/* ---------------------------------------------------------------------- * Project: CMSIS DSP Library * Title: arm_conv_fast_q31.c * Description: Fast Q31 Convolution * * $Date: 27. January 2017 * $Revision: V.1.5.1 * * Target Processor: Cortex-M cores * -------------------------------------------------------------------- */ /* * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "arm_math.h" /** * @ingroup groupFilters */ /** * @addtogroup Conv * @{ */ /** * @param[in] *pSrcA points to the first input sequence. * @param[in] srcALen length of the first input sequence. * @param[in] *pSrcB points to the second input sequence. * @param[in] srcBLen length of the second input sequence. * @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1. * @return none. * * @details * Scaling and Overflow Behavior: * * \par * This function is optimized for speed at the expense of fixed-point precision and overflow protection. * The result of each 1.31 x 1.31 multiplication is truncated to 2.30 format. * These intermediate results are accumulated in a 32-bit register in 2.30 format. * Finally, the accumulator is saturated and converted to a 1.31 result. * * \par * The fast version has the same overflow behavior as the standard version but provides less precision since it discards the low 32 bits of each multiplication result. * In order to avoid overflows completely the input signals must be scaled down. * Scale down the inputs by log2(min(srcALen, srcBLen)) (log2 is read as log to the base 2) times to avoid overflows, * as maximum of min(srcALen, srcBLen) number of additions are carried internally. * * \par * See arm_conv_q31() for a slower implementation of this function which uses 64-bit accumulation to provide higher precision. */ void arm_conv_fast_q31( q31_t * pSrcA, uint32_t srcALen, q31_t * pSrcB, uint32_t srcBLen, q31_t * pDst) { q31_t *pIn1; /* inputA pointer */ q31_t *pIn2; /* inputB pointer */ q31_t *pOut = pDst; /* output pointer */ q31_t *px; /* Intermediate inputA pointer */ q31_t *py; /* Intermediate inputB pointer */ q31_t *pSrc1, *pSrc2; /* Intermediate pointers */ q31_t sum, acc0, acc1, acc2, acc3; /* Accumulator */ q31_t x0, x1, x2, x3, c0; /* Temporary variables to hold state and coefficient values */ uint32_t j, k, count, blkCnt, blockSize1, blockSize2, blockSize3; /* loop counter */ /* The algorithm implementation is based on the lengths of the inputs. */ /* srcB is always made to slide across srcA. */ /* So srcBLen is always considered as shorter or equal to srcALen */ if (srcALen >= srcBLen) { /* Initialization of inputA pointer */ pIn1 = pSrcA; /* Initialization of inputB pointer */ pIn2 = pSrcB; } else { /* Initialization of inputA pointer */ pIn1 = pSrcB; /* Initialization of inputB pointer */ pIn2 = pSrcA; /* srcBLen is always considered as shorter or equal to srcALen */ j = srcBLen; srcBLen = srcALen; srcALen = j; } /* conv(x,y) at n = x[n] * y[0] + x[n-1] * y[1] + x[n-2] * y[2] + ...+ x[n-N+1] * y[N -1] */ /* The function is internally * divided into three stages according to the number of multiplications that has to be * taken place between inputA samples and inputB samples. In the first stage of the * algorithm, the multiplications increase by one for every iteration. * In the second stage of the algorithm, srcBLen number of multiplications are done. * In the third stage of the algorithm, the multiplications decrease by one * for every iteration. */ /* The algorithm is implemented in three stages. The loop counters of each stage is initiated here. */ blockSize1 = srcBLen - 1U; blockSize2 = srcALen - (srcBLen - 1U); blockSize3 = blockSize1; /* -------------------------- * Initializations of stage1 * -------------------------*/ /* sum = x[0] * y[0] * sum = x[0] * y[1] + x[1] * y[0] * .... * sum = x[0] * y[srcBlen - 1] + x[1] * y[srcBlen - 2] +...+ x[srcBLen - 1] * y[0] */ /* In this stage the MAC operations are increased by 1 for every iteration. The count variable holds the number of MAC operations performed */ count = 1U; /* Working pointer of inputA */ px = pIn1; /* Working pointer of inputB */ py = pIn2; /* ------------------------ * Stage1 process * ----------------------*/ /* The first stage starts here */ while (blockSize1 > 0U) { /* Accumulator is made zero for every iteration */ sum = 0; /* Apply loop unrolling and compute 4 MACs simultaneously. */ k = count >> 2U; /* First part of the processing with loop unrolling. Compute 4 MACs at a time. ** a second loop below computes MACs for the remaining 1 to 3 samples. */ while (k > 0U) { /* x[0] * y[srcBLen - 1] */ sum = (q31_t) ((((q63_t) sum << 32) + ((q63_t) * px++ * (*py--))) >> 32); /* x[1] * y[srcBLen - 2] */ sum = (q31_t) ((((q63_t) sum << 32) + ((q63_t) * px++ * (*py--))) >> 32); /* x[2] * y[srcBLen - 3] */ sum = (q31_t) ((((q63_t) sum << 32) + ((q63_t) * px++ * (*py--))) >> 32); /* x[3] * y[srcBLen - 4] */ sum = (q31_t) ((((q63_t) sum << 32) + ((q63_t) * px++ * (*py--))) >> 32); /* Decrement the loop counter */ k--; } /* If the count is not a multiple of 4, compute any remaining MACs here. ** No loop unrolling is used. */ k = count % 0x4U; while (k > 0U) { /* Perform the multiply-accumulate */ sum = (q31_t) ((((q63_t) sum << 32) + ((q63_t) * px++ * (*py--))) >> 32); /* Decrement the loop counter */ k--; } /* Store the result in the accumulator in the destination buffer. */ *pOut++ = sum << 1; /* Update the inputA and inputB pointers for next MAC calculation */ py = pIn2 + count; px = pIn1; /* Increment the MAC count */ count++; /* Decrement the loop counter */ blockSize1--; } /* -------------------------- * Initializations of stage2 * ------------------------*/ /* sum = x[0] * y[srcBLen-1] + x[1] * y[srcBLen-2] +...+ x[srcBLen-1] * y[0] * sum = x[1] * y[srcBLen-1] + x[2] * y[srcBLen-2] +...+ x[srcBLen] * y[0] * .... * sum = x[srcALen-srcBLen-2] * y[srcBLen-1] + x[srcALen] * y[srcBLen-2] +...+ x[srcALen-1] * y[0] */ /* Working pointer of inputA */ px = pIn1; /* Working pointer of inputB */ pSrc2 = pIn2 + (srcBLen - 1U); py = pSrc2; /* count is index by which the pointer pIn1 to be incremented */ count = 0U; /* ------------------- * Stage2 process * ------------------*/ /* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed. * So, to loop unroll over blockSize2, * srcBLen should be greater than or equal to 4 */ if (srcBLen >= 4U) { /* Loop unroll over blockSize2, by 4 */ blkCnt = blockSize2 >> 2U; while (blkCnt > 0U) { /* Set all accumulators to zero */ acc0 = 0; acc1 = 0; acc2 = 0; acc3 = 0; /* read x[0], x[1], x[2] samples */ x0 = *(px++); x1 = *(px++); x2 = *(px++); /* Apply loop unrolling and compute 4 MACs simultaneously. */ k = srcBLen >> 2U; /* First part of the processing with loop unrolling. Compute 4 MACs at a time. ** a second loop below computes MACs for the remaining 1 to 3 samples. */ do { /* Read y[srcBLen - 1] sample */ c0 = *(py--); /* Read x[3] sample */ x3 = *(px++); /* Perform the multiply-accumulates */ /* acc0 += x[0] * y[srcBLen - 1] */ acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x0 * c0)) >> 32); /* acc1 += x[1] * y[srcBLen - 1] */ acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x1 * c0)) >> 32); /* acc2 += x[2] * y[srcBLen - 1] */ acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x2 * c0)) >> 32); /* acc3 += x[3] * y[srcBLen - 1] */ acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x3 * c0)) >> 32); /* Read y[srcBLen - 2] sample */ c0 = *(py--); /* Read x[4] sample */ x0 = *(px++); /* Perform the multiply-accumulate */ /* acc0 += x[1] * y[srcBLen - 2] */ acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x1 * c0)) >> 32); /* acc1 += x[2] * y[srcBLen - 2] */ acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x2 * c0)) >> 32); /* acc2 += x[3] * y[srcBLen - 2] */ acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x3 * c0)) >> 32); /* acc3 += x[4] * y[srcBLen - 2] */ acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x0 * c0)) >> 32); /* Read y[srcBLen - 3] sample */ c0 = *(py--); /* Read x[5] sample */ x1 = *(px++); /* Perform the multiply-accumulates */ /* acc0 += x[2] * y[srcBLen - 3] */ acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x2 * c0)) >> 32); /* acc1 += x[3] * y[srcBLen - 3] */ acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x3 * c0)) >> 32); /* acc2 += x[4] * y[srcBLen - 3] */ acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x0 * c0)) >> 32); /* acc3 += x[5] * y[srcBLen - 3] */ acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x1 * c0)) >> 32); /* Read y[srcBLen - 4] sample */ c0 = *(py--); /* Read x[6] sample */ x2 = *(px++); /* Perform the multiply-accumulates */ /* acc0 += x[3] * y[srcBLen - 4] */ acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x3 * c0)) >> 32); /* acc1 += x[4] * y[srcBLen - 4] */ acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x0 * c0)) >> 32); /* acc2 += x[5] * y[srcBLen - 4] */ acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x1 * c0)) >> 32); /* acc3 += x[6] * y[srcBLen - 4] */ acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x2 * c0)) >> 32); } while (--k); /* If the srcBLen is not a multiple of 4, compute any remaining MACs here. ** No loop unrolling is used. */ k = srcBLen % 0x4U; while (k > 0U) { /* Read y[srcBLen - 5] sample */ c0 = *(py--); /* Read x[7] sample */ x3 = *(px++); /* Perform the multiply-accumulates */ /* acc0 += x[4] * y[srcBLen - 5] */ acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x0 * c0)) >> 32); /* acc1 += x[5] * y[srcBLen - 5] */ acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x1 * c0)) >> 32); /* acc2 += x[6] * y[srcBLen - 5] */ acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x2 * c0)) >> 32); /* acc3 += x[7] * y[srcBLen - 5] */ acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x3 * c0)) >> 32); /* Reuse the present samples for the next MAC */ x0 = x1; x1 = x2; x2 = x3; /* Decrement the loop counter */ k--; } /* Store the results in the accumulators in the destination buffer. */ *pOut++ = (q31_t) (acc0 << 1); *pOut++ = (q31_t) (acc1 << 1); *pOut++ = (q31_t) (acc2 << 1); *pOut++ = (q31_t) (acc3 << 1); /* Increment the pointer pIn1 index, count by 4 */ count += 4U; /* Update the inputA and inputB pointers for next MAC calculation */ px = pIn1 + count; py = pSrc2; /* Decrement the loop counter */ blkCnt--; } /* If the blockSize2 is not a multiple of 4, compute any remaining output samples here. ** No loop unrolling is used. */ blkCnt = blockSize2 % 0x4U; while (blkCnt > 0U) { /* Accumulator is made zero for every iteration */ sum = 0; /* Apply loop unrolling and compute 4 MACs simultaneously. */ k = srcBLen >> 2U; /* First part of the processing with loop unrolling. Compute 4 MACs at a time. ** a second loop below computes MACs for the remaining 1 to 3 samples. */ while (k > 0U) { /* Perform the multiply-accumulates */ sum = (q31_t) ((((q63_t) sum << 32) + ((q63_t) * px++ * (*py--))) >> 32); sum = (q31_t) ((((q63_t) sum << 32) + ((q63_t) * px++ * (*py--))) >> 32); sum = (q31_t) ((((q63_t) sum << 32) + ((q63_t) * px++ * (*py--))) >> 32); sum = (q31_t) ((((q63_t) sum << 32) + ((q63_t) * px++ * (*py--))) >> 32); /* Decrement the loop counter */ k--; } /* If the srcBLen is not a multiple of 4, compute any remaining MACs here. ** No loop unrolling is used. */ k = srcBLen % 0x4U; while (k > 0U) { /* Perform the multiply-accumulate */ sum = (q31_t) ((((q63_t) sum << 32) + ((q63_t) * px++ * (*py--))) >> 32); /* Decrement the loop counter */ k--; } /* Store the result in the accumulator in the destination buffer. */ *pOut++ = sum << 1; /* Increment the MAC count */ count++; /* Update the inputA and inputB pointers for next MAC calculation */ px = pIn1 + count; py = pSrc2; /* Decrement the loop counter */ blkCnt--; } } else { /* If the srcBLen is not a multiple of 4, * the blockSize2 loop cannot be unrolled by 4 */ blkCnt = blockSize2; while (blkCnt > 0U) { /* Accumulator is made zero for every iteration */ sum = 0; /* srcBLen number of MACS should be performed */ k = srcBLen; while (k > 0U) { /* Perform the multiply-accumulate */ sum = (q31_t) ((((q63_t) sum << 32) + ((q63_t) * px++ * (*py--))) >> 32); /* Decrement the loop counter */ k--; } /* Store the result in the accumulator in the destination buffer. */ *pOut++ = sum << 1; /* Increment the MAC count */ count++; /* Update the inputA and inputB pointers for next MAC calculation */ px = pIn1 + count; py = pSrc2; /* Decrement the loop counter */ blkCnt--; } } /* -------------------------- * Initializations of stage3 * -------------------------*/ /* sum += x[srcALen-srcBLen+1] * y[srcBLen-1] + x[srcALen-srcBLen+2] * y[srcBLen-2] +...+ x[srcALen-1] * y[1] * sum += x[srcALen-srcBLen+2] * y[srcBLen-1] + x[srcALen-srcBLen+3] * y[srcBLen-2] +...+ x[srcALen-1] * y[2] * .... * sum += x[srcALen-2] * y[srcBLen-1] + x[srcALen-1] * y[srcBLen-2] * sum += x[srcALen-1] * y[srcBLen-1] */ /* In this stage the MAC operations are decreased by 1 for every iteration. The blockSize3 variable holds the number of MAC operations performed */ /* Working pointer of inputA */ pSrc1 = (pIn1 + srcALen) - (srcBLen - 1U); px = pSrc1; /* Working pointer of inputB */ pSrc2 = pIn2 + (srcBLen - 1U); py = pSrc2; /* ------------------- * Stage3 process * ------------------*/ while (blockSize3 > 0U) { /* Accumulator is made zero for every iteration */ sum = 0; /* Apply loop unrolling and compute 4 MACs simultaneously. */ k = blockSize3 >> 2U; /* First part of the processing with loop unrolling. Compute 4 MACs at a time. ** a second loop below computes MACs for the remaining 1 to 3 samples. */ while (k > 0U) { /* sum += x[srcALen - srcBLen + 1] * y[srcBLen - 1] */ sum = (q31_t) ((((q63_t) sum << 32) + ((q63_t) * px++ * (*py--))) >> 32); /* sum += x[srcALen - srcBLen + 2] * y[srcBLen - 2] */ sum = (q31_t) ((((q63_t) sum << 32) + ((q63_t) * px++ * (*py--))) >> 32); /* sum += x[srcALen - srcBLen + 3] * y[srcBLen - 3] */ sum = (q31_t) ((((q63_t) sum << 32) + ((q63_t) * px++ * (*py--))) >> 32); /* sum += x[srcALen - srcBLen + 4] * y[srcBLen - 4] */ sum = (q31_t) ((((q63_t) sum << 32) + ((q63_t) * px++ * (*py--))) >> 32); /* Decrement the loop counter */ k--; } /* If the blockSize3 is not a multiple of 4, compute any remaining MACs here. ** No loop unrolling is used. */ k = blockSize3 % 0x4U; while (k > 0U) { /* Perform the multiply-accumulate */ sum = (q31_t) ((((q63_t) sum << 32) + ((q63_t) * px++ * (*py--))) >> 32); /* Decrement the loop counter */ k--; } /* Store the result in the accumulator in the destination buffer. */ *pOut++ = sum << 1; /* Update the inputA and inputB pointers for next MAC calculation */ px = ++pSrc1; py = pSrc2; /* Decrement the loop counter */ blockSize3--; } } /** * @} end of Conv group */