/* ---------------------------------------------------------------------- * Project: CMSIS DSP Library * Title: arm_cmplx_mult_real_q31.c * Description: Q31 complex by real multiplication * * $Date: 27. January 2017 * $Revision: V.1.5.1 * * Target Processor: Cortex-M cores * -------------------------------------------------------------------- */ /* * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "arm_math.h" /** * @ingroup groupCmplxMath */ /** * @addtogroup CmplxByRealMult * @{ */ /** * @brief Q31 complex-by-real multiplication * @param[in] *pSrcCmplx points to the complex input vector * @param[in] *pSrcReal points to the real input vector * @param[out] *pCmplxDst points to the complex output vector * @param[in] numSamples number of samples in each vector * @return none. * * Scaling and Overflow Behavior: * \par * The function uses saturating arithmetic. * Results outside of the allowable Q31 range[0x80000000 0x7FFFFFFF] will be saturated. */ void arm_cmplx_mult_real_q31( q31_t * pSrcCmplx, q31_t * pSrcReal, q31_t * pCmplxDst, uint32_t numSamples) { q31_t inA1; /* Temporary variable to store input value */ #if defined (ARM_MATH_DSP) /* Run the below code for Cortex-M4 and Cortex-M3 */ uint32_t blkCnt; /* loop counters */ q31_t inA2, inA3, inA4; /* Temporary variables to hold input data */ q31_t inB1, inB2; /* Temporary variabels to hold input data */ q31_t out1, out2, out3, out4; /* Temporary variables to hold output data */ /* loop Unrolling */ blkCnt = numSamples >> 2U; /* First part of the processing with loop unrolling. Compute 4 outputs at a time. ** a second loop below computes the remaining 1 to 3 samples. */ while (blkCnt > 0U) { /* C[2 * i] = A[2 * i] * B[i]. */ /* C[2 * i + 1] = A[2 * i + 1] * B[i]. */ /* read real input from complex input buffer */ inA1 = *pSrcCmplx++; inA2 = *pSrcCmplx++; /* read input from real input bufer */ inB1 = *pSrcReal++; inB2 = *pSrcReal++; /* read imaginary input from complex input buffer */ inA3 = *pSrcCmplx++; inA4 = *pSrcCmplx++; /* multiply complex input with real input */ out1 = ((q63_t) inA1 * inB1) >> 32; out2 = ((q63_t) inA2 * inB1) >> 32; out3 = ((q63_t) inA3 * inB2) >> 32; out4 = ((q63_t) inA4 * inB2) >> 32; /* sature the result */ out1 = __SSAT(out1, 31); out2 = __SSAT(out2, 31); out3 = __SSAT(out3, 31); out4 = __SSAT(out4, 31); /* get result in 1.31 format */ out1 = out1 << 1; out2 = out2 << 1; out3 = out3 << 1; out4 = out4 << 1; /* store the result to destination buffer */ *pCmplxDst++ = out1; *pCmplxDst++ = out2; *pCmplxDst++ = out3; *pCmplxDst++ = out4; /* read real input from complex input buffer */ inA1 = *pSrcCmplx++; inA2 = *pSrcCmplx++; /* read input from real input bufer */ inB1 = *pSrcReal++; inB2 = *pSrcReal++; /* read imaginary input from complex input buffer */ inA3 = *pSrcCmplx++; inA4 = *pSrcCmplx++; /* multiply complex input with real input */ out1 = ((q63_t) inA1 * inB1) >> 32; out2 = ((q63_t) inA2 * inB1) >> 32; out3 = ((q63_t) inA3 * inB2) >> 32; out4 = ((q63_t) inA4 * inB2) >> 32; /* sature the result */ out1 = __SSAT(out1, 31); out2 = __SSAT(out2, 31); out3 = __SSAT(out3, 31); out4 = __SSAT(out4, 31); /* get result in 1.31 format */ out1 = out1 << 1; out2 = out2 << 1; out3 = out3 << 1; out4 = out4 << 1; /* store the result to destination buffer */ *pCmplxDst++ = out1; *pCmplxDst++ = out2; *pCmplxDst++ = out3; *pCmplxDst++ = out4; /* Decrement the numSamples loop counter */ blkCnt--; } /* If the numSamples is not a multiple of 4, compute any remaining output samples here. ** No loop unrolling is used. */ blkCnt = numSamples % 0x4U; while (blkCnt > 0U) { /* C[2 * i] = A[2 * i] * B[i]. */ /* C[2 * i + 1] = A[2 * i + 1] * B[i]. */ /* read real input from complex input buffer */ inA1 = *pSrcCmplx++; inA2 = *pSrcCmplx++; /* read input from real input bufer */ inB1 = *pSrcReal++; /* multiply complex input with real input */ out1 = ((q63_t) inA1 * inB1) >> 32; out2 = ((q63_t) inA2 * inB1) >> 32; /* sature the result */ out1 = __SSAT(out1, 31); out2 = __SSAT(out2, 31); /* get result in 1.31 format */ out1 = out1 << 1; out2 = out2 << 1; /* store the result to destination buffer */ *pCmplxDst++ = out1; *pCmplxDst++ = out2; /* Decrement the numSamples loop counter */ blkCnt--; } #else /* Run the below code for Cortex-M0 */ while (numSamples > 0U) { /* realOut = realA * realB. */ /* imagReal = imagA * realB. */ inA1 = *pSrcReal++; /* store the result in the destination buffer. */ *pCmplxDst++ = (q31_t) clip_q63_to_q31(((q63_t) * pSrcCmplx++ * inA1) >> 31); *pCmplxDst++ = (q31_t) clip_q63_to_q31(((q63_t) * pSrcCmplx++ * inA1) >> 31); /* Decrement the numSamples loop counter */ numSamples--; } #endif /* #if defined (ARM_MATH_DSP) */ } /** * @} end of CmplxByRealMult group */