/* ---------------------------------------------------------------------- * Project: CMSIS DSP Library * Title: arm_cmplx_conj_q31.c * Description: Q31 complex conjugate * * $Date: 27. January 2017 * $Revision: V.1.5.1 * * Target Processor: Cortex-M cores * -------------------------------------------------------------------- */ /* * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "arm_math.h" /** * @ingroup groupCmplxMath */ /** * @addtogroup cmplx_conj * @{ */ /** * @brief Q31 complex conjugate. * @param *pSrc points to the input vector * @param *pDst points to the output vector * @param numSamples number of complex samples in each vector * @return none. * * Scaling and Overflow Behavior: * \par * The function uses saturating arithmetic. * The Q31 value -1 (0x80000000) will be saturated to the maximum allowable positive value 0x7FFFFFFF. */ void arm_cmplx_conj_q31( q31_t * pSrc, q31_t * pDst, uint32_t numSamples) { uint32_t blkCnt; /* loop counter */ q31_t in; /* Input value */ #if defined (ARM_MATH_DSP) /* Run the below code for Cortex-M4 and Cortex-M3 */ q31_t inR1, inR2, inR3, inR4; /* Temporary real variables */ q31_t inI1, inI2, inI3, inI4; /* Temporary imaginary variables */ /*loop Unrolling */ blkCnt = numSamples >> 2U; /* First part of the processing with loop unrolling. Compute 4 outputs at a time. ** a second loop below computes the remaining 1 to 3 samples. */ while (blkCnt > 0U) { /* C[0]+jC[1] = A[0]+ j (-1) A[1] */ /* Calculate Complex Conjugate and then store the results in the destination buffer. */ /* Saturated to 0x7fffffff if the input is -1(0x80000000) */ /* read real input sample */ inR1 = pSrc[0]; /* store real input sample */ pDst[0] = inR1; /* read imaginary input sample */ inI1 = pSrc[1]; /* read real input sample */ inR2 = pSrc[2]; /* store real input sample */ pDst[2] = inR2; /* read imaginary input sample */ inI2 = pSrc[3]; /* negate imaginary input sample */ inI1 = __QSUB(0, inI1); /* read real input sample */ inR3 = pSrc[4]; /* store real input sample */ pDst[4] = inR3; /* read imaginary input sample */ inI3 = pSrc[5]; /* negate imaginary input sample */ inI2 = __QSUB(0, inI2); /* read real input sample */ inR4 = pSrc[6]; /* store real input sample */ pDst[6] = inR4; /* negate imaginary input sample */ inI3 = __QSUB(0, inI3); /* store imaginary input sample */ inI4 = pSrc[7]; /* store imaginary input samples */ pDst[1] = inI1; /* negate imaginary input sample */ inI4 = __QSUB(0, inI4); /* store imaginary input samples */ pDst[3] = inI2; /* increment source pointer by 8 to proecess next samples */ pSrc += 8U; /* store imaginary input samples */ pDst[5] = inI3; pDst[7] = inI4; /* increment destination pointer by 8 to process next samples */ pDst += 8U; /* Decrement the loop counter */ blkCnt--; } /* If the numSamples is not a multiple of 4, compute any remaining output samples here. ** No loop unrolling is used. */ blkCnt = numSamples % 0x4U; #else /* Run the below code for Cortex-M0 */ blkCnt = numSamples; #endif /* #if defined (ARM_MATH_DSP) */ while (blkCnt > 0U) { /* C[0]+jC[1] = A[0]+ j (-1) A[1] */ /* Calculate Complex Conjugate and then store the results in the destination buffer. */ /* Saturated to 0x7fffffff if the input is -1(0x80000000) */ *pDst++ = *pSrc++; in = *pSrc++; *pDst++ = (in == INT32_MIN) ? INT32_MAX : -in; /* Decrement the loop counter */ blkCnt--; } } /** * @} end of cmplx_conj group */