /* matrix multiplication */ while (colCnt > 0U) { /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */ /* Perform the multiply-accumulates */ b0 = *pIn2; pIn2 += numColsB; a0 = *pIn1++; a1 = *pIn1++; b1 = *pIn2; pIn2 += numColsB; b2 = *pIn2; pIn2 += numColsB; sum += (q63_t) a0 *b0; sum += (q63_t) a1 *b1; a2 = *pIn1++; a3 = *pIn1++; b3 = *pIn2; pIn2 += numColsB; sum += (q63_t) a2 *b2; sum += (q63_t) a3 *b3; /* Decrement the loop counter */ colCnt--; } /* If the columns of pSrcA is not a multiple of 4, compute any remaining output samples here. ** No loop unrolling is used. */ colCnt = numColsA % 0x4U; while (colCnt > 0U) { /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */ /* Perform the multiply-accumulates */ sum += (q63_t) * pIn1++ * *pIn2; pIn2 += numColsB; /* Decrement the loop counter */ colCnt--; } /* Convert the result from 2.62 to 1.31 format and store in destination buffer */ *px++ = (q31_t) (sum >> 31); /* Update the pointer pIn2 to point to the starting address of the next column */ j++; pIn2 = (pSrcB->pData) + j; /* Decrement the column loop counter */ col--; } while (col > 0U); #else /* Run the below code for Cortex-M0 */ q31_t *pInB = pSrcB->pData; /* input data matrix pointer B */ uint16_t col, i = 0U, row = numRowsA, colCnt; /* loop counters */ arm_status status; /* status of matrix multiplication */ #ifdef ARM_MATH_MATRIX_CHECK /* Check for matrix mismatch condition */ if ((pSrcA->numCols != pSrcB->numRows) || (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols)) { /* Set status as ARM_MATH_SIZE_MISMATCH */ status = ARM_MATH_SIZE_MISMATCH; } else #endif /* #ifdef ARM_MATH_MATRIX_CHECK */ { /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */ /* row loop */ do { /* Output pointer is set to starting address of the row being processed */ px = pOut + i; /* For every row wise process, the column loop counter is to be initiated */ col = numColsB; /* For every row wise process, the pIn2 pointer is set ** to the starting address of the pSrcB data */ pIn2 = pSrcB->pData; /* column loop */ do { /* Set the variable sum, that acts as accumulator, to zero */ sum = 0; /* Initiate the pointer pIn1 to point to the starting address of pInA */ pIn1 = pInA; /* Matrix A columns number of MAC operations are to be performed */ colCnt = numColsA; /* matrix multiplication */ while (colCnt > 0U) { /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */ /* Perform the multiply-accumulates */ sum += (q63_t) * pIn1++ * *pIn2; pIn2 += numColsB; /* Decrement the loop counter */ colCnt--; } /* Convert the result from 2.62 to 1.31 format and store in destination buffer */ *px++ = (q31_t) clip_q63_to_q31(sum >> 31); /* Decrement the column loop counter */ col--; /* Update the pointer pIn2 to point to the starting address of the next column */ pIn2 = pInB + (numColsB - col); } while (col > 0U); #endif /* Update the pointer pInA to point to the starting address of the next row */ i = i + numColsB; pInA = pInA + numColsA; /* Decrement the row loop counter */ row--; } while (row > 0U); /* set status as ARM_MATH_SUCCESS */ status = ARM_MATH_SUCCESS; } /* Return to application */ return (status); } /** * @} end of MatrixMult group */