/* ---------------------------------------------------------------------- * Project: CMSIS DSP Library * Title: arm_rfft_q15.c * Description: RFFT & RIFFT Q15 process function * * $Date: 27. January 2017 * $Revision: V.1.5.1 * * Target Processor: Cortex-M cores * -------------------------------------------------------------------- */ /* * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "arm_math.h" /* ---------------------------------------------------------------------- * Internal functions prototypes * -------------------------------------------------------------------- */ void arm_split_rfft_q15( q15_t * pSrc, uint32_t fftLen, q15_t * pATable, q15_t * pBTable, q15_t * pDst, uint32_t modifier); void arm_split_rifft_q15( q15_t * pSrc, uint32_t fftLen, q15_t * pATable, q15_t * pBTable, q15_t * pDst, uint32_t modifier); /** * @addtogroup RealFFT * @{ */ /** * @brief Processing function for the Q15 RFFT/RIFFT. * @param[in] *S points to an instance of the Q15 RFFT/RIFFT structure. * @param[in] *pSrc points to the input buffer. * @param[out] *pDst points to the output buffer. * @return none. * * \par Input an output formats: * \par * Internally input is downscaled by 2 for every stage to avoid saturations inside CFFT/CIFFT process. * Hence the output format is different for different RFFT sizes. * The input and output formats for different RFFT sizes and number of bits to upscale are mentioned in the tables below for RFFT and RIFFT: * \par * \image html RFFTQ15.gif "Input and Output Formats for Q15 RFFT" * \par * \image html RIFFTQ15.gif "Input and Output Formats for Q15 RIFFT" */ void arm_rfft_q15( const arm_rfft_instance_q15 * S, q15_t * pSrc, q15_t * pDst) { const arm_cfft_instance_q15 *S_CFFT = S->pCfft; uint32_t i; uint32_t L2 = S->fftLenReal >> 1; /* Calculation of RIFFT of input */ if (S->ifftFlagR == 1U) { /* Real IFFT core process */ arm_split_rifft_q15(pSrc, L2, S->pTwiddleAReal, S->pTwiddleBReal, pDst, S->twidCoefRModifier); /* Complex IFFT process */ arm_cfft_q15(S_CFFT, pDst, S->ifftFlagR, S->bitReverseFlagR); for(i=0;ifftLenReal;i++) { pDst[i] = pDst[i] << 1; } } else { /* Calculation of RFFT of input */ /* Complex FFT process */ arm_cfft_q15(S_CFFT, pSrc, S->ifftFlagR, S->bitReverseFlagR); /* Real FFT core process */ arm_split_rfft_q15(pSrc, L2, S->pTwiddleAReal, S->pTwiddleBReal, pDst, S->twidCoefRModifier); } } /** * @} end of RealFFT group */ /** * @brief Core Real FFT process * @param *pSrc points to the input buffer. * @param fftLen length of FFT. * @param *pATable points to the A twiddle Coef buffer. * @param *pBTable points to the B twiddle Coef buffer. * @param *pDst points to the output buffer. * @param modifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. * @return none. * The function implements a Real FFT */ void arm_split_rfft_q15( q15_t * pSrc, uint32_t fftLen, q15_t * pATable, q15_t * pBTable, q15_t * pDst, uint32_t modifier) { uint32_t i; /* Loop Counter */ q31_t outR, outI; /* Temporary variables for output */ q15_t *pCoefA, *pCoefB; /* Temporary pointers for twiddle factors */ q15_t *pSrc1, *pSrc2; #if defined (ARM_MATH_DSP) q15_t *pD1, *pD2; #endif // pSrc[2U * fftLen] = pSrc[0]; // pSrc[(2U * fftLen) + 1U] = pSrc[1]; pCoefA = &pATable[modifier * 2U]; pCoefB = &pBTable[modifier * 2U]; pSrc1 = &pSrc[2]; pSrc2 = &pSrc[(2U * fftLen) - 2U]; #if defined (ARM_MATH_DSP) /* Run the below code for Cortex-M4 and Cortex-M3 */ i = 1U; pD1 = pDst + 2; pD2 = pDst + (4U * fftLen) - 2; for(i = fftLen - 1; i > 0; i--) { /* outR = (pSrc[2 * i] * pATable[2 * i] - pSrc[2 * i + 1] * pATable[2 * i + 1] + pSrc[2 * n - 2 * i] * pBTable[2 * i] + pSrc[2 * n - 2 * i + 1] * pBTable[2 * i + 1]); */ /* outI = (pIn[2 * i + 1] * pATable[2 * i] + pIn[2 * i] * pATable[2 * i + 1] + pIn[2 * n - 2 * i] * pBTable[2 * i + 1] - pIn[2 * n - 2 * i + 1] * pBTable[2 * i]); */ #ifndef ARM_MATH_BIG_ENDIAN /* pSrc[2 * i] * pATable[2 * i] - pSrc[2 * i + 1] * pATable[2 * i + 1] */ outR = __SMUSD(*__SIMD32(pSrc1), *__SIMD32(pCoefA)); #else /* -(pSrc[2 * i + 1] * pATable[2 * i + 1] - pSrc[2 * i] * pATable[2 * i]) */ outR = -(__SMUSD(*__SIMD32(pSrc1), *__SIMD32(pCoefA))); #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ /* pSrc[2 * n - 2 * i] * pBTable[2 * i] + pSrc[2 * n - 2 * i + 1] * pBTable[2 * i + 1]) */ outR = __SMLAD(*__SIMD32(pSrc2), *__SIMD32(pCoefB), outR) >> 16U; /* pIn[2 * n - 2 * i] * pBTable[2 * i + 1] - pIn[2 * n - 2 * i + 1] * pBTable[2 * i] */ #ifndef ARM_MATH_BIG_ENDIAN outI = __SMUSDX(*__SIMD32(pSrc2)--, *__SIMD32(pCoefB)); #else outI = __SMUSDX(*__SIMD32(pCoefB), *__SIMD32(pSrc2)--); #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ /* (pIn[2 * i + 1] * pATable[2 * i] + pIn[2 * i] * pATable[2 * i + 1] */ outI = __SMLADX(*__SIMD32(pSrc1)++, *__SIMD32(pCoefA), outI); /* write output */ *pD1++ = (q15_t) outR; *pD1++ = outI >> 16U; /* write complex conjugate output */ pD2[0] = (q15_t) outR; pD2[1] = -(outI >> 16U); pD2 -= 2; /* update coefficient pointer */ pCoefB = pCoefB + (2U * modifier); pCoefA = pCoefA + (2U * modifier); } pDst[2U * fftLen] = (pSrc[0] - pSrc[1]) >> 1; pDst[(2U * fftLen) + 1U] = 0; pDst[0] = (pSrc[0] + pSrc[1]) >> 1; pDst[1] = 0; #else /* Run the below code for Cortex-M0 */ i = 1U; while (i < fftLen) { /* outR = (pSrc[2 * i] * pATable[2 * i] - pSrc[2 * i + 1] * pATable[2 * i + 1] + pSrc[2 * n - 2 * i] * pBTable[2 * i] + pSrc[2 * n - 2 * i + 1] * pBTable[2 * i + 1]); */ outR = *pSrc1 * *pCoefA; outR = outR - (*(pSrc1 + 1) * *(pCoefA + 1)); outR = outR + (*pSrc2 * *pCoefB); outR = (outR + (*(pSrc2 + 1) * *(pCoefB + 1))) >> 16; /* outI = (pIn[2 * i + 1] * pATable[2 * i] + pIn[2 * i] * pATable[2 * i + 1] + pIn[2 * n - 2 * i] * pBTable[2 * i + 1] - pIn[2 * n - 2 * i + 1] * pBTable[2 * i]); */ outI = *pSrc2 * *(pCoefB + 1); outI = outI - (*(pSrc2 + 1) * *pCoefB); outI = outI + (*(pSrc1 + 1) * *pCoefA); outI = outI + (*pSrc1 * *(pCoefA + 1)); /* update input pointers */ pSrc1 += 2U; pSrc2 -= 2U; /* write output */ pDst[2U * i] = (q15_t) outR; pDst[(2U * i) + 1U] = outI >> 16U; /* write complex conjugate output */ pDst[(4U * fftLen) - (2U * i)] = (q15_t) outR; pDst[((4U * fftLen) - (2U * i)) + 1U] = -(outI >> 16U); /* update coefficient pointer */ pCoefB = pCoefB + (2U * modifier); pCoefA = pCoefA + (2U * modifier); i++; } pDst[2U * fftLen] = (pSrc[0] - pSrc[1]) >> 1; pDst[(2U * fftLen) + 1U] = 0; pDst[0] = (pSrc[0] + pSrc[1]) >> 1; pDst[1] = 0; #endif /* #if defined (ARM_MATH_DSP) */ } /** * @brief Core Real IFFT process * @param[in] *pSrc points to the input buffer. * @param[in] fftLen length of FFT. * @param[in] *pATable points to the twiddle Coef A buffer. * @param[in] *pBTable points to the twiddle Coef B buffer. * @param[out] *pDst points to the output buffer. * @param[in] modifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. * @return none. * The function implements a Real IFFT */ void arm_split_rifft_q15( q15_t * pSrc, uint32_t fftLen, q15_t * pATable, q15_t * pBTable, q15_t * pDst, uint32_t modifier) { uint32_t i; /* Loop Counter */ q31_t outR, outI; /* Temporary variables for output */ q15_t *pCoefA, *pCoefB; /* Temporary pointers for twiddle factors */ q15_t *pSrc1, *pSrc2; q15_t *pDst1 = &pDst[0]; pCoefA = &pATable[0]; pCoefB = &pBTable[0]; pSrc1 = &pSrc[0]; pSrc2 = &pSrc[2U * fftLen]; #if defined (ARM_MATH_DSP) /* Run the below code for Cortex-M4 and Cortex-M3 */ i = fftLen; while (i > 0U) { /* outR = (pIn[2 * i] * pATable[2 * i] + pIn[2 * i + 1] * pATable[2 * i + 1] + pIn[2 * n - 2 * i] * pBTable[2 * i] - pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1]); outI = (pIn[2 * i + 1] * pATable[2 * i] - pIn[2 * i] * pATable[2 * i + 1] - pIn[2 * n - 2 * i] * pBTable[2 * i + 1] - pIn[2 * n - 2 * i + 1] * pBTable[2 * i]); */ #ifndef ARM_MATH_BIG_ENDIAN /* pIn[2 * n - 2 * i] * pBTable[2 * i] - pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1]) */ outR = __SMUSD(*__SIMD32(pSrc2), *__SIMD32(pCoefB)); #else /* -(-pIn[2 * n - 2 * i] * pBTable[2 * i] + pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1])) */ outR = -(__SMUSD(*__SIMD32(pSrc2), *__SIMD32(pCoefB))); #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ /* pIn[2 * i] * pATable[2 * i] + pIn[2 * i + 1] * pATable[2 * i + 1] + pIn[2 * n - 2 * i] * pBTable[2 * i] */ outR = __SMLAD(*__SIMD32(pSrc1), *__SIMD32(pCoefA), outR) >> 16U; /* -pIn[2 * n - 2 * i] * pBTable[2 * i + 1] + pIn[2 * n - 2 * i + 1] * pBTable[2 * i] */ outI = __SMUADX(*__SIMD32(pSrc2)--, *__SIMD32(pCoefB)); /* pIn[2 * i + 1] * pATable[2 * i] - pIn[2 * i] * pATable[2 * i + 1] */ #ifndef ARM_MATH_BIG_ENDIAN outI = __SMLSDX(*__SIMD32(pCoefA), *__SIMD32(pSrc1)++, -outI); #else outI = __SMLSDX(*__SIMD32(pSrc1)++, *__SIMD32(pCoefA), -outI); #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ /* write output */ #ifndef ARM_MATH_BIG_ENDIAN *__SIMD32(pDst1)++ = __PKHBT(outR, (outI >> 16U), 16); #else *__SIMD32(pDst1)++ = __PKHBT((outI >> 16U), outR, 16); #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ /* update coefficient pointer */ pCoefB = pCoefB + (2U * modifier); pCoefA = pCoefA + (2U * modifier); i--; } #else /* Run the below code for Cortex-M0 */ i = fftLen; while (i > 0U) { /* outR = (pIn[2 * i] * pATable[2 * i] + pIn[2 * i + 1] * pATable[2 * i + 1] + pIn[2 * n - 2 * i] * pBTable[2 * i] - pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1]); */ outR = *pSrc2 * *pCoefB; outR = outR - (*(pSrc2 + 1) * *(pCoefB + 1)); outR = outR + (*pSrc1 * *pCoefA); outR = (outR + (*(pSrc1 + 1) * *(pCoefA + 1))) >> 16; /* outI = (pIn[2 * i + 1] * pATable[2 * i] - pIn[2 * i] * pATable[2 * i + 1] - pIn[2 * n - 2 * i] * pBTable[2 * i + 1] - pIn[2 * n - 2 * i + 1] * pBTable[2 * i]); */ outI = *(pSrc1 + 1) * *pCoefA; outI = outI - (*pSrc1 * *(pCoefA + 1)); outI = outI - (*pSrc2 * *(pCoefB + 1)); outI = outI - (*(pSrc2 + 1) * *(pCoefB)); /* update input pointers */ pSrc1 += 2U; pSrc2 -= 2U; /* write output */ *pDst1++ = (q15_t) outR; *pDst1++ = (q15_t) (outI >> 16); /* update coefficient pointer */ pCoefB = pCoefB + (2U * modifier); pCoefA = pCoefA + (2U * modifier); i--; } #endif /* #if defined (ARM_MATH_DSP) */ }