/* ---------------------------------------------------------------------- * Project: CMSIS DSP Library * Title: arm_cmplx_mat_mult_q15.c * Description: Q15 complex matrix multiplication * * $Date: 27. January 2017 * $Revision: V.1.5.1 * * Target Processor: Cortex-M cores * -------------------------------------------------------------------- */ /* * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "arm_math.h" /** * @ingroup groupMatrix */ /** * @addtogroup CmplxMatrixMult * @{ */ /** * @brief Q15 Complex matrix multiplication * @param[in] *pSrcA points to the first input complex matrix structure * @param[in] *pSrcB points to the second input complex matrix structure * @param[out] *pDst points to output complex matrix structure * @param[in] *pScratch points to the array for storing intermediate results * @return The function returns either * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking. * * \par Conditions for optimum performance * Input, output and state buffers should be aligned by 32-bit * * \par Restrictions * If the silicon does not support unaligned memory access enable the macro UNALIGNED_SUPPORT_DISABLE * In this case input, output, scratch buffers should be aligned by 32-bit * * @details * Scaling and Overflow Behavior: * * \par * The function is implemented using a 64-bit internal accumulator. The inputs to the * multiplications are in 1.15 format and multiplications yield a 2.30 result. * The 2.30 intermediate * results are accumulated in a 64-bit accumulator in 34.30 format. This approach * provides 33 guard bits and there is no risk of overflow. The 34.30 result is then * truncated to 34.15 format by discarding the low 15 bits and then saturated to * 1.15 format. * * \par * Refer to arm_mat_mult_fast_q15() for a faster but less precise version of this function. * */ arm_status arm_mat_cmplx_mult_q15( const arm_matrix_instance_q15 * pSrcA, const arm_matrix_instance_q15 * pSrcB, arm_matrix_instance_q15 * pDst, q15_t * pScratch) { /* accumulator */ q15_t *pSrcBT = pScratch; /* input data matrix pointer for transpose */ q15_t *pInA = pSrcA->pData; /* input data matrix pointer A of Q15 type */ q15_t *pInB = pSrcB->pData; /* input data matrix pointer B of Q15 type */ q15_t *px; /* Temporary output data matrix pointer */ uint16_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */ uint16_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */ uint16_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */ uint16_t numRowsB = pSrcB->numRows; /* number of rows of input matrix A */ uint16_t col, i = 0U, row = numRowsB, colCnt; /* loop counters */ arm_status status; /* status of matrix multiplication */ q63_t sumReal, sumImag; #ifdef UNALIGNED_SUPPORT_DISABLE q15_t in; /* Temporary variable to hold the input value */ q15_t a, b, c, d; #else q31_t in; /* Temporary variable to hold the input value */ q31_t prod1, prod2; q31_t pSourceA, pSourceB; #endif #ifdef ARM_MATH_MATRIX_CHECK /* Check for matrix mismatch condition */ if ((pSrcA->numCols != pSrcB->numRows) || (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols)) { /* Set status as ARM_MATH_SIZE_MISMATCH */ status = ARM_MATH_SIZE_MISMATCH; } else #endif { /* Matrix transpose */ do { /* Apply loop unrolling and exchange the columns with row elements */ col = numColsB >> 2; /* The pointer px is set to starting address of the column being processed */ px = pSrcBT + i; /* First part of the processing with loop unrolling. Compute 4 outputs at a time. ** a second loop below computes the remaining 1 to 3 samples. */ while (col > 0U) { #ifdef UNALIGNED_SUPPORT_DISABLE /* Read two elements from the row */ in = *pInB++; *px = in; in = *pInB++; px[1] = in; /* Update the pointer px to point to the next row of the transposed matrix */ px += numRowsB * 2; /* Read two elements from the row */ in = *pInB++; *px = in; in = *pInB++; px[1] = in; /* Update the pointer px to point to the next row of the transposed matrix */ px += numRowsB * 2; /* Read two elements from the row */ in = *pInB++; *px = in; in = *pInB++; px[1] = in; /* Update the pointer px to point to the next row of the transposed matrix */ px += numRowsB * 2; /* Read two elements from the row */ in = *pInB++; *px = in; in = *pInB++; px[1] = in; /* Update the pointer px to point to the next row of the transposed matrix */ px += numRowsB * 2; /* Decrement the column loop counter */ col--; } /* If the columns of pSrcB is not a multiple of 4, compute any remaining output samples here. ** No loop unrolling is used. */ col = numColsB % 0x4U; while (col > 0U) { /* Read two elements from the row */ in = *pInB++; *px = in; in = *pInB++; px[1] = in; #else /* Read two elements from the row */ in = *__SIMD32(pInB)++; *__SIMD32(px) = in; /* Update the pointer px to point to the next row of the transposed matrix */ px += numRowsB * 2; /* Read two elements from the row */ in = *__SIMD32(pInB)++; *__SIMD32(px) = in; /* Update the pointer px to point to the next row of the transposed matrix */ px += numRowsB * 2; /* Read two elements from the row */ in = *__SIMD32(pInB)++; *__SIMD32(px) = in; /* Update the pointer px to point to the next row of the transposed matrix */ px += numRowsB * 2; /* Read two elements from the row */ in = *__SIMD32(pInB)++; *__SIMD32(px) = in; /* Update the pointer px to point to the next row of the transposed matrix */ px += numRowsB * 2; /* Decrement the column loop counter */ col--; } /* If the columns of pSrcB is not a multiple of 4, compute any remaining output samples here. ** No loop unrolling is used. */ col = numColsB % 0x4U; while (col > 0U) { /* Read two elements from the row */ in = *__SIMD32(pInB)++; *__SIMD32(px) = in; #endif /* Update the pointer px to point to the next row of the transposed matrix */ px += numRowsB * 2; /* Decrement the column loop counter */ col--; } i = i + 2U; /* Decrement the row loop counter */ row--; } while (row > 0U); /* Reset the variables for the usage in the following multiplication process */ row = numRowsA; i = 0U; px = pDst->pData; /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */ /* row loop */ do { /* For every row wise process, the column loop counter is to be initiated */ col = numColsB; /* For every row wise process, the pIn2 pointer is set ** to the starting address of the transposed pSrcB data */ pInB = pSrcBT; /* column loop */ do { /* Set the variable sum, that acts as accumulator, to zero */ sumReal = 0; sumImag = 0; /* Apply loop unrolling and compute 2 MACs simultaneously. */ colCnt = numColsA >> 1; /* Initiate the pointer pIn1 to point to the starting address of the column being processed */ pInA = pSrcA->pData + i * 2; /* matrix multiplication */ while (colCnt > 0U) { /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */ #ifdef UNALIGNED_SUPPORT_DISABLE /* read real and imag values from pSrcA buffer */ a = *pInA; b = *(pInA + 1U); /* read real and imag values from pSrcB buffer */ c = *pInB; d = *(pInB + 1U); /* Multiply and Accumlates */ sumReal += (q31_t) a *c; sumImag += (q31_t) a *d; sumReal -= (q31_t) b *d; sumImag += (q31_t) b *c; /* read next real and imag values from pSrcA buffer */ a = *(pInA + 2U); b = *(pInA + 3U); /* read next real and imag values from pSrcB buffer */ c = *(pInB + 2U); d = *(pInB + 3U); /* update pointer */ pInA += 4U; /* Multiply and Accumlates */ sumReal += (q31_t) a *c; sumImag += (q31_t) a *d; sumReal -= (q31_t) b *d; sumImag += (q31_t) b *c; /* update pointer */ pInB += 4U; #else /* read real and imag values from pSrcA and pSrcB buffer */ pSourceA = *__SIMD32(pInA)++; pSourceB = *__SIMD32(pInB)++; /* Multiply and Accumlates */ #ifdef ARM_MATH_BIG_ENDIAN prod1 = -__SMUSD(pSourceA, pSourceB); #else prod1 = __SMUSD(pSourceA, pSourceB); #endif prod2 = __SMUADX(pSourceA, pSourceB); sumReal += (q63_t) prod1; sumImag += (q63_t) prod2; /* read real and imag values from pSrcA and pSrcB buffer */ pSourceA = *__SIMD32(pInA)++; pSourceB = *__SIMD32(pInB)++; /* Multiply and Accumlates */ #ifdef ARM_MATH_BIG_ENDIAN prod1 = -__SMUSD(pSourceA, pSourceB); #else prod1 = __SMUSD(pSourceA, pSourceB); #endif prod2 = __SMUADX(pSourceA, pSourceB); sumReal += (q63_t) prod1; sumImag += (q63_t) prod2; #endif /* #ifdef UNALIGNED_SUPPORT_DISABLE */ /* Decrement the loop counter */ colCnt--; } /* process odd column samples */ if ((numColsA & 0x1U) > 0U) { /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */ #ifdef UNALIGNED_SUPPORT_DISABLE /* read real and imag values from pSrcA and pSrcB buffer */ a = *pInA++; b = *pInA++; c = *pInB++; d = *pInB++; /* Multiply and Accumlates */ sumReal += (q31_t) a *c; sumImag += (q31_t) a *d; sumReal -= (q31_t) b *d; sumImag += (q31_t) b *c; #else /* read real and imag values from pSrcA and pSrcB buffer */ pSourceA = *__SIMD32(pInA)++; pSourceB = *__SIMD32(pInB)++; /* Multiply and Accumlates */ #ifdef ARM_MATH_BIG_ENDIAN prod1 = -__SMUSD(pSourceA, pSourceB); #else prod1 = __SMUSD(pSourceA, pSourceB); #endif prod2 = __SMUADX(pSourceA, pSourceB); sumReal += (q63_t) prod1; sumImag += (q63_t) prod2; #endif /* #ifdef UNALIGNED_SUPPORT_DISABLE */ } /* Saturate and store the result in the destination buffer */ *px++ = (q15_t) (__SSAT(sumReal >> 15, 16)); *px++ = (q15_t) (__SSAT(sumImag >> 15, 16)); /* Decrement the column loop counter */ col--; } while (col > 0U); i = i + numColsA; /* Decrement the row loop counter */ row--; } while (row > 0U); /* set status as ARM_MATH_SUCCESS */ status = ARM_MATH_SUCCESS; } /* Return to application */ return (status); } /** * @} end of MatrixMult group */