/* ---------------------------------------------------------------------- * Project: CMSIS DSP Library * Title: arm_scale_q31.c * Description: Multiplies a Q31 vector by a scalar * * $Date: 27. January 2017 * $Revision: V.1.5.1 * * Target Processor: Cortex-M cores * -------------------------------------------------------------------- */ /* * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "arm_math.h" /** * @ingroup groupMath */ /** * @addtogroup scale * @{ */ /** * @brief Multiplies a Q31 vector by a scalar. * @param[in] *pSrc points to the input vector * @param[in] scaleFract fractional portion of the scale value * @param[in] shift number of bits to shift the result by * @param[out] *pDst points to the output vector * @param[in] blockSize number of samples in the vector * @return none. * * Scaling and Overflow Behavior: * \par * The input data *pSrc and scaleFract are in 1.31 format. * These are multiplied to yield a 2.62 intermediate result and this is shifted with saturation to 1.31 format. */ void arm_scale_q31( q31_t * pSrc, q31_t scaleFract, int8_t shift, q31_t * pDst, uint32_t blockSize) { int8_t kShift = shift + 1; /* Shift to apply after scaling */ int8_t sign = (kShift & 0x80); uint32_t blkCnt; /* loop counter */ q31_t in, out; #if defined (ARM_MATH_DSP) /* Run the below code for Cortex-M4 and Cortex-M3 */ q31_t in1, in2, in3, in4; /* temporary input variables */ q31_t out1, out2, out3, out4; /* temporary output variabels */ /*loop Unrolling */ blkCnt = blockSize >> 2U; if (sign == 0U) { /* First part of the processing with loop unrolling. Compute 4 outputs at a time. ** a second loop below computes the remaining 1 to 3 samples. */ while (blkCnt > 0U) { /* read four inputs from source */ in1 = *pSrc; in2 = *(pSrc + 1); in3 = *(pSrc + 2); in4 = *(pSrc + 3); /* multiply input with scaler value */ in1 = ((q63_t) in1 * scaleFract) >> 32; in2 = ((q63_t) in2 * scaleFract) >> 32; in3 = ((q63_t) in3 * scaleFract) >> 32; in4 = ((q63_t) in4 * scaleFract) >> 32; /* apply shifting */ out1 = in1 << kShift; out2 = in2 << kShift; /* saturate the results. */ if (in1 != (out1 >> kShift)) out1 = 0x7FFFFFFF ^ (in1 >> 31); if (in2 != (out2 >> kShift)) out2 = 0x7FFFFFFF ^ (in2 >> 31); out3 = in3 << kShift; out4 = in4 << kShift; *pDst = out1; *(pDst + 1) = out2; if (in3 != (out3 >> kShift)) out3 = 0x7FFFFFFF ^ (in3 >> 31); if (in4 != (out4 >> kShift)) out4 = 0x7FFFFFFF ^ (in4 >> 31); /* Store result destination */ *(pDst + 2) = out3; *(pDst + 3) = out4; /* Update pointers to process next sampels */ pSrc += 4U; pDst += 4U; /* Decrement the loop counter */ blkCnt--; } } else { /* First part of the processing with loop unrolling. Compute 4 outputs at a time. ** a second loop below computes the remaining 1 to 3 samples. */ while (blkCnt > 0U) { /* read four inputs from source */ in1 = *pSrc; in2 = *(pSrc + 1); in3 = *(pSrc + 2); in4 = *(pSrc + 3); /* multiply input with scaler value */ in1 = ((q63_t) in1 * scaleFract) >> 32; in2 = ((q63_t) in2 * scaleFract) >> 32; in3 = ((q63_t) in3 * scaleFract) >> 32; in4 = ((q63_t) in4 * scaleFract) >> 32; /* apply shifting */ out1 = in1 >> -kShift; out2 = in2 >> -kShift; out3 = in3 >> -kShift; out4 = in4 >> -kShift; /* Store result destination */ *pDst = out1; *(pDst + 1) = out2; *(pDst + 2) = out3; *(pDst + 3) = out4; /* Update pointers to process next sampels */ pSrc += 4U; pDst += 4U; /* Decrement the loop counter */ blkCnt--; } } /* If the blockSize is not a multiple of 4, compute any remaining output samples here. ** No loop unrolling is used. */ blkCnt = blockSize % 0x4U; #else /* Run the below code for Cortex-M0 */ /* Initialize blkCnt with number of samples */ blkCnt = blockSize; #endif /* #if defined (ARM_MATH_DSP) */ if (sign == 0) { while (blkCnt > 0U) { /* C = A * scale */ /* Scale the input and then store the result in the destination buffer. */ in = *pSrc++; in = ((q63_t) in * scaleFract) >> 32; out = in << kShift; if (in != (out >> kShift)) out = 0x7FFFFFFF ^ (in >> 31); *pDst++ = out; /* Decrement the loop counter */ blkCnt--; } } else { while (blkCnt > 0U) { /* C = A * scale */ /* Scale the input and then store the result in the destination buffer. */ in = *pSrc++; in = ((q63_t) in * scaleFract) >> 32; out = in >> -kShift; *pDst++ = out; /* Decrement the loop counter */ blkCnt--; } } } /** * @} end of scale group */