/* ---------------------------------------------------------------------- * Project: CMSIS DSP Library * Title: arm_conv_opt_q15.c * Description: Convolution of Q15 sequences * * $Date: 27. January 2017 * $Revision: V.1.5.1 * * Target Processor: Cortex-M cores * -------------------------------------------------------------------- */ /* * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "arm_math.h" /** * @ingroup groupFilters */ /** * @addtogroup Conv * @{ */ /** * @brief Convolution of Q15 sequences. * @param[in] *pSrcA points to the first input sequence. * @param[in] srcALen length of the first input sequence. * @param[in] *pSrcB points to the second input sequence. * @param[in] srcBLen length of the second input sequence. * @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1. * @param[in] *pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. * @param[in] *pScratch2 points to scratch buffer of size min(srcALen, srcBLen). * @return none. * * \par Restrictions * If the silicon does not support unaligned memory access enable the macro UNALIGNED_SUPPORT_DISABLE * In this case input, output, scratch1 and scratch2 buffers should be aligned by 32-bit * * * @details * Scaling and Overflow Behavior: * * \par * The function is implemented using a 64-bit internal accumulator. * Both inputs are in 1.15 format and multiplications yield a 2.30 result. * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format. * This approach provides 33 guard bits and there is no risk of overflow. * The 34.30 result is then truncated to 34.15 format by discarding the low 15 bits and then saturated to 1.15 format. * * * \par * Refer to arm_conv_fast_q15() for a faster but less precise version of this function for Cortex-M3 and Cortex-M4. * * */ void arm_conv_opt_q15( q15_t * pSrcA, uint32_t srcALen, q15_t * pSrcB, uint32_t srcBLen, q15_t * pDst, q15_t * pScratch1, q15_t * pScratch2) { q63_t acc0, acc1, acc2, acc3; /* Accumulator */ q31_t x1, x2, x3; /* Temporary variables to hold state and coefficient values */ q31_t y1, y2; /* State variables */ q15_t *pOut = pDst; /* output pointer */ q15_t *pScr1 = pScratch1; /* Temporary pointer for scratch1 */ q15_t *pScr2 = pScratch2; /* Temporary pointer for scratch1 */ q15_t *pIn1; /* inputA pointer */ q15_t *pIn2; /* inputB pointer */ q15_t *px; /* Intermediate inputA pointer */ q15_t *py; /* Intermediate inputB pointer */ uint32_t j, k, blkCnt; /* loop counter */ uint32_t tapCnt; /* loop count */ #ifdef UNALIGNED_SUPPORT_DISABLE q15_t a, b; #endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */ /* The algorithm implementation is based on the lengths of the inputs. */ /* srcB is always made to slide across srcA. */ /* So srcBLen is always considered as shorter or equal to srcALen */ if (srcALen >= srcBLen) { /* Initialization of inputA pointer */ pIn1 = pSrcA; /* Initialization of inputB pointer */ pIn2 = pSrcB; } else { /* Initialization of inputA pointer */ pIn1 = pSrcB; /* Initialization of inputB pointer */ pIn2 = pSrcA; /* srcBLen is always considered as shorter or equal to srcALen */ j = srcBLen; srcBLen = srcALen; srcALen = j; } /* pointer to take end of scratch2 buffer */ pScr2 = pScratch2 + srcBLen - 1; /* points to smaller length sequence */ px = pIn2; /* Apply loop unrolling and do 4 Copies simultaneously. */ k = srcBLen >> 2U; /* First part of the processing with loop unrolling copies 4 data points at a time. ** a second loop below copies for the remaining 1 to 3 samples. */ /* Copy smaller length input sequence in reverse order into second scratch buffer */ while (k > 0U) { /* copy second buffer in reversal manner */ *pScr2-- = *px++; *pScr2-- = *px++; *pScr2-- = *px++; *pScr2-- = *px++; /* Decrement the loop counter */ k--; } /* If the count is not a multiple of 4, copy remaining samples here. ** No loop unrolling is used. */ k = srcBLen % 0x4U; while (k > 0U) { /* copy second buffer in reversal manner for remaining samples */ *pScr2-- = *px++; /* Decrement the loop counter */ k--; } /* Initialze temporary scratch pointer */ pScr1 = pScratch1; /* Assuming scratch1 buffer is aligned by 32-bit */ /* Fill (srcBLen - 1U) zeros in scratch buffer */ arm_fill_q15(0, pScr1, (srcBLen - 1U)); /* Update temporary scratch pointer */ pScr1 += (srcBLen - 1U); /* Copy bigger length sequence(srcALen) samples in scratch1 buffer */ #ifndef UNALIGNED_SUPPORT_DISABLE /* Copy (srcALen) samples in scratch buffer */ arm_copy_q15(pIn1, pScr1, srcALen); /* Update pointers */ pScr1 += srcALen; #else /* Apply loop unrolling and do 4 Copies simultaneously. */ k = srcALen >> 2U; /* First part of the processing with loop unrolling copies 4 data points at a time. ** a second loop below copies for the remaining 1 to 3 samples. */ while (k > 0U) { /* copy second buffer in reversal manner */ *pScr1++ = *pIn1++; *pScr1++ = *pIn1++; *pScr1++ = *pIn1++; *pScr1++ = *pIn1++; /* Decrement the loop counter */ k--; } /* If the count is not a multiple of 4, copy remaining samples here. ** No loop unrolling is used. */ k = srcALen % 0x4U; while (k > 0U) { /* copy second buffer in reversal manner for remaining samples */ *pScr1++ = *pIn1++; /* Decrement the loop counter */ k--; } #endif #ifndef UNALIGNED_SUPPORT_DISABLE /* Fill (srcBLen - 1U) zeros at end of scratch buffer */ arm_fill_q15(0, pScr1, (srcBLen - 1U)); /* Update pointer */ pScr1 += (srcBLen - 1U); #else /* Apply loop unrolling and do 4 Copies simultaneously. */ k = (srcBLen - 1U) >> 2U; /* First part of the processing with loop unrolling copies 4 data points at a time. ** a second loop below copies for the remaining 1 to 3 samples. */ while (k > 0U) { /* copy second buffer in reversal manner */ *pScr1++ = 0; *pScr1++ = 0; *pScr1++ = 0; *pScr1++ = 0; /* Decrement the loop counter */ k--; } /* If the count is not a multiple of 4, copy remaining samples here. ** No loop unrolling is used. */ k = (srcBLen - 1U) % 0x4U; while (k > 0U) { /* copy second buffer in reversal manner for remaining samples */ *pScr1++ = 0; /* Decrement the loop counter */ k--; } #endif /* Temporary pointer for scratch2 */ py = pScratch2; /* Initialization of pIn2 pointer */ pIn2 = py; /* First part of the processing with loop unrolling process 4 data points at a time. ** a second loop below process for the remaining 1 to 3 samples. */ /* Actual convolution process starts here */ blkCnt = (srcALen + srcBLen - 1U) >> 2; while (blkCnt > 0) { /* Initialze temporary scratch pointer as scratch1 */ pScr1 = pScratch1; /* Clear Accumlators */ acc0 = 0; acc1 = 0; acc2 = 0; acc3 = 0; /* Read two samples from scratch1 buffer */ x1 = *__SIMD32(pScr1)++; /* Read next two samples from scratch1 buffer */ x2 = *__SIMD32(pScr1)++; tapCnt = (srcBLen) >> 2U; while (tapCnt > 0U) { #ifndef UNALIGNED_SUPPORT_DISABLE /* Read four samples from smaller buffer */ y1 = _SIMD32_OFFSET(pIn2); y2 = _SIMD32_OFFSET(pIn2 + 2U); /* multiply and accumlate */ acc0 = __SMLALD(x1, y1, acc0); acc2 = __SMLALD(x2, y1, acc2); /* pack input data */ #ifndef ARM_MATH_BIG_ENDIAN x3 = __PKHBT(x2, x1, 0); #else x3 = __PKHBT(x1, x2, 0); #endif /* multiply and accumlate */ acc1 = __SMLALDX(x3, y1, acc1); /* Read next two samples from scratch1 buffer */ x1 = _SIMD32_OFFSET(pScr1); /* multiply and accumlate */ acc0 = __SMLALD(x2, y2, acc0); acc2 = __SMLALD(x1, y2, acc2); /* pack input data */ #ifndef ARM_MATH_BIG_ENDIAN x3 = __PKHBT(x1, x2, 0); #else x3 = __PKHBT(x2, x1, 0); #endif acc3 = __SMLALDX(x3, y1, acc3); acc1 = __SMLALDX(x3, y2, acc1); x2 = _SIMD32_OFFSET(pScr1 + 2U); #ifndef ARM_MATH_BIG_ENDIAN x3 = __PKHBT(x2, x1, 0); #else x3 = __PKHBT(x1, x2, 0); #endif acc3 = __SMLALDX(x3, y2, acc3); #else /* Read four samples from smaller buffer */ a = *pIn2; b = *(pIn2 + 1); #ifndef ARM_MATH_BIG_ENDIAN y1 = __PKHBT(a, b, 16); #else y1 = __PKHBT(b, a, 16); #endif a = *(pIn2 + 2); b = *(pIn2 + 3); #ifndef ARM_MATH_BIG_ENDIAN y2 = __PKHBT(a, b, 16); #else y2 = __PKHBT(b, a, 16); #endif acc0 = __SMLALD(x1, y1, acc0); acc2 = __SMLALD(x2, y1, acc2); #ifndef ARM_MATH_BIG_ENDIAN x3 = __PKHBT(x2, x1, 0); #else x3 = __PKHBT(x1, x2, 0); #endif acc1 = __SMLALDX(x3, y1, acc1); a = *pScr1; b = *(pScr1 + 1); #ifndef ARM_MATH_BIG_ENDIAN x1 = __PKHBT(a, b, 16); #else x1 = __PKHBT(b, a, 16); #endif acc0 = __SMLALD(x2, y2, acc0); acc2 = __SMLALD(x1, y2, acc2); #ifndef ARM_MATH_BIG_ENDIAN x3 = __PKHBT(x1, x2, 0); #else x3 = __PKHBT(x2, x1, 0); #endif acc3 = __SMLALDX(x3, y1, acc3); acc1 = __SMLALDX(x3, y2, acc1); a = *(pScr1 + 2); b = *(pScr1 + 3); #ifndef ARM_MATH_BIG_ENDIAN x2 = __PKHBT(a, b, 16); #else x2 = __PKHBT(b, a, 16); #endif #ifndef ARM_MATH_BIG_ENDIAN x3 = __PKHBT(x2, x1, 0); #else x3 = __PKHBT(x1, x2, 0); #endif acc3 = __SMLALDX(x3, y2, acc3); #endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */ pIn2 += 4U; pScr1 += 4U; /* Decrement the loop counter */ tapCnt--; } /* Update scratch pointer for remaining samples of smaller length sequence */ pScr1 -= 4U; /* apply same above for remaining samples of smaller length sequence */ tapCnt = (srcBLen) & 3U; while (tapCnt > 0U) { /* accumlate the results */ acc0 += (*pScr1++ * *pIn2); acc1 += (*pScr1++ * *pIn2); acc2 += (*pScr1++ * *pIn2); acc3 += (*pScr1++ * *pIn2++); pScr1 -= 3U; /* Decrement the loop counter */ tapCnt--; } blkCnt--; /* Store the results in the accumulators in the destination buffer. */ #ifndef ARM_MATH_BIG_ENDIAN *__SIMD32(pOut)++ = __PKHBT(__SSAT((acc0 >> 15), 16), __SSAT((acc1 >> 15), 16), 16); *__SIMD32(pOut)++ = __PKHBT(__SSAT((acc2 >> 15), 16), __SSAT((acc3 >> 15), 16), 16); #else *__SIMD32(pOut)++ = __PKHBT(__SSAT((acc1 >> 15), 16), __SSAT((acc0 >> 15), 16), 16); *__SIMD32(pOut)++ = __PKHBT(__SSAT((acc3 >> 15), 16), __SSAT((acc2 >> 15), 16), 16); #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ /* Initialization of inputB pointer */ pIn2 = py; pScratch1 += 4U; } blkCnt = (srcALen + srcBLen - 1U) & 0x3; /* Calculate convolution for remaining samples of Bigger length sequence */ while (blkCnt > 0) { /* Initialze temporary scratch pointer as scratch1 */ pScr1 = pScratch1; /* Clear Accumlators */ acc0 = 0; tapCnt = (srcBLen) >> 1U; while (tapCnt > 0U) { /* Read next two samples from scratch1 buffer */ acc0 += (*pScr1++ * *pIn2++); acc0 += (*pScr1++ * *pIn2++); /* Decrement the loop counter */ tapCnt--; } tapCnt = (srcBLen) & 1U; /* apply same above for remaining samples of smaller length sequence */ while (tapCnt > 0U) { /* accumlate the results */ acc0 += (*pScr1++ * *pIn2++); /* Decrement the loop counter */ tapCnt--; } blkCnt--; /* The result is in 2.30 format. Convert to 1.15 with saturation. ** Then store the output in the destination buffer. */ *pOut++ = (q15_t) (__SSAT((acc0 >> 15), 16)); /* Initialization of inputB pointer */ pIn2 = py; pScratch1 += 1U; } } /** * @} end of Conv group */