/* ---------------------------------------------------------------------- * Project: CMSIS DSP Library * Title: arm_cfft_radix2_q15.c * Description: Radix-2 Decimation in Frequency CFFT & CIFFT Fixed point processing function * * $Date: 27. January 2017 * $Revision: V.1.5.1 * * Target Processor: Cortex-M cores * -------------------------------------------------------------------- */ /* * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "arm_math.h" void arm_radix2_butterfly_q15( q15_t * pSrc, uint32_t fftLen, q15_t * pCoef, uint16_t twidCoefModifier); void arm_radix2_butterfly_inverse_q15( q15_t * pSrc, uint32_t fftLen, q15_t * pCoef, uint16_t twidCoefModifier); void arm_bitreversal_q15( q15_t * pSrc, uint32_t fftLen, uint16_t bitRevFactor, uint16_t * pBitRevTab); /** * @ingroup groupTransforms */ /** * @addtogroup ComplexFFT * @{ */ /** * @details * @brief Processing function for the fixed-point CFFT/CIFFT. * @deprecated Do not use this function. It has been superseded by \ref arm_cfft_q15 and will be removed * @param[in] *S points to an instance of the fixed-point CFFT/CIFFT structure. * @param[in, out] *pSrc points to the complex data buffer of size 2*fftLen. Processing occurs in-place. * @return none. */ void arm_cfft_radix2_q15( const arm_cfft_radix2_instance_q15 * S, q15_t * pSrc) { if (S->ifftFlag == 1U) { arm_radix2_butterfly_inverse_q15(pSrc, S->fftLen, S->pTwiddle, S->twidCoefModifier); } else { arm_radix2_butterfly_q15(pSrc, S->fftLen, S->pTwiddle, S->twidCoefModifier); } arm_bitreversal_q15(pSrc, S->fftLen, S->bitRevFactor, S->pBitRevTable); } /** * @} end of ComplexFFT group */ void arm_radix2_butterfly_q15( q15_t * pSrc, uint32_t fftLen, q15_t * pCoef, uint16_t twidCoefModifier) { #if defined (ARM_MATH_DSP) unsigned i, j, k, l; unsigned n1, n2, ia; q15_t in; q31_t T, S, R; q31_t coeff, out1, out2; //N = fftLen; n2 = fftLen; n1 = n2; n2 = n2 >> 1; ia = 0; // loop for groups for (i = 0; i < n2; i++) { coeff = _SIMD32_OFFSET(pCoef + (ia * 2U)); ia = ia + twidCoefModifier; l = i + n2; T = _SIMD32_OFFSET(pSrc + (2 * i)); in = ((int16_t) (T & 0xFFFF)) >> 1; T = ((T >> 1) & 0xFFFF0000) | (in & 0xFFFF); S = _SIMD32_OFFSET(pSrc + (2 * l)); in = ((int16_t) (S & 0xFFFF)) >> 1; S = ((S >> 1) & 0xFFFF0000) | (in & 0xFFFF); R = __QSUB16(T, S); _SIMD32_OFFSET(pSrc + (2 * i)) = __SHADD16(T, S); #ifndef ARM_MATH_BIG_ENDIAN out1 = __SMUAD(coeff, R) >> 16; out2 = __SMUSDX(coeff, R); #else out1 = __SMUSDX(R, coeff) >> 16U; out2 = __SMUAD(coeff, R); #endif // #ifndef ARM_MATH_BIG_ENDIAN _SIMD32_OFFSET(pSrc + (2U * l)) = (q31_t) ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF); coeff = _SIMD32_OFFSET(pCoef + (ia * 2U)); ia = ia + twidCoefModifier; // loop for butterfly i++; l++; T = _SIMD32_OFFSET(pSrc + (2 * i)); in = ((int16_t) (T & 0xFFFF)) >> 1; T = ((T >> 1) & 0xFFFF0000) | (in & 0xFFFF); S = _SIMD32_OFFSET(pSrc + (2 * l)); in = ((int16_t) (S & 0xFFFF)) >> 1; S = ((S >> 1) & 0xFFFF0000) | (in & 0xFFFF); R = __QSUB16(T, S); _SIMD32_OFFSET(pSrc + (2 * i)) = __SHADD16(T, S); #ifndef ARM_MATH_BIG_ENDIAN out1 = __SMUAD(coeff, R) >> 16; out2 = __SMUSDX(coeff, R); #else out1 = __SMUSDX(R, coeff) >> 16U; out2 = __SMUAD(coeff, R); #endif // #ifndef ARM_MATH_BIG_ENDIAN _SIMD32_OFFSET(pSrc + (2U * l)) = (q31_t) ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF); } // groups loop end twidCoefModifier = twidCoefModifier << 1U; // loop for stage for (k = fftLen / 2; k > 2; k = k >> 1) { n1 = n2; n2 = n2 >> 1; ia = 0; // loop for groups for (j = 0; j < n2; j++) { coeff = _SIMD32_OFFSET(pCoef + (ia * 2U)); ia = ia + twidCoefModifier; // loop for butterfly for (i = j; i < fftLen; i += n1) { l = i + n2; T = _SIMD32_OFFSET(pSrc + (2 * i)); S = _SIMD32_OFFSET(pSrc + (2 * l)); R = __QSUB16(T, S); _SIMD32_OFFSET(pSrc + (2 * i)) = __SHADD16(T, S); #ifndef ARM_MATH_BIG_ENDIAN out1 = __SMUAD(coeff, R) >> 16; out2 = __SMUSDX(coeff, R); #else out1 = __SMUSDX(R, coeff) >> 16U; out2 = __SMUAD(coeff, R); #endif // #ifndef ARM_MATH_BIG_ENDIAN _SIMD32_OFFSET(pSrc + (2U * l)) = (q31_t) ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF); i += n1; l = i + n2; T = _SIMD32_OFFSET(pSrc + (2 * i)); S = _SIMD32_OFFSET(pSrc + (2 * l)); R = __QSUB16(T, S); _SIMD32_OFFSET(pSrc + (2 * i)) = __SHADD16(T, S); #ifndef ARM_MATH_BIG_ENDIAN out1 = __SMUAD(coeff, R) >> 16; out2 = __SMUSDX(coeff, R); #else out1 = __SMUSDX(R, coeff) >> 16U; out2 = __SMUAD(coeff, R); #endif // #ifndef ARM_MATH_BIG_ENDIAN _SIMD32_OFFSET(pSrc + (2U * l)) = (q31_t) ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF); } // butterfly loop end } // groups loop end twidCoefModifier = twidCoefModifier << 1U; } // stages loop end n1 = n2; n2 = n2 >> 1; ia = 0; coeff = _SIMD32_OFFSET(pCoef + (ia * 2U)); ia = ia + twidCoefModifier; // loop for butterfly for (i = 0; i < fftLen; i += n1) { l = i + n2; T = _SIMD32_OFFSET(pSrc + (2 * i)); S = _SIMD32_OFFSET(pSrc + (2 * l)); R = __QSUB16(T, S); _SIMD32_OFFSET(pSrc + (2 * i)) = __QADD16(T, S); _SIMD32_OFFSET(pSrc + (2U * l)) = R; i += n1; l = i + n2; T = _SIMD32_OFFSET(pSrc + (2 * i)); S = _SIMD32_OFFSET(pSrc + (2 * l)); R = __QSUB16(T, S); _SIMD32_OFFSET(pSrc + (2 * i)) = __QADD16(T, S); _SIMD32_OFFSET(pSrc + (2U * l)) = R; } // groups loop end #else unsigned i, j, k, l; unsigned n1, n2, ia; q15_t xt, yt, cosVal, sinVal; //N = fftLen; n2 = fftLen; n1 = n2; n2 = n2 >> 1; ia = 0; // loop for groups for (j = 0; j < n2; j++) { cosVal = pCoef[ia * 2]; sinVal = pCoef[(ia * 2) + 1]; ia = ia + twidCoefModifier; // loop for butterfly for (i = j; i < fftLen; i += n1) { l = i + n2; xt = (pSrc[2 * i] >> 1U) - (pSrc[2 * l] >> 1U); pSrc[2 * i] = ((pSrc[2 * i] >> 1U) + (pSrc[2 * l] >> 1U)) >> 1U; yt = (pSrc[2 * i + 1] >> 1U) - (pSrc[2 * l + 1] >> 1U); pSrc[2 * i + 1] = ((pSrc[2 * l + 1] >> 1U) + (pSrc[2 * i + 1] >> 1U)) >> 1U; pSrc[2U * l] = (((int16_t) (((q31_t) xt * cosVal) >> 16)) + ((int16_t) (((q31_t) yt * sinVal) >> 16))); pSrc[2U * l + 1U] = (((int16_t) (((q31_t) yt * cosVal) >> 16)) - ((int16_t) (((q31_t) xt * sinVal) >> 16))); } // butterfly loop end } // groups loop end twidCoefModifier = twidCoefModifier << 1U; // loop for stage for (k = fftLen / 2; k > 2; k = k >> 1) { n1 = n2; n2 = n2 >> 1; ia = 0; // loop for groups for (j = 0; j < n2; j++) { cosVal = pCoef[ia * 2]; sinVal = pCoef[(ia * 2) + 1]; ia = ia + twidCoefModifier; // loop for butterfly for (i = j; i < fftLen; i += n1) { l = i + n2; xt = pSrc[2 * i] - pSrc[2 * l]; pSrc[2 * i] = (pSrc[2 * i] + pSrc[2 * l]) >> 1U; yt = pSrc[2 * i + 1] - pSrc[2 * l + 1]; pSrc[2 * i + 1] = (pSrc[2 * l + 1] + pSrc[2 * i + 1]) >> 1U; pSrc[2U * l] = (((int16_t) (((q31_t) xt * cosVal) >> 16)) + ((int16_t) (((q31_t) yt * sinVal) >> 16))); pSrc[2U * l + 1U] = (((int16_t) (((q31_t) yt * cosVal) >> 16)) - ((int16_t) (((q31_t) xt * sinVal) >> 16))); } // butterfly loop end } // groups loop end twidCoefModifier = twidCoefModifier << 1U; } // stages loop end n1 = n2; n2 = n2 >> 1; ia = 0; // loop for groups for (j = 0; j < n2; j++) { cosVal = pCoef[ia * 2]; sinVal = pCoef[(ia * 2) + 1]; ia = ia + twidCoefModifier; // loop for butterfly for (i = j; i < fftLen; i += n1) { l = i + n2; xt = pSrc[2 * i] - pSrc[2 * l]; pSrc[2 * i] = (pSrc[2 * i] + pSrc[2 * l]); yt = pSrc[2 * i + 1] - pSrc[2 * l + 1]; pSrc[2 * i + 1] = (pSrc[2 * l + 1] + pSrc[2 * i + 1]); pSrc[2U * l] = xt; pSrc[2U * l + 1U] = yt; } // butterfly loop end } // groups loop end twidCoefModifier = twidCoefModifier << 1U; #endif // #if defined (ARM_MATH_DSP) } void arm_radix2_butterfly_inverse_q15( q15_t * pSrc, uint32_t fftLen, q15_t * pCoef, uint16_t twidCoefModifier) { #if defined (ARM_MATH_DSP) unsigned i, j, k, l; unsigned n1, n2, ia; q15_t in; q31_t T, S, R; q31_t coeff, out1, out2; //N = fftLen; n2 = fftLen; n1 = n2; n2 = n2 >> 1; ia = 0; // loop for groups for (i = 0; i < n2; i++) { coeff = _SIMD32_OFFSET(pCoef + (ia * 2U)); ia = ia + twidCoefModifier; l = i + n2; T = _SIMD32_OFFSET(pSrc + (2 * i)); in = ((int16_t) (T & 0xFFFF)) >> 1; T = ((T >> 1) & 0xFFFF0000) | (in & 0xFFFF); S = _SIMD32_OFFSET(pSrc + (2 * l)); in = ((int16_t) (S & 0xFFFF)) >> 1; S = ((S >> 1) & 0xFFFF0000) | (in & 0xFFFF); R = __QSUB16(T, S); _SIMD32_OFFSET(pSrc + (2 * i)) = __SHADD16(T, S); #ifndef ARM_MATH_BIG_ENDIAN out1 = __SMUSD(coeff, R) >> 16; out2 = __SMUADX(coeff, R); #else out1 = __SMUADX(R, coeff) >> 16U; out2 = __SMUSD(__QSUB(0, coeff), R); #endif // #ifndef ARM_MATH_BIG_ENDIAN _SIMD32_OFFSET(pSrc + (2U * l)) = (q31_t) ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF); coeff = _SIMD32_OFFSET(pCoef + (ia * 2U)); ia = ia + twidCoefModifier; // loop for butterfly i++; l++; T = _SIMD32_OFFSET(pSrc + (2 * i)); in = ((int16_t) (T & 0xFFFF)) >> 1; T = ((T >> 1) & 0xFFFF0000) | (in & 0xFFFF); S = _SIMD32_OFFSET(pSrc + (2 * l)); in = ((int16_t) (S & 0xFFFF)) >> 1; S = ((S >> 1) & 0xFFFF0000) | (in & 0xFFFF); R = __QSUB16(T, S); _SIMD32_OFFSET(pSrc + (2 * i)) = __SHADD16(T, S); #ifndef ARM_MATH_BIG_ENDIAN out1 = __SMUSD(coeff, R) >> 16; out2 = __SMUADX(coeff, R); #else out1 = __SMUADX(R, coeff) >> 16U; out2 = __SMUSD(__QSUB(0, coeff), R); #endif // #ifndef ARM_MATH_BIG_ENDIAN _SIMD32_OFFSET(pSrc + (2U * l)) = (q31_t) ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF); } // groups loop end twidCoefModifier = twidCoefModifier << 1U; // loop for stage for (k = fftLen / 2; k > 2; k = k >> 1) { n1 = n2; n2 = n2 >> 1; ia = 0; // loop for groups for (j = 0; j < n2; j++) { coeff = _SIMD32_OFFSET(pCoef + (ia * 2U)); ia = ia + twidCoefModifier; // loop for butterfly for (i = j; i < fftLen; i += n1) { l = i + n2; T = _SIMD32_OFFSET(pSrc + (2 * i)); S = _SIMD32_OFFSET(pSrc + (2 * l)); R = __QSUB16(T, S); _SIMD32_OFFSET(pSrc + (2 * i)) = __SHADD16(T, S); #ifndef ARM_MATH_BIG_ENDIAN out1 = __SMUSD(coeff, R) >> 16; out2 = __SMUADX(coeff, R); #else out1 = __SMUADX(R, coeff) >> 16U; out2 = __SMUSD(__QSUB(0, coeff), R); #endif // #ifndef ARM_MATH_BIG_ENDIAN _SIMD32_OFFSET(pSrc + (2U * l)) = (q31_t) ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF); i += n1; l = i + n2; T = _SIMD32_OFFSET(pSrc + (2 * i)); S = _SIMD32_OFFSET(pSrc + (2 * l)); R = __QSUB16(T, S); _SIMD32_OFFSET(pSrc + (2 * i)) = __SHADD16(T, S); #ifndef ARM_MATH_BIG_ENDIAN out1 = __SMUSD(coeff, R) >> 16; out2 = __SMUADX(coeff, R); #else out1 = __SMUADX(R, coeff) >> 16U; out2 = __SMUSD(__QSUB(0, coeff), R); #endif // #ifndef ARM_MATH_BIG_ENDIAN _SIMD32_OFFSET(pSrc + (2U * l)) = (q31_t) ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF); } // butterfly loop end } // groups loop end twidCoefModifier = twidCoefModifier << 1U; } // stages loop end n1 = n2; n2 = n2 >> 1; ia = 0; // loop for groups for (j = 0; j < n2; j++) { coeff = _SIMD32_OFFSET(pCoef + (ia * 2U)); ia = ia + twidCoefModifier; // loop for butterfly for (i = j; i < fftLen; i += n1) { l = i + n2; T = _SIMD32_OFFSET(pSrc + (2 * i)); S = _SIMD32_OFFSET(pSrc + (2 * l)); R = __QSUB16(T, S); _SIMD32_OFFSET(pSrc + (2 * i)) = __QADD16(T, S); _SIMD32_OFFSET(pSrc + (2U * l)) = R; } // butterfly loop end } // groups loop end twidCoefModifier = twidCoefModifier << 1U; #else unsigned i, j, k, l; unsigned n1, n2, ia; q15_t xt, yt, cosVal, sinVal; //N = fftLen; n2 = fftLen; n1 = n2; n2 = n2 >> 1; ia = 0; // loop for groups for (j = 0; j < n2; j++) { cosVal = pCoef[ia * 2]; sinVal = pCoef[(ia * 2) + 1]; ia = ia + twidCoefModifier; // loop for butterfly for (i = j; i < fftLen; i += n1) { l = i + n2; xt = (pSrc[2 * i] >> 1U) - (pSrc[2 * l] >> 1U); pSrc[2 * i] = ((pSrc[2 * i] >> 1U) + (pSrc[2 * l] >> 1U)) >> 1U; yt = (pSrc[2 * i + 1] >> 1U) - (pSrc[2 * l + 1] >> 1U); pSrc[2 * i + 1] = ((pSrc[2 * l + 1] >> 1U) + (pSrc[2 * i + 1] >> 1U)) >> 1U; pSrc[2U * l] = (((int16_t) (((q31_t) xt * cosVal) >> 16)) - ((int16_t) (((q31_t) yt * sinVal) >> 16))); pSrc[2U * l + 1U] = (((int16_t) (((q31_t) yt * cosVal) >> 16)) + ((int16_t) (((q31_t) xt * sinVal) >> 16))); } // butterfly loop end } // groups loop end twidCoefModifier = twidCoefModifier << 1U; // loop for stage for (k = fftLen / 2; k > 2; k = k >> 1) { n1 = n2; n2 = n2 >> 1; ia = 0; // loop for groups for (j = 0; j < n2; j++) { cosVal = pCoef[ia * 2]; sinVal = pCoef[(ia * 2) + 1]; ia = ia + twidCoefModifier; // loop for butterfly for (i = j; i < fftLen; i += n1) { l = i + n2; xt = pSrc[2 * i] - pSrc[2 * l]; pSrc[2 * i] = (pSrc[2 * i] + pSrc[2 * l]) >> 1U; yt = pSrc[2 * i + 1] - pSrc[2 * l + 1]; pSrc[2 * i + 1] = (pSrc[2 * l + 1] + pSrc[2 * i + 1]) >> 1U; pSrc[2U * l] = (((int16_t) (((q31_t) xt * cosVal) >> 16)) - ((int16_t) (((q31_t) yt * sinVal) >> 16))); pSrc[2U * l + 1U] = (((int16_t) (((q31_t) yt * cosVal) >> 16)) + ((int16_t) (((q31_t) xt * sinVal) >> 16))); } // butterfly loop end } // groups loop end twidCoefModifier = twidCoefModifier << 1U; } // stages loop end n1 = n2; n2 = n2 >> 1; ia = 0; cosVal = pCoef[ia * 2]; sinVal = pCoef[(ia * 2) + 1]; ia = ia + twidCoefModifier; // loop for butterfly for (i = 0; i < fftLen; i += n1) { l = i + n2; xt = pSrc[2 * i] - pSrc[2 * l]; pSrc[2 * i] = (pSrc[2 * i] + pSrc[2 * l]); yt = pSrc[2 * i + 1] - pSrc[2 * l + 1]; pSrc[2 * i + 1] = (pSrc[2 * l + 1] + pSrc[2 * i + 1]); pSrc[2U * l] = xt; pSrc[2U * l + 1U] = yt; } // groups loop end #endif // #if defined (ARM_MATH_DSP) }