/* ---------------------------------------------------------------------- * Project: CMSIS DSP Library * Title: arm_cmplx_mult_cmplx_q31.c * Description: Q31 complex-by-complex multiplication * * $Date: 27. January 2017 * $Revision: V.1.5.1 * * Target Processor: Cortex-M cores * -------------------------------------------------------------------- */ /* * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "arm_math.h" /** * @ingroup groupCmplxMath */ /** * @addtogroup CmplxByCmplxMult * @{ */ /** * @brief Q31 complex-by-complex multiplication * @param[in] *pSrcA points to the first input vector * @param[in] *pSrcB points to the second input vector * @param[out] *pDst points to the output vector * @param[in] numSamples number of complex samples in each vector * @return none. * * Scaling and Overflow Behavior: * \par * The function implements 1.31 by 1.31 multiplications and finally output is converted into 3.29 format. * Input down scaling is not required. */ void arm_cmplx_mult_cmplx_q31( q31_t * pSrcA, q31_t * pSrcB, q31_t * pDst, uint32_t numSamples) { q31_t a, b, c, d; /* Temporary variables to store real and imaginary values */ uint32_t blkCnt; /* loop counters */ q31_t mul1, mul2, mul3, mul4; q31_t out1, out2; #if defined (ARM_MATH_DSP) /* Run the below code for Cortex-M4 and Cortex-M3 */ /* loop Unrolling */ blkCnt = numSamples >> 2U; /* First part of the processing with loop unrolling. Compute 4 outputs at a time. ** a second loop below computes the remaining 1 to 3 samples. */ while (blkCnt > 0U) { /* C[2 * i] = A[2 * i] * B[2 * i] - A[2 * i + 1] * B[2 * i + 1]. */ /* C[2 * i + 1] = A[2 * i] * B[2 * i + 1] + A[2 * i + 1] * B[2 * i]. */ a = *pSrcA++; b = *pSrcA++; c = *pSrcB++; d = *pSrcB++; mul1 = (q31_t) (((q63_t) a * c) >> 32); mul2 = (q31_t) (((q63_t) b * d) >> 32); mul3 = (q31_t) (((q63_t) a * d) >> 32); mul4 = (q31_t) (((q63_t) b * c) >> 32); mul1 = (mul1 >> 1); mul2 = (mul2 >> 1); mul3 = (mul3 >> 1); mul4 = (mul4 >> 1); out1 = mul1 - mul2; out2 = mul3 + mul4; /* store the real result in 3.29 format in the destination buffer. */ *pDst++ = out1; /* store the imag result in 3.29 format in the destination buffer. */ *pDst++ = out2; a = *pSrcA++; b = *pSrcA++; c = *pSrcB++; d = *pSrcB++; mul1 = (q31_t) (((q63_t) a * c) >> 32); mul2 = (q31_t) (((q63_t) b * d) >> 32); mul3 = (q31_t) (((q63_t) a * d) >> 32); mul4 = (q31_t) (((q63_t) b * c) >> 32); mul1 = (mul1 >> 1); mul2 = (mul2 >> 1); mul3 = (mul3 >> 1); mul4 = (mul4 >> 1); out1 = mul1 - mul2; out2 = mul3 + mul4; /* store the real result in 3.29 format in the destination buffer. */ *pDst++ = out1; /* store the imag result in 3.29 format in the destination buffer. */ *pDst++ = out2; a = *pSrcA++; b = *pSrcA++; c = *pSrcB++; d = *pSrcB++; mul1 = (q31_t) (((q63_t) a * c) >> 32); mul2 = (q31_t) (((q63_t) b * d) >> 32); mul3 = (q31_t) (((q63_t) a * d) >> 32); mul4 = (q31_t) (((q63_t) b * c) >> 32); mul1 = (mul1 >> 1); mul2 = (mul2 >> 1); mul3 = (mul3 >> 1); mul4 = (mul4 >> 1); out1 = mul1 - mul2; out2 = mul3 + mul4; /* store the real result in 3.29 format in the destination buffer. */ *pDst++ = out1; /* store the imag result in 3.29 format in the destination buffer. */ *pDst++ = out2; a = *pSrcA++; b = *pSrcA++; c = *pSrcB++; d = *pSrcB++; mul1 = (q31_t) (((q63_t) a * c) >> 32); mul2 = (q31_t) (((q63_t) b * d) >> 32); mul3 = (q31_t) (((q63_t) a * d) >> 32); mul4 = (q31_t) (((q63_t) b * c) >> 32); mul1 = (mul1 >> 1); mul2 = (mul2 >> 1); mul3 = (mul3 >> 1); mul4 = (mul4 >> 1); out1 = mul1 - mul2; out2 = mul3 + mul4; /* store the real result in 3.29 format in the destination buffer. */ *pDst++ = out1; /* store the imag result in 3.29 format in the destination buffer. */ *pDst++ = out2; /* Decrement the blockSize loop counter */ blkCnt--; } /* If the blockSize is not a multiple of 4, compute any remaining output samples here. ** No loop unrolling is used. */ blkCnt = numSamples % 0x4U; while (blkCnt > 0U) { /* C[2 * i] = A[2 * i] * B[2 * i] - A[2 * i + 1] * B[2 * i + 1]. */ /* C[2 * i + 1] = A[2 * i] * B[2 * i + 1] + A[2 * i + 1] * B[2 * i]. */ a = *pSrcA++; b = *pSrcA++; c = *pSrcB++; d = *pSrcB++; mul1 = (q31_t) (((q63_t) a * c) >> 32); mul2 = (q31_t) (((q63_t) b * d) >> 32); mul3 = (q31_t) (((q63_t) a * d) >> 32); mul4 = (q31_t) (((q63_t) b * c) >> 32); mul1 = (mul1 >> 1); mul2 = (mul2 >> 1); mul3 = (mul3 >> 1); mul4 = (mul4 >> 1); out1 = mul1 - mul2; out2 = mul3 + mul4; /* store the real result in 3.29 format in the destination buffer. */ *pDst++ = out1; /* store the imag result in 3.29 format in the destination buffer. */ *pDst++ = out2; /* Decrement the blockSize loop counter */ blkCnt--; } #else /* Run the below code for Cortex-M0 */ /* loop Unrolling */ blkCnt = numSamples >> 1U; /* First part of the processing with loop unrolling. Compute 2 outputs at a time. ** a second loop below computes the remaining 1 sample. */ while (blkCnt > 0U) { /* C[2 * i] = A[2 * i] * B[2 * i] - A[2 * i + 1] * B[2 * i + 1]. */ /* C[2 * i + 1] = A[2 * i] * B[2 * i + 1] + A[2 * i + 1] * B[2 * i]. */ a = *pSrcA++; b = *pSrcA++; c = *pSrcB++; d = *pSrcB++; mul1 = (q31_t) (((q63_t) a * c) >> 32); mul2 = (q31_t) (((q63_t) b * d) >> 32); mul3 = (q31_t) (((q63_t) a * d) >> 32); mul4 = (q31_t) (((q63_t) b * c) >> 32); mul1 = (mul1 >> 1); mul2 = (mul2 >> 1); mul3 = (mul3 >> 1); mul4 = (mul4 >> 1); out1 = mul1 - mul2; out2 = mul3 + mul4; /* store the real result in 3.29 format in the destination buffer. */ *pDst++ = out1; /* store the imag result in 3.29 format in the destination buffer. */ *pDst++ = out2; a = *pSrcA++; b = *pSrcA++; c = *pSrcB++; d = *pSrcB++; mul1 = (q31_t) (((q63_t) a * c) >> 32); mul2 = (q31_t) (((q63_t) b * d) >> 32); mul3 = (q31_t) (((q63_t) a * d) >> 32); mul4 = (q31_t) (((q63_t) b * c) >> 32); mul1 = (mul1 >> 1); mul2 = (mul2 >> 1); mul3 = (mul3 >> 1); mul4 = (mul4 >> 1); out1 = mul1 - mul2; out2 = mul3 + mul4; /* store the real result in 3.29 format in the destination buffer. */ *pDst++ = out1; /* store the imag result in 3.29 format in the destination buffer. */ *pDst++ = out2; /* Decrement the blockSize loop counter */ blkCnt--; } /* If the blockSize is not a multiple of 2, compute any remaining output samples here. ** No loop unrolling is used. */ blkCnt = numSamples % 0x2U; while (blkCnt > 0U) { /* C[2 * i] = A[2 * i] * B[2 * i] - A[2 * i + 1] * B[2 * i + 1]. */ /* C[2 * i + 1] = A[2 * i] * B[2 * i + 1] + A[2 * i + 1] * B[2 * i]. */ a = *pSrcA++; b = *pSrcA++; c = *pSrcB++; d = *pSrcB++; mul1 = (q31_t) (((q63_t) a * c) >> 32); mul2 = (q31_t) (((q63_t) b * d) >> 32); mul3 = (q31_t) (((q63_t) a * d) >> 32); mul4 = (q31_t) (((q63_t) b * c) >> 32); mul1 = (mul1 >> 1); mul2 = (mul2 >> 1); mul3 = (mul3 >> 1); mul4 = (mul4 >> 1); out1 = mul1 - mul2; out2 = mul3 + mul4; /* store the real result in 3.29 format in the destination buffer. */ *pDst++ = out1; /* store the imag result in 3.29 format in the destination buffer. */ *pDst++ = out2; /* Decrement the blockSize loop counter */ blkCnt--; } #endif /* #if defined (ARM_MATH_DSP) */ } /** * @} end of CmplxByCmplxMult group */