/* ---------------------------------------------------------------------- * Project: CMSIS DSP Library * Title: arm_cmplx_conj_q15.c * Description: Q15 complex conjugate * * $Date: 27. January 2017 * $Revision: V.1.5.1 * * Target Processor: Cortex-M cores * -------------------------------------------------------------------- */ /* * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "arm_math.h" /** * @ingroup groupCmplxMath */ /** * @addtogroup cmplx_conj * @{ */ /** * @brief Q15 complex conjugate. * @param *pSrc points to the input vector * @param *pDst points to the output vector * @param numSamples number of complex samples in each vector * @return none. * * Scaling and Overflow Behavior: * \par * The function uses saturating arithmetic. * The Q15 value -1 (0x8000) will be saturated to the maximum allowable positive value 0x7FFF. */ void arm_cmplx_conj_q15( q15_t * pSrc, q15_t * pDst, uint32_t numSamples) { #if defined (ARM_MATH_DSP) /* Run the below code for Cortex-M4 and Cortex-M3 */ uint32_t blkCnt; /* loop counter */ q31_t in1, in2, in3, in4; q31_t zero = 0; /*loop Unrolling */ blkCnt = numSamples >> 2U; /* First part of the processing with loop unrolling. Compute 4 outputs at a time. ** a second loop below computes the remaining 1 to 3 samples. */ while (blkCnt > 0U) { /* C[0]+jC[1] = A[0]+ j (-1) A[1] */ /* Calculate Complex Conjugate and then store the results in the destination buffer. */ in1 = *__SIMD32(pSrc)++; in2 = *__SIMD32(pSrc)++; in3 = *__SIMD32(pSrc)++; in4 = *__SIMD32(pSrc)++; #ifndef ARM_MATH_BIG_ENDIAN in1 = __QASX(zero, in1); in2 = __QASX(zero, in2); in3 = __QASX(zero, in3); in4 = __QASX(zero, in4); #else in1 = __QSAX(zero, in1); in2 = __QSAX(zero, in2); in3 = __QSAX(zero, in3); in4 = __QSAX(zero, in4); #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ in1 = ((uint32_t) in1 >> 16) | ((uint32_t) in1 << 16); in2 = ((uint32_t) in2 >> 16) | ((uint32_t) in2 << 16); in3 = ((uint32_t) in3 >> 16) | ((uint32_t) in3 << 16); in4 = ((uint32_t) in4 >> 16) | ((uint32_t) in4 << 16); *__SIMD32(pDst)++ = in1; *__SIMD32(pDst)++ = in2; *__SIMD32(pDst)++ = in3; *__SIMD32(pDst)++ = in4; /* Decrement the loop counter */ blkCnt--; } /* If the numSamples is not a multiple of 4, compute any remaining output samples here. ** No loop unrolling is used. */ blkCnt = numSamples % 0x4U; while (blkCnt > 0U) { /* C[0]+jC[1] = A[0]+ j (-1) A[1] */ /* Calculate Complex Conjugate and then store the results in the destination buffer. */ *pDst++ = *pSrc++; *pDst++ = __SSAT(-*pSrc++, 16); /* Decrement the loop counter */ blkCnt--; } #else q15_t in; /* Run the below code for Cortex-M0 */ while (numSamples > 0U) { /* realOut + j (imagOut) = realIn+ j (-1) imagIn */ /* Calculate Complex Conjugate and then store the results in the destination buffer. */ *pDst++ = *pSrc++; in = *pSrc++; *pDst++ = (in == (q15_t) 0x8000) ? 0x7fff : -in; /* Decrement the loop counter */ numSamples--; } #endif /* #if defined (ARM_MATH_DSP) */ } /** * @} end of cmplx_conj group */