/* ---------------------------------------------------------------------- * Project: CMSIS DSP Library * Title: arm_lms_norm_q15.c * Description: Q15 NLMS filter * * $Date: 27. January 2017 * $Revision: V.1.5.1 * * Target Processor: Cortex-M cores * -------------------------------------------------------------------- */ /* * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "arm_math.h" /** * @ingroup groupFilters */ /** * @addtogroup LMS_NORM * @{ */ /** * @brief Processing function for Q15 normalized LMS filter. * @param[in] *S points to an instance of the Q15 normalized LMS filter structure. * @param[in] *pSrc points to the block of input data. * @param[in] *pRef points to the block of reference data. * @param[out] *pOut points to the block of output data. * @param[out] *pErr points to the block of error data. * @param[in] blockSize number of samples to process. * @return none. * * Scaling and Overflow Behavior: * \par * The function is implemented using a 64-bit internal accumulator. * Both coefficients and state variables are represented in 1.15 format and * multiplications yield a 2.30 result. The 2.30 intermediate results are * accumulated in a 64-bit accumulator in 34.30 format. * There is no risk of internal overflow with this approach and the full * precision of intermediate multiplications is preserved. After all additions * have been performed, the accumulator is truncated to 34.15 format by * discarding low 15 bits. Lastly, the accumulator is saturated to yield a * result in 1.15 format. * * \par * In this filter, filter coefficients are updated for each sample and the updation of filter cofficients are saturted. * */ void arm_lms_norm_q15( arm_lms_norm_instance_q15 * S, q15_t * pSrc, q15_t * pRef, q15_t * pOut, q15_t * pErr, uint32_t blockSize) { q15_t *pState = S->pState; /* State pointer */ q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */ q15_t *pStateCurnt; /* Points to the current sample of the state */ q15_t *px, *pb; /* Temporary pointers for state and coefficient buffers */ q15_t mu = S->mu; /* Adaptive factor */ uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */ uint32_t tapCnt, blkCnt; /* Loop counters */ q31_t energy; /* Energy of the input */ q63_t acc; /* Accumulator */ q15_t e = 0, d = 0; /* error, reference data sample */ q15_t w = 0, in; /* weight factor and state */ q15_t x0; /* temporary variable to hold input sample */ //uint32_t shift = (uint32_t) S->postShift + 1U; /* Shift to be applied to the output */ q15_t errorXmu, oneByEnergy; /* Temporary variables to store error and mu product and reciprocal of energy */ q15_t postShift; /* Post shift to be applied to weight after reciprocal calculation */ q31_t coef; /* Teporary variable for coefficient */ q31_t acc_l, acc_h; int32_t lShift = (15 - (int32_t) S->postShift); /* Post shift */ int32_t uShift = (32 - lShift); energy = S->energy; x0 = S->x0; /* S->pState points to buffer which contains previous frame (numTaps - 1) samples */ /* pStateCurnt points to the location where the new input data should be written */ pStateCurnt = &(S->pState[(numTaps - 1U)]); /* Loop over blockSize number of values */ blkCnt = blockSize; #if defined (ARM_MATH_DSP) /* Run the below code for Cortex-M4 and Cortex-M3 */ while (blkCnt > 0U) { /* Copy the new input sample into the state buffer */ *pStateCurnt++ = *pSrc; /* Initialize pState pointer */ px = pState; /* Initialize coeff pointer */ pb = (pCoeffs); /* Read the sample from input buffer */ in = *pSrc++; /* Update the energy calculation */ energy -= (((q31_t) x0 * (x0)) >> 15); energy += (((q31_t) in * (in)) >> 15); /* Set the accumulator to zero */ acc = 0; /* Loop unrolling. Process 4 taps at a time. */ tapCnt = numTaps >> 2; while (tapCnt > 0U) { /* Perform the multiply-accumulate */ #ifndef UNALIGNED_SUPPORT_DISABLE acc = __SMLALD(*__SIMD32(px)++, (*__SIMD32(pb)++), acc); acc = __SMLALD(*__SIMD32(px)++, (*__SIMD32(pb)++), acc); #else acc += (((q31_t) * px++ * (*pb++))); acc += (((q31_t) * px++ * (*pb++))); acc += (((q31_t) * px++ * (*pb++))); acc += (((q31_t) * px++ * (*pb++))); #endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */ /* Decrement the loop counter */ tapCnt--; } /* If the filter length is not a multiple of 4, compute the remaining filter taps */ tapCnt = numTaps % 0x4U; while (tapCnt > 0U) { /* Perform the multiply-accumulate */ acc += (((q31_t) * px++ * (*pb++))); /* Decrement the loop counter */ tapCnt--; } /* Calc lower part of acc */ acc_l = acc & 0xffffffff; /* Calc upper part of acc */ acc_h = (acc >> 32) & 0xffffffff; /* Apply shift for lower part of acc and upper part of acc */ acc = (uint32_t) acc_l >> lShift | acc_h << uShift; /* Converting the result to 1.15 format and saturate the output */ acc = __SSAT(acc, 16U); /* Store the result from accumulator into the destination buffer. */ *pOut++ = (q15_t) acc; /* Compute and store error */ d = *pRef++; e = d - (q15_t) acc; *pErr++ = e; /* Calculation of 1/energy */ postShift = arm_recip_q15((q15_t) energy + DELTA_Q15, &oneByEnergy, S->recipTable); /* Calculation of e * mu value */ errorXmu = (q15_t) (((q31_t) e * mu) >> 15); /* Calculation of (e * mu) * (1/energy) value */ acc = (((q31_t) errorXmu * oneByEnergy) >> (15 - postShift)); /* Weighting factor for the normalized version */ w = (q15_t) __SSAT((q31_t) acc, 16); /* Initialize pState pointer */ px = pState; /* Initialize coeff pointer */ pb = (pCoeffs); /* Loop unrolling. Process 4 taps at a time. */ tapCnt = numTaps >> 2; /* Update filter coefficients */ while (tapCnt > 0U) { coef = *pb + (((q31_t) w * (*px++)) >> 15); *pb++ = (q15_t) __SSAT((coef), 16); coef = *pb + (((q31_t) w * (*px++)) >> 15); *pb++ = (q15_t) __SSAT((coef), 16); coef = *pb + (((q31_t) w * (*px++)) >> 15); *pb++ = (q15_t) __SSAT((coef), 16); coef = *pb + (((q31_t) w * (*px++)) >> 15); *pb++ = (q15_t) __SSAT((coef), 16); /* Decrement the loop counter */ tapCnt--; } /* If the filter length is not a multiple of 4, compute the remaining filter taps */ tapCnt = numTaps % 0x4U; while (tapCnt > 0U) { /* Perform the multiply-accumulate */ coef = *pb + (((q31_t) w * (*px++)) >> 15); *pb++ = (q15_t) __SSAT((coef), 16); /* Decrement the loop counter */ tapCnt--; } /* Read the sample from state buffer */ x0 = *pState; /* Advance state pointer by 1 for the next sample */ pState = pState + 1U; /* Decrement the loop counter */ blkCnt--; } /* Save energy and x0 values for the next frame */ S->energy = (q15_t) energy; S->x0 = x0; /* Processing is complete. Now copy the last numTaps - 1 samples to the satrt of the state buffer. This prepares the state buffer for the next function call. */ /* Points to the start of the pState buffer */ pStateCurnt = S->pState; /* Calculation of count for copying integer writes */ tapCnt = (numTaps - 1U) >> 2; while (tapCnt > 0U) { #ifndef UNALIGNED_SUPPORT_DISABLE *__SIMD32(pStateCurnt)++ = *__SIMD32(pState)++; *__SIMD32(pStateCurnt)++ = *__SIMD32(pState)++; #else *pStateCurnt++ = *pState++; *pStateCurnt++ = *pState++; *pStateCurnt++ = *pState++; *pStateCurnt++ = *pState++; #endif tapCnt--; } /* Calculation of count for remaining q15_t data */ tapCnt = (numTaps - 1U) % 0x4U; /* copy data */ while (tapCnt > 0U) { *pStateCurnt++ = *pState++; /* Decrement the loop counter */ tapCnt--; } #else /* Run the below code for Cortex-M0 */ while (blkCnt > 0U) { /* Copy the new input sample into the state buffer */ *pStateCurnt++ = *pSrc; /* Initialize pState pointer */ px = pState; /* Initialize pCoeffs pointer */ pb = pCoeffs; /* Read the sample from input buffer */ in = *pSrc++; /* Update the energy calculation */ energy -= (((q31_t) x0 * (x0)) >> 15); energy += (((q31_t) in * (in)) >> 15); /* Set the accumulator to zero */ acc = 0; /* Loop over numTaps number of values */ tapCnt = numTaps; while (tapCnt > 0U) { /* Perform the multiply-accumulate */ acc += (((q31_t) * px++ * (*pb++))); /* Decrement the loop counter */ tapCnt--; } /* Calc lower part of acc */ acc_l = acc & 0xffffffff; /* Calc upper part of acc */ acc_h = (acc >> 32) & 0xffffffff; /* Apply shift for lower part of acc and upper part of acc */ acc = (uint32_t) acc_l >> lShift | acc_h << uShift; /* Converting the result to 1.15 format and saturate the output */ acc = __SSAT(acc, 16U); /* Converting the result to 1.15 format */ //acc = __SSAT((acc >> (16U - shift)), 16U); /* Store the result from accumulator into the destination buffer. */ *pOut++ = (q15_t) acc; /* Compute and store error */ d = *pRef++; e = d - (q15_t) acc; *pErr++ = e; /* Calculation of 1/energy */ postShift = arm_recip_q15((q15_t) energy + DELTA_Q15, &oneByEnergy, S->recipTable); /* Calculation of e * mu value */ errorXmu = (q15_t) (((q31_t) e * mu) >> 15); /* Calculation of (e * mu) * (1/energy) value */ acc = (((q31_t) errorXmu * oneByEnergy) >> (15 - postShift)); /* Weighting factor for the normalized version */ w = (q15_t) __SSAT((q31_t) acc, 16); /* Initialize pState pointer */ px = pState; /* Initialize coeff pointer */ pb = (pCoeffs); /* Loop over numTaps number of values */ tapCnt = numTaps; while (tapCnt > 0U) { /* Perform the multiply-accumulate */ coef = *pb + (((q31_t) w * (*px++)) >> 15); *pb++ = (q15_t) __SSAT((coef), 16); /* Decrement the loop counter */ tapCnt--; } /* Read the sample from state buffer */ x0 = *pState; /* Advance state pointer by 1 for the next sample */ pState = pState + 1U; /* Decrement the loop counter */ blkCnt--; } /* Save energy and x0 values for the next frame */ S->energy = (q15_t) energy; S->x0 = x0; /* Processing is complete. Now copy the last numTaps - 1 samples to the satrt of the state buffer. This prepares the state buffer for the next function call. */ /* Points to the start of the pState buffer */ pStateCurnt = S->pState; /* copy (numTaps - 1U) data */ tapCnt = (numTaps - 1U); /* copy data */ while (tapCnt > 0U) { *pStateCurnt++ = *pState++; /* Decrement the loop counter */ tapCnt--; } #endif /* #if defined (ARM_MATH_DSP) */ } /** * @} end of LMS_NORM group */