/* ---------------------------------------------------------------------- * Project: CMSIS DSP Library * Title: arm_mat_sub_f32.c * Description: Floating-point matrix subtraction * * $Date: 27. January 2017 * $Revision: V.1.5.1 * * Target Processor: Cortex-M cores * -------------------------------------------------------------------- */ /* * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "arm_math.h" /** * @ingroup groupMatrix */ /** * @defgroup MatrixSub Matrix Subtraction * * Subtract two matrices. * \image html MatrixSubtraction.gif "Subraction of two 3 x 3 matrices" * * The functions check to make sure that * pSrcA, pSrcB, and pDst have the same * number of rows and columns. */ /** * @addtogroup MatrixSub * @{ */ /** * @brief Floating-point matrix subtraction * @param[in] *pSrcA points to the first input matrix structure * @param[in] *pSrcB points to the second input matrix structure * @param[out] *pDst points to output matrix structure * @return The function returns either * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking. */ arm_status arm_mat_sub_f32( const arm_matrix_instance_f32 * pSrcA, const arm_matrix_instance_f32 * pSrcB, arm_matrix_instance_f32 * pDst) { float32_t *pIn1 = pSrcA->pData; /* input data matrix pointer A */ float32_t *pIn2 = pSrcB->pData; /* input data matrix pointer B */ float32_t *pOut = pDst->pData; /* output data matrix pointer */ #if defined (ARM_MATH_DSP) float32_t inA1, inA2, inB1, inB2, out1, out2; /* temporary variables */ #endif // #if defined (ARM_MATH_DSP) uint32_t numSamples; /* total number of elements in the matrix */ uint32_t blkCnt; /* loop counters */ arm_status status; /* status of matrix subtraction */ #ifdef ARM_MATH_MATRIX_CHECK /* Check for matrix mismatch condition */ if ((pSrcA->numRows != pSrcB->numRows) || (pSrcA->numCols != pSrcB->numCols) || (pSrcA->numRows != pDst->numRows) || (pSrcA->numCols != pDst->numCols)) { /* Set status as ARM_MATH_SIZE_MISMATCH */ status = ARM_MATH_SIZE_MISMATCH; } else #endif /* #ifdef ARM_MATH_MATRIX_CHECK */ { /* Total number of samples in the input matrix */ numSamples = (uint32_t) pSrcA->numRows * pSrcA->numCols; #if defined (ARM_MATH_DSP) /* Run the below code for Cortex-M4 and Cortex-M3 */ /* Loop Unrolling */ blkCnt = numSamples >> 2U; /* First part of the processing with loop unrolling. Compute 4 outputs at a time. ** a second loop below computes the remaining 1 to 3 samples. */ while (blkCnt > 0U) { /* C(m,n) = A(m,n) - B(m,n) */ /* Subtract and then store the results in the destination buffer. */ /* Read values from source A */ inA1 = pIn1[0]; /* Read values from source B */ inB1 = pIn2[0]; /* Read values from source A */ inA2 = pIn1[1]; /* out = sourceA - sourceB */ out1 = inA1 - inB1; /* Read values from source B */ inB2 = pIn2[1]; /* Read values from source A */ inA1 = pIn1[2]; /* out = sourceA - sourceB */ out2 = inA2 - inB2; /* Read values from source B */ inB1 = pIn2[2]; /* Store result in destination */ pOut[0] = out1; pOut[1] = out2; /* Read values from source A */ inA2 = pIn1[3]; /* Read values from source B */ inB2 = pIn2[3]; /* out = sourceA - sourceB */ out1 = inA1 - inB1; /* out = sourceA - sourceB */ out2 = inA2 - inB2; /* Store result in destination */ pOut[2] = out1; /* Store result in destination */ pOut[3] = out2; /* update pointers to process next sampels */ pIn1 += 4U; pIn2 += 4U; pOut += 4U; /* Decrement the loop counter */ blkCnt--; } /* If the numSamples is not a multiple of 4, compute any remaining output samples here. ** No loop unrolling is used. */ blkCnt = numSamples % 0x4U; #else /* Run the below code for Cortex-M0 */ /* Initialize blkCnt with number of samples */ blkCnt = numSamples; #endif /* #if defined (ARM_MATH_DSP) */ while (blkCnt > 0U) { /* C(m,n) = A(m,n) - B(m,n) */ /* Subtract and then store the results in the destination buffer. */ *pOut++ = (*pIn1++) - (*pIn2++); /* Decrement the loop counter */ blkCnt--; } /* Set status as ARM_MATH_SUCCESS */ status = ARM_MATH_SUCCESS; } /* Return to application */ return (status); } /** * @} end of MatrixSub group */