/* ---------------------------------------------------------------------- * Project: CMSIS DSP Library * Title: arm_conv_partial_opt_q15.c * Description: Partial convolution of Q15 sequences * * $Date: 27. January 2017 * $Revision: V.1.5.1 * * Target Processor: Cortex-M cores * -------------------------------------------------------------------- */ /* * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "arm_math.h" /** * @ingroup groupFilters */ /** * @addtogroup PartialConv * @{ */ /** * @brief Partial convolution of Q15 sequences. * @param[in] *pSrcA points to the first input sequence. * @param[in] srcALen length of the first input sequence. * @param[in] *pSrcB points to the second input sequence. * @param[in] srcBLen length of the second input sequence. * @param[out] *pDst points to the location where the output result is written. * @param[in] firstIndex is the first output sample to start with. * @param[in] numPoints is the number of output points to be computed. * @param[in] *pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. * @param[in] *pScratch2 points to scratch buffer of size min(srcALen, srcBLen). * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. * * \par Restrictions * If the silicon does not support unaligned memory access enable the macro UNALIGNED_SUPPORT_DISABLE * In this case input, output, state buffers should be aligned by 32-bit * * Refer to arm_conv_partial_fast_q15() for a faster but less precise version of this function for Cortex-M3 and Cortex-M4. * * */ #ifndef UNALIGNED_SUPPORT_DISABLE arm_status arm_conv_partial_opt_q15( q15_t * pSrcA, uint32_t srcALen, q15_t * pSrcB, uint32_t srcBLen, q15_t * pDst, uint32_t firstIndex, uint32_t numPoints, q15_t * pScratch1, q15_t * pScratch2) { q15_t *pOut = pDst; /* output pointer */ q15_t *pScr1 = pScratch1; /* Temporary pointer for scratch1 */ q15_t *pScr2 = pScratch2; /* Temporary pointer for scratch1 */ q63_t acc0, acc1, acc2, acc3; /* Accumulator */ q31_t x1, x2, x3; /* Temporary variables to hold state and coefficient values */ q31_t y1, y2; /* State variables */ q15_t *pIn1; /* inputA pointer */ q15_t *pIn2; /* inputB pointer */ q15_t *px; /* Intermediate inputA pointer */ q15_t *py; /* Intermediate inputB pointer */ uint32_t j, k, blkCnt; /* loop counter */ arm_status status; /* Status variable */ uint32_t tapCnt; /* loop count */ /* Check for range of output samples to be calculated */ if ((firstIndex + numPoints) > ((srcALen + (srcBLen - 1U)))) { /* Set status as ARM_MATH_ARGUMENT_ERROR */ status = ARM_MATH_ARGUMENT_ERROR; } else { /* The algorithm implementation is based on the lengths of the inputs. */ /* srcB is always made to slide across srcA. */ /* So srcBLen is always considered as shorter or equal to srcALen */ if (srcALen >= srcBLen) { /* Initialization of inputA pointer */ pIn1 = pSrcA; /* Initialization of inputB pointer */ pIn2 = pSrcB; } else { /* Initialization of inputA pointer */ pIn1 = pSrcB; /* Initialization of inputB pointer */ pIn2 = pSrcA; /* srcBLen is always considered as shorter or equal to srcALen */ j = srcBLen; srcBLen = srcALen; srcALen = j; } /* Temporary pointer for scratch2 */ py = pScratch2; /* pointer to take end of scratch2 buffer */ pScr2 = pScratch2 + srcBLen - 1; /* points to smaller length sequence */ px = pIn2; /* Apply loop unrolling and do 4 Copies simultaneously. */ k = srcBLen >> 2U; /* First part of the processing with loop unrolling copies 4 data points at a time. ** a second loop below copies for the remaining 1 to 3 samples. */ while (k > 0U) { /* copy second buffer in reversal manner */ *pScr2-- = *px++; *pScr2-- = *px++; *pScr2-- = *px++; *pScr2-- = *px++; /* Decrement the loop counter */ k--; } /* If the count is not a multiple of 4, copy remaining samples here. ** No loop unrolling is used. */ k = srcBLen % 0x4U; while (k > 0U) { /* copy second buffer in reversal manner for remaining samples */ *pScr2-- = *px++; /* Decrement the loop counter */ k--; } /* Initialze temporary scratch pointer */ pScr1 = pScratch1; /* Fill (srcBLen - 1U) zeros in scratch buffer */ arm_fill_q15(0, pScr1, (srcBLen - 1U)); /* Update temporary scratch pointer */ pScr1 += (srcBLen - 1U); /* Copy bigger length sequence(srcALen) samples in scratch1 buffer */ /* Copy (srcALen) samples in scratch buffer */ arm_copy_q15(pIn1, pScr1, srcALen); /* Update pointers */ pScr1 += srcALen; /* Fill (srcBLen - 1U) zeros at end of scratch buffer */ arm_fill_q15(0, pScr1, (srcBLen - 1U)); /* Update pointer */ pScr1 += (srcBLen - 1U); /* Initialization of pIn2 pointer */ pIn2 = py; pScratch1 += firstIndex; pOut = pDst + firstIndex; /* Actual convolution process starts here */ blkCnt = (numPoints) >> 2; while (blkCnt > 0) { /* Initialze temporary scratch pointer as scratch1 */ pScr1 = pScratch1; /* Clear Accumlators */ acc0 = 0; acc1 = 0; acc2 = 0; acc3 = 0; /* Read two samples from scratch1 buffer */ x1 = *__SIMD32(pScr1)++; /* Read next two samples from scratch1 buffer */ x2 = *__SIMD32(pScr1)++; tapCnt = (srcBLen) >> 2U; while (tapCnt > 0U) { /* Read four samples from smaller buffer */ y1 = _SIMD32_OFFSET(pIn2); y2 = _SIMD32_OFFSET(pIn2 + 2U); /* multiply and accumlate */ acc0 = __SMLALD(x1, y1, acc0); acc2 = __SMLALD(x2, y1, acc2); /* pack input data */ #ifndef ARM_MATH_BIG_ENDIAN x3 = __PKHBT(x2, x1, 0); #else x3 = __PKHBT(x1, x2, 0); #endif /* multiply and accumlate */ acc1 = __SMLALDX(x3, y1, acc1); /* Read next two samples from scratch1 buffer */ x1 = _SIMD32_OFFSET(pScr1); /* multiply and accumlate */ acc0 = __SMLALD(x2, y2, acc0); acc2 = __SMLALD(x1, y2, acc2); /* pack input data */ #ifndef ARM_MATH_BIG_ENDIAN x3 = __PKHBT(x1, x2, 0); #else x3 = __PKHBT(x2, x1, 0); #endif acc3 = __SMLALDX(x3, y1, acc3); acc1 = __SMLALDX(x3, y2, acc1); x2 = _SIMD32_OFFSET(pScr1 + 2U); #ifndef ARM_MATH_BIG_ENDIAN x3 = __PKHBT(x2, x1, 0); #else x3 = __PKHBT(x1, x2, 0); #endif acc3 = __SMLALDX(x3, y2, acc3); /* update scratch pointers */ pIn2 += 4U; pScr1 += 4U; /* Decrement the loop counter */ tapCnt--; } /* Update scratch pointer for remaining samples of smaller length sequence */ pScr1 -= 4U; /* apply same above for remaining samples of smaller length sequence */ tapCnt = (srcBLen) & 3U; while (tapCnt > 0U) { /* accumlate the results */ acc0 += (*pScr1++ * *pIn2); acc1 += (*pScr1++ * *pIn2); acc2 += (*pScr1++ * *pIn2); acc3 += (*pScr1++ * *pIn2++); pScr1 -= 3U; /* Decrement the loop counter */ tapCnt--; } blkCnt--; /* Store the results in the accumulators in the destination buffer. */ #ifndef ARM_MATH_BIG_ENDIAN *__SIMD32(pOut)++ = __PKHBT(__SSAT((acc0 >> 15), 16), __SSAT((acc1 >> 15), 16), 16); *__SIMD32(pOut)++ = __PKHBT(__SSAT((acc2 >> 15), 16), __SSAT((acc3 >> 15), 16), 16); #else *__SIMD32(pOut)++ = __PKHBT(__SSAT((acc1 >> 15), 16), __SSAT((acc0 >> 15), 16), 16); *__SIMD32(pOut)++ = __PKHBT(__SSAT((acc3 >> 15), 16), __SSAT((acc2 >> 15), 16), 16); #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ /* Initialization of inputB pointer */ pIn2 = py; pScratch1 += 4U; } blkCnt = numPoints & 0x3; /* Calculate convolution for remaining samples of Bigger length sequence */ while (blkCnt > 0) { /* Initialze temporary scratch pointer as scratch1 */ pScr1 = pScratch1; /* Clear Accumlators */ acc0 = 0; tapCnt = (srcBLen) >> 1U; while (tapCnt > 0U) { /* Read next two samples from scratch1 buffer */ x1 = *__SIMD32(pScr1)++; /* Read two samples from smaller buffer */ y1 = *__SIMD32(pIn2)++; acc0 = __SMLALD(x1, y1, acc0); /* Decrement the loop counter */ tapCnt--; } tapCnt = (srcBLen) & 1U; /* apply same above for remaining samples of smaller length sequence */ while (tapCnt > 0U) { /* accumlate the results */ acc0 += (*pScr1++ * *pIn2++); /* Decrement the loop counter */ tapCnt--; } blkCnt--; /* Store the result in the accumulator in the destination buffer. */ *pOut++ = (q15_t) (__SSAT((acc0 >> 15), 16)); /* Initialization of inputB pointer */ pIn2 = py; pScratch1 += 1U; } /* set status as ARM_MATH_SUCCESS */ status = ARM_MATH_SUCCESS; } /* Return to application */ return (status); } #else arm_status arm_conv_partial_opt_q15( q15_t * pSrcA, uint32_t srcALen, q15_t * pSrcB, uint32_t srcBLen, q15_t * pDst, uint32_t firstIndex, uint32_t numPoints, q15_t * pScratch1, q15_t * pScratch2) { q15_t *pOut = pDst; /* output pointer */ q15_t *pScr1 = pScratch1; /* Temporary pointer for scratch1 */ q15_t *pScr2 = pScratch2; /* Temporary pointer for scratch1 */ q63_t acc0, acc1, acc2, acc3; /* Accumulator */ q15_t *pIn1; /* inputA pointer */ q15_t *pIn2; /* inputB pointer */ q15_t *px; /* Intermediate inputA pointer */ q15_t *py; /* Intermediate inputB pointer */ uint32_t j, k, blkCnt; /* loop counter */ arm_status status; /* Status variable */ uint32_t tapCnt; /* loop count */ q15_t x10, x11, x20, x21; /* Temporary variables to hold srcA buffer */ q15_t y10, y11; /* Temporary variables to hold srcB buffer */ /* Check for range of output samples to be calculated */ if ((firstIndex + numPoints) > ((srcALen + (srcBLen - 1U)))) { /* Set status as ARM_MATH_ARGUMENT_ERROR */ status = ARM_MATH_ARGUMENT_ERROR; } else { /* The algorithm implementation is based on the lengths of the inputs. */ /* srcB is always made to slide across srcA. */ /* So srcBLen is always considered as shorter or equal to srcALen */ if (srcALen >= srcBLen) { /* Initialization of inputA pointer */ pIn1 = pSrcA; /* Initialization of inputB pointer */ pIn2 = pSrcB; } else { /* Initialization of inputA pointer */ pIn1 = pSrcB; /* Initialization of inputB pointer */ pIn2 = pSrcA; /* srcBLen is always considered as shorter or equal to srcALen */ j = srcBLen; srcBLen = srcALen; srcALen = j; } /* Temporary pointer for scratch2 */ py = pScratch2; /* pointer to take end of scratch2 buffer */ pScr2 = pScratch2 + srcBLen - 1; /* points to smaller length sequence */ px = pIn2; /* Apply loop unrolling and do 4 Copies simultaneously. */ k = srcBLen >> 2U; /* First part of the processing with loop unrolling copies 4 data points at a time. ** a second loop below copies for the remaining 1 to 3 samples. */ while (k > 0U) { /* copy second buffer in reversal manner */ *pScr2-- = *px++; *pScr2-- = *px++; *pScr2-- = *px++; *pScr2-- = *px++; /* Decrement the loop counter */ k--; } /* If the count is not a multiple of 4, copy remaining samples here. ** No loop unrolling is used. */ k = srcBLen % 0x4U; while (k > 0U) { /* copy second buffer in reversal manner for remaining samples */ *pScr2-- = *px++; /* Decrement the loop counter */ k--; } /* Initialze temporary scratch pointer */ pScr1 = pScratch1; /* Fill (srcBLen - 1U) zeros in scratch buffer */ arm_fill_q15(0, pScr1, (srcBLen - 1U)); /* Update temporary scratch pointer */ pScr1 += (srcBLen - 1U); /* Copy bigger length sequence(srcALen) samples in scratch1 buffer */ /* Apply loop unrolling and do 4 Copies simultaneously. */ k = srcALen >> 2U; /* First part of the processing with loop unrolling copies 4 data points at a time. ** a second loop below copies for the remaining 1 to 3 samples. */ while (k > 0U) { /* copy second buffer in reversal manner */ *pScr1++ = *pIn1++; *pScr1++ = *pIn1++; *pScr1++ = *pIn1++; *pScr1++ = *pIn1++; /* Decrement the loop counter */ k--; } /* If the count is not a multiple of 4, copy remaining samples here. ** No loop unrolling is used. */ k = srcALen % 0x4U; while (k > 0U) { /* copy second buffer in reversal manner for remaining samples */ *pScr1++ = *pIn1++; /* Decrement the loop counter */ k--; } /* Apply loop unrolling and do 4 Copies simultaneously. */ k = (srcBLen - 1U) >> 2U; /* First part of the processing with loop unrolling copies 4 data points at a time. ** a second loop below copies for the remaining 1 to 3 samples. */ while (k > 0U) { /* copy second buffer in reversal manner */ *pScr1++ = 0; *pScr1++ = 0; *pScr1++ = 0; *pScr1++ = 0; /* Decrement the loop counter */ k--; } /* If the count is not a multiple of 4, copy remaining samples here. ** No loop unrolling is used. */ k = (srcBLen - 1U) % 0x4U; while (k > 0U) { /* copy second buffer in reversal manner for remaining samples */ *pScr1++ = 0; /* Decrement the loop counter */ k--; } /* Initialization of pIn2 pointer */ pIn2 = py; pScratch1 += firstIndex; pOut = pDst + firstIndex; /* Actual convolution process starts here */ blkCnt = (numPoints) >> 2; while (blkCnt > 0) { /* Initialze temporary scratch pointer as scratch1 */ pScr1 = pScratch1; /* Clear Accumlators */ acc0 = 0; acc1 = 0; acc2 = 0; acc3 = 0; /* Read two samples from scratch1 buffer */ x10 = *pScr1++; x11 = *pScr1++; /* Read next two samples from scratch1 buffer */ x20 = *pScr1++; x21 = *pScr1++; tapCnt = (srcBLen) >> 2U; while (tapCnt > 0U) { /* Read two samples from smaller buffer */ y10 = *pIn2; y11 = *(pIn2 + 1U); /* multiply and accumlate */ acc0 += (q63_t) x10 *y10; acc0 += (q63_t) x11 *y11; acc2 += (q63_t) x20 *y10; acc2 += (q63_t) x21 *y11; /* multiply and accumlate */ acc1 += (q63_t) x11 *y10; acc1 += (q63_t) x20 *y11; /* Read next two samples from scratch1 buffer */ x10 = *pScr1; x11 = *(pScr1 + 1U); /* multiply and accumlate */ acc3 += (q63_t) x21 *y10; acc3 += (q63_t) x10 *y11; /* Read next two samples from scratch2 buffer */ y10 = *(pIn2 + 2U); y11 = *(pIn2 + 3U); /* multiply and accumlate */ acc0 += (q63_t) x20 *y10; acc0 += (q63_t) x21 *y11; acc2 += (q63_t) x10 *y10; acc2 += (q63_t) x11 *y11; acc1 += (q63_t) x21 *y10; acc1 += (q63_t) x10 *y11; /* Read next two samples from scratch1 buffer */ x20 = *(pScr1 + 2); x21 = *(pScr1 + 3); /* multiply and accumlate */ acc3 += (q63_t) x11 *y10; acc3 += (q63_t) x20 *y11; /* update scratch pointers */ pIn2 += 4U; pScr1 += 4U; /* Decrement the loop counter */ tapCnt--; } /* Update scratch pointer for remaining samples of smaller length sequence */ pScr1 -= 4U; /* apply same above for remaining samples of smaller length sequence */ tapCnt = (srcBLen) & 3U; while (tapCnt > 0U) { /* accumlate the results */ acc0 += (*pScr1++ * *pIn2); acc1 += (*pScr1++ * *pIn2); acc2 += (*pScr1++ * *pIn2); acc3 += (*pScr1++ * *pIn2++); pScr1 -= 3U; /* Decrement the loop counter */ tapCnt--; } blkCnt--; /* Store the results in the accumulators in the destination buffer. */ *pOut++ = __SSAT((acc0 >> 15), 16); *pOut++ = __SSAT((acc1 >> 15), 16); *pOut++ = __SSAT((acc2 >> 15), 16); *pOut++ = __SSAT((acc3 >> 15), 16); /* Initialization of inputB pointer */ pIn2 = py; pScratch1 += 4U; } blkCnt = numPoints & 0x3; /* Calculate convolution for remaining samples of Bigger length sequence */ while (blkCnt > 0) { /* Initialze temporary scratch pointer as scratch1 */ pScr1 = pScratch1; /* Clear Accumlators */ acc0 = 0; tapCnt = (srcBLen) >> 1U; while (tapCnt > 0U) { /* Read next two samples from scratch1 buffer */ x10 = *pScr1++; x11 = *pScr1++; /* Read two samples from smaller buffer */ y10 = *pIn2++; y11 = *pIn2++; /* multiply and accumlate */ acc0 += (q63_t) x10 *y10; acc0 += (q63_t) x11 *y11; /* Decrement the loop counter */ tapCnt--; } tapCnt = (srcBLen) & 1U; /* apply same above for remaining samples of smaller length sequence */ while (tapCnt > 0U) { /* accumlate the results */ acc0 += (*pScr1++ * *pIn2++); /* Decrement the loop counter */ tapCnt--; } blkCnt--; /* Store the result in the accumulator in the destination buffer. */ *pOut++ = (q15_t) (__SSAT((acc0 >> 15), 16)); /* Initialization of inputB pointer */ pIn2 = py; pScratch1 += 1U; } /* set status as ARM_MATH_SUCCESS */ status = ARM_MATH_SUCCESS; } /* Return to application */ return (status); } #endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */ /** * @} end of PartialConv group */