From 6ab94e0b318884bbcb95e2ea3835f951502e1d99 Mon Sep 17 00:00:00 2001 From: jaseg Date: Wed, 14 Oct 2020 12:47:28 +0200 Subject: Move firmware into subdirectory --- .../STM32F0xx_HAL_Driver/Src/stm32f0xx_hal.c | 514 -- .../STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_adc.c | 2476 ------- .../Src/stm32f0xx_hal_adc_ex.c | 188 - .../STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_can.c | 2432 ------- .../STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_cec.c | 1001 --- .../STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_comp.c | 984 --- .../Src/stm32f0xx_hal_cortex.c | 341 - .../STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_crc.c | 520 -- .../Src/stm32f0xx_hal_crc_ex.c | 227 - .../STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_dac.c | 1090 ---- .../Src/stm32f0xx_hal_dac_ex.c | 1183 ---- .../STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_dma.c | 901 --- .../STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_exti.c | 559 -- .../STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_flash.c | 694 -- .../Src/stm32f0xx_hal_flash_ex.c | 984 --- .../STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_gpio.c | 543 -- .../STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_i2c.c | 6501 ------------------- .../Src/stm32f0xx_hal_i2c_ex.c | 333 - .../STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_i2s.c | 1800 ------ .../STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_irda.c | 2991 --------- .../STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_iwdg.c | 264 - .../Src/stm32f0xx_hal_msp_template.c | 101 - .../STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_pcd.c | 1869 ------ .../Src/stm32f0xx_hal_pcd_ex.c | 338 - .../STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_pwr.c | 454 -- .../Src/stm32f0xx_hal_pwr_ex.c | 274 - .../STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_rcc.c | 1365 ---- .../Src/stm32f0xx_hal_rcc_ex.c | 964 --- .../STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_rtc.c | 1666 ----- .../Src/stm32f0xx_hal_rtc_ex.c | 1600 ----- .../Src/stm32f0xx_hal_smartcard.c | 2873 --------- .../Src/stm32f0xx_hal_smartcard_ex.c | 204 - .../STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_smbus.c | 2673 -------- .../STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_spi.c | 4349 ------------- .../Src/stm32f0xx_hal_spi_ex.c | 115 - .../STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_tim.c | 6767 -------------------- .../Src/stm32f0xx_hal_tim_ex.c | 1939 ------ .../stm32f0xx_hal_timebase_rtc_alarm_template.c | 299 - .../stm32f0xx_hal_timebase_rtc_wakeup_template.c | 278 - .../Src/stm32f0xx_hal_timebase_tim_template.c | 168 - .../STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_tsc.c | 1078 ---- .../STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_uart.c | 3738 ----------- .../Src/stm32f0xx_hal_uart_ex.c | 478 -- .../STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_usart.c | 3249 ---------- .../Src/stm32f0xx_hal_usart_ex.c | 138 - .../STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_wwdg.c | 414 -- .../STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_adc.c | 557 -- .../STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_comp.c | 316 - .../STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_crc.c | 122 - .../STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_crs.c | 87 - .../STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_dac.c | 276 - .../STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_dma.c | 397 -- .../STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_exti.c | 223 - .../STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_gpio.c | 280 - .../STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_i2c.c | 229 - .../STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_pwr.c | 86 - .../STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_rcc.c | 609 -- .../STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_rtc.c | 725 --- .../STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_spi.c | 531 -- .../STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_tim.c | 1159 ---- .../STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_usart.c | 504 -- .../STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_usb.c | 878 --- .../STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_utils.c | 605 -- 63 files changed, 71501 deletions(-) delete mode 100644 midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal.c delete mode 100644 midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_adc.c delete mode 100644 midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_adc_ex.c delete mode 100644 midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_can.c delete mode 100644 midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_cec.c delete mode 100644 midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_comp.c delete mode 100644 midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_cortex.c delete mode 100644 midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_crc.c delete mode 100644 midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_crc_ex.c delete mode 100644 midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_dac.c delete mode 100644 midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_dac_ex.c delete mode 100644 midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_dma.c delete mode 100644 midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_exti.c delete mode 100644 midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_flash.c delete mode 100644 midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_flash_ex.c delete mode 100644 midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_gpio.c delete mode 100644 midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_i2c.c delete mode 100644 midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_i2c_ex.c delete mode 100644 midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_i2s.c delete mode 100644 midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_irda.c delete mode 100644 midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_iwdg.c delete mode 100644 midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_msp_template.c delete mode 100644 midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_pcd.c delete mode 100644 midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_pcd_ex.c delete mode 100644 midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_pwr.c delete mode 100644 midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_pwr_ex.c delete mode 100644 midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_rcc.c delete mode 100644 midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_rcc_ex.c delete mode 100644 midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_rtc.c delete mode 100644 midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_rtc_ex.c delete mode 100644 midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_smartcard.c delete mode 100644 midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_smartcard_ex.c delete mode 100644 midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_smbus.c delete mode 100644 midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_spi.c delete mode 100644 midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_spi_ex.c delete mode 100644 midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_tim.c delete mode 100644 midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_tim_ex.c delete mode 100644 midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_timebase_rtc_alarm_template.c delete mode 100644 midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_timebase_rtc_wakeup_template.c delete mode 100644 midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_timebase_tim_template.c delete mode 100644 midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_tsc.c delete mode 100644 midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_uart.c delete mode 100644 midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_uart_ex.c delete mode 100644 midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_usart.c delete mode 100644 midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_usart_ex.c delete mode 100644 midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_wwdg.c delete mode 100644 midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_adc.c delete mode 100644 midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_comp.c delete mode 100644 midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_crc.c delete mode 100644 midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_crs.c delete mode 100644 midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_dac.c delete mode 100644 midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_dma.c delete mode 100644 midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_exti.c delete mode 100644 midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_gpio.c delete mode 100644 midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_i2c.c delete mode 100644 midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_pwr.c delete mode 100644 midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_rcc.c delete mode 100644 midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_rtc.c delete mode 100644 midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_spi.c delete mode 100644 midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_tim.c delete mode 100644 midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_usart.c delete mode 100644 midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_usb.c delete mode 100644 midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_utils.c (limited to 'midi-dials/Drivers/STM32F0xx_HAL_Driver/Src') diff --git a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal.c b/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal.c deleted file mode 100644 index 5651040..0000000 --- a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal.c +++ /dev/null @@ -1,514 +0,0 @@ -/** - ****************************************************************************** - * @file stm32f0xx_hal.c - * @author MCD Application Team - * @brief HAL module driver. - * This is the common part of the HAL initialization - * - @verbatim - ============================================================================== - ##### How to use this driver ##### - ============================================================================== - [..] - The common HAL driver contains a set of generic and common APIs that can be - used by the PPP peripheral drivers and the user to start using the HAL. - [..] - The HAL contains two APIs categories: - (+) HAL Initialization and de-initialization functions - (+) HAL Control functions - - @endverbatim - ****************************************************************************** - * @attention - * - *

© Copyright (c) 2016 STMicroelectronics. - * All rights reserved.

- * - * This software component is licensed by ST under BSD 3-Clause license, - * the "License"; You may not use this file except in compliance with the - * License. You may obtain a copy of the License at: - * opensource.org/licenses/BSD-3-Clause - * - ****************************************************************************** - */ - -/* Includes ------------------------------------------------------------------*/ -#include "stm32f0xx_hal.h" - -/** @addtogroup STM32F0xx_HAL_Driver - * @{ - */ - -/** @defgroup HAL HAL - * @brief HAL module driver. - * @{ - */ - -#ifdef HAL_MODULE_ENABLED - -/* Private typedef -----------------------------------------------------------*/ -/* Private define ------------------------------------------------------------*/ -/** @defgroup HAL_Private_Constants HAL Private Constants - * @{ - */ -/** - * @brief STM32F0xx HAL Driver version number V1.7.3 - */ -#define __STM32F0xx_HAL_VERSION_MAIN (0x01U) /*!< [31:24] main version */ -#define __STM32F0xx_HAL_VERSION_SUB1 (0x07U) /*!< [23:16] sub1 version */ -#define __STM32F0xx_HAL_VERSION_SUB2 (0x03U) /*!< [15:8] sub2 version */ -#define __STM32F0xx_HAL_VERSION_RC (0x00U) /*!< [7:0] release candidate */ -#define __STM32F0xx_HAL_VERSION ((__STM32F0xx_HAL_VERSION_MAIN << 24U)\ - |(__STM32F0xx_HAL_VERSION_SUB1 << 16U)\ - |(__STM32F0xx_HAL_VERSION_SUB2 << 8U )\ - |(__STM32F0xx_HAL_VERSION_RC)) - -#define IDCODE_DEVID_MASK (0x00000FFFU) -/** - * @} - */ - -/* Private macro -------------------------------------------------------------*/ -/** @defgroup HAL_Private_Macros HAL Private Macros - * @{ - */ -/** - * @} - */ - -/* Exported variables ---------------------------------------------------------*/ -/** @defgroup HAL_Private_Variables HAL Exported Variables - * @{ - */ -__IO uint32_t uwTick; -uint32_t uwTickPrio = (1UL << __NVIC_PRIO_BITS); /* Invalid PRIO */ -HAL_TickFreqTypeDef uwTickFreq = HAL_TICK_FREQ_DEFAULT; /* 1KHz */ -/** - * @} - */ -/* Private function prototypes -----------------------------------------------*/ -/* Exported functions ---------------------------------------------------------*/ - -/** @defgroup HAL_Exported_Functions HAL Exported Functions - * @{ - */ - -/** @defgroup HAL_Exported_Functions_Group1 Initialization and de-initialization Functions - * @brief Initialization and de-initialization functions - * -@verbatim - =============================================================================== - ##### Initialization and de-initialization functions ##### - =============================================================================== - [..] This section provides functions allowing to: - (+) Initializes the Flash interface, the NVIC allocation and initial clock - configuration. It initializes the systick also when timeout is needed - and the backup domain when enabled. - (+) de-Initializes common part of the HAL. - (+) Configure The time base source to have 1ms time base with a dedicated - Tick interrupt priority. - (++) SysTick timer is used by default as source of time base, but user - can eventually implement his proper time base source (a general purpose - timer for example or other time source), keeping in mind that Time base - duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and - handled in milliseconds basis. - (++) Time base configuration function (HAL_InitTick ()) is called automatically - at the beginning of the program after reset by HAL_Init() or at any time - when clock is configured, by HAL_RCC_ClockConfig(). - (++) Source of time base is configured to generate interrupts at regular - time intervals. Care must be taken if HAL_Delay() is called from a - peripheral ISR process, the Tick interrupt line must have higher priority - (numerically lower) than the peripheral interrupt. Otherwise the caller - ISR process will be blocked. - (++) functions affecting time base configurations are declared as __Weak - to make override possible in case of other implementations in user file. - -@endverbatim - * @{ - */ - -/** - * @brief This function configures the Flash prefetch, - * Configures time base source, NVIC and Low level hardware - * @note This function is called at the beginning of program after reset and before - * the clock configuration - * @note The time base configuration is based on HSI clock when exiting from Reset. - * Once done, time base tick start incrementing. - * In the default implementation,Systick is used as source of time base. - * The tick variable is incremented each 1ms in its ISR. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_Init(void) -{ - /* Configure Flash prefetch */ -#if (PREFETCH_ENABLE != 0) - __HAL_FLASH_PREFETCH_BUFFER_ENABLE(); -#endif /* PREFETCH_ENABLE */ - - /* Use systick as time base source and configure 1ms tick (default clock after Reset is HSI) */ - - HAL_InitTick(TICK_INT_PRIORITY); - - /* Init the low level hardware */ - HAL_MspInit(); - - /* Return function status */ - return HAL_OK; -} - -/** - * @brief This function de-Initialize common part of the HAL and stops the SysTick - * of time base. - * @note This function is optional. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_DeInit(void) -{ - /* Reset of all peripherals */ - __HAL_RCC_APB1_FORCE_RESET(); - __HAL_RCC_APB1_RELEASE_RESET(); - - __HAL_RCC_APB2_FORCE_RESET(); - __HAL_RCC_APB2_RELEASE_RESET(); - - __HAL_RCC_AHB_FORCE_RESET(); - __HAL_RCC_AHB_RELEASE_RESET(); - - /* De-Init the low level hardware */ - HAL_MspDeInit(); - - /* Return function status */ - return HAL_OK; -} - -/** - * @brief Initialize the MSP. - * @retval None - */ -__weak void HAL_MspInit(void) -{ - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_MspInit could be implemented in the user file - */ -} - -/** - * @brief DeInitializes the MSP. - * @retval None - */ -__weak void HAL_MspDeInit(void) -{ - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_MspDeInit could be implemented in the user file - */ -} - -/** - * @brief This function configures the source of the time base. - * The time source is configured to have 1ms time base with a dedicated - * Tick interrupt priority. - * @note This function is called automatically at the beginning of program after - * reset by HAL_Init() or at any time when clock is reconfigured by HAL_RCC_ClockConfig(). - * @note In the default implementation, SysTick timer is the source of time base. - * It is used to generate interrupts at regular time intervals. - * Care must be taken if HAL_Delay() is called from a peripheral ISR process, - * The SysTick interrupt must have higher priority (numerically lower) - * than the peripheral interrupt. Otherwise the caller ISR process will be blocked. - * The function is declared as __Weak to be overwritten in case of other - * implementation in user file. - * @param TickPriority Tick interrupt priority. - * @retval HAL status - */ -__weak HAL_StatusTypeDef HAL_InitTick(uint32_t TickPriority) -{ - /*Configure the SysTick to have interrupt in 1ms time basis*/ - if (HAL_SYSTICK_Config(SystemCoreClock / (1000U / uwTickFreq)) > 0U) - { - return HAL_ERROR; - } - - /* Configure the SysTick IRQ priority */ - if (TickPriority < (1UL << __NVIC_PRIO_BITS)) - { - HAL_NVIC_SetPriority(SysTick_IRQn, TickPriority, 0U); - uwTickPrio = TickPriority; - } - else - { - return HAL_ERROR; - } - - /* Return function status */ - return HAL_OK; -} - -/** - * @} - */ - -/** @defgroup HAL_Exported_Functions_Group2 HAL Control functions - * @brief HAL Control functions - * -@verbatim - =============================================================================== - ##### HAL Control functions ##### - =============================================================================== - [..] This section provides functions allowing to: - (+) Provide a tick value in millisecond - (+) Provide a blocking delay in millisecond - (+) Suspend the time base source interrupt - (+) Resume the time base source interrupt - (+) Get the HAL API driver version - (+) Get the device identifier - (+) Get the device revision identifier - (+) Enable/Disable Debug module during Sleep mode - (+) Enable/Disable Debug module during STOP mode - (+) Enable/Disable Debug module during STANDBY mode - -@endverbatim - * @{ - */ - -/** - * @brief This function is called to increment a global variable "uwTick" - * used as application time base. - * @note In the default implementation, this variable is incremented each 1ms - * in SysTick ISR. - * @note This function is declared as __weak to be overwritten in case of other - * implementations in user file. - * @retval None - */ -__weak void HAL_IncTick(void) -{ - uwTick += uwTickFreq; -} - -/** - * @brief Provides a tick value in millisecond. - * @note This function is declared as __weak to be overwritten in case of other - * implementations in user file. - * @retval tick value - */ -__weak uint32_t HAL_GetTick(void) -{ - return uwTick; -} - -/** - * @brief This function returns a tick priority. - * @retval tick priority - */ -uint32_t HAL_GetTickPrio(void) -{ - return uwTickPrio; -} - -/** - * @brief Set new tick Freq. - * @retval status - */ -HAL_StatusTypeDef HAL_SetTickFreq(HAL_TickFreqTypeDef Freq) -{ - HAL_StatusTypeDef status = HAL_OK; - HAL_TickFreqTypeDef prevTickFreq; - - assert_param(IS_TICKFREQ(Freq)); - - if (uwTickFreq != Freq) - { - /* Back up uwTickFreq frequency */ - prevTickFreq = uwTickFreq; - - /* Update uwTickFreq global variable used by HAL_InitTick() */ - uwTickFreq = Freq; - - /* Apply the new tick Freq */ - status = HAL_InitTick(uwTickPrio); - - if (status != HAL_OK) - { - /* Restore previous tick frequency */ - uwTickFreq = prevTickFreq; - } - } - - return status; -} - -/** - * @brief return tick frequency. - * @retval tick period in Hz - */ -HAL_TickFreqTypeDef HAL_GetTickFreq(void) -{ - return uwTickFreq; -} - -/** - * @brief This function provides accurate delay (in milliseconds) based - * on variable incremented. - * @note In the default implementation , SysTick timer is the source of time base. - * It is used to generate interrupts at regular time intervals where uwTick - * is incremented. - * @note ThiS function is declared as __weak to be overwritten in case of other - * implementations in user file. - * @param Delay specifies the delay time length, in milliseconds. - * @retval None - */ -__weak void HAL_Delay(uint32_t Delay) -{ - uint32_t tickstart = HAL_GetTick(); - uint32_t wait = Delay; - - /* Add a freq to guarantee minimum wait */ - if (wait < HAL_MAX_DELAY) - { - wait += (uint32_t)(uwTickFreq); - } - - while((HAL_GetTick() - tickstart) < wait) - { - } -} - -/** - * @brief Suspend Tick increment. - * @note In the default implementation , SysTick timer is the source of time base. It is - * used to generate interrupts at regular time intervals. Once HAL_SuspendTick() - * is called, the the SysTick interrupt will be disabled and so Tick increment - * is suspended. - * @note This function is declared as __weak to be overwritten in case of other - * implementations in user file. - * @retval None - */ -__weak void HAL_SuspendTick(void) - -{ - /* Disable SysTick Interrupt */ - CLEAR_BIT(SysTick->CTRL,SysTick_CTRL_TICKINT_Msk); -} - -/** - * @brief Resume Tick increment. - * @note In the default implementation , SysTick timer is the source of time base. It is - * used to generate interrupts at regular time intervals. Once HAL_ResumeTick() - * is called, the the SysTick interrupt will be enabled and so Tick increment - * is resumed. - * @note This function is declared as __weak to be overwritten in case of other - * implementations in user file. - * @retval None - */ -__weak void HAL_ResumeTick(void) -{ - /* Enable SysTick Interrupt */ - SET_BIT(SysTick->CTRL,SysTick_CTRL_TICKINT_Msk); -} - -/** - * @brief This method returns the HAL revision - * @retval version 0xXYZR (8bits for each decimal, R for RC) - */ -uint32_t HAL_GetHalVersion(void) -{ - return __STM32F0xx_HAL_VERSION; -} - -/** - * @brief Returns the device revision identifier. - * @retval Device revision identifier - */ -uint32_t HAL_GetREVID(void) -{ - return((DBGMCU->IDCODE) >> 16U); -} - -/** - * @brief Returns the device identifier. - * @retval Device identifier - */ -uint32_t HAL_GetDEVID(void) -{ - return((DBGMCU->IDCODE) & IDCODE_DEVID_MASK); -} - -/** - * @brief Returns first word of the unique device identifier (UID based on 96 bits) - * @retval Device identifier - */ -uint32_t HAL_GetUIDw0(void) -{ - return(READ_REG(*((uint32_t *)UID_BASE))); -} - -/** - * @brief Returns second word of the unique device identifier (UID based on 96 bits) - * @retval Device identifier - */ -uint32_t HAL_GetUIDw1(void) -{ - return(READ_REG(*((uint32_t *)(UID_BASE + 4U)))); -} - -/** - * @brief Returns third word of the unique device identifier (UID based on 96 bits) - * @retval Device identifier - */ -uint32_t HAL_GetUIDw2(void) -{ - return(READ_REG(*((uint32_t *)(UID_BASE + 8U)))); -} - -/** - * @brief Enable the Debug Module during STOP mode - * @retval None - */ -void HAL_DBGMCU_EnableDBGStopMode(void) -{ - SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STOP); -} - -/** - * @brief Disable the Debug Module during STOP mode - * @retval None - */ -void HAL_DBGMCU_DisableDBGStopMode(void) -{ - CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STOP); -} - -/** - * @brief Enable the Debug Module during STANDBY mode - * @retval None - */ -void HAL_DBGMCU_EnableDBGStandbyMode(void) -{ - SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STANDBY); -} - -/** - * @brief Disable the Debug Module during STANDBY mode - * @retval None - */ -void HAL_DBGMCU_DisableDBGStandbyMode(void) -{ - CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STANDBY); -} - -/** - * @} - */ - -/** - * @} - */ - -#endif /* HAL_MODULE_ENABLED */ -/** - * @} - */ - -/** - * @} - */ - -/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_adc.c b/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_adc.c deleted file mode 100644 index c382417..0000000 --- a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_adc.c +++ /dev/null @@ -1,2476 +0,0 @@ -/** - ****************************************************************************** - * @file stm32f0xx_hal_adc.c - * @author MCD Application Team - * @brief This file provides firmware functions to manage the following - * functionalities of the Analog to Digital Convertor (ADC) - * peripheral: - * + Initialization and de-initialization functions - * ++ Initialization and Configuration of ADC - * + Operation functions - * ++ Start, stop, get result of conversions of regular - * group, using 3 possible modes: polling, interruption or DMA. - * + Control functions - * ++ Channels configuration on regular group - * ++ Analog Watchdog configuration - * + State functions - * ++ ADC state machine management - * ++ Interrupts and flags management - * Other functions (extended functions) are available in file - * "stm32f0xx_hal_adc_ex.c". - * - @verbatim - ============================================================================== - ##### ADC peripheral features ##### - ============================================================================== - [..] - (+) 12-bit, 10-bit, 8-bit or 6-bit configurable resolution - - (+) Interrupt generation at the end of regular conversion and in case of - analog watchdog or overrun events. - - (+) Single and continuous conversion modes. - - (+) Scan mode for conversion of several channels sequentially. - - (+) Data alignment with in-built data coherency. - - (+) Programmable sampling time (common for all channels) - - (+) ADC conversion of regular group. - - (+) External trigger (timer or EXTI) with configurable polarity - - (+) DMA request generation for transfer of conversions data of regular group. - - (+) ADC calibration - - (+) ADC supply requirements: 2.4 V to 3.6 V at full speed and down to 1.8 V at - slower speed. - - (+) ADC input range: from Vref- (connected to Vssa) to Vref+ (connected to - Vdda or to an external voltage reference). - - - ##### How to use this driver ##### - ============================================================================== - [..] - - *** Configuration of top level parameters related to ADC *** - ============================================================ - [..] - - (#) Enable the ADC interface - (++) As prerequisite, ADC clock must be configured at RCC top level. - Caution: On STM32F0, ADC clock frequency max is 14MHz (refer - to device datasheet). - Therefore, ADC clock prescaler must be configured in - function of ADC clock source frequency to remain below - this maximum frequency. - - (++) Two clock settings are mandatory: - (+++) ADC clock (core clock, also possibly conversion clock). - - (+++) ADC clock (conversions clock). - Two possible clock sources: synchronous clock derived from APB clock - or asynchronous clock derived from ADC dedicated HSI RC oscillator - 14MHz. - If asynchronous clock is selected, parameter "HSI14State" must be set either: - - to "...HSI14State = RCC_HSI14_ADC_CONTROL" to let the ADC control - the HSI14 oscillator enable/disable (if not used to supply the main - system clock): feature used if ADC mode LowPowerAutoPowerOff is - enabled. - - to "...HSI14State = RCC_HSI14_ON" to maintain the HSI14 oscillator - always enabled: can be used to supply the main system clock. - - (+++) Example: - Into HAL_ADC_MspInit() (recommended code location) or with - other device clock parameters configuration: - (+++) __HAL_RCC_ADC1_CLK_ENABLE(); (mandatory) - - HI14 enable or let under control of ADC: (optional: if asynchronous clock selected) - (+++) RCC_OscInitTypeDef RCC_OscInitStructure; - (+++) RCC_OscInitStructure.OscillatorType = RCC_OSCILLATORTYPE_HSI14; - (+++) RCC_OscInitStructure.HSI14CalibrationValue = RCC_HSI14CALIBRATION_DEFAULT; - (+++) RCC_OscInitStructure.HSI14State = RCC_HSI14_ADC_CONTROL; - (+++) RCC_OscInitStructure.PLL... (optional if used for system clock) - (+++) HAL_RCC_OscConfig(&RCC_OscInitStructure); - - (++) ADC clock source and clock prescaler are configured at ADC level with - parameter "ClockPrescaler" using function HAL_ADC_Init(). - - (#) ADC pins configuration - (++) Enable the clock for the ADC GPIOs - using macro __HAL_RCC_GPIOx_CLK_ENABLE() - (++) Configure these ADC pins in analog mode - using function HAL_GPIO_Init() - - (#) Optionally, in case of usage of ADC with interruptions: - (++) Configure the NVIC for ADC - using function HAL_NVIC_EnableIRQ(ADCx_IRQn) - (++) Insert the ADC interruption handler function HAL_ADC_IRQHandler() - into the function of corresponding ADC interruption vector - ADCx_IRQHandler(). - - (#) Optionally, in case of usage of DMA: - (++) Configure the DMA (DMA channel, mode normal or circular, ...) - using function HAL_DMA_Init(). - (++) Configure the NVIC for DMA - using function HAL_NVIC_EnableIRQ(DMAx_Channelx_IRQn) - (++) Insert the ADC interruption handler function HAL_ADC_IRQHandler() - into the function of corresponding DMA interruption vector - DMAx_Channelx_IRQHandler(). - - *** Configuration of ADC, group regular, channels parameters *** - ================================================================ - [..] - - (#) Configure the ADC parameters (resolution, data alignment, ...) - and regular group parameters (conversion trigger, sequencer, ...) - using function HAL_ADC_Init(). - - (#) Configure the channels for regular group parameters (channel number, - channel rank into sequencer, ..., into regular group) - using function HAL_ADC_ConfigChannel(). - - (#) Optionally, configure the analog watchdog parameters (channels - monitored, thresholds, ...) - using function HAL_ADC_AnalogWDGConfig(). - - *** Execution of ADC conversions *** - ==================================== - [..] - - (#) Optionally, perform an automatic ADC calibration to improve the - conversion accuracy - using function HAL_ADCEx_Calibration_Start(). - - (#) ADC driver can be used among three modes: polling, interruption, - transfer by DMA. - - (++) ADC conversion by polling: - (+++) Activate the ADC peripheral and start conversions - using function HAL_ADC_Start() - (+++) Wait for ADC conversion completion - using function HAL_ADC_PollForConversion() - (+++) Retrieve conversion results - using function HAL_ADC_GetValue() - (+++) Stop conversion and disable the ADC peripheral - using function HAL_ADC_Stop() - - (++) ADC conversion by interruption: - (+++) Activate the ADC peripheral and start conversions - using function HAL_ADC_Start_IT() - (+++) Wait for ADC conversion completion by call of function - HAL_ADC_ConvCpltCallback() - (this function must be implemented in user program) - (+++) Retrieve conversion results - using function HAL_ADC_GetValue() - (+++) Stop conversion and disable the ADC peripheral - using function HAL_ADC_Stop_IT() - - (++) ADC conversion with transfer by DMA: - (+++) Activate the ADC peripheral and start conversions - using function HAL_ADC_Start_DMA() - (+++) Wait for ADC conversion completion by call of function - HAL_ADC_ConvCpltCallback() or HAL_ADC_ConvHalfCpltCallback() - (these functions must be implemented in user program) - (+++) Conversion results are automatically transferred by DMA into - destination variable address. - (+++) Stop conversion and disable the ADC peripheral - using function HAL_ADC_Stop_DMA() - - [..] - - (@) Callback functions must be implemented in user program: - (+@) HAL_ADC_ErrorCallback() - (+@) HAL_ADC_LevelOutOfWindowCallback() (callback of analog watchdog) - (+@) HAL_ADC_ConvCpltCallback() - (+@) HAL_ADC_ConvHalfCpltCallback - - *** Deinitialization of ADC *** - ============================================================ - [..] - - (#) Disable the ADC interface - (++) ADC clock can be hard reset and disabled at RCC top level. - (++) Hard reset of ADC peripherals - using macro __ADCx_FORCE_RESET(), __ADCx_RELEASE_RESET(). - (++) ADC clock disable - using the equivalent macro/functions as configuration step. - (+++) Example: - Into HAL_ADC_MspDeInit() (recommended code location) or with - other device clock parameters configuration: - (+++) RCC_OscInitStructure.OscillatorType = RCC_OSCILLATORTYPE_HSI14; - (+++) RCC_OscInitStructure.HSI14State = RCC_HSI14_OFF; (if not used for system clock) - (+++) HAL_RCC_OscConfig(&RCC_OscInitStructure); - - (#) ADC pins configuration - (++) Disable the clock for the ADC GPIOs - using macro __HAL_RCC_GPIOx_CLK_DISABLE() - - (#) Optionally, in case of usage of ADC with interruptions: - (++) Disable the NVIC for ADC - using function HAL_NVIC_DisableIRQ(ADCx_IRQn) - - (#) Optionally, in case of usage of DMA: - (++) Deinitialize the DMA - using function HAL_DMA_DeInit(). - (++) Disable the NVIC for DMA - using function HAL_NVIC_DisableIRQ(DMAx_Channelx_IRQn) - - [..] - - *** Callback registration *** - ============================================= - [..] - - The compilation flag USE_HAL_ADC_REGISTER_CALLBACKS, when set to 1, - allows the user to configure dynamically the driver callbacks. - Use Functions @ref HAL_ADC_RegisterCallback() - to register an interrupt callback. - [..] - - Function @ref HAL_ADC_RegisterCallback() allows to register following callbacks: - (+) ConvCpltCallback : ADC conversion complete callback - (+) ConvHalfCpltCallback : ADC conversion DMA half-transfer callback - (+) LevelOutOfWindowCallback : ADC analog watchdog 1 callback - (+) ErrorCallback : ADC error callback - (+) MspInitCallback : ADC Msp Init callback - (+) MspDeInitCallback : ADC Msp DeInit callback - This function takes as parameters the HAL peripheral handle, the Callback ID - and a pointer to the user callback function. - [..] - - Use function @ref HAL_ADC_UnRegisterCallback to reset a callback to the default - weak function. - [..] - - @ref HAL_ADC_UnRegisterCallback takes as parameters the HAL peripheral handle, - and the Callback ID. - This function allows to reset following callbacks: - (+) ConvCpltCallback : ADC conversion complete callback - (+) ConvHalfCpltCallback : ADC conversion DMA half-transfer callback - (+) LevelOutOfWindowCallback : ADC analog watchdog 1 callback - (+) ErrorCallback : ADC error callback - (+) MspInitCallback : ADC Msp Init callback - (+) MspDeInitCallback : ADC Msp DeInit callback - [..] - - By default, after the @ref HAL_ADC_Init() and when the state is @ref HAL_ADC_STATE_RESET - all callbacks are set to the corresponding weak functions: - examples @ref HAL_ADC_ConvCpltCallback(), @ref HAL_ADC_ErrorCallback(). - Exception done for MspInit and MspDeInit functions that are - reset to the legacy weak functions in the @ref HAL_ADC_Init()/ @ref HAL_ADC_DeInit() only when - these callbacks are null (not registered beforehand). - [..] - - If MspInit or MspDeInit are not null, the @ref HAL_ADC_Init()/ @ref HAL_ADC_DeInit() - keep and use the user MspInit/MspDeInit callbacks (registered beforehand) whatever the state. - [..] - - Callbacks can be registered/unregistered in @ref HAL_ADC_STATE_READY state only. - Exception done MspInit/MspDeInit functions that can be registered/unregistered - in @ref HAL_ADC_STATE_READY or @ref HAL_ADC_STATE_RESET state, - thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit. - [..] - - Then, the user first registers the MspInit/MspDeInit user callbacks - using @ref HAL_ADC_RegisterCallback() before calling @ref HAL_ADC_DeInit() - or @ref HAL_ADC_Init() function. - [..] - - When the compilation flag USE_HAL_ADC_REGISTER_CALLBACKS is set to 0 or - not defined, the callback registration feature is not available and all callbacks - are set to the corresponding weak functions. - - @endverbatim - ****************************************************************************** - * @attention - * - *

© Copyright (c) 2016 STMicroelectronics. - * All rights reserved.

- * - * This software component is licensed by ST under BSD 3-Clause license, - * the "License"; You may not use this file except in compliance with the - * License. You may obtain a copy of the License at: - * opensource.org/licenses/BSD-3-Clause - * - ****************************************************************************** - */ - -/* Includes ------------------------------------------------------------------*/ -#include "stm32f0xx_hal.h" - -/** @addtogroup STM32F0xx_HAL_Driver - * @{ - */ - -/** @defgroup ADC ADC - * @brief ADC HAL module driver - * @{ - */ - -#ifdef HAL_ADC_MODULE_ENABLED - -/* Private typedef -----------------------------------------------------------*/ -/* Private define ------------------------------------------------------------*/ -/** @defgroup ADC_Private_Constants ADC Private Constants - * @{ - */ - - /* Fixed timeout values for ADC calibration, enable settling time, disable */ - /* settling time. */ - /* Values defined to be higher than worst cases: low clock frequency, */ - /* maximum prescaler. */ - /* Ex of profile low frequency : Clock source at 0.1 MHz, ADC clock */ - /* prescaler 4, sampling time 7.5 ADC clock cycles, resolution 12 bits. */ - /* Unit: ms */ - #define ADC_ENABLE_TIMEOUT ( 2U) - #define ADC_DISABLE_TIMEOUT ( 2U) - #define ADC_STOP_CONVERSION_TIMEOUT ( 2U) - - /* Delay for ADC stabilization time. */ - /* Maximum delay is 1us (refer to device datasheet, parameter tSTAB). */ - /* Unit: us */ - #define ADC_STAB_DELAY_US ( 1U) - - /* Delay for temperature sensor stabilization time. */ - /* Maximum delay is 10us (refer to device datasheet, parameter tSTART). */ - /* Unit: us */ - #define ADC_TEMPSENSOR_DELAY_US ( 10U) - -/** - * @} - */ - -/* Private macro -------------------------------------------------------------*/ -/* Private variables ---------------------------------------------------------*/ -/* Private function prototypes -----------------------------------------------*/ -/** @defgroup ADC_Private_Functions ADC Private Functions - * @{ - */ -static HAL_StatusTypeDef ADC_Enable(ADC_HandleTypeDef* hadc); -static HAL_StatusTypeDef ADC_Disable(ADC_HandleTypeDef* hadc); -static HAL_StatusTypeDef ADC_ConversionStop(ADC_HandleTypeDef* hadc); -static void ADC_DMAConvCplt(DMA_HandleTypeDef *hdma); -static void ADC_DMAHalfConvCplt(DMA_HandleTypeDef *hdma); -static void ADC_DMAError(DMA_HandleTypeDef *hdma); -/** - * @} - */ - -/* Exported functions ---------------------------------------------------------*/ - -/** @defgroup ADC_Exported_Functions ADC Exported Functions - * @{ - */ - -/** @defgroup ADC_Exported_Functions_Group1 Initialization/de-initialization functions - * @brief Initialization and Configuration functions - * -@verbatim - =============================================================================== - ##### Initialization and de-initialization functions ##### - =============================================================================== - [..] This section provides functions allowing to: - (+) Initialize and configure the ADC. - (+) De-initialize the ADC -@endverbatim - * @{ - */ - -/** - * @brief Initializes the ADC peripheral and regular group according to - * parameters specified in structure "ADC_InitTypeDef". - * @note As prerequisite, ADC clock must be configured at RCC top level - * depending on both possible clock sources: APB clock of HSI clock. - * See commented example code below that can be copied and uncommented - * into HAL_ADC_MspInit(). - * @note Possibility to update parameters on the fly: - * This function initializes the ADC MSP (HAL_ADC_MspInit()) only when - * coming from ADC state reset. Following calls to this function can - * be used to reconfigure some parameters of ADC_InitTypeDef - * structure on the fly, without modifying MSP configuration. If ADC - * MSP has to be modified again, HAL_ADC_DeInit() must be called - * before HAL_ADC_Init(). - * The setting of these parameters is conditioned to ADC state. - * For parameters constraints, see comments of structure - * "ADC_InitTypeDef". - * @note This function configures the ADC within 2 scopes: scope of entire - * ADC and scope of regular group. For parameters details, see comments - * of structure "ADC_InitTypeDef". - * @param hadc ADC handle - * @retval HAL status - */ -HAL_StatusTypeDef HAL_ADC_Init(ADC_HandleTypeDef* hadc) -{ - HAL_StatusTypeDef tmp_hal_status = HAL_OK; - uint32_t tmpCFGR1 = 0U; - - /* Check ADC handle */ - if(hadc == NULL) - { - return HAL_ERROR; - } - - /* Check the parameters */ - assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); - assert_param(IS_ADC_CLOCKPRESCALER(hadc->Init.ClockPrescaler)); - assert_param(IS_ADC_RESOLUTION(hadc->Init.Resolution)); - assert_param(IS_ADC_DATA_ALIGN(hadc->Init.DataAlign)); - assert_param(IS_ADC_SCAN_MODE(hadc->Init.ScanConvMode)); - assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode)); - assert_param(IS_FUNCTIONAL_STATE(hadc->Init.DiscontinuousConvMode)); - assert_param(IS_ADC_EXTTRIG_EDGE(hadc->Init.ExternalTrigConvEdge)); - assert_param(IS_ADC_EXTTRIG(hadc->Init.ExternalTrigConv)); - assert_param(IS_FUNCTIONAL_STATE(hadc->Init.DMAContinuousRequests)); - assert_param(IS_ADC_EOC_SELECTION(hadc->Init.EOCSelection)); - assert_param(IS_ADC_OVERRUN(hadc->Init.Overrun)); - assert_param(IS_FUNCTIONAL_STATE(hadc->Init.LowPowerAutoWait)); - assert_param(IS_FUNCTIONAL_STATE(hadc->Init.LowPowerAutoPowerOff)); - - /* As prerequisite, into HAL_ADC_MspInit(), ADC clock must be configured */ - /* at RCC top level depending on both possible clock sources: */ - /* APB clock or HSI clock. */ - /* Refer to header of this file for more details on clock enabling procedure*/ - - /* Actions performed only if ADC is coming from state reset: */ - /* - Initialization of ADC MSP */ - /* - ADC voltage regulator enable */ - if (hadc->State == HAL_ADC_STATE_RESET) - { - /* Initialize ADC error code */ - ADC_CLEAR_ERRORCODE(hadc); - - /* Allocate lock resource and initialize it */ - hadc->Lock = HAL_UNLOCKED; - -#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) - /* Init the ADC Callback settings */ - hadc->ConvCpltCallback = HAL_ADC_ConvCpltCallback; /* Legacy weak callback */ - hadc->ConvHalfCpltCallback = HAL_ADC_ConvHalfCpltCallback; /* Legacy weak callback */ - hadc->LevelOutOfWindowCallback = HAL_ADC_LevelOutOfWindowCallback; /* Legacy weak callback */ - hadc->ErrorCallback = HAL_ADC_ErrorCallback; /* Legacy weak callback */ - - if (hadc->MspInitCallback == NULL) - { - hadc->MspInitCallback = HAL_ADC_MspInit; /* Legacy weak MspInit */ - } - - /* Init the low level hardware */ - hadc->MspInitCallback(hadc); -#else - /* Init the low level hardware */ - HAL_ADC_MspInit(hadc); -#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ - } - - /* Configuration of ADC parameters if previous preliminary actions are */ - /* correctly completed. */ - /* and if there is no conversion on going on regular group (ADC can be */ - /* enabled anyway, in case of call of this function to update a parameter */ - /* on the fly). */ - if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL) && - (tmp_hal_status == HAL_OK) && - (ADC_IS_CONVERSION_ONGOING_REGULAR(hadc) == RESET) ) - { - /* Set ADC state */ - ADC_STATE_CLR_SET(hadc->State, - HAL_ADC_STATE_REG_BUSY, - HAL_ADC_STATE_BUSY_INTERNAL); - - /* Parameters update conditioned to ADC state: */ - /* Parameters that can be updated only when ADC is disabled: */ - /* - ADC clock mode */ - /* - ADC clock prescaler */ - /* - ADC resolution */ - if (ADC_IS_ENABLE(hadc) == RESET) - { - /* Some parameters of this register are not reset, since they are set */ - /* by other functions and must be kept in case of usage of this */ - /* function on the fly (update of a parameter of ADC_InitTypeDef */ - /* without needing to reconfigure all other ADC groups/channels */ - /* parameters): */ - /* - internal measurement paths: Vbat, temperature sensor, Vref */ - /* (set into HAL_ADC_ConfigChannel() ) */ - - /* Configuration of ADC resolution */ - MODIFY_REG(hadc->Instance->CFGR1, - ADC_CFGR1_RES , - hadc->Init.Resolution ); - - /* Configuration of ADC clock mode: clock source AHB or HSI with */ - /* selectable prescaler */ - MODIFY_REG(hadc->Instance->CFGR2 , - ADC_CFGR2_CKMODE , - hadc->Init.ClockPrescaler ); - } - - /* Configuration of ADC: */ - /* - discontinuous mode */ - /* - LowPowerAutoWait mode */ - /* - LowPowerAutoPowerOff mode */ - /* - continuous conversion mode */ - /* - overrun */ - /* - external trigger to start conversion */ - /* - external trigger polarity */ - /* - data alignment */ - /* - resolution */ - /* - scan direction */ - /* - DMA continuous request */ - hadc->Instance->CFGR1 &= ~( ADC_CFGR1_DISCEN | - ADC_CFGR1_AUTOFF | - ADC_CFGR1_AUTDLY | - ADC_CFGR1_CONT | - ADC_CFGR1_OVRMOD | - ADC_CFGR1_EXTSEL | - ADC_CFGR1_EXTEN | - ADC_CFGR1_ALIGN | - ADC_CFGR1_SCANDIR | - ADC_CFGR1_DMACFG ); - - tmpCFGR1 |= (ADC_CFGR1_AUTOWAIT((uint32_t)hadc->Init.LowPowerAutoWait) | - ADC_CFGR1_AUTOOFF((uint32_t)hadc->Init.LowPowerAutoPowerOff) | - ADC_CFGR1_CONTINUOUS((uint32_t)hadc->Init.ContinuousConvMode) | - ADC_CFGR1_OVERRUN(hadc->Init.Overrun) | - hadc->Init.DataAlign | - ADC_SCANDIR(hadc->Init.ScanConvMode) | - ADC_CFGR1_DMACONTREQ((uint32_t)hadc->Init.DMAContinuousRequests) ); - - /* Enable discontinuous mode only if continuous mode is disabled */ - if (hadc->Init.DiscontinuousConvMode == ENABLE) - { - if (hadc->Init.ContinuousConvMode == DISABLE) - { - /* Enable the selected ADC group regular discontinuous mode */ - tmpCFGR1 |= ADC_CFGR1_DISCEN; - } - else - { - /* ADC regular group discontinuous was intended to be enabled, */ - /* but ADC regular group modes continuous and sequencer discontinuous */ - /* cannot be enabled simultaneously. */ - - /* Update ADC state machine to error */ - SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG); - - /* Set ADC error code to ADC IP internal error */ - SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); - } - } - - /* Enable external trigger if trigger selection is different of software */ - /* start. */ - /* Note: This configuration keeps the hardware feature of parameter */ - /* ExternalTrigConvEdge "trigger edge none" equivalent to */ - /* software start. */ - if (hadc->Init.ExternalTrigConv != ADC_SOFTWARE_START) - { - tmpCFGR1 |= ( hadc->Init.ExternalTrigConv | - hadc->Init.ExternalTrigConvEdge ); - } - - /* Update ADC configuration register with previous settings */ - hadc->Instance->CFGR1 |= tmpCFGR1; - - /* Channel sampling time configuration */ - /* Management of parameters "SamplingTimeCommon" and "SamplingTime" */ - /* (obsolete): sampling time set in this function if parameter */ - /* "SamplingTimeCommon" has been set to a valid sampling time. */ - /* Otherwise, sampling time is set into ADC channel initialization */ - /* structure with parameter "SamplingTime" (obsolete). */ - if (IS_ADC_SAMPLE_TIME(hadc->Init.SamplingTimeCommon)) - { - /* Channel sampling time configuration */ - /* Clear the old sample time */ - hadc->Instance->SMPR &= ~(ADC_SMPR_SMP); - - /* Set the new sample time */ - hadc->Instance->SMPR |= ADC_SMPR_SET(hadc->Init.SamplingTimeCommon); - } - - /* Check back that ADC registers have effectively been configured to */ - /* ensure of no potential problem of ADC core IP clocking. */ - /* Check through register CFGR1 (excluding analog watchdog configuration: */ - /* set into separate dedicated function, and bits of ADC resolution set */ - /* out of temporary variable 'tmpCFGR1'). */ - if ((hadc->Instance->CFGR1 & ~(ADC_CFGR1_AWDCH | ADC_CFGR1_AWDEN | ADC_CFGR1_AWDSGL | ADC_CFGR1_RES)) - == tmpCFGR1) - { - /* Set ADC error code to none */ - ADC_CLEAR_ERRORCODE(hadc); - - /* Set the ADC state */ - ADC_STATE_CLR_SET(hadc->State, - HAL_ADC_STATE_BUSY_INTERNAL, - HAL_ADC_STATE_READY); - } - else - { - /* Update ADC state machine to error */ - ADC_STATE_CLR_SET(hadc->State, - HAL_ADC_STATE_BUSY_INTERNAL, - HAL_ADC_STATE_ERROR_INTERNAL); - - /* Set ADC error code to ADC IP internal error */ - SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); - - tmp_hal_status = HAL_ERROR; - } - - } - else - { - /* Update ADC state machine to error */ - SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL); - - tmp_hal_status = HAL_ERROR; - } - - /* Return function status */ - return tmp_hal_status; -} - - -/** - * @brief Deinitialize the ADC peripheral registers to their default reset - * values, with deinitialization of the ADC MSP. - * @note For devices with several ADCs: reset of ADC common registers is done - * only if all ADCs sharing the same common group are disabled. - * If this is not the case, reset of these common parameters reset is - * bypassed without error reporting: it can be the intended behaviour in - * case of reset of a single ADC while the other ADCs sharing the same - * common group is still running. - * @param hadc ADC handle - * @retval HAL status - */ -HAL_StatusTypeDef HAL_ADC_DeInit(ADC_HandleTypeDef* hadc) -{ - HAL_StatusTypeDef tmp_hal_status = HAL_OK; - - /* Check ADC handle */ - if(hadc == NULL) - { - return HAL_ERROR; - } - - /* Check the parameters */ - assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); - - /* Set ADC state */ - SET_BIT(hadc->State, HAL_ADC_STATE_BUSY_INTERNAL); - - /* Stop potential conversion on going, on regular group */ - tmp_hal_status = ADC_ConversionStop(hadc); - - /* Disable ADC peripheral if conversions are effectively stopped */ - if (tmp_hal_status == HAL_OK) - { - /* Disable the ADC peripheral */ - tmp_hal_status = ADC_Disable(hadc); - - /* Check if ADC is effectively disabled */ - if (tmp_hal_status != HAL_ERROR) - { - /* Change ADC state */ - hadc->State = HAL_ADC_STATE_READY; - } - } - - - /* Configuration of ADC parameters if previous preliminary actions are */ - /* correctly completed. */ - if (tmp_hal_status != HAL_ERROR) - { - - /* ========== Reset ADC registers ========== */ - /* Reset register IER */ - __HAL_ADC_DISABLE_IT(hadc, (ADC_IT_AWD | ADC_IT_OVR | - ADC_IT_EOS | ADC_IT_EOC | - ADC_IT_EOSMP | ADC_IT_RDY ) ); - - /* Reset register ISR */ - __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_AWD | ADC_FLAG_OVR | - ADC_FLAG_EOS | ADC_FLAG_EOC | - ADC_FLAG_EOSMP | ADC_FLAG_RDY ) ); - - /* Reset register CR */ - /* Bits ADC_CR_ADCAL, ADC_CR_ADSTP, ADC_CR_ADSTART are in access mode */ - /* "read-set": no direct reset applicable. */ - - /* Reset register CFGR1 */ - hadc->Instance->CFGR1 &= ~(ADC_CFGR1_AWDCH | ADC_CFGR1_AWDEN | ADC_CFGR1_AWDSGL | ADC_CFGR1_DISCEN | - ADC_CFGR1_AUTOFF | ADC_CFGR1_WAIT | ADC_CFGR1_CONT | ADC_CFGR1_OVRMOD | - ADC_CFGR1_EXTEN | ADC_CFGR1_EXTSEL | ADC_CFGR1_ALIGN | ADC_CFGR1_RES | - ADC_CFGR1_SCANDIR | ADC_CFGR1_DMACFG | ADC_CFGR1_DMAEN ); - - /* Reset register CFGR2 */ - /* Note: Update of ADC clock mode is conditioned to ADC state disabled: */ - /* already done above. */ - hadc->Instance->CFGR2 &= ~ADC_CFGR2_CKMODE; - - /* Reset register SMPR */ - hadc->Instance->SMPR &= ~ADC_SMPR_SMP; - - /* Reset register TR1 */ - hadc->Instance->TR &= ~(ADC_TR_HT | ADC_TR_LT); - - /* Reset register CHSELR */ - hadc->Instance->CHSELR &= ~(ADC_CHSELR_CHSEL18 | ADC_CHSELR_CHSEL17 | ADC_CHSELR_CHSEL16 | - ADC_CHSELR_CHSEL15 | ADC_CHSELR_CHSEL14 | ADC_CHSELR_CHSEL13 | ADC_CHSELR_CHSEL12 | - ADC_CHSELR_CHSEL11 | ADC_CHSELR_CHSEL10 | ADC_CHSELR_CHSEL9 | ADC_CHSELR_CHSEL8 | - ADC_CHSELR_CHSEL7 | ADC_CHSELR_CHSEL6 | ADC_CHSELR_CHSEL5 | ADC_CHSELR_CHSEL4 | - ADC_CHSELR_CHSEL3 | ADC_CHSELR_CHSEL2 | ADC_CHSELR_CHSEL1 | ADC_CHSELR_CHSEL0 ); - - /* Reset register DR */ - /* bits in access mode read only, no direct reset applicable*/ - - /* Reset register CCR */ - ADC->CCR &= ~(ADC_CCR_ALL); - - /* ========== Hard reset ADC peripheral ========== */ - /* Performs a global reset of the entire ADC peripheral: ADC state is */ - /* forced to a similar state after device power-on. */ - /* If needed, copy-paste and uncomment the following reset code into */ - /* function "void HAL_ADC_MspInit(ADC_HandleTypeDef* hadc)": */ - /* */ - /* __HAL_RCC_ADC1_FORCE_RESET() */ - /* __HAL_RCC_ADC1_RELEASE_RESET() */ - -#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) - if (hadc->MspDeInitCallback == NULL) - { - hadc->MspDeInitCallback = HAL_ADC_MspDeInit; /* Legacy weak MspDeInit */ - } - - /* DeInit the low level hardware */ - hadc->MspDeInitCallback(hadc); -#else - /* DeInit the low level hardware */ - HAL_ADC_MspDeInit(hadc); -#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ - - /* Set ADC error code to none */ - ADC_CLEAR_ERRORCODE(hadc); - - /* Set ADC state */ - hadc->State = HAL_ADC_STATE_RESET; - } - - /* Process unlocked */ - __HAL_UNLOCK(hadc); - - /* Return function status */ - return tmp_hal_status; -} - - -/** - * @brief Initializes the ADC MSP. - * @param hadc ADC handle - * @retval None - */ -__weak void HAL_ADC_MspInit(ADC_HandleTypeDef* hadc) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hadc); - - /* NOTE : This function should not be modified. When the callback is needed, - function HAL_ADC_MspInit must be implemented in the user file. - */ -} - -/** - * @brief DeInitializes the ADC MSP. - * @param hadc ADC handle - * @retval None - */ -__weak void HAL_ADC_MspDeInit(ADC_HandleTypeDef* hadc) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hadc); - - /* NOTE : This function should not be modified. When the callback is needed, - function HAL_ADC_MspDeInit must be implemented in the user file. - */ -} - -#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) -/** - * @brief Register a User ADC Callback - * To be used instead of the weak predefined callback - * @param hadc Pointer to a ADC_HandleTypeDef structure that contains - * the configuration information for the specified ADC. - * @param CallbackID ID of the callback to be registered - * This parameter can be one of the following values: - * @arg @ref HAL_ADC_CONVERSION_COMPLETE_CB_ID ADC conversion complete callback ID - * @arg @ref HAL_ADC_CONVERSION_HALF_CB_ID ADC conversion complete callback ID - * @arg @ref HAL_ADC_LEVEL_OUT_OF_WINDOW_1_CB_ID ADC analog watchdog 1 callback ID - * @arg @ref HAL_ADC_ERROR_CB_ID ADC error callback ID - * @arg @ref HAL_ADC_INJ_CONVERSION_COMPLETE_CB_ID ADC group injected conversion complete callback ID - * @arg @ref HAL_ADC_MSPINIT_CB_ID ADC Msp Init callback ID - * @arg @ref HAL_ADC_MSPDEINIT_CB_ID ADC Msp DeInit callback ID - * @arg @ref HAL_ADC_MSPINIT_CB_ID MspInit callback ID - * @arg @ref HAL_ADC_MSPDEINIT_CB_ID MspDeInit callback ID - * @param pCallback pointer to the Callback function - * @retval HAL status - */ -HAL_StatusTypeDef HAL_ADC_RegisterCallback(ADC_HandleTypeDef *hadc, HAL_ADC_CallbackIDTypeDef CallbackID, pADC_CallbackTypeDef pCallback) -{ - HAL_StatusTypeDef status = HAL_OK; - - if (pCallback == NULL) - { - /* Update the error code */ - hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK; - - return HAL_ERROR; - } - - if ((hadc->State & HAL_ADC_STATE_READY) != 0) - { - switch (CallbackID) - { - case HAL_ADC_CONVERSION_COMPLETE_CB_ID : - hadc->ConvCpltCallback = pCallback; - break; - - case HAL_ADC_CONVERSION_HALF_CB_ID : - hadc->ConvHalfCpltCallback = pCallback; - break; - - case HAL_ADC_LEVEL_OUT_OF_WINDOW_1_CB_ID : - hadc->LevelOutOfWindowCallback = pCallback; - break; - - case HAL_ADC_ERROR_CB_ID : - hadc->ErrorCallback = pCallback; - break; - - case HAL_ADC_MSPINIT_CB_ID : - hadc->MspInitCallback = pCallback; - break; - - case HAL_ADC_MSPDEINIT_CB_ID : - hadc->MspDeInitCallback = pCallback; - break; - - default : - /* Update the error code */ - hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK; - - /* Return error status */ - status = HAL_ERROR; - break; - } - } - else if (HAL_ADC_STATE_RESET == hadc->State) - { - switch (CallbackID) - { - case HAL_ADC_MSPINIT_CB_ID : - hadc->MspInitCallback = pCallback; - break; - - case HAL_ADC_MSPDEINIT_CB_ID : - hadc->MspDeInitCallback = pCallback; - break; - - default : - /* Update the error code */ - hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK; - - /* Return error status */ - status = HAL_ERROR; - break; - } - } - else - { - /* Update the error code */ - hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK; - - /* Return error status */ - status = HAL_ERROR; - } - - return status; -} - -/** - * @brief Unregister a ADC Callback - * ADC callback is redirected to the weak predefined callback - * @param hadc Pointer to a ADC_HandleTypeDef structure that contains - * the configuration information for the specified ADC. - * @param CallbackID ID of the callback to be unregistered - * This parameter can be one of the following values: - * @arg @ref HAL_ADC_CONVERSION_COMPLETE_CB_ID ADC conversion complete callback ID - * @arg @ref HAL_ADC_CONVERSION_HALF_CB_ID ADC conversion complete callback ID - * @arg @ref HAL_ADC_LEVEL_OUT_OF_WINDOW_1_CB_ID ADC analog watchdog 1 callback ID - * @arg @ref HAL_ADC_ERROR_CB_ID ADC error callback ID - * @arg @ref HAL_ADC_INJ_CONVERSION_COMPLETE_CB_ID ADC group injected conversion complete callback ID - * @arg @ref HAL_ADC_MSPINIT_CB_ID ADC Msp Init callback ID - * @arg @ref HAL_ADC_MSPDEINIT_CB_ID ADC Msp DeInit callback ID - * @arg @ref HAL_ADC_MSPINIT_CB_ID MspInit callback ID - * @arg @ref HAL_ADC_MSPDEINIT_CB_ID MspDeInit callback ID - * @retval HAL status - */ -HAL_StatusTypeDef HAL_ADC_UnRegisterCallback(ADC_HandleTypeDef *hadc, HAL_ADC_CallbackIDTypeDef CallbackID) -{ - HAL_StatusTypeDef status = HAL_OK; - - if ((hadc->State & HAL_ADC_STATE_READY) != 0) - { - switch (CallbackID) - { - case HAL_ADC_CONVERSION_COMPLETE_CB_ID : - hadc->ConvCpltCallback = HAL_ADC_ConvCpltCallback; - break; - - case HAL_ADC_CONVERSION_HALF_CB_ID : - hadc->ConvHalfCpltCallback = HAL_ADC_ConvHalfCpltCallback; - break; - - case HAL_ADC_LEVEL_OUT_OF_WINDOW_1_CB_ID : - hadc->LevelOutOfWindowCallback = HAL_ADC_LevelOutOfWindowCallback; - break; - - case HAL_ADC_ERROR_CB_ID : - hadc->ErrorCallback = HAL_ADC_ErrorCallback; - break; - - case HAL_ADC_MSPINIT_CB_ID : - hadc->MspInitCallback = HAL_ADC_MspInit; /* Legacy weak MspInit */ - break; - - case HAL_ADC_MSPDEINIT_CB_ID : - hadc->MspDeInitCallback = HAL_ADC_MspDeInit; /* Legacy weak MspDeInit */ - break; - - default : - /* Update the error code */ - hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK; - - /* Return error status */ - status = HAL_ERROR; - break; - } - } - else if (HAL_ADC_STATE_RESET == hadc->State) - { - switch (CallbackID) - { - case HAL_ADC_MSPINIT_CB_ID : - hadc->MspInitCallback = HAL_ADC_MspInit; /* Legacy weak MspInit */ - break; - - case HAL_ADC_MSPDEINIT_CB_ID : - hadc->MspDeInitCallback = HAL_ADC_MspDeInit; /* Legacy weak MspDeInit */ - break; - - default : - /* Update the error code */ - hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK; - - /* Return error status */ - status = HAL_ERROR; - break; - } - } - else - { - /* Update the error code */ - hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK; - - /* Return error status */ - status = HAL_ERROR; - } - - return status; -} - -#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ - -/** - * @} - */ - -/** @defgroup ADC_Exported_Functions_Group2 IO operation functions - * @brief IO operation functions - * -@verbatim - =============================================================================== - ##### IO operation functions ##### - =============================================================================== - [..] This section provides functions allowing to: - (+) Start conversion of regular group. - (+) Stop conversion of regular group. - (+) Poll for conversion complete on regular group. - (+) Poll for conversion event. - (+) Get result of regular channel conversion. - (+) Start conversion of regular group and enable interruptions. - (+) Stop conversion of regular group and disable interruptions. - (+) Handle ADC interrupt request - (+) Start conversion of regular group and enable DMA transfer. - (+) Stop conversion of regular group and disable ADC DMA transfer. -@endverbatim - * @{ - */ - -/** - * @brief Enables ADC, starts conversion of regular group. - * Interruptions enabled in this function: None. - * @param hadc ADC handle - * @retval HAL status - */ -HAL_StatusTypeDef HAL_ADC_Start(ADC_HandleTypeDef* hadc) -{ - HAL_StatusTypeDef tmp_hal_status = HAL_OK; - - /* Check the parameters */ - assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); - - /* Perform ADC enable and conversion start if no conversion is on going */ - if (ADC_IS_CONVERSION_ONGOING_REGULAR(hadc) == RESET) - { - /* Process locked */ - __HAL_LOCK(hadc); - - /* Enable the ADC peripheral */ - /* If low power mode AutoPowerOff is enabled, power-on/off phases are */ - /* performed automatically by hardware. */ - if (hadc->Init.LowPowerAutoPowerOff != ENABLE) - { - tmp_hal_status = ADC_Enable(hadc); - } - - /* Start conversion if ADC is effectively enabled */ - if (tmp_hal_status == HAL_OK) - { - /* Set ADC state */ - /* - Clear state bitfield related to regular group conversion results */ - /* - Set state bitfield related to regular operation */ - ADC_STATE_CLR_SET(hadc->State, - HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC | HAL_ADC_STATE_REG_OVR | HAL_ADC_STATE_REG_EOSMP, - HAL_ADC_STATE_REG_BUSY); - - /* Reset ADC all error code fields */ - ADC_CLEAR_ERRORCODE(hadc); - - /* Process unlocked */ - /* Unlock before starting ADC conversions: in case of potential */ - /* interruption, to let the process to ADC IRQ Handler. */ - __HAL_UNLOCK(hadc); - - /* Clear regular group conversion flag and overrun flag */ - /* (To ensure of no unknown state from potential previous ADC */ - /* operations) */ - __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS | ADC_FLAG_OVR)); - - /* Enable conversion of regular group. */ - /* If software start has been selected, conversion starts immediately. */ - /* If external trigger has been selected, conversion will start at next */ - /* trigger event. */ - hadc->Instance->CR |= ADC_CR_ADSTART; - } - } - else - { - tmp_hal_status = HAL_BUSY; - } - - /* Return function status */ - return tmp_hal_status; -} - -/** - * @brief Stop ADC conversion of regular group, disable ADC peripheral. - * @param hadc ADC handle - * @retval HAL status. - */ -HAL_StatusTypeDef HAL_ADC_Stop(ADC_HandleTypeDef* hadc) -{ - HAL_StatusTypeDef tmp_hal_status = HAL_OK; - - /* Check the parameters */ - assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); - - /* Process locked */ - __HAL_LOCK(hadc); - - /* 1. Stop potential conversion on going, on regular group */ - tmp_hal_status = ADC_ConversionStop(hadc); - - /* Disable ADC peripheral if conversions are effectively stopped */ - if (tmp_hal_status == HAL_OK) - { - /* 2. Disable the ADC peripheral */ - tmp_hal_status = ADC_Disable(hadc); - - /* Check if ADC is effectively disabled */ - if (tmp_hal_status == HAL_OK) - { - /* Set ADC state */ - ADC_STATE_CLR_SET(hadc->State, - HAL_ADC_STATE_REG_BUSY, - HAL_ADC_STATE_READY); - } - } - - /* Process unlocked */ - __HAL_UNLOCK(hadc); - - /* Return function status */ - return tmp_hal_status; -} - -/** - * @brief Wait for regular group conversion to be completed. - * @note ADC conversion flags EOS (end of sequence) and EOC (end of - * conversion) are cleared by this function, with an exception: - * if low power feature "LowPowerAutoWait" is enabled, flags are - * not cleared to not interfere with this feature until data register - * is read using function HAL_ADC_GetValue(). - * @note This function cannot be used in a particular setup: ADC configured - * in DMA mode and polling for end of each conversion (ADC init - * parameter "EOCSelection" set to ADC_EOC_SINGLE_CONV). - * In this case, DMA resets the flag EOC and polling cannot be - * performed on each conversion. Nevertheless, polling can still - * be performed on the complete sequence (ADC init - * parameter "EOCSelection" set to ADC_EOC_SEQ_CONV). - * @param hadc ADC handle - * @param Timeout Timeout value in millisecond. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_ADC_PollForConversion(ADC_HandleTypeDef* hadc, uint32_t Timeout) -{ - uint32_t tickstart; - uint32_t tmp_Flag_EOC; - - /* Check the parameters */ - assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); - - /* If end of conversion selected to end of sequence */ - if (hadc->Init.EOCSelection == ADC_EOC_SEQ_CONV) - { - tmp_Flag_EOC = ADC_FLAG_EOS; - } - /* If end of conversion selected to end of each conversion */ - else /* ADC_EOC_SINGLE_CONV */ - { - /* Verification that ADC configuration is compliant with polling for */ - /* each conversion: */ - /* Particular case is ADC configured in DMA mode and ADC sequencer with */ - /* several ranks and polling for end of each conversion. */ - /* For code simplicity sake, this particular case is generalized to */ - /* ADC configured in DMA mode and and polling for end of each conversion. */ - if (HAL_IS_BIT_SET(hadc->Instance->CFGR1, ADC_CFGR1_DMAEN)) - { - /* Update ADC state machine to error */ - SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG); - - /* Process unlocked */ - __HAL_UNLOCK(hadc); - - return HAL_ERROR; - } - else - { - tmp_Flag_EOC = (ADC_FLAG_EOC | ADC_FLAG_EOS); - } - } - - /* Get tick count */ - tickstart = HAL_GetTick(); - - /* Wait until End of Conversion flag is raised */ - while(HAL_IS_BIT_CLR(hadc->Instance->ISR, tmp_Flag_EOC)) - { - /* Check if timeout is disabled (set to infinite wait) */ - if(Timeout != HAL_MAX_DELAY) - { - if((Timeout == 0) || ((HAL_GetTick()-tickstart) > Timeout)) - { - /* Update ADC state machine to timeout */ - SET_BIT(hadc->State, HAL_ADC_STATE_TIMEOUT); - - /* Process unlocked */ - __HAL_UNLOCK(hadc); - - return HAL_TIMEOUT; - } - } - } - - /* Update ADC state machine */ - SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC); - - /* Determine whether any further conversion upcoming on group regular */ - /* by external trigger, continuous mode or scan sequence on going. */ - if(ADC_IS_SOFTWARE_START_REGULAR(hadc) && - (hadc->Init.ContinuousConvMode == DISABLE) ) - { - /* If End of Sequence is reached, disable interrupts */ - if( __HAL_ADC_GET_FLAG(hadc, ADC_FLAG_EOS) ) - { - /* Allowed to modify bits ADC_IT_EOC/ADC_IT_EOS only if bit */ - /* ADSTART==0 (no conversion on going) */ - if (ADC_IS_CONVERSION_ONGOING_REGULAR(hadc) == RESET) - { - /* Disable ADC end of single conversion interrupt on group regular */ - /* Note: Overrun interrupt was enabled with EOC interrupt in */ - /* HAL_Start_IT(), but is not disabled here because can be used */ - /* by overrun IRQ process below. */ - __HAL_ADC_DISABLE_IT(hadc, ADC_IT_EOC | ADC_IT_EOS); - - /* Set ADC state */ - ADC_STATE_CLR_SET(hadc->State, - HAL_ADC_STATE_REG_BUSY, - HAL_ADC_STATE_READY); - } - else - { - /* Change ADC state to error state */ - SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG); - - /* Set ADC error code to ADC IP internal error */ - SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); - } - } - } - - /* Clear end of conversion flag of regular group if low power feature */ - /* "LowPowerAutoWait " is disabled, to not interfere with this feature */ - /* until data register is read using function HAL_ADC_GetValue(). */ - if (hadc->Init.LowPowerAutoWait == DISABLE) - { - /* Clear regular group conversion flag */ - __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS)); - } - - /* Return ADC state */ - return HAL_OK; -} - -/** - * @brief Poll for conversion event. - * @param hadc ADC handle - * @param EventType the ADC event type. - * This parameter can be one of the following values: - * @arg ADC_AWD_EVENT: ADC Analog watchdog event - * @arg ADC_OVR_EVENT: ADC Overrun event - * @param Timeout Timeout value in millisecond. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_ADC_PollForEvent(ADC_HandleTypeDef* hadc, uint32_t EventType, uint32_t Timeout) -{ - uint32_t tickstart=0; - - /* Check the parameters */ - assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); - assert_param(IS_ADC_EVENT_TYPE(EventType)); - - /* Get tick count */ - tickstart = HAL_GetTick(); - - /* Check selected event flag */ - while(__HAL_ADC_GET_FLAG(hadc, EventType) == RESET) - { - /* Check if timeout is disabled (set to infinite wait) */ - if(Timeout != HAL_MAX_DELAY) - { - if((Timeout == 0U) || ((HAL_GetTick()-tickstart) > Timeout)) - { - /* Update ADC state machine to timeout */ - SET_BIT(hadc->State, HAL_ADC_STATE_TIMEOUT); - - /* Process unlocked */ - __HAL_UNLOCK(hadc); - - return HAL_TIMEOUT; - } - } - } - - switch(EventType) - { - /* Analog watchdog (level out of window) event */ - case ADC_AWD_EVENT: - /* Set ADC state */ - SET_BIT(hadc->State, HAL_ADC_STATE_AWD1); - - /* Clear ADC analog watchdog flag */ - __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD); - break; - - /* Overrun event */ - default: /* Case ADC_OVR_EVENT */ - /* If overrun is set to overwrite previous data, overrun event is not */ - /* considered as an error. */ - /* (cf ref manual "Managing conversions without using the DMA and without */ - /* overrun ") */ - if (hadc->Init.Overrun == ADC_OVR_DATA_PRESERVED) - { - /* Set ADC state */ - SET_BIT(hadc->State, HAL_ADC_STATE_REG_OVR); - - /* Set ADC error code to overrun */ - SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_OVR); - } - - /* Clear ADC Overrun flag */ - __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_OVR); - break; - } - - /* Return ADC state */ - return HAL_OK; -} - -/** - * @brief Enables ADC, starts conversion of regular group with interruption. - * Interruptions enabled in this function: - * - EOC (end of conversion of regular group) or EOS (end of - * sequence of regular group) depending on ADC initialization - * parameter "EOCSelection" - * - overrun (if available) - * Each of these interruptions has its dedicated callback function. - * @param hadc ADC handle - * @retval HAL status - */ -HAL_StatusTypeDef HAL_ADC_Start_IT(ADC_HandleTypeDef* hadc) -{ - HAL_StatusTypeDef tmp_hal_status = HAL_OK; - - /* Check the parameters */ - assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); - - /* Perform ADC enable and conversion start if no conversion is on going */ - if (ADC_IS_CONVERSION_ONGOING_REGULAR(hadc) == RESET) - { - /* Process locked */ - __HAL_LOCK(hadc); - - /* Enable the ADC peripheral */ - /* If low power mode AutoPowerOff is enabled, power-on/off phases are */ - /* performed automatically by hardware. */ - if (hadc->Init.LowPowerAutoPowerOff != ENABLE) - { - tmp_hal_status = ADC_Enable(hadc); - } - - /* Start conversion if ADC is effectively enabled */ - if (tmp_hal_status == HAL_OK) - { - /* Set ADC state */ - /* - Clear state bitfield related to regular group conversion results */ - /* - Set state bitfield related to regular operation */ - ADC_STATE_CLR_SET(hadc->State, - HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC | HAL_ADC_STATE_REG_OVR | HAL_ADC_STATE_REG_EOSMP, - HAL_ADC_STATE_REG_BUSY); - - /* Reset ADC all error code fields */ - ADC_CLEAR_ERRORCODE(hadc); - - /* Process unlocked */ - /* Unlock before starting ADC conversions: in case of potential */ - /* interruption, to let the process to ADC IRQ Handler. */ - __HAL_UNLOCK(hadc); - - /* Clear regular group conversion flag and overrun flag */ - /* (To ensure of no unknown state from potential previous ADC */ - /* operations) */ - __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS | ADC_FLAG_OVR)); - - /* Enable ADC end of conversion interrupt */ - /* Enable ADC overrun interrupt */ - switch(hadc->Init.EOCSelection) - { - case ADC_EOC_SEQ_CONV: - __HAL_ADC_DISABLE_IT(hadc, ADC_IT_EOC); - __HAL_ADC_ENABLE_IT(hadc, (ADC_IT_EOS | ADC_IT_OVR)); - break; - /* case ADC_EOC_SINGLE_CONV */ - default: - __HAL_ADC_ENABLE_IT(hadc, (ADC_IT_EOC | ADC_IT_EOS | ADC_IT_OVR)); - break; - } - - /* Enable conversion of regular group. */ - /* If software start has been selected, conversion starts immediately. */ - /* If external trigger has been selected, conversion will start at next */ - /* trigger event. */ - hadc->Instance->CR |= ADC_CR_ADSTART; - } - } - else - { - tmp_hal_status = HAL_BUSY; - } - - /* Return function status */ - return tmp_hal_status; -} - - -/** - * @brief Stop ADC conversion of regular group, disable interruption of - * end-of-conversion, disable ADC peripheral. - * @param hadc ADC handle - * @retval HAL status. - */ -HAL_StatusTypeDef HAL_ADC_Stop_IT(ADC_HandleTypeDef* hadc) -{ - HAL_StatusTypeDef tmp_hal_status = HAL_OK; - - /* Check the parameters */ - assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); - - /* Process locked */ - __HAL_LOCK(hadc); - - /* 1. Stop potential conversion on going, on regular group */ - tmp_hal_status = ADC_ConversionStop(hadc); - - /* Disable ADC peripheral if conversions are effectively stopped */ - if (tmp_hal_status == HAL_OK) - { - /* Disable ADC end of conversion interrupt for regular group */ - /* Disable ADC overrun interrupt */ - __HAL_ADC_DISABLE_IT(hadc, (ADC_IT_EOC | ADC_IT_EOS | ADC_IT_OVR)); - - /* 2. Disable the ADC peripheral */ - tmp_hal_status = ADC_Disable(hadc); - - /* Check if ADC is effectively disabled */ - if (tmp_hal_status == HAL_OK) - { - /* Set ADC state */ - ADC_STATE_CLR_SET(hadc->State, - HAL_ADC_STATE_REG_BUSY, - HAL_ADC_STATE_READY); - } - } - - /* Process unlocked */ - __HAL_UNLOCK(hadc); - - /* Return function status */ - return tmp_hal_status; -} - -/** - * @brief Enables ADC, starts conversion of regular group and transfers result - * through DMA. - * Interruptions enabled in this function: - * - DMA transfer complete - * - DMA half transfer - * - overrun - * Each of these interruptions has its dedicated callback function. - * @param hadc ADC handle - * @param pData The destination Buffer address. - * @param Length The length of data to be transferred from ADC peripheral to memory. - * @retval None - */ -HAL_StatusTypeDef HAL_ADC_Start_DMA(ADC_HandleTypeDef* hadc, uint32_t* pData, uint32_t Length) -{ - HAL_StatusTypeDef tmp_hal_status = HAL_OK; - - /* Check the parameters */ - assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); - - /* Perform ADC enable and conversion start if no conversion is on going */ - if (ADC_IS_CONVERSION_ONGOING_REGULAR(hadc) == RESET) - { - /* Process locked */ - __HAL_LOCK(hadc); - - /* Enable the ADC peripheral */ - /* If low power mode AutoPowerOff is enabled, power-on/off phases are */ - /* performed automatically by hardware. */ - if (hadc->Init.LowPowerAutoPowerOff != ENABLE) - { - tmp_hal_status = ADC_Enable(hadc); - } - - /* Start conversion if ADC is effectively enabled */ - if (tmp_hal_status == HAL_OK) - { - /* Set ADC state */ - /* - Clear state bitfield related to regular group conversion results */ - /* - Set state bitfield related to regular operation */ - ADC_STATE_CLR_SET(hadc->State, - HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC | HAL_ADC_STATE_REG_OVR | HAL_ADC_STATE_REG_EOSMP, - HAL_ADC_STATE_REG_BUSY); - - /* Reset ADC all error code fields */ - ADC_CLEAR_ERRORCODE(hadc); - - /* Process unlocked */ - /* Unlock before starting ADC conversions: in case of potential */ - /* interruption, to let the process to ADC IRQ Handler. */ - __HAL_UNLOCK(hadc); - - /* Set the DMA transfer complete callback */ - hadc->DMA_Handle->XferCpltCallback = ADC_DMAConvCplt; - - /* Set the DMA half transfer complete callback */ - hadc->DMA_Handle->XferHalfCpltCallback = ADC_DMAHalfConvCplt; - - /* Set the DMA error callback */ - hadc->DMA_Handle->XferErrorCallback = ADC_DMAError; - - - /* Manage ADC and DMA start: ADC overrun interruption, DMA start, ADC */ - /* start (in case of SW start): */ - - /* Clear regular group conversion flag and overrun flag */ - /* (To ensure of no unknown state from potential previous ADC */ - /* operations) */ - __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS | ADC_FLAG_OVR)); - - /* Enable ADC overrun interrupt */ - __HAL_ADC_ENABLE_IT(hadc, ADC_IT_OVR); - - /* Enable ADC DMA mode */ - hadc->Instance->CFGR1 |= ADC_CFGR1_DMAEN; - - /* Start the DMA channel */ - HAL_DMA_Start_IT(hadc->DMA_Handle, (uint32_t)&hadc->Instance->DR, (uint32_t)pData, Length); - - /* Enable conversion of regular group. */ - /* If software start has been selected, conversion starts immediately. */ - /* If external trigger has been selected, conversion will start at next */ - /* trigger event. */ - hadc->Instance->CR |= ADC_CR_ADSTART; - } - } - else - { - tmp_hal_status = HAL_BUSY; - } - - /* Return function status */ - return tmp_hal_status; -} - -/** - * @brief Stop ADC conversion of regular group, disable ADC DMA transfer, disable - * ADC peripheral. - * Each of these interruptions has its dedicated callback function. - * @param hadc ADC handle - * @retval HAL status. - */ -HAL_StatusTypeDef HAL_ADC_Stop_DMA(ADC_HandleTypeDef* hadc) -{ - HAL_StatusTypeDef tmp_hal_status = HAL_OK; - - /* Check the parameters */ - assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); - - /* Process locked */ - __HAL_LOCK(hadc); - - /* 1. Stop potential conversion on going, on regular group */ - tmp_hal_status = ADC_ConversionStop(hadc); - - /* Disable ADC peripheral if conversions are effectively stopped */ - if (tmp_hal_status == HAL_OK) - { - /* Disable ADC DMA (ADC DMA configuration ADC_CFGR_DMACFG is kept) */ - hadc->Instance->CFGR1 &= ~ADC_CFGR1_DMAEN; - - /* Disable the DMA channel (in case of DMA in circular mode or stop while */ - /* while DMA transfer is on going) */ - tmp_hal_status = HAL_DMA_Abort(hadc->DMA_Handle); - - /* Check if DMA channel effectively disabled */ - if (tmp_hal_status != HAL_OK) - { - /* Update ADC state machine to error */ - SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_DMA); - } - - /* Disable ADC overrun interrupt */ - __HAL_ADC_DISABLE_IT(hadc, ADC_IT_OVR); - - /* 2. Disable the ADC peripheral */ - /* Update "tmp_hal_status" only if DMA channel disabling passed, to keep */ - /* in memory a potential failing status. */ - if (tmp_hal_status == HAL_OK) - { - tmp_hal_status = ADC_Disable(hadc); - } - else - { - ADC_Disable(hadc); - } - - /* Check if ADC is effectively disabled */ - if (tmp_hal_status == HAL_OK) - { - /* Set ADC state */ - ADC_STATE_CLR_SET(hadc->State, - HAL_ADC_STATE_REG_BUSY, - HAL_ADC_STATE_READY); - } - - } - - /* Process unlocked */ - __HAL_UNLOCK(hadc); - - /* Return function status */ - return tmp_hal_status; -} - -/** - * @brief Get ADC regular group conversion result. - * @note Reading register DR automatically clears ADC flag EOC - * (ADC group regular end of unitary conversion). - * @note This function does not clear ADC flag EOS - * (ADC group regular end of sequence conversion). - * Occurrence of flag EOS rising: - * - If sequencer is composed of 1 rank, flag EOS is equivalent - * to flag EOC. - * - If sequencer is composed of several ranks, during the scan - * sequence flag EOC only is raised, at the end of the scan sequence - * both flags EOC and EOS are raised. - * To clear this flag, either use function: - * in programming model IT: @ref HAL_ADC_IRQHandler(), in programming - * model polling: @ref HAL_ADC_PollForConversion() - * or @ref __HAL_ADC_CLEAR_FLAG(&hadc, ADC_FLAG_EOS). - * @param hadc ADC handle - * @retval ADC group regular conversion data - */ -uint32_t HAL_ADC_GetValue(ADC_HandleTypeDef* hadc) -{ - /* Check the parameters */ - assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); - - /* Note: EOC flag is not cleared here by software because automatically */ - /* cleared by hardware when reading register DR. */ - - /* Return ADC converted value */ - return hadc->Instance->DR; -} - -/** - * @brief Handles ADC interrupt request. - * @param hadc ADC handle - * @retval None - */ -void HAL_ADC_IRQHandler(ADC_HandleTypeDef* hadc) -{ - /* Check the parameters */ - assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); - assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode)); - assert_param(IS_ADC_EOC_SELECTION(hadc->Init.EOCSelection)); - - /* ========== Check End of Conversion flag for regular group ========== */ - if( (__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_EOC) && __HAL_ADC_GET_IT_SOURCE(hadc, ADC_IT_EOC)) || - (__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_EOS) && __HAL_ADC_GET_IT_SOURCE(hadc, ADC_IT_EOS)) ) - { - /* Update state machine on conversion status if not in error state */ - if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL)) - { - /* Set ADC state */ - SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC); - } - - /* Determine whether any further conversion upcoming on group regular */ - /* by external trigger, continuous mode or scan sequence on going. */ - if(ADC_IS_SOFTWARE_START_REGULAR(hadc) && - (hadc->Init.ContinuousConvMode == DISABLE) ) - { - /* If End of Sequence is reached, disable interrupts */ - if( __HAL_ADC_GET_FLAG(hadc, ADC_FLAG_EOS) ) - { - /* Allowed to modify bits ADC_IT_EOC/ADC_IT_EOS only if bit */ - /* ADSTART==0 (no conversion on going) */ - if (ADC_IS_CONVERSION_ONGOING_REGULAR(hadc) == RESET) - { - /* Disable ADC end of single conversion interrupt on group regular */ - /* Note: Overrun interrupt was enabled with EOC interrupt in */ - /* HAL_Start_IT(), but is not disabled here because can be used */ - /* by overrun IRQ process below. */ - __HAL_ADC_DISABLE_IT(hadc, ADC_IT_EOC | ADC_IT_EOS); - - /* Set ADC state */ - ADC_STATE_CLR_SET(hadc->State, - HAL_ADC_STATE_REG_BUSY, - HAL_ADC_STATE_READY); - } - else - { - /* Change ADC state to error state */ - SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG); - - /* Set ADC error code to ADC IP internal error */ - SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); - } - } - } - - /* Note: into callback, to determine if conversion has been triggered */ - /* from EOC or EOS, possibility to use: */ - /* " if( __HAL_ADC_GET_FLAG(&hadc, ADC_FLAG_EOS)) " */ -#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) - hadc->ConvCpltCallback(hadc); -#else - HAL_ADC_ConvCpltCallback(hadc); -#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ - - - /* Clear regular group conversion flag */ - /* Note: in case of overrun set to ADC_OVR_DATA_PRESERVED, end of */ - /* conversion flags clear induces the release of the preserved data.*/ - /* Therefore, if the preserved data value is needed, it must be */ - /* read preliminarily into HAL_ADC_ConvCpltCallback(). */ - __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS) ); - } - - /* ========== Check Analog watchdog flags ========== */ - if(__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_AWD) && __HAL_ADC_GET_IT_SOURCE(hadc, ADC_IT_AWD)) - { - /* Set ADC state */ - SET_BIT(hadc->State, HAL_ADC_STATE_AWD1); - -#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) - hadc->LevelOutOfWindowCallback(hadc); -#else - HAL_ADC_LevelOutOfWindowCallback(hadc); -#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ - - /* Clear ADC Analog watchdog flag */ - __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD); - - } - - - /* ========== Check Overrun flag ========== */ - if(__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_OVR) && __HAL_ADC_GET_IT_SOURCE(hadc, ADC_IT_OVR)) - { - /* If overrun is set to overwrite previous data (default setting), */ - /* overrun event is not considered as an error. */ - /* (cf ref manual "Managing conversions without using the DMA and without */ - /* overrun ") */ - /* Exception for usage with DMA overrun event always considered as an */ - /* error. */ - if ((hadc->Init.Overrun == ADC_OVR_DATA_PRESERVED) || - HAL_IS_BIT_SET(hadc->Instance->CFGR1, ADC_CFGR1_DMAEN) ) - { - /* Set ADC error code to overrun */ - SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_OVR); - - /* Clear ADC overrun flag */ - __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_OVR); - -#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) - hadc->ErrorCallback(hadc); -#else - HAL_ADC_ErrorCallback(hadc); -#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ - } - - /* Clear the Overrun flag */ - __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_OVR); - } - -} - - -/** - * @brief Conversion complete callback in non blocking mode - * @param hadc ADC handle - * @retval None - */ -__weak void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hadc); - - /* NOTE : This function should not be modified. When the callback is needed, - function HAL_ADC_ConvCpltCallback must be implemented in the user file. - */ -} - -/** - * @brief Conversion DMA half-transfer callback in non blocking mode - * @param hadc ADC handle - * @retval None - */ -__weak void HAL_ADC_ConvHalfCpltCallback(ADC_HandleTypeDef* hadc) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hadc); - - /* NOTE : This function should not be modified. When the callback is needed, - function HAL_ADC_ConvHalfCpltCallback must be implemented in the user file. - */ -} - -/** - * @brief Analog watchdog callback in non blocking mode. - * @param hadc ADC handle - * @retval None - */ -__weak void HAL_ADC_LevelOutOfWindowCallback(ADC_HandleTypeDef* hadc) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hadc); - - /* NOTE : This function should not be modified. When the callback is needed, - function HAL_ADC_LevelOoutOfWindowCallback must be implemented in the user file. - */ -} - -/** - * @brief ADC error callback in non blocking mode - * (ADC conversion with interruption or transfer by DMA) - * @param hadc ADC handle - * @retval None - */ -__weak void HAL_ADC_ErrorCallback(ADC_HandleTypeDef *hadc) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hadc); - - /* NOTE : This function should not be modified. When the callback is needed, - function HAL_ADC_ErrorCallback must be implemented in the user file. - */ -} - - -/** - * @} - */ - -/** @defgroup ADC_Exported_Functions_Group3 Peripheral Control functions - * @brief Peripheral Control functions - * -@verbatim - =============================================================================== - ##### Peripheral Control functions ##### - =============================================================================== - [..] This section provides functions allowing to: - (+) Configure channels on regular group - (+) Configure the analog watchdog - -@endverbatim - * @{ - */ - -/** - * @brief Configures the the selected channel to be linked to the regular - * group. - * @note In case of usage of internal measurement channels: - * VrefInt/Vbat/TempSensor. - * Sampling time constraints must be respected (sampling time can be - * adjusted in function of ADC clock frequency and sampling time - * setting). - * Refer to device datasheet for timings values, parameters TS_vrefint, - * TS_vbat, TS_temp (values rough order: 5us to 17us). - * These internal paths can be be disabled using function - * HAL_ADC_DeInit(). - * @note Possibility to update parameters on the fly: - * This function initializes channel into regular group, following - * calls to this function can be used to reconfigure some parameters - * of structure "ADC_ChannelConfTypeDef" on the fly, without reseting - * the ADC. - * The setting of these parameters is conditioned to ADC state. - * For parameters constraints, see comments of structure - * "ADC_ChannelConfTypeDef". - * @param hadc ADC handle - * @param sConfig Structure of ADC channel for regular group. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_ADC_ConfigChannel(ADC_HandleTypeDef* hadc, ADC_ChannelConfTypeDef* sConfig) -{ - HAL_StatusTypeDef tmp_hal_status = HAL_OK; - __IO uint32_t wait_loop_index = 0U; - - /* Check the parameters */ - assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); - assert_param(IS_ADC_CHANNEL(sConfig->Channel)); - assert_param(IS_ADC_RANK(sConfig->Rank)); - - if (! IS_ADC_SAMPLE_TIME(hadc->Init.SamplingTimeCommon)) - { - assert_param(IS_ADC_SAMPLE_TIME(sConfig->SamplingTime)); - } - - /* Process locked */ - __HAL_LOCK(hadc); - - /* Parameters update conditioned to ADC state: */ - /* Parameters that can be updated when ADC is disabled or enabled without */ - /* conversion on going on regular group: */ - /* - Channel number */ - /* - Channel sampling time */ - /* - Management of internal measurement channels: VrefInt/TempSensor/Vbat */ - if (ADC_IS_CONVERSION_ONGOING_REGULAR(hadc) == RESET) - { - /* Configure channel: depending on rank setting, add it or remove it from */ - /* ADC conversion sequencer. */ - if (sConfig->Rank != ADC_RANK_NONE) - { - /* Regular sequence configuration */ - /* Set the channel selection register from the selected channel */ - hadc->Instance->CHSELR |= ADC_CHSELR_CHANNEL(sConfig->Channel); - - /* Channel sampling time configuration */ - /* Management of parameters "SamplingTimeCommon" and "SamplingTime" */ - /* (obsolete): sampling time set in this function with */ - /* parameter "SamplingTime" (obsolete) only if not already set into */ - /* ADC initialization structure with parameter "SamplingTimeCommon". */ - if (! IS_ADC_SAMPLE_TIME(hadc->Init.SamplingTimeCommon)) - { - /* Modify sampling time if needed (not needed in case of reoccurrence */ - /* for several channels programmed consecutively into the sequencer) */ - if (sConfig->SamplingTime != ADC_GET_SAMPLINGTIME(hadc)) - { - /* Channel sampling time configuration */ - /* Clear the old sample time */ - hadc->Instance->SMPR &= ~(ADC_SMPR_SMP); - - /* Set the new sample time */ - hadc->Instance->SMPR |= ADC_SMPR_SET(sConfig->SamplingTime); - } - } - - /* Management of internal measurement channels: VrefInt/TempSensor/Vbat */ - /* internal measurement paths enable: If internal channel selected, */ - /* enable dedicated internal buffers and path. */ - /* Note: these internal measurement paths can be disabled using */ - /* HAL_ADC_DeInit() or removing the channel from sequencer with */ - /* channel configuration parameter "Rank". */ - if(ADC_IS_CHANNEL_INTERNAL(sConfig->Channel)) - { - /* If Channel_16 is selected, enable Temp. sensor measurement path. */ - /* If Channel_17 is selected, enable VREFINT measurement path. */ - /* If Channel_18 is selected, enable VBAT measurement path. */ - ADC->CCR |= ADC_CHANNEL_INTERNAL_PATH(sConfig->Channel); - - /* If Temp. sensor is selected, wait for stabilization delay */ - if (sConfig->Channel == ADC_CHANNEL_TEMPSENSOR) - { - /* Delay for temperature sensor stabilization time */ - /* Compute number of CPU cycles to wait for */ - wait_loop_index = (ADC_TEMPSENSOR_DELAY_US * (SystemCoreClock / 1000000U)); - while(wait_loop_index != 0U) - { - wait_loop_index--; - } - } - } - } - else - { - /* Regular sequence configuration */ - /* Reset the channel selection register from the selected channel */ - hadc->Instance->CHSELR &= ~ADC_CHSELR_CHANNEL(sConfig->Channel); - - /* Management of internal measurement channels: VrefInt/TempSensor/Vbat */ - /* internal measurement paths disable: If internal channel selected, */ - /* disable dedicated internal buffers and path. */ - if(ADC_IS_CHANNEL_INTERNAL(sConfig->Channel)) - { - /* If Channel_16 is selected, disable Temp. sensor measurement path. */ - /* If Channel_17 is selected, disable VREFINT measurement path. */ - /* If Channel_18 is selected, disable VBAT measurement path. */ - ADC->CCR &= ~ADC_CHANNEL_INTERNAL_PATH(sConfig->Channel); - } - } - - } - - /* If a conversion is on going on regular group, no update on regular */ - /* channel could be done on neither of the channel configuration structure */ - /* parameters. */ - else - { - /* Update ADC state machine to error */ - SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG); - - tmp_hal_status = HAL_ERROR; - } - - /* Process unlocked */ - __HAL_UNLOCK(hadc); - - /* Return function status */ - return tmp_hal_status; -} - - -/** - * @brief Configures the analog watchdog. - * @note Possibility to update parameters on the fly: - * This function initializes the selected analog watchdog, following - * calls to this function can be used to reconfigure some parameters - * of structure "ADC_AnalogWDGConfTypeDef" on the fly, without reseting - * the ADC. - * The setting of these parameters is conditioned to ADC state. - * For parameters constraints, see comments of structure - * "ADC_AnalogWDGConfTypeDef". - * @param hadc ADC handle - * @param AnalogWDGConfig Structure of ADC analog watchdog configuration - * @retval HAL status - */ -HAL_StatusTypeDef HAL_ADC_AnalogWDGConfig(ADC_HandleTypeDef* hadc, ADC_AnalogWDGConfTypeDef* AnalogWDGConfig) -{ - HAL_StatusTypeDef tmp_hal_status = HAL_OK; - - uint32_t tmpAWDHighThresholdShifted; - uint32_t tmpAWDLowThresholdShifted; - - /* Check the parameters */ - assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); - assert_param(IS_ADC_ANALOG_WATCHDOG_MODE(AnalogWDGConfig->WatchdogMode)); - assert_param(IS_FUNCTIONAL_STATE(AnalogWDGConfig->ITMode)); - - /* Verify if threshold is within the selected ADC resolution */ - assert_param(IS_ADC_RANGE(ADC_GET_RESOLUTION(hadc), AnalogWDGConfig->HighThreshold)); - assert_param(IS_ADC_RANGE(ADC_GET_RESOLUTION(hadc), AnalogWDGConfig->LowThreshold)); - - if(AnalogWDGConfig->WatchdogMode == ADC_ANALOGWATCHDOG_SINGLE_REG) - { - assert_param(IS_ADC_CHANNEL(AnalogWDGConfig->Channel)); - } - - /* Process locked */ - __HAL_LOCK(hadc); - - /* Parameters update conditioned to ADC state: */ - /* Parameters that can be updated when ADC is disabled or enabled without */ - /* conversion on going on regular group: */ - /* - Analog watchdog channels */ - /* - Analog watchdog thresholds */ - if (ADC_IS_CONVERSION_ONGOING_REGULAR(hadc) == RESET) - { - /* Configuration of analog watchdog: */ - /* - Set the analog watchdog enable mode: one or overall group of */ - /* channels. */ - /* - Set the Analog watchdog channel (is not used if watchdog */ - /* mode "all channels": ADC_CFGR_AWD1SGL=0). */ - hadc->Instance->CFGR1 &= ~( ADC_CFGR1_AWDSGL | - ADC_CFGR1_AWDEN | - ADC_CFGR1_AWDCH ); - - hadc->Instance->CFGR1 |= ( AnalogWDGConfig->WatchdogMode | - ADC_CFGR_AWDCH(AnalogWDGConfig->Channel) ); - - /* Shift the offset in function of the selected ADC resolution: Thresholds*/ - /* have to be left-aligned on bit 11, the LSB (right bits) are set to 0 */ - tmpAWDHighThresholdShifted = ADC_AWD1THRESHOLD_SHIFT_RESOLUTION(hadc, AnalogWDGConfig->HighThreshold); - tmpAWDLowThresholdShifted = ADC_AWD1THRESHOLD_SHIFT_RESOLUTION(hadc, AnalogWDGConfig->LowThreshold); - - /* Set the high and low thresholds */ - hadc->Instance->TR &= ~(ADC_TR_HT | ADC_TR_LT); - hadc->Instance->TR |= ( ADC_TRX_HIGHTHRESHOLD (tmpAWDHighThresholdShifted) | - tmpAWDLowThresholdShifted ); - - /* Clear the ADC Analog watchdog flag (in case of left enabled by */ - /* previous ADC operations) to be ready to use for HAL_ADC_IRQHandler() */ - /* or HAL_ADC_PollForEvent(). */ - __HAL_ADC_CLEAR_FLAG(hadc, ADC_IT_AWD); - - /* Configure ADC Analog watchdog interrupt */ - if(AnalogWDGConfig->ITMode == ENABLE) - { - /* Enable the ADC Analog watchdog interrupt */ - __HAL_ADC_ENABLE_IT(hadc, ADC_IT_AWD); - } - else - { - /* Disable the ADC Analog watchdog interrupt */ - __HAL_ADC_DISABLE_IT(hadc, ADC_IT_AWD); - } - - } - /* If a conversion is on going on regular group, no update could be done */ - /* on neither of the AWD configuration structure parameters. */ - else - { - /* Update ADC state machine to error */ - SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG); - - tmp_hal_status = HAL_ERROR; - } - - - /* Process unlocked */ - __HAL_UNLOCK(hadc); - - /* Return function status */ - return tmp_hal_status; -} - - -/** - * @} - */ - - -/** @defgroup ADC_Exported_Functions_Group4 Peripheral State functions - * @brief Peripheral State functions - * -@verbatim - =============================================================================== - ##### Peripheral State and Errors functions ##### - =============================================================================== - [..] - This subsection provides functions to get in run-time the status of the - peripheral. - (+) Check the ADC state - (+) Check the ADC error code - -@endverbatim - * @{ - */ - -/** - * @brief Return the ADC state - * @note ADC state machine is managed by bitfields, ADC status must be - * compared with states bits. - * For example: - * " if (HAL_IS_BIT_SET(HAL_ADC_GetState(hadc1), HAL_ADC_STATE_REG_BUSY)) " - * " if (HAL_IS_BIT_SET(HAL_ADC_GetState(hadc1), HAL_ADC_STATE_AWD1) ) " - * @param hadc ADC handle - * @retval HAL state - */ -uint32_t HAL_ADC_GetState(ADC_HandleTypeDef* hadc) -{ - /* Check the parameters */ - assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); - - /* Return ADC state */ - return hadc->State; -} - -/** - * @brief Return the ADC error code - * @param hadc ADC handle - * @retval ADC Error Code - */ -uint32_t HAL_ADC_GetError(ADC_HandleTypeDef *hadc) -{ - return hadc->ErrorCode; -} - -/** - * @} - */ - -/** - * @} - */ - -/** @defgroup ADC_Private_Functions ADC Private Functions - * @{ - */ - -/** - * @brief Enable the selected ADC. - * @note Prerequisite condition to use this function: ADC must be disabled - * and voltage regulator must be enabled (done into HAL_ADC_Init()). - * @note If low power mode AutoPowerOff is enabled, power-on/off phases are - * performed automatically by hardware. - * In this mode, this function is useless and must not be called because - * flag ADC_FLAG_RDY is not usable. - * Therefore, this function must be called under condition of - * "if (hadc->Init.LowPowerAutoPowerOff != ENABLE)". - * @param hadc ADC handle - * @retval HAL status. - */ -static HAL_StatusTypeDef ADC_Enable(ADC_HandleTypeDef* hadc) -{ - uint32_t tickstart = 0U; - __IO uint32_t wait_loop_index = 0U; - - /* ADC enable and wait for ADC ready (in case of ADC is disabled or */ - /* enabling phase not yet completed: flag ADC ready not yet set). */ - /* Timeout implemented to not be stuck if ADC cannot be enabled (possible */ - /* causes: ADC clock not running, ...). */ - if (ADC_IS_ENABLE(hadc) == RESET) - { - /* Check if conditions to enable the ADC are fulfilled */ - if (ADC_ENABLING_CONDITIONS(hadc) == RESET) - { - /* Update ADC state machine to error */ - SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL); - - /* Set ADC error code to ADC IP internal error */ - SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); - - return HAL_ERROR; - } - - /* Enable the ADC peripheral */ - __HAL_ADC_ENABLE(hadc); - - /* Delay for ADC stabilization time */ - /* Compute number of CPU cycles to wait for */ - wait_loop_index = (ADC_STAB_DELAY_US * (SystemCoreClock / 1000000U)); - while(wait_loop_index != 0U) - { - wait_loop_index--; - } - - /* Get tick count */ - tickstart = HAL_GetTick(); - - /* Wait for ADC effectively enabled */ - while(__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_RDY) == RESET) - { - if((HAL_GetTick() - tickstart) > ADC_ENABLE_TIMEOUT) - { - /* Update ADC state machine to error */ - SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL); - - /* Set ADC error code to ADC IP internal error */ - SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); - - return HAL_ERROR; - } - } - - } - - /* Return HAL status */ - return HAL_OK; -} - -/** - * @brief Disable the selected ADC. - * @note Prerequisite condition to use this function: ADC conversions must be - * stopped. - * @param hadc ADC handle - * @retval HAL status. - */ -static HAL_StatusTypeDef ADC_Disable(ADC_HandleTypeDef* hadc) -{ - uint32_t tickstart = 0U; - - /* Verification if ADC is not already disabled: */ - /* Note: forbidden to disable ADC (set bit ADC_CR_ADDIS) if ADC is already */ - /* disabled. */ - if (ADC_IS_ENABLE(hadc) != RESET) - { - /* Check if conditions to disable the ADC are fulfilled */ - if (ADC_DISABLING_CONDITIONS(hadc) != RESET) - { - /* Disable the ADC peripheral */ - __HAL_ADC_DISABLE(hadc); - } - else - { - /* Update ADC state machine to error */ - SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL); - - /* Set ADC error code to ADC IP internal error */ - SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); - - return HAL_ERROR; - } - - /* Wait for ADC effectively disabled */ - /* Get tick count */ - tickstart = HAL_GetTick(); - - while(HAL_IS_BIT_SET(hadc->Instance->CR, ADC_CR_ADEN)) - { - if((HAL_GetTick() - tickstart) > ADC_DISABLE_TIMEOUT) - { - /* Update ADC state machine to error */ - SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL); - - /* Set ADC error code to ADC IP internal error */ - SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); - - return HAL_ERROR; - } - } - } - - /* Return HAL status */ - return HAL_OK; -} - - -/** - * @brief Stop ADC conversion. - * @note Prerequisite condition to use this function: ADC conversions must be - * stopped to disable the ADC. - * @param hadc ADC handle - * @retval HAL status. - */ -static HAL_StatusTypeDef ADC_ConversionStop(ADC_HandleTypeDef* hadc) -{ - uint32_t tickstart = 0U; - - /* Check the parameters */ - assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); - - /* Verification if ADC is not already stopped on regular group to bypass */ - /* this function if not needed. */ - if (ADC_IS_CONVERSION_ONGOING_REGULAR(hadc)) - { - - /* Stop potential conversion on going on regular group */ - /* Software is allowed to set ADSTP only when ADSTART=1 and ADDIS=0 */ - if (HAL_IS_BIT_SET(hadc->Instance->CR, ADC_CR_ADSTART) && - HAL_IS_BIT_CLR(hadc->Instance->CR, ADC_CR_ADDIS) ) - { - /* Stop conversions on regular group */ - hadc->Instance->CR |= ADC_CR_ADSTP; - } - - /* Wait for conversion effectively stopped */ - /* Get tick count */ - tickstart = HAL_GetTick(); - - while((hadc->Instance->CR & ADC_CR_ADSTART) != RESET) - { - if((HAL_GetTick() - tickstart) > ADC_STOP_CONVERSION_TIMEOUT) - { - /* Update ADC state machine to error */ - SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL); - - /* Set ADC error code to ADC IP internal error */ - SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); - - return HAL_ERROR; - } - } - - } - - /* Return HAL status */ - return HAL_OK; -} - - -/** - * @brief DMA transfer complete callback. - * @param hdma pointer to DMA handle. - * @retval None - */ -static void ADC_DMAConvCplt(DMA_HandleTypeDef *hdma) -{ - /* Retrieve ADC handle corresponding to current DMA handle */ - ADC_HandleTypeDef* hadc = ( ADC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; - - /* Update state machine on conversion status if not in error state */ - if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL | HAL_ADC_STATE_ERROR_DMA)) - { - /* Set ADC state */ - SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC); - - /* Determine whether any further conversion upcoming on group regular */ - /* by external trigger, continuous mode or scan sequence on going. */ - if(ADC_IS_SOFTWARE_START_REGULAR(hadc) && - (hadc->Init.ContinuousConvMode == DISABLE) ) - { - /* If End of Sequence is reached, disable interrupts */ - if( __HAL_ADC_GET_FLAG(hadc, ADC_FLAG_EOS) ) - { - /* Allowed to modify bits ADC_IT_EOC/ADC_IT_EOS only if bit */ - /* ADSTART==0 (no conversion on going) */ - if (ADC_IS_CONVERSION_ONGOING_REGULAR(hadc) == RESET) - { - /* Disable ADC end of single conversion interrupt on group regular */ - /* Note: Overrun interrupt was enabled with EOC interrupt in */ - /* HAL_Start_IT(), but is not disabled here because can be used */ - /* by overrun IRQ process below. */ - __HAL_ADC_DISABLE_IT(hadc, ADC_IT_EOC | ADC_IT_EOS); - - /* Set ADC state */ - ADC_STATE_CLR_SET(hadc->State, - HAL_ADC_STATE_REG_BUSY, - HAL_ADC_STATE_READY); - } - else - { - /* Change ADC state to error state */ - SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG); - - /* Set ADC error code to ADC IP internal error */ - SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); - } - } - } - - /* Conversion complete callback */ -#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) - hadc->ConvCpltCallback(hadc); -#else - HAL_ADC_ConvCpltCallback(hadc); -#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ - } - else - { - /* Call DMA error callback */ - hadc->DMA_Handle->XferErrorCallback(hdma); - } - -} - -/** - * @brief DMA half transfer complete callback. - * @param hdma pointer to DMA handle. - * @retval None - */ -static void ADC_DMAHalfConvCplt(DMA_HandleTypeDef *hdma) -{ - /* Retrieve ADC handle corresponding to current DMA handle */ - ADC_HandleTypeDef* hadc = ( ADC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; - - /* Half conversion callback */ -#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) - hadc->ConvHalfCpltCallback(hadc); -#else - HAL_ADC_ConvHalfCpltCallback(hadc); -#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ -} - -/** - * @brief DMA error callback - * @param hdma pointer to DMA handle. - * @retval None - */ -static void ADC_DMAError(DMA_HandleTypeDef *hdma) -{ - /* Retrieve ADC handle corresponding to current DMA handle */ - ADC_HandleTypeDef* hadc = ( ADC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; - - /* Set ADC state */ - SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_DMA); - - /* Set ADC error code to DMA error */ - SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_DMA); - - /* Error callback */ -#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) - hadc->ErrorCallback(hadc); -#else - HAL_ADC_ErrorCallback(hadc); -#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ -} - -/** - * @} - */ - -#endif /* HAL_ADC_MODULE_ENABLED */ -/** - * @} - */ - -/** - * @} - */ - -/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_adc_ex.c b/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_adc_ex.c deleted file mode 100644 index da68cbb..0000000 --- a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_adc_ex.c +++ /dev/null @@ -1,188 +0,0 @@ -/** - ****************************************************************************** - * @file stm32f0xx_hal_adc_ex.c - * @author MCD Application Team - * @brief This file provides firmware functions to manage the following - * functionalities of the Analog to Digital Convertor (ADC) - * peripheral: - * + Operation functions - * ++ Calibration (ADC automatic self-calibration) - * Other functions (generic functions) are available in file - * "stm32f0xx_hal_adc.c". - * - @verbatim - [..] - (@) Sections "ADC peripheral features" and "How to use this driver" are - available in file of generic functions "stm32l1xx_hal_adc.c". - [..] - @endverbatim - ****************************************************************************** - * @attention - * - *

© Copyright (c) 2016 STMicroelectronics. - * All rights reserved.

- * - * This software component is licensed by ST under BSD 3-Clause license, - * the "License"; You may not use this file except in compliance with the - * License. You may obtain a copy of the License at: - * opensource.org/licenses/BSD-3-Clause - * - ****************************************************************************** - */ - -/* Includes ------------------------------------------------------------------*/ -#include "stm32f0xx_hal.h" - -/** @addtogroup STM32F0xx_HAL_Driver - * @{ - */ - -/** @defgroup ADCEx ADCEx - * @brief ADC HAL module driver - * @{ - */ - -#ifdef HAL_ADC_MODULE_ENABLED - -/* Private typedef -----------------------------------------------------------*/ -/* Private define ------------------------------------------------------------*/ -/** @defgroup ADCEx_Private_Constants ADCEx Private Constants - * @{ - */ - -/* Fixed timeout values for ADC calibration, enable settling time, disable */ - /* settling time. */ - /* Values defined to be higher than worst cases: low clock frequency, */ - /* maximum prescaler. */ - /* Ex of profile low frequency : Clock source at 0.1 MHz, ADC clock */ - /* prescaler 4. */ - /* Unit: ms */ - #define ADC_DISABLE_TIMEOUT 2 - #define ADC_CALIBRATION_TIMEOUT 2U -/** - * @} - */ - -/* Private macros -------------------------------------------------------------*/ -/* Private variables ---------------------------------------------------------*/ -/* Private function prototypes -----------------------------------------------*/ -/* Private functions ---------------------------------------------------------*/ - -/** @defgroup ADCEx_Exported_Functions ADCEx Exported Functions - * @{ - */ - -/** @defgroup ADCEx_Exported_Functions_Group1 Extended Initialization/de-initialization functions - * @brief Extended Initialization and Configuration functions - * -@verbatim - =============================================================================== - ##### IO operation functions ##### - =============================================================================== - [..] This section provides functions allowing to: - (+) Perform the ADC calibration. -@endverbatim - * @{ - */ - -/** - * @brief Perform an ADC automatic self-calibration - * Calibration prerequisite: ADC must be disabled (execute this - * function before HAL_ADC_Start() or after HAL_ADC_Stop() ). - * @note Calibration factor can be read after calibration, using function - * HAL_ADC_GetValue() (value on 7 bits: from DR[6;0]). - * @param hadc ADC handle - * @retval HAL status - */ -HAL_StatusTypeDef HAL_ADCEx_Calibration_Start(ADC_HandleTypeDef* hadc) -{ - HAL_StatusTypeDef tmp_hal_status = HAL_OK; - uint32_t tickstart = 0U; - uint32_t backup_setting_adc_dma_transfer = 0; /* Note: Variable not declared as volatile because register read is already declared as volatile */ - - /* Check the parameters */ - assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); - - /* Process locked */ - __HAL_LOCK(hadc); - - /* Calibration prerequisite: ADC must be disabled. */ - if (ADC_IS_ENABLE(hadc) == RESET) - { - /* Set ADC state */ - ADC_STATE_CLR_SET(hadc->State, - HAL_ADC_STATE_REG_BUSY, - HAL_ADC_STATE_BUSY_INTERNAL); - - /* Disable ADC DMA transfer request during calibration */ - /* Note: Specificity of this STM32 serie: Calibration factor is */ - /* available in data register and also transfered by DMA. */ - /* To not insert ADC calibration factor among ADC conversion data */ - /* in array variable, DMA transfer must be disabled during */ - /* calibration. */ - backup_setting_adc_dma_transfer = READ_BIT(hadc->Instance->CFGR1, ADC_CFGR1_DMAEN | ADC_CFGR1_DMACFG); - CLEAR_BIT(hadc->Instance->CFGR1, ADC_CFGR1_DMAEN | ADC_CFGR1_DMACFG); - - /* Start ADC calibration */ - hadc->Instance->CR |= ADC_CR_ADCAL; - - tickstart = HAL_GetTick(); - - /* Wait for calibration completion */ - while(HAL_IS_BIT_SET(hadc->Instance->CR, ADC_CR_ADCAL)) - { - if((HAL_GetTick() - tickstart) > ADC_CALIBRATION_TIMEOUT) - { - /* Update ADC state machine to error */ - ADC_STATE_CLR_SET(hadc->State, - HAL_ADC_STATE_BUSY_INTERNAL, - HAL_ADC_STATE_ERROR_INTERNAL); - - /* Process unlocked */ - __HAL_UNLOCK(hadc); - - return HAL_ERROR; - } - } - - /* Restore ADC DMA transfer request after calibration */ - SET_BIT(hadc->Instance->CFGR1, backup_setting_adc_dma_transfer); - - /* Set ADC state */ - ADC_STATE_CLR_SET(hadc->State, - HAL_ADC_STATE_BUSY_INTERNAL, - HAL_ADC_STATE_READY); - } - else - { - /* Update ADC state machine to error */ - SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG); - - tmp_hal_status = HAL_ERROR; - } - - /* Process unlocked */ - __HAL_UNLOCK(hadc); - - /* Return function status */ - return tmp_hal_status; -} - -/** - * @} - */ - -/** - * @} - */ - -#endif /* HAL_ADC_MODULE_ENABLED */ -/** - * @} - */ - -/** - * @} - */ - -/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_can.c b/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_can.c deleted file mode 100644 index c2fe2fe..0000000 --- a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_can.c +++ /dev/null @@ -1,2432 +0,0 @@ -/** - ****************************************************************************** - * @file stm32f0xx_hal_can.c - * @author MCD Application Team - * @brief CAN HAL module driver. - * This file provides firmware functions to manage the following - * functionalities of the Controller Area Network (CAN) peripheral: - * + Initialization and de-initialization functions - * + Configuration functions - * + Control functions - * + Interrupts management - * + Callbacks functions - * + Peripheral State and Error functions - * - @verbatim - ============================================================================== - ##### How to use this driver ##### - ============================================================================== - [..] - (#) Initialize the CAN low level resources by implementing the - HAL_CAN_MspInit(): - (++) Enable the CAN interface clock using __HAL_RCC_CANx_CLK_ENABLE() - (++) Configure CAN pins - (+++) Enable the clock for the CAN GPIOs - (+++) Configure CAN pins as alternate function open-drain - (++) In case of using interrupts (e.g. HAL_CAN_ActivateNotification()) - (+++) Configure the CAN interrupt priority using - HAL_NVIC_SetPriority() - (+++) Enable the CAN IRQ handler using HAL_NVIC_EnableIRQ() - (+++) In CAN IRQ handler, call HAL_CAN_IRQHandler() - - (#) Initialize the CAN peripheral using HAL_CAN_Init() function. This - function resorts to HAL_CAN_MspInit() for low-level initialization. - - (#) Configure the reception filters using the following configuration - functions: - (++) HAL_CAN_ConfigFilter() - - (#) Start the CAN module using HAL_CAN_Start() function. At this level - the node is active on the bus: it receive messages, and can send - messages. - - (#) To manage messages transmission, the following Tx control functions - can be used: - (++) HAL_CAN_AddTxMessage() to request transmission of a new - message. - (++) HAL_CAN_AbortTxRequest() to abort transmission of a pending - message. - (++) HAL_CAN_GetTxMailboxesFreeLevel() to get the number of free Tx - mailboxes. - (++) HAL_CAN_IsTxMessagePending() to check if a message is pending - in a Tx mailbox. - (++) HAL_CAN_GetTxTimestamp() to get the timestamp of Tx message - sent, if time triggered communication mode is enabled. - - (#) When a message is received into the CAN Rx FIFOs, it can be retrieved - using the HAL_CAN_GetRxMessage() function. The function - HAL_CAN_GetRxFifoFillLevel() allows to know how many Rx message are - stored in the Rx Fifo. - - (#) Calling the HAL_CAN_Stop() function stops the CAN module. - - (#) The deinitialization is achieved with HAL_CAN_DeInit() function. - - - *** Polling mode operation *** - ============================== - [..] - (#) Reception: - (++) Monitor reception of message using HAL_CAN_GetRxFifoFillLevel() - until at least one message is received. - (++) Then get the message using HAL_CAN_GetRxMessage(). - - (#) Transmission: - (++) Monitor the Tx mailboxes availability until at least one Tx - mailbox is free, using HAL_CAN_GetTxMailboxesFreeLevel(). - (++) Then request transmission of a message using - HAL_CAN_AddTxMessage(). - - - *** Interrupt mode operation *** - ================================ - [..] - (#) Notifications are activated using HAL_CAN_ActivateNotification() - function. Then, the process can be controlled through the - available user callbacks: HAL_CAN_xxxCallback(), using same APIs - HAL_CAN_GetRxMessage() and HAL_CAN_AddTxMessage(). - - (#) Notifications can be deactivated using - HAL_CAN_DeactivateNotification() function. - - (#) Special care should be taken for CAN_IT_RX_FIFO0_MSG_PENDING and - CAN_IT_RX_FIFO1_MSG_PENDING notifications. These notifications trig - the callbacks HAL_CAN_RxFIFO0MsgPendingCallback() and - HAL_CAN_RxFIFO1MsgPendingCallback(). User has two possible options - here. - (++) Directly get the Rx message in the callback, using - HAL_CAN_GetRxMessage(). - (++) Or deactivate the notification in the callback without - getting the Rx message. The Rx message can then be got later - using HAL_CAN_GetRxMessage(). Once the Rx message have been - read, the notification can be activated again. - - - *** Sleep mode *** - ================== - [..] - (#) The CAN peripheral can be put in sleep mode (low power), using - HAL_CAN_RequestSleep(). The sleep mode will be entered as soon as the - current CAN activity (transmission or reception of a CAN frame) will - be completed. - - (#) A notification can be activated to be informed when the sleep mode - will be entered. - - (#) It can be checked if the sleep mode is entered using - HAL_CAN_IsSleepActive(). - Note that the CAN state (accessible from the API HAL_CAN_GetState()) - is HAL_CAN_STATE_SLEEP_PENDING as soon as the sleep mode request is - submitted (the sleep mode is not yet entered), and become - HAL_CAN_STATE_SLEEP_ACTIVE when the sleep mode is effective. - - (#) The wake-up from sleep mode can be trigged by two ways: - (++) Using HAL_CAN_WakeUp(). When returning from this function, - the sleep mode is exited (if return status is HAL_OK). - (++) When a start of Rx CAN frame is detected by the CAN peripheral, - if automatic wake up mode is enabled. - - *** Callback registration *** - ============================================= - - The compilation define USE_HAL_CAN_REGISTER_CALLBACKS when set to 1 - allows the user to configure dynamically the driver callbacks. - Use Function @ref HAL_CAN_RegisterCallback() to register an interrupt callback. - - Function @ref HAL_CAN_RegisterCallback() allows to register following callbacks: - (+) TxMailbox0CompleteCallback : Tx Mailbox 0 Complete Callback. - (+) TxMailbox1CompleteCallback : Tx Mailbox 1 Complete Callback. - (+) TxMailbox2CompleteCallback : Tx Mailbox 2 Complete Callback. - (+) TxMailbox0AbortCallback : Tx Mailbox 0 Abort Callback. - (+) TxMailbox1AbortCallback : Tx Mailbox 1 Abort Callback. - (+) TxMailbox2AbortCallback : Tx Mailbox 2 Abort Callback. - (+) RxFifo0MsgPendingCallback : Rx Fifo 0 Message Pending Callback. - (+) RxFifo0FullCallback : Rx Fifo 0 Full Callback. - (+) RxFifo1MsgPendingCallback : Rx Fifo 1 Message Pending Callback. - (+) RxFifo1FullCallback : Rx Fifo 1 Full Callback. - (+) SleepCallback : Sleep Callback. - (+) WakeUpFromRxMsgCallback : Wake Up From Rx Message Callback. - (+) ErrorCallback : Error Callback. - (+) MspInitCallback : CAN MspInit. - (+) MspDeInitCallback : CAN MspDeInit. - This function takes as parameters the HAL peripheral handle, the Callback ID - and a pointer to the user callback function. - - Use function @ref HAL_CAN_UnRegisterCallback() to reset a callback to the default - weak function. - @ref HAL_CAN_UnRegisterCallback takes as parameters the HAL peripheral handle, - and the Callback ID. - This function allows to reset following callbacks: - (+) TxMailbox0CompleteCallback : Tx Mailbox 0 Complete Callback. - (+) TxMailbox1CompleteCallback : Tx Mailbox 1 Complete Callback. - (+) TxMailbox2CompleteCallback : Tx Mailbox 2 Complete Callback. - (+) TxMailbox0AbortCallback : Tx Mailbox 0 Abort Callback. - (+) TxMailbox1AbortCallback : Tx Mailbox 1 Abort Callback. - (+) TxMailbox2AbortCallback : Tx Mailbox 2 Abort Callback. - (+) RxFifo0MsgPendingCallback : Rx Fifo 0 Message Pending Callback. - (+) RxFifo0FullCallback : Rx Fifo 0 Full Callback. - (+) RxFifo1MsgPendingCallback : Rx Fifo 1 Message Pending Callback. - (+) RxFifo1FullCallback : Rx Fifo 1 Full Callback. - (+) SleepCallback : Sleep Callback. - (+) WakeUpFromRxMsgCallback : Wake Up From Rx Message Callback. - (+) ErrorCallback : Error Callback. - (+) MspInitCallback : CAN MspInit. - (+) MspDeInitCallback : CAN MspDeInit. - - By default, after the @ref HAL_CAN_Init() and when the state is HAL_CAN_STATE_RESET, - all callbacks are set to the corresponding weak functions: - example @ref HAL_CAN_ErrorCallback(). - Exception done for MspInit and MspDeInit functions that are - reset to the legacy weak function in the @ref HAL_CAN_Init()/ @ref HAL_CAN_DeInit() only when - these callbacks are null (not registered beforehand). - if not, MspInit or MspDeInit are not null, the @ref HAL_CAN_Init()/ @ref HAL_CAN_DeInit() - keep and use the user MspInit/MspDeInit callbacks (registered beforehand) - - Callbacks can be registered/unregistered in HAL_CAN_STATE_READY state only. - Exception done MspInit/MspDeInit that can be registered/unregistered - in HAL_CAN_STATE_READY or HAL_CAN_STATE_RESET state, - thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit. - In that case first register the MspInit/MspDeInit user callbacks - using @ref HAL_CAN_RegisterCallback() before calling @ref HAL_CAN_DeInit() - or @ref HAL_CAN_Init() function. - - When The compilation define USE_HAL_CAN_REGISTER_CALLBACKS is set to 0 or - not defined, the callback registration feature is not available and all callbacks - are set to the corresponding weak functions. - - @endverbatim - ****************************************************************************** - * @attention - * - *

© Copyright (c) 2016 STMicroelectronics. - * All rights reserved.

- * - * This software component is licensed by ST under BSD 3-Clause license, - * the "License"; You may not use this file except in compliance with the - * License. You may obtain a copy of the License at: - * opensource.org/licenses/BSD-3-Clause - * - ****************************************************************************** - */ - -/* Includes ------------------------------------------------------------------*/ -#include "stm32f0xx_hal.h" - -/** @addtogroup STM32F0xx_HAL_Driver - * @{ - */ - -#if defined(CAN) - -/** @defgroup CAN CAN - * @brief CAN driver modules - * @{ - */ - -#ifdef HAL_CAN_MODULE_ENABLED - -#ifdef HAL_CAN_LEGACY_MODULE_ENABLED - #error "The CAN driver cannot be used with its legacy, Please enable only one CAN module at once" -#endif - -/* Private typedef -----------------------------------------------------------*/ -/* Private define ------------------------------------------------------------*/ -/** @defgroup CAN_Private_Constants CAN Private Constants - * @{ - */ -#define CAN_TIMEOUT_VALUE 10U -/** - * @} - */ -/* Private macro -------------------------------------------------------------*/ -/* Private variables ---------------------------------------------------------*/ -/* Private function prototypes -----------------------------------------------*/ -/* Exported functions --------------------------------------------------------*/ - -/** @defgroup CAN_Exported_Functions CAN Exported Functions - * @{ - */ - -/** @defgroup CAN_Exported_Functions_Group1 Initialization and de-initialization functions - * @brief Initialization and Configuration functions - * -@verbatim - ============================================================================== - ##### Initialization and de-initialization functions ##### - ============================================================================== - [..] This section provides functions allowing to: - (+) HAL_CAN_Init : Initialize and configure the CAN. - (+) HAL_CAN_DeInit : De-initialize the CAN. - (+) HAL_CAN_MspInit : Initialize the CAN MSP. - (+) HAL_CAN_MspDeInit : DeInitialize the CAN MSP. - -@endverbatim - * @{ - */ - -/** - * @brief Initializes the CAN peripheral according to the specified - * parameters in the CAN_InitStruct. - * @param hcan pointer to a CAN_HandleTypeDef structure that contains - * the configuration information for the specified CAN. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_CAN_Init(CAN_HandleTypeDef *hcan) -{ - uint32_t tickstart; - - /* Check CAN handle */ - if (hcan == NULL) - { - return HAL_ERROR; - } - - /* Check the parameters */ - assert_param(IS_CAN_ALL_INSTANCE(hcan->Instance)); - assert_param(IS_FUNCTIONAL_STATE(hcan->Init.TimeTriggeredMode)); - assert_param(IS_FUNCTIONAL_STATE(hcan->Init.AutoBusOff)); - assert_param(IS_FUNCTIONAL_STATE(hcan->Init.AutoWakeUp)); - assert_param(IS_FUNCTIONAL_STATE(hcan->Init.AutoRetransmission)); - assert_param(IS_FUNCTIONAL_STATE(hcan->Init.ReceiveFifoLocked)); - assert_param(IS_FUNCTIONAL_STATE(hcan->Init.TransmitFifoPriority)); - assert_param(IS_CAN_MODE(hcan->Init.Mode)); - assert_param(IS_CAN_SJW(hcan->Init.SyncJumpWidth)); - assert_param(IS_CAN_BS1(hcan->Init.TimeSeg1)); - assert_param(IS_CAN_BS2(hcan->Init.TimeSeg2)); - assert_param(IS_CAN_PRESCALER(hcan->Init.Prescaler)); - -#if USE_HAL_CAN_REGISTER_CALLBACKS == 1 - if (hcan->State == HAL_CAN_STATE_RESET) - { - /* Reset callbacks to legacy functions */ - hcan->RxFifo0MsgPendingCallback = HAL_CAN_RxFifo0MsgPendingCallback; /* Legacy weak RxFifo0MsgPendingCallback */ - hcan->RxFifo0FullCallback = HAL_CAN_RxFifo0FullCallback; /* Legacy weak RxFifo0FullCallback */ - hcan->RxFifo1MsgPendingCallback = HAL_CAN_RxFifo1MsgPendingCallback; /* Legacy weak RxFifo1MsgPendingCallback */ - hcan->RxFifo1FullCallback = HAL_CAN_RxFifo1FullCallback; /* Legacy weak RxFifo1FullCallback */ - hcan->TxMailbox0CompleteCallback = HAL_CAN_TxMailbox0CompleteCallback; /* Legacy weak TxMailbox0CompleteCallback */ - hcan->TxMailbox1CompleteCallback = HAL_CAN_TxMailbox1CompleteCallback; /* Legacy weak TxMailbox1CompleteCallback */ - hcan->TxMailbox2CompleteCallback = HAL_CAN_TxMailbox2CompleteCallback; /* Legacy weak TxMailbox2CompleteCallback */ - hcan->TxMailbox0AbortCallback = HAL_CAN_TxMailbox0AbortCallback; /* Legacy weak TxMailbox0AbortCallback */ - hcan->TxMailbox1AbortCallback = HAL_CAN_TxMailbox1AbortCallback; /* Legacy weak TxMailbox1AbortCallback */ - hcan->TxMailbox2AbortCallback = HAL_CAN_TxMailbox2AbortCallback; /* Legacy weak TxMailbox2AbortCallback */ - hcan->SleepCallback = HAL_CAN_SleepCallback; /* Legacy weak SleepCallback */ - hcan->WakeUpFromRxMsgCallback = HAL_CAN_WakeUpFromRxMsgCallback; /* Legacy weak WakeUpFromRxMsgCallback */ - hcan->ErrorCallback = HAL_CAN_ErrorCallback; /* Legacy weak ErrorCallback */ - - if (hcan->MspInitCallback == NULL) - { - hcan->MspInitCallback = HAL_CAN_MspInit; /* Legacy weak MspInit */ - } - - /* Init the low level hardware: CLOCK, NVIC */ - hcan->MspInitCallback(hcan); - } - -#else - if (hcan->State == HAL_CAN_STATE_RESET) - { - /* Init the low level hardware: CLOCK, NVIC */ - HAL_CAN_MspInit(hcan); - } -#endif /* (USE_HAL_CAN_REGISTER_CALLBACKS) */ - - /* Exit from sleep mode */ - CLEAR_BIT(hcan->Instance->MCR, CAN_MCR_SLEEP); - - /* Get tick */ - tickstart = HAL_GetTick(); - - /* Check Sleep mode leave acknowledge */ - while ((hcan->Instance->MSR & CAN_MSR_SLAK) != 0U) - { - if ((HAL_GetTick() - tickstart) > CAN_TIMEOUT_VALUE) - { - /* Update error code */ - hcan->ErrorCode |= HAL_CAN_ERROR_TIMEOUT; - - /* Change CAN state */ - hcan->State = HAL_CAN_STATE_ERROR; - - return HAL_ERROR; - } - } - - /* Request initialisation */ - SET_BIT(hcan->Instance->MCR, CAN_MCR_INRQ); - - /* Get tick */ - tickstart = HAL_GetTick(); - - /* Wait initialisation acknowledge */ - while ((hcan->Instance->MSR & CAN_MSR_INAK) == 0U) - { - if ((HAL_GetTick() - tickstart) > CAN_TIMEOUT_VALUE) - { - /* Update error code */ - hcan->ErrorCode |= HAL_CAN_ERROR_TIMEOUT; - - /* Change CAN state */ - hcan->State = HAL_CAN_STATE_ERROR; - - return HAL_ERROR; - } - } - - /* Set the time triggered communication mode */ - if (hcan->Init.TimeTriggeredMode == ENABLE) - { - SET_BIT(hcan->Instance->MCR, CAN_MCR_TTCM); - } - else - { - CLEAR_BIT(hcan->Instance->MCR, CAN_MCR_TTCM); - } - - /* Set the automatic bus-off management */ - if (hcan->Init.AutoBusOff == ENABLE) - { - SET_BIT(hcan->Instance->MCR, CAN_MCR_ABOM); - } - else - { - CLEAR_BIT(hcan->Instance->MCR, CAN_MCR_ABOM); - } - - /* Set the automatic wake-up mode */ - if (hcan->Init.AutoWakeUp == ENABLE) - { - SET_BIT(hcan->Instance->MCR, CAN_MCR_AWUM); - } - else - { - CLEAR_BIT(hcan->Instance->MCR, CAN_MCR_AWUM); - } - - /* Set the automatic retransmission */ - if (hcan->Init.AutoRetransmission == ENABLE) - { - CLEAR_BIT(hcan->Instance->MCR, CAN_MCR_NART); - } - else - { - SET_BIT(hcan->Instance->MCR, CAN_MCR_NART); - } - - /* Set the receive FIFO locked mode */ - if (hcan->Init.ReceiveFifoLocked == ENABLE) - { - SET_BIT(hcan->Instance->MCR, CAN_MCR_RFLM); - } - else - { - CLEAR_BIT(hcan->Instance->MCR, CAN_MCR_RFLM); - } - - /* Set the transmit FIFO priority */ - if (hcan->Init.TransmitFifoPriority == ENABLE) - { - SET_BIT(hcan->Instance->MCR, CAN_MCR_TXFP); - } - else - { - CLEAR_BIT(hcan->Instance->MCR, CAN_MCR_TXFP); - } - - /* Set the bit timing register */ - WRITE_REG(hcan->Instance->BTR, (uint32_t)(hcan->Init.Mode | - hcan->Init.SyncJumpWidth | - hcan->Init.TimeSeg1 | - hcan->Init.TimeSeg2 | - (hcan->Init.Prescaler - 1U))); - - /* Initialize the error code */ - hcan->ErrorCode = HAL_CAN_ERROR_NONE; - - /* Initialize the CAN state */ - hcan->State = HAL_CAN_STATE_READY; - - /* Return function status */ - return HAL_OK; -} - -/** - * @brief Deinitializes the CAN peripheral registers to their default - * reset values. - * @param hcan pointer to a CAN_HandleTypeDef structure that contains - * the configuration information for the specified CAN. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_CAN_DeInit(CAN_HandleTypeDef *hcan) -{ - /* Check CAN handle */ - if (hcan == NULL) - { - return HAL_ERROR; - } - - /* Check the parameters */ - assert_param(IS_CAN_ALL_INSTANCE(hcan->Instance)); - - /* Stop the CAN module */ - (void)HAL_CAN_Stop(hcan); - -#if USE_HAL_CAN_REGISTER_CALLBACKS == 1 - if (hcan->MspDeInitCallback == NULL) - { - hcan->MspDeInitCallback = HAL_CAN_MspDeInit; /* Legacy weak MspDeInit */ - } - - /* DeInit the low level hardware: CLOCK, NVIC */ - hcan->MspDeInitCallback(hcan); - -#else - /* DeInit the low level hardware: CLOCK, NVIC */ - HAL_CAN_MspDeInit(hcan); -#endif /* (USE_HAL_CAN_REGISTER_CALLBACKS) */ - - /* Reset the CAN peripheral */ - SET_BIT(hcan->Instance->MCR, CAN_MCR_RESET); - - /* Reset the CAN ErrorCode */ - hcan->ErrorCode = HAL_CAN_ERROR_NONE; - - /* Change CAN state */ - hcan->State = HAL_CAN_STATE_RESET; - - /* Return function status */ - return HAL_OK; -} - -/** - * @brief Initializes the CAN MSP. - * @param hcan pointer to a CAN_HandleTypeDef structure that contains - * the configuration information for the specified CAN. - * @retval None - */ -__weak void HAL_CAN_MspInit(CAN_HandleTypeDef *hcan) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hcan); - - /* NOTE : This function Should not be modified, when the callback is needed, - the HAL_CAN_MspInit could be implemented in the user file - */ -} - -/** - * @brief DeInitializes the CAN MSP. - * @param hcan pointer to a CAN_HandleTypeDef structure that contains - * the configuration information for the specified CAN. - * @retval None - */ -__weak void HAL_CAN_MspDeInit(CAN_HandleTypeDef *hcan) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hcan); - - /* NOTE : This function Should not be modified, when the callback is needed, - the HAL_CAN_MspDeInit could be implemented in the user file - */ -} - -#if USE_HAL_CAN_REGISTER_CALLBACKS == 1 -/** - * @brief Register a CAN CallBack. - * To be used instead of the weak predefined callback - * @param hcan pointer to a CAN_HandleTypeDef structure that contains - * the configuration information for CAN module - * @param CallbackID ID of the callback to be registered - * This parameter can be one of the following values: - * @arg @ref HAL_CAN_TX_MAILBOX0_COMPLETE_CALLBACK_CB_ID Tx Mailbox 0 Complete callback ID - * @arg @ref HAL_CAN_TX_MAILBOX1_COMPLETE_CALLBACK_CB_ID Tx Mailbox 1 Complete callback ID - * @arg @ref HAL_CAN_TX_MAILBOX2_COMPLETE_CALLBACK_CB_ID Tx Mailbox 2 Complete callback ID - * @arg @ref HAL_CAN_TX_MAILBOX0_ABORT_CALLBACK_CB_ID Tx Mailbox 0 Abort callback ID - * @arg @ref HAL_CAN_TX_MAILBOX1_ABORT_CALLBACK_CB_ID Tx Mailbox 1 Abort callback ID - * @arg @ref HAL_CAN_TX_MAILBOX2_ABORT_CALLBACK_CB_ID Tx Mailbox 2 Abort callback ID - * @arg @ref HAL_CAN_RX_FIFO0_MSG_PENDING_CALLBACK_CB_ID Rx Fifo 0 message pending callback ID - * @arg @ref HAL_CAN_RX_FIFO0_FULL_CALLBACK_CB_ID Rx Fifo 0 full callback ID - * @arg @ref HAL_CAN_RX_FIFO1_MSGPENDING_CALLBACK_CB_ID Rx Fifo 1 message pending callback ID - * @arg @ref HAL_CAN_RX_FIFO1_FULL_CALLBACK_CB_ID Rx Fifo 1 full callback ID - * @arg @ref HAL_CAN_SLEEP_CALLBACK_CB_ID Sleep callback ID - * @arg @ref HAL_CAN_WAKEUP_FROM_RX_MSG_CALLBACK_CB_ID Wake Up from Rx message callback ID - * @arg @ref HAL_CAN_ERROR_CALLBACK_CB_ID Error callback ID - * @arg @ref HAL_CAN_MSPINIT_CB_ID MspInit callback ID - * @arg @ref HAL_CAN_MSPDEINIT_CB_ID MspDeInit callback ID - * @param pCallback pointer to the Callback function - * @retval HAL status - */ -HAL_StatusTypeDef HAL_CAN_RegisterCallback(CAN_HandleTypeDef *hcan, HAL_CAN_CallbackIDTypeDef CallbackID, void (* pCallback)(CAN_HandleTypeDef *_hcan)) -{ - HAL_StatusTypeDef status = HAL_OK; - - if (pCallback == NULL) - { - /* Update the error code */ - hcan->ErrorCode |= HAL_CAN_ERROR_INVALID_CALLBACK; - - return HAL_ERROR; - } - - if (hcan->State == HAL_CAN_STATE_READY) - { - switch (CallbackID) - { - case HAL_CAN_TX_MAILBOX0_COMPLETE_CB_ID : - hcan->TxMailbox0CompleteCallback = pCallback; - break; - - case HAL_CAN_TX_MAILBOX1_COMPLETE_CB_ID : - hcan->TxMailbox1CompleteCallback = pCallback; - break; - - case HAL_CAN_TX_MAILBOX2_COMPLETE_CB_ID : - hcan->TxMailbox2CompleteCallback = pCallback; - break; - - case HAL_CAN_TX_MAILBOX0_ABORT_CB_ID : - hcan->TxMailbox0AbortCallback = pCallback; - break; - - case HAL_CAN_TX_MAILBOX1_ABORT_CB_ID : - hcan->TxMailbox1AbortCallback = pCallback; - break; - - case HAL_CAN_TX_MAILBOX2_ABORT_CB_ID : - hcan->TxMailbox2AbortCallback = pCallback; - break; - - case HAL_CAN_RX_FIFO0_MSG_PENDING_CB_ID : - hcan->RxFifo0MsgPendingCallback = pCallback; - break; - - case HAL_CAN_RX_FIFO0_FULL_CB_ID : - hcan->RxFifo0FullCallback = pCallback; - break; - - case HAL_CAN_RX_FIFO1_MSG_PENDING_CB_ID : - hcan->RxFifo1MsgPendingCallback = pCallback; - break; - - case HAL_CAN_RX_FIFO1_FULL_CB_ID : - hcan->RxFifo1FullCallback = pCallback; - break; - - case HAL_CAN_SLEEP_CB_ID : - hcan->SleepCallback = pCallback; - break; - - case HAL_CAN_WAKEUP_FROM_RX_MSG_CB_ID : - hcan->WakeUpFromRxMsgCallback = pCallback; - break; - - case HAL_CAN_ERROR_CB_ID : - hcan->ErrorCallback = pCallback; - break; - - case HAL_CAN_MSPINIT_CB_ID : - hcan->MspInitCallback = pCallback; - break; - - case HAL_CAN_MSPDEINIT_CB_ID : - hcan->MspDeInitCallback = pCallback; - break; - - default : - /* Update the error code */ - hcan->ErrorCode |= HAL_CAN_ERROR_INVALID_CALLBACK; - - /* Return error status */ - status = HAL_ERROR; - break; - } - } - else if (hcan->State == HAL_CAN_STATE_RESET) - { - switch (CallbackID) - { - case HAL_CAN_MSPINIT_CB_ID : - hcan->MspInitCallback = pCallback; - break; - - case HAL_CAN_MSPDEINIT_CB_ID : - hcan->MspDeInitCallback = pCallback; - break; - - default : - /* Update the error code */ - hcan->ErrorCode |= HAL_CAN_ERROR_INVALID_CALLBACK; - - /* Return error status */ - status = HAL_ERROR; - break; - } - } - else - { - /* Update the error code */ - hcan->ErrorCode |= HAL_CAN_ERROR_INVALID_CALLBACK; - - /* Return error status */ - status = HAL_ERROR; - } - - return status; -} - -/** - * @brief Unregister a CAN CallBack. - * CAN callabck is redirected to the weak predefined callback - * @param hcan pointer to a CAN_HandleTypeDef structure that contains - * the configuration information for CAN module - * @param CallbackID ID of the callback to be unregistered - * This parameter can be one of the following values: - * @arg @ref HAL_CAN_TX_MAILBOX0_COMPLETE_CALLBACK_CB_ID Tx Mailbox 0 Complete callback ID - * @arg @ref HAL_CAN_TX_MAILBOX1_COMPLETE_CALLBACK_CB_ID Tx Mailbox 1 Complete callback ID - * @arg @ref HAL_CAN_TX_MAILBOX2_COMPLETE_CALLBACK_CB_ID Tx Mailbox 2 Complete callback ID - * @arg @ref HAL_CAN_TX_MAILBOX0_ABORT_CALLBACK_CB_ID Tx Mailbox 0 Abort callback ID - * @arg @ref HAL_CAN_TX_MAILBOX1_ABORT_CALLBACK_CB_ID Tx Mailbox 1 Abort callback ID - * @arg @ref HAL_CAN_TX_MAILBOX2_ABORT_CALLBACK_CB_ID Tx Mailbox 2 Abort callback ID - * @arg @ref HAL_CAN_RX_FIFO0_MSG_PENDING_CALLBACK_CB_ID Rx Fifo 0 message pending callback ID - * @arg @ref HAL_CAN_RX_FIFO0_FULL_CALLBACK_CB_ID Rx Fifo 0 full callback ID - * @arg @ref HAL_CAN_RX_FIFO1_MSGPENDING_CALLBACK_CB_ID Rx Fifo 1 message pending callback ID - * @arg @ref HAL_CAN_RX_FIFO1_FULL_CALLBACK_CB_ID Rx Fifo 1 full callback ID - * @arg @ref HAL_CAN_SLEEP_CALLBACK_CB_ID Sleep callback ID - * @arg @ref HAL_CAN_WAKEUP_FROM_RX_MSG_CALLBACK_CB_ID Wake Up from Rx message callback ID - * @arg @ref HAL_CAN_ERROR_CALLBACK_CB_ID Error callback ID - * @arg @ref HAL_CAN_MSPINIT_CB_ID MspInit callback ID - * @arg @ref HAL_CAN_MSPDEINIT_CB_ID MspDeInit callback ID - * @retval HAL status - */ -HAL_StatusTypeDef HAL_CAN_UnRegisterCallback(CAN_HandleTypeDef *hcan, HAL_CAN_CallbackIDTypeDef CallbackID) -{ - HAL_StatusTypeDef status = HAL_OK; - - if (hcan->State == HAL_CAN_STATE_READY) - { - switch (CallbackID) - { - case HAL_CAN_TX_MAILBOX0_COMPLETE_CB_ID : - hcan->TxMailbox0CompleteCallback = HAL_CAN_TxMailbox0CompleteCallback; - break; - - case HAL_CAN_TX_MAILBOX1_COMPLETE_CB_ID : - hcan->TxMailbox1CompleteCallback = HAL_CAN_TxMailbox1CompleteCallback; - break; - - case HAL_CAN_TX_MAILBOX2_COMPLETE_CB_ID : - hcan->TxMailbox2CompleteCallback = HAL_CAN_TxMailbox2CompleteCallback; - break; - - case HAL_CAN_TX_MAILBOX0_ABORT_CB_ID : - hcan->TxMailbox0AbortCallback = HAL_CAN_TxMailbox0AbortCallback; - break; - - case HAL_CAN_TX_MAILBOX1_ABORT_CB_ID : - hcan->TxMailbox1AbortCallback = HAL_CAN_TxMailbox1AbortCallback; - break; - - case HAL_CAN_TX_MAILBOX2_ABORT_CB_ID : - hcan->TxMailbox2AbortCallback = HAL_CAN_TxMailbox2AbortCallback; - break; - - case HAL_CAN_RX_FIFO0_MSG_PENDING_CB_ID : - hcan->RxFifo0MsgPendingCallback = HAL_CAN_RxFifo0MsgPendingCallback; - break; - - case HAL_CAN_RX_FIFO0_FULL_CB_ID : - hcan->RxFifo0FullCallback = HAL_CAN_RxFifo0FullCallback; - break; - - case HAL_CAN_RX_FIFO1_MSG_PENDING_CB_ID : - hcan->RxFifo1MsgPendingCallback = HAL_CAN_RxFifo1MsgPendingCallback; - break; - - case HAL_CAN_RX_FIFO1_FULL_CB_ID : - hcan->RxFifo1FullCallback = HAL_CAN_RxFifo1FullCallback; - break; - - case HAL_CAN_SLEEP_CB_ID : - hcan->SleepCallback = HAL_CAN_SleepCallback; - break; - - case HAL_CAN_WAKEUP_FROM_RX_MSG_CB_ID : - hcan->WakeUpFromRxMsgCallback = HAL_CAN_WakeUpFromRxMsgCallback; - break; - - case HAL_CAN_ERROR_CB_ID : - hcan->ErrorCallback = HAL_CAN_ErrorCallback; - break; - - case HAL_CAN_MSPINIT_CB_ID : - hcan->MspInitCallback = HAL_CAN_MspInit; - break; - - case HAL_CAN_MSPDEINIT_CB_ID : - hcan->MspDeInitCallback = HAL_CAN_MspDeInit; - break; - - default : - /* Update the error code */ - hcan->ErrorCode |= HAL_CAN_ERROR_INVALID_CALLBACK; - - /* Return error status */ - status = HAL_ERROR; - break; - } - } - else if (hcan->State == HAL_CAN_STATE_RESET) - { - switch (CallbackID) - { - case HAL_CAN_MSPINIT_CB_ID : - hcan->MspInitCallback = HAL_CAN_MspInit; - break; - - case HAL_CAN_MSPDEINIT_CB_ID : - hcan->MspDeInitCallback = HAL_CAN_MspDeInit; - break; - - default : - /* Update the error code */ - hcan->ErrorCode |= HAL_CAN_ERROR_INVALID_CALLBACK; - - /* Return error status */ - status = HAL_ERROR; - break; - } - } - else - { - /* Update the error code */ - hcan->ErrorCode |= HAL_CAN_ERROR_INVALID_CALLBACK; - - /* Return error status */ - status = HAL_ERROR; - } - - return status; -} -#endif /* USE_HAL_CAN_REGISTER_CALLBACKS */ - -/** - * @} - */ - -/** @defgroup CAN_Exported_Functions_Group2 Configuration functions - * @brief Configuration functions. - * -@verbatim - ============================================================================== - ##### Configuration functions ##### - ============================================================================== - [..] This section provides functions allowing to: - (+) HAL_CAN_ConfigFilter : Configure the CAN reception filters - -@endverbatim - * @{ - */ - -/** - * @brief Configures the CAN reception filter according to the specified - * parameters in the CAN_FilterInitStruct. - * @param hcan pointer to a CAN_HandleTypeDef structure that contains - * the configuration information for the specified CAN. - * @param sFilterConfig pointer to a CAN_FilterTypeDef structure that - * contains the filter configuration information. - * @retval None - */ -HAL_StatusTypeDef HAL_CAN_ConfigFilter(CAN_HandleTypeDef *hcan, CAN_FilterTypeDef *sFilterConfig) -{ - uint32_t filternbrbitpos; - CAN_TypeDef *can_ip = hcan->Instance; - HAL_CAN_StateTypeDef state = hcan->State; - - if ((state == HAL_CAN_STATE_READY) || - (state == HAL_CAN_STATE_LISTENING)) - { - /* Check the parameters */ - assert_param(IS_CAN_FILTER_ID_HALFWORD(sFilterConfig->FilterIdHigh)); - assert_param(IS_CAN_FILTER_ID_HALFWORD(sFilterConfig->FilterIdLow)); - assert_param(IS_CAN_FILTER_ID_HALFWORD(sFilterConfig->FilterMaskIdHigh)); - assert_param(IS_CAN_FILTER_ID_HALFWORD(sFilterConfig->FilterMaskIdLow)); - assert_param(IS_CAN_FILTER_MODE(sFilterConfig->FilterMode)); - assert_param(IS_CAN_FILTER_SCALE(sFilterConfig->FilterScale)); - assert_param(IS_CAN_FILTER_FIFO(sFilterConfig->FilterFIFOAssignment)); - assert_param(IS_CAN_FILTER_ACTIVATION(sFilterConfig->FilterActivation)); - - /* CAN is single instance with 14 dedicated filters banks */ - - /* Check the parameters */ - assert_param(IS_CAN_FILTER_BANK_SINGLE(sFilterConfig->FilterBank)); - - /* Initialisation mode for the filter */ - SET_BIT(can_ip->FMR, CAN_FMR_FINIT); - - /* Convert filter number into bit position */ - filternbrbitpos = (uint32_t)1 << (sFilterConfig->FilterBank & 0x1FU); - - /* Filter Deactivation */ - CLEAR_BIT(can_ip->FA1R, filternbrbitpos); - - /* Filter Scale */ - if (sFilterConfig->FilterScale == CAN_FILTERSCALE_16BIT) - { - /* 16-bit scale for the filter */ - CLEAR_BIT(can_ip->FS1R, filternbrbitpos); - - /* First 16-bit identifier and First 16-bit mask */ - /* Or First 16-bit identifier and Second 16-bit identifier */ - can_ip->sFilterRegister[sFilterConfig->FilterBank].FR1 = - ((0x0000FFFFU & (uint32_t)sFilterConfig->FilterMaskIdLow) << 16U) | - (0x0000FFFFU & (uint32_t)sFilterConfig->FilterIdLow); - - /* Second 16-bit identifier and Second 16-bit mask */ - /* Or Third 16-bit identifier and Fourth 16-bit identifier */ - can_ip->sFilterRegister[sFilterConfig->FilterBank].FR2 = - ((0x0000FFFFU & (uint32_t)sFilterConfig->FilterMaskIdHigh) << 16U) | - (0x0000FFFFU & (uint32_t)sFilterConfig->FilterIdHigh); - } - - if (sFilterConfig->FilterScale == CAN_FILTERSCALE_32BIT) - { - /* 32-bit scale for the filter */ - SET_BIT(can_ip->FS1R, filternbrbitpos); - - /* 32-bit identifier or First 32-bit identifier */ - can_ip->sFilterRegister[sFilterConfig->FilterBank].FR1 = - ((0x0000FFFFU & (uint32_t)sFilterConfig->FilterIdHigh) << 16U) | - (0x0000FFFFU & (uint32_t)sFilterConfig->FilterIdLow); - - /* 32-bit mask or Second 32-bit identifier */ - can_ip->sFilterRegister[sFilterConfig->FilterBank].FR2 = - ((0x0000FFFFU & (uint32_t)sFilterConfig->FilterMaskIdHigh) << 16U) | - (0x0000FFFFU & (uint32_t)sFilterConfig->FilterMaskIdLow); - } - - /* Filter Mode */ - if (sFilterConfig->FilterMode == CAN_FILTERMODE_IDMASK) - { - /* Id/Mask mode for the filter*/ - CLEAR_BIT(can_ip->FM1R, filternbrbitpos); - } - else /* CAN_FilterInitStruct->CAN_FilterMode == CAN_FilterMode_IdList */ - { - /* Identifier list mode for the filter*/ - SET_BIT(can_ip->FM1R, filternbrbitpos); - } - - /* Filter FIFO assignment */ - if (sFilterConfig->FilterFIFOAssignment == CAN_FILTER_FIFO0) - { - /* FIFO 0 assignation for the filter */ - CLEAR_BIT(can_ip->FFA1R, filternbrbitpos); - } - else - { - /* FIFO 1 assignation for the filter */ - SET_BIT(can_ip->FFA1R, filternbrbitpos); - } - - /* Filter activation */ - if (sFilterConfig->FilterActivation == CAN_FILTER_ENABLE) - { - SET_BIT(can_ip->FA1R, filternbrbitpos); - } - - /* Leave the initialisation mode for the filter */ - CLEAR_BIT(can_ip->FMR, CAN_FMR_FINIT); - - /* Return function status */ - return HAL_OK; - } - else - { - /* Update error code */ - hcan->ErrorCode |= HAL_CAN_ERROR_NOT_INITIALIZED; - - return HAL_ERROR; - } -} - -/** - * @} - */ - -/** @defgroup CAN_Exported_Functions_Group3 Control functions - * @brief Control functions - * -@verbatim - ============================================================================== - ##### Control functions ##### - ============================================================================== - [..] This section provides functions allowing to: - (+) HAL_CAN_Start : Start the CAN module - (+) HAL_CAN_Stop : Stop the CAN module - (+) HAL_CAN_RequestSleep : Request sleep mode entry. - (+) HAL_CAN_WakeUp : Wake up from sleep mode. - (+) HAL_CAN_IsSleepActive : Check is sleep mode is active. - (+) HAL_CAN_AddTxMessage : Add a message to the Tx mailboxes - and activate the corresponding - transmission request - (+) HAL_CAN_AbortTxRequest : Abort transmission request - (+) HAL_CAN_GetTxMailboxesFreeLevel : Return Tx mailboxes free level - (+) HAL_CAN_IsTxMessagePending : Check if a transmission request is - pending on the selected Tx mailbox - (+) HAL_CAN_GetRxMessage : Get a CAN frame from the Rx FIFO - (+) HAL_CAN_GetRxFifoFillLevel : Return Rx FIFO fill level - -@endverbatim - * @{ - */ - -/** - * @brief Start the CAN module. - * @param hcan pointer to an CAN_HandleTypeDef structure that contains - * the configuration information for the specified CAN. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_CAN_Start(CAN_HandleTypeDef *hcan) -{ - uint32_t tickstart; - - if (hcan->State == HAL_CAN_STATE_READY) - { - /* Change CAN peripheral state */ - hcan->State = HAL_CAN_STATE_LISTENING; - - /* Request leave initialisation */ - CLEAR_BIT(hcan->Instance->MCR, CAN_MCR_INRQ); - - /* Get tick */ - tickstart = HAL_GetTick(); - - /* Wait the acknowledge */ - while ((hcan->Instance->MSR & CAN_MSR_INAK) != 0U) - { - /* Check for the Timeout */ - if ((HAL_GetTick() - tickstart) > CAN_TIMEOUT_VALUE) - { - /* Update error code */ - hcan->ErrorCode |= HAL_CAN_ERROR_TIMEOUT; - - /* Change CAN state */ - hcan->State = HAL_CAN_STATE_ERROR; - - return HAL_ERROR; - } - } - - /* Reset the CAN ErrorCode */ - hcan->ErrorCode = HAL_CAN_ERROR_NONE; - - /* Return function status */ - return HAL_OK; - } - else - { - /* Update error code */ - hcan->ErrorCode |= HAL_CAN_ERROR_NOT_READY; - - return HAL_ERROR; - } -} - -/** - * @brief Stop the CAN module and enable access to configuration registers. - * @param hcan pointer to an CAN_HandleTypeDef structure that contains - * the configuration information for the specified CAN. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_CAN_Stop(CAN_HandleTypeDef *hcan) -{ - uint32_t tickstart; - - if (hcan->State == HAL_CAN_STATE_LISTENING) - { - /* Request initialisation */ - SET_BIT(hcan->Instance->MCR, CAN_MCR_INRQ); - - /* Get tick */ - tickstart = HAL_GetTick(); - - /* Wait the acknowledge */ - while ((hcan->Instance->MSR & CAN_MSR_INAK) == 0U) - { - /* Check for the Timeout */ - if ((HAL_GetTick() - tickstart) > CAN_TIMEOUT_VALUE) - { - /* Update error code */ - hcan->ErrorCode |= HAL_CAN_ERROR_TIMEOUT; - - /* Change CAN state */ - hcan->State = HAL_CAN_STATE_ERROR; - - return HAL_ERROR; - } - } - - /* Exit from sleep mode */ - CLEAR_BIT(hcan->Instance->MCR, CAN_MCR_SLEEP); - - /* Change CAN peripheral state */ - hcan->State = HAL_CAN_STATE_READY; - - /* Return function status */ - return HAL_OK; - } - else - { - /* Update error code */ - hcan->ErrorCode |= HAL_CAN_ERROR_NOT_STARTED; - - return HAL_ERROR; - } -} - -/** - * @brief Request the sleep mode (low power) entry. - * When returning from this function, Sleep mode will be entered - * as soon as the current CAN activity (transmission or reception - * of a CAN frame) has been completed. - * @param hcan pointer to a CAN_HandleTypeDef structure that contains - * the configuration information for the specified CAN. - * @retval HAL status. - */ -HAL_StatusTypeDef HAL_CAN_RequestSleep(CAN_HandleTypeDef *hcan) -{ - HAL_CAN_StateTypeDef state = hcan->State; - - if ((state == HAL_CAN_STATE_READY) || - (state == HAL_CAN_STATE_LISTENING)) - { - /* Request Sleep mode */ - SET_BIT(hcan->Instance->MCR, CAN_MCR_SLEEP); - - /* Return function status */ - return HAL_OK; - } - else - { - /* Update error code */ - hcan->ErrorCode |= HAL_CAN_ERROR_NOT_INITIALIZED; - - /* Return function status */ - return HAL_ERROR; - } -} - -/** - * @brief Wake up from sleep mode. - * When returning with HAL_OK status from this function, Sleep mode - * is exited. - * @param hcan pointer to a CAN_HandleTypeDef structure that contains - * the configuration information for the specified CAN. - * @retval HAL status. - */ -HAL_StatusTypeDef HAL_CAN_WakeUp(CAN_HandleTypeDef *hcan) -{ - __IO uint32_t count = 0; - uint32_t timeout = 1000000U; - HAL_CAN_StateTypeDef state = hcan->State; - - if ((state == HAL_CAN_STATE_READY) || - (state == HAL_CAN_STATE_LISTENING)) - { - /* Wake up request */ - CLEAR_BIT(hcan->Instance->MCR, CAN_MCR_SLEEP); - - /* Wait sleep mode is exited */ - do - { - /* Increment counter */ - count++; - - /* Check if timeout is reached */ - if (count > timeout) - { - /* Update error code */ - hcan->ErrorCode |= HAL_CAN_ERROR_TIMEOUT; - - return HAL_ERROR; - } - } - while ((hcan->Instance->MSR & CAN_MSR_SLAK) != 0U); - - /* Return function status */ - return HAL_OK; - } - else - { - /* Update error code */ - hcan->ErrorCode |= HAL_CAN_ERROR_NOT_INITIALIZED; - - return HAL_ERROR; - } -} - -/** - * @brief Check is sleep mode is active. - * @param hcan pointer to a CAN_HandleTypeDef structure that contains - * the configuration information for the specified CAN. - * @retval Status - * - 0 : Sleep mode is not active. - * - 1 : Sleep mode is active. - */ -uint32_t HAL_CAN_IsSleepActive(CAN_HandleTypeDef *hcan) -{ - uint32_t status = 0U; - HAL_CAN_StateTypeDef state = hcan->State; - - if ((state == HAL_CAN_STATE_READY) || - (state == HAL_CAN_STATE_LISTENING)) - { - /* Check Sleep mode */ - if ((hcan->Instance->MSR & CAN_MSR_SLAK) != 0U) - { - status = 1U; - } - } - - /* Return function status */ - return status; -} - -/** - * @brief Add a message to the first free Tx mailbox and activate the - * corresponding transmission request. - * @param hcan pointer to a CAN_HandleTypeDef structure that contains - * the configuration information for the specified CAN. - * @param pHeader pointer to a CAN_TxHeaderTypeDef structure. - * @param aData array containing the payload of the Tx frame. - * @param pTxMailbox pointer to a variable where the function will return - * the TxMailbox used to store the Tx message. - * This parameter can be a value of @arg CAN_Tx_Mailboxes. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_CAN_AddTxMessage(CAN_HandleTypeDef *hcan, CAN_TxHeaderTypeDef *pHeader, uint8_t aData[], uint32_t *pTxMailbox) -{ - uint32_t transmitmailbox; - HAL_CAN_StateTypeDef state = hcan->State; - uint32_t tsr = READ_REG(hcan->Instance->TSR); - - /* Check the parameters */ - assert_param(IS_CAN_IDTYPE(pHeader->IDE)); - assert_param(IS_CAN_RTR(pHeader->RTR)); - assert_param(IS_CAN_DLC(pHeader->DLC)); - if (pHeader->IDE == CAN_ID_STD) - { - assert_param(IS_CAN_STDID(pHeader->StdId)); - } - else - { - assert_param(IS_CAN_EXTID(pHeader->ExtId)); - } - assert_param(IS_FUNCTIONAL_STATE(pHeader->TransmitGlobalTime)); - - if ((state == HAL_CAN_STATE_READY) || - (state == HAL_CAN_STATE_LISTENING)) - { - /* Check that all the Tx mailboxes are not full */ - if (((tsr & CAN_TSR_TME0) != 0U) || - ((tsr & CAN_TSR_TME1) != 0U) || - ((tsr & CAN_TSR_TME2) != 0U)) - { - /* Select an empty transmit mailbox */ - transmitmailbox = (tsr & CAN_TSR_CODE) >> CAN_TSR_CODE_Pos; - - /* Check transmit mailbox value */ - if (transmitmailbox > 2U) - { - /* Update error code */ - hcan->ErrorCode |= HAL_CAN_ERROR_INTERNAL; - - return HAL_ERROR; - } - - /* Store the Tx mailbox */ - *pTxMailbox = (uint32_t)1 << transmitmailbox; - - /* Set up the Id */ - if (pHeader->IDE == CAN_ID_STD) - { - hcan->Instance->sTxMailBox[transmitmailbox].TIR = ((pHeader->StdId << CAN_TI0R_STID_Pos) | - pHeader->RTR); - } - else - { - hcan->Instance->sTxMailBox[transmitmailbox].TIR = ((pHeader->ExtId << CAN_TI0R_EXID_Pos) | - pHeader->IDE | - pHeader->RTR); - } - - /* Set up the DLC */ - hcan->Instance->sTxMailBox[transmitmailbox].TDTR = (pHeader->DLC); - - /* Set up the Transmit Global Time mode */ - if (pHeader->TransmitGlobalTime == ENABLE) - { - SET_BIT(hcan->Instance->sTxMailBox[transmitmailbox].TDTR, CAN_TDT0R_TGT); - } - - /* Set up the data field */ - WRITE_REG(hcan->Instance->sTxMailBox[transmitmailbox].TDHR, - ((uint32_t)aData[7] << CAN_TDH0R_DATA7_Pos) | - ((uint32_t)aData[6] << CAN_TDH0R_DATA6_Pos) | - ((uint32_t)aData[5] << CAN_TDH0R_DATA5_Pos) | - ((uint32_t)aData[4] << CAN_TDH0R_DATA4_Pos)); - WRITE_REG(hcan->Instance->sTxMailBox[transmitmailbox].TDLR, - ((uint32_t)aData[3] << CAN_TDL0R_DATA3_Pos) | - ((uint32_t)aData[2] << CAN_TDL0R_DATA2_Pos) | - ((uint32_t)aData[1] << CAN_TDL0R_DATA1_Pos) | - ((uint32_t)aData[0] << CAN_TDL0R_DATA0_Pos)); - - /* Request transmission */ - SET_BIT(hcan->Instance->sTxMailBox[transmitmailbox].TIR, CAN_TI0R_TXRQ); - - /* Return function status */ - return HAL_OK; - } - else - { - /* Update error code */ - hcan->ErrorCode |= HAL_CAN_ERROR_PARAM; - - return HAL_ERROR; - } - } - else - { - /* Update error code */ - hcan->ErrorCode |= HAL_CAN_ERROR_NOT_INITIALIZED; - - return HAL_ERROR; - } -} - -/** - * @brief Abort transmission requests - * @param hcan pointer to an CAN_HandleTypeDef structure that contains - * the configuration information for the specified CAN. - * @param TxMailboxes List of the Tx Mailboxes to abort. - * This parameter can be any combination of @arg CAN_Tx_Mailboxes. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_CAN_AbortTxRequest(CAN_HandleTypeDef *hcan, uint32_t TxMailboxes) -{ - HAL_CAN_StateTypeDef state = hcan->State; - - /* Check function parameters */ - assert_param(IS_CAN_TX_MAILBOX_LIST(TxMailboxes)); - - if ((state == HAL_CAN_STATE_READY) || - (state == HAL_CAN_STATE_LISTENING)) - { - /* Check Tx Mailbox 0 */ - if ((TxMailboxes & CAN_TX_MAILBOX0) != 0U) - { - /* Add cancellation request for Tx Mailbox 0 */ - SET_BIT(hcan->Instance->TSR, CAN_TSR_ABRQ0); - } - - /* Check Tx Mailbox 1 */ - if ((TxMailboxes & CAN_TX_MAILBOX1) != 0U) - { - /* Add cancellation request for Tx Mailbox 1 */ - SET_BIT(hcan->Instance->TSR, CAN_TSR_ABRQ1); - } - - /* Check Tx Mailbox 2 */ - if ((TxMailboxes & CAN_TX_MAILBOX2) != 0U) - { - /* Add cancellation request for Tx Mailbox 2 */ - SET_BIT(hcan->Instance->TSR, CAN_TSR_ABRQ2); - } - - /* Return function status */ - return HAL_OK; - } - else - { - /* Update error code */ - hcan->ErrorCode |= HAL_CAN_ERROR_NOT_INITIALIZED; - - return HAL_ERROR; - } -} - -/** - * @brief Return Tx Mailboxes free level: number of free Tx Mailboxes. - * @param hcan pointer to a CAN_HandleTypeDef structure that contains - * the configuration information for the specified CAN. - * @retval Number of free Tx Mailboxes. - */ -uint32_t HAL_CAN_GetTxMailboxesFreeLevel(CAN_HandleTypeDef *hcan) -{ - uint32_t freelevel = 0U; - HAL_CAN_StateTypeDef state = hcan->State; - - if ((state == HAL_CAN_STATE_READY) || - (state == HAL_CAN_STATE_LISTENING)) - { - /* Check Tx Mailbox 0 status */ - if ((hcan->Instance->TSR & CAN_TSR_TME0) != 0U) - { - freelevel++; - } - - /* Check Tx Mailbox 1 status */ - if ((hcan->Instance->TSR & CAN_TSR_TME1) != 0U) - { - freelevel++; - } - - /* Check Tx Mailbox 2 status */ - if ((hcan->Instance->TSR & CAN_TSR_TME2) != 0U) - { - freelevel++; - } - } - - /* Return Tx Mailboxes free level */ - return freelevel; -} - -/** - * @brief Check if a transmission request is pending on the selected Tx - * Mailboxes. - * @param hcan pointer to an CAN_HandleTypeDef structure that contains - * the configuration information for the specified CAN. - * @param TxMailboxes List of Tx Mailboxes to check. - * This parameter can be any combination of @arg CAN_Tx_Mailboxes. - * @retval Status - * - 0 : No pending transmission request on any selected Tx Mailboxes. - * - 1 : Pending transmission request on at least one of the selected - * Tx Mailbox. - */ -uint32_t HAL_CAN_IsTxMessagePending(CAN_HandleTypeDef *hcan, uint32_t TxMailboxes) -{ - uint32_t status = 0U; - HAL_CAN_StateTypeDef state = hcan->State; - - /* Check function parameters */ - assert_param(IS_CAN_TX_MAILBOX_LIST(TxMailboxes)); - - if ((state == HAL_CAN_STATE_READY) || - (state == HAL_CAN_STATE_LISTENING)) - { - /* Check pending transmission request on the selected Tx Mailboxes */ - if ((hcan->Instance->TSR & (TxMailboxes << CAN_TSR_TME0_Pos)) != (TxMailboxes << CAN_TSR_TME0_Pos)) - { - status = 1U; - } - } - - /* Return status */ - return status; -} - -/** - * @brief Return timestamp of Tx message sent, if time triggered communication - mode is enabled. - * @param hcan pointer to a CAN_HandleTypeDef structure that contains - * the configuration information for the specified CAN. - * @param TxMailbox Tx Mailbox where the timestamp of message sent will be - * read. - * This parameter can be one value of @arg CAN_Tx_Mailboxes. - * @retval Timestamp of message sent from Tx Mailbox. - */ -uint32_t HAL_CAN_GetTxTimestamp(CAN_HandleTypeDef *hcan, uint32_t TxMailbox) -{ - uint32_t timestamp = 0U; - uint32_t transmitmailbox; - HAL_CAN_StateTypeDef state = hcan->State; - - /* Check function parameters */ - assert_param(IS_CAN_TX_MAILBOX(TxMailbox)); - - if ((state == HAL_CAN_STATE_READY) || - (state == HAL_CAN_STATE_LISTENING)) - { - /* Select the Tx mailbox */ - /* Select the Tx mailbox */ - if (TxMailbox == CAN_TX_MAILBOX0) - { - transmitmailbox = 0U; - } - else if (TxMailbox == CAN_TX_MAILBOX1) - { - transmitmailbox = 1U; - } - else /* (TxMailbox == CAN_TX_MAILBOX2) */ - { - transmitmailbox = 2U; - } - - /* Get timestamp */ - timestamp = (hcan->Instance->sTxMailBox[transmitmailbox].TDTR & CAN_TDT0R_TIME) >> CAN_TDT0R_TIME_Pos; - } - - /* Return the timestamp */ - return timestamp; -} - -/** - * @brief Get an CAN frame from the Rx FIFO zone into the message RAM. - * @param hcan pointer to an CAN_HandleTypeDef structure that contains - * the configuration information for the specified CAN. - * @param RxFifo Fifo number of the received message to be read. - * This parameter can be a value of @arg CAN_receive_FIFO_number. - * @param pHeader pointer to a CAN_RxHeaderTypeDef structure where the header - * of the Rx frame will be stored. - * @param aData array where the payload of the Rx frame will be stored. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_CAN_GetRxMessage(CAN_HandleTypeDef *hcan, uint32_t RxFifo, CAN_RxHeaderTypeDef *pHeader, uint8_t aData[]) -{ - HAL_CAN_StateTypeDef state = hcan->State; - - assert_param(IS_CAN_RX_FIFO(RxFifo)); - - if ((state == HAL_CAN_STATE_READY) || - (state == HAL_CAN_STATE_LISTENING)) - { - /* Check the Rx FIFO */ - if (RxFifo == CAN_RX_FIFO0) /* Rx element is assigned to Rx FIFO 0 */ - { - /* Check that the Rx FIFO 0 is not empty */ - if ((hcan->Instance->RF0R & CAN_RF0R_FMP0) == 0U) - { - /* Update error code */ - hcan->ErrorCode |= HAL_CAN_ERROR_PARAM; - - return HAL_ERROR; - } - } - else /* Rx element is assigned to Rx FIFO 1 */ - { - /* Check that the Rx FIFO 1 is not empty */ - if ((hcan->Instance->RF1R & CAN_RF1R_FMP1) == 0U) - { - /* Update error code */ - hcan->ErrorCode |= HAL_CAN_ERROR_PARAM; - - return HAL_ERROR; - } - } - - /* Get the header */ - pHeader->IDE = CAN_RI0R_IDE & hcan->Instance->sFIFOMailBox[RxFifo].RIR; - if (pHeader->IDE == CAN_ID_STD) - { - pHeader->StdId = (CAN_RI0R_STID & hcan->Instance->sFIFOMailBox[RxFifo].RIR) >> CAN_TI0R_STID_Pos; - } - else - { - pHeader->ExtId = ((CAN_RI0R_EXID | CAN_RI0R_STID) & hcan->Instance->sFIFOMailBox[RxFifo].RIR) >> CAN_RI0R_EXID_Pos; - } - pHeader->RTR = (CAN_RI0R_RTR & hcan->Instance->sFIFOMailBox[RxFifo].RIR); - pHeader->DLC = (CAN_RDT0R_DLC & hcan->Instance->sFIFOMailBox[RxFifo].RDTR) >> CAN_RDT0R_DLC_Pos; - pHeader->FilterMatchIndex = (CAN_RDT0R_FMI & hcan->Instance->sFIFOMailBox[RxFifo].RDTR) >> CAN_RDT0R_FMI_Pos; - pHeader->Timestamp = (CAN_RDT0R_TIME & hcan->Instance->sFIFOMailBox[RxFifo].RDTR) >> CAN_RDT0R_TIME_Pos; - - /* Get the data */ - aData[0] = (uint8_t)((CAN_RDL0R_DATA0 & hcan->Instance->sFIFOMailBox[RxFifo].RDLR) >> CAN_RDL0R_DATA0_Pos); - aData[1] = (uint8_t)((CAN_RDL0R_DATA1 & hcan->Instance->sFIFOMailBox[RxFifo].RDLR) >> CAN_RDL0R_DATA1_Pos); - aData[2] = (uint8_t)((CAN_RDL0R_DATA2 & hcan->Instance->sFIFOMailBox[RxFifo].RDLR) >> CAN_RDL0R_DATA2_Pos); - aData[3] = (uint8_t)((CAN_RDL0R_DATA3 & hcan->Instance->sFIFOMailBox[RxFifo].RDLR) >> CAN_RDL0R_DATA3_Pos); - aData[4] = (uint8_t)((CAN_RDH0R_DATA4 & hcan->Instance->sFIFOMailBox[RxFifo].RDHR) >> CAN_RDH0R_DATA4_Pos); - aData[5] = (uint8_t)((CAN_RDH0R_DATA5 & hcan->Instance->sFIFOMailBox[RxFifo].RDHR) >> CAN_RDH0R_DATA5_Pos); - aData[6] = (uint8_t)((CAN_RDH0R_DATA6 & hcan->Instance->sFIFOMailBox[RxFifo].RDHR) >> CAN_RDH0R_DATA6_Pos); - aData[7] = (uint8_t)((CAN_RDH0R_DATA7 & hcan->Instance->sFIFOMailBox[RxFifo].RDHR) >> CAN_RDH0R_DATA7_Pos); - - /* Release the FIFO */ - if (RxFifo == CAN_RX_FIFO0) /* Rx element is assigned to Rx FIFO 0 */ - { - /* Release RX FIFO 0 */ - SET_BIT(hcan->Instance->RF0R, CAN_RF0R_RFOM0); - } - else /* Rx element is assigned to Rx FIFO 1 */ - { - /* Release RX FIFO 1 */ - SET_BIT(hcan->Instance->RF1R, CAN_RF1R_RFOM1); - } - - /* Return function status */ - return HAL_OK; - } - else - { - /* Update error code */ - hcan->ErrorCode |= HAL_CAN_ERROR_NOT_INITIALIZED; - - return HAL_ERROR; - } -} - -/** - * @brief Return Rx FIFO fill level. - * @param hcan pointer to an CAN_HandleTypeDef structure that contains - * the configuration information for the specified CAN. - * @param RxFifo Rx FIFO. - * This parameter can be a value of @arg CAN_receive_FIFO_number. - * @retval Number of messages available in Rx FIFO. - */ -uint32_t HAL_CAN_GetRxFifoFillLevel(CAN_HandleTypeDef *hcan, uint32_t RxFifo) -{ - uint32_t filllevel = 0U; - HAL_CAN_StateTypeDef state = hcan->State; - - /* Check function parameters */ - assert_param(IS_CAN_RX_FIFO(RxFifo)); - - if ((state == HAL_CAN_STATE_READY) || - (state == HAL_CAN_STATE_LISTENING)) - { - if (RxFifo == CAN_RX_FIFO0) - { - filllevel = hcan->Instance->RF0R & CAN_RF0R_FMP0; - } - else /* RxFifo == CAN_RX_FIFO1 */ - { - filllevel = hcan->Instance->RF1R & CAN_RF1R_FMP1; - } - } - - /* Return Rx FIFO fill level */ - return filllevel; -} - -/** - * @} - */ - -/** @defgroup CAN_Exported_Functions_Group4 Interrupts management - * @brief Interrupts management - * -@verbatim - ============================================================================== - ##### Interrupts management ##### - ============================================================================== - [..] This section provides functions allowing to: - (+) HAL_CAN_ActivateNotification : Enable interrupts - (+) HAL_CAN_DeactivateNotification : Disable interrupts - (+) HAL_CAN_IRQHandler : Handles CAN interrupt request - -@endverbatim - * @{ - */ - -/** - * @brief Enable interrupts. - * @param hcan pointer to an CAN_HandleTypeDef structure that contains - * the configuration information for the specified CAN. - * @param ActiveITs indicates which interrupts will be enabled. - * This parameter can be any combination of @arg CAN_Interrupts. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_CAN_ActivateNotification(CAN_HandleTypeDef *hcan, uint32_t ActiveITs) -{ - HAL_CAN_StateTypeDef state = hcan->State; - - /* Check function parameters */ - assert_param(IS_CAN_IT(ActiveITs)); - - if ((state == HAL_CAN_STATE_READY) || - (state == HAL_CAN_STATE_LISTENING)) - { - /* Enable the selected interrupts */ - __HAL_CAN_ENABLE_IT(hcan, ActiveITs); - - /* Return function status */ - return HAL_OK; - } - else - { - /* Update error code */ - hcan->ErrorCode |= HAL_CAN_ERROR_NOT_INITIALIZED; - - return HAL_ERROR; - } -} - -/** - * @brief Disable interrupts. - * @param hcan pointer to an CAN_HandleTypeDef structure that contains - * the configuration information for the specified CAN. - * @param InactiveITs indicates which interrupts will be disabled. - * This parameter can be any combination of @arg CAN_Interrupts. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_CAN_DeactivateNotification(CAN_HandleTypeDef *hcan, uint32_t InactiveITs) -{ - HAL_CAN_StateTypeDef state = hcan->State; - - /* Check function parameters */ - assert_param(IS_CAN_IT(InactiveITs)); - - if ((state == HAL_CAN_STATE_READY) || - (state == HAL_CAN_STATE_LISTENING)) - { - /* Disable the selected interrupts */ - __HAL_CAN_DISABLE_IT(hcan, InactiveITs); - - /* Return function status */ - return HAL_OK; - } - else - { - /* Update error code */ - hcan->ErrorCode |= HAL_CAN_ERROR_NOT_INITIALIZED; - - return HAL_ERROR; - } -} - -/** - * @brief Handles CAN interrupt request - * @param hcan pointer to a CAN_HandleTypeDef structure that contains - * the configuration information for the specified CAN. - * @retval None - */ -void HAL_CAN_IRQHandler(CAN_HandleTypeDef *hcan) -{ - uint32_t errorcode = HAL_CAN_ERROR_NONE; - uint32_t interrupts = READ_REG(hcan->Instance->IER); - uint32_t msrflags = READ_REG(hcan->Instance->MSR); - uint32_t tsrflags = READ_REG(hcan->Instance->TSR); - uint32_t rf0rflags = READ_REG(hcan->Instance->RF0R); - uint32_t rf1rflags = READ_REG(hcan->Instance->RF1R); - uint32_t esrflags = READ_REG(hcan->Instance->ESR); - - /* Transmit Mailbox empty interrupt management *****************************/ - if ((interrupts & CAN_IT_TX_MAILBOX_EMPTY) != 0U) - { - /* Transmit Mailbox 0 management *****************************************/ - if ((tsrflags & CAN_TSR_RQCP0) != 0U) - { - /* Clear the Transmission Complete flag (and TXOK0,ALST0,TERR0 bits) */ - __HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_RQCP0); - - if ((tsrflags & CAN_TSR_TXOK0) != 0U) - { - /* Transmission Mailbox 0 complete callback */ -#if USE_HAL_CAN_REGISTER_CALLBACKS == 1 - /* Call registered callback*/ - hcan->TxMailbox0CompleteCallback(hcan); -#else - /* Call weak (surcharged) callback */ - HAL_CAN_TxMailbox0CompleteCallback(hcan); -#endif /* USE_HAL_CAN_REGISTER_CALLBACKS */ - } - else - { - if ((tsrflags & CAN_TSR_ALST0) != 0U) - { - /* Update error code */ - errorcode |= HAL_CAN_ERROR_TX_ALST0; - } - else if ((tsrflags & CAN_TSR_TERR0) != 0U) - { - /* Update error code */ - errorcode |= HAL_CAN_ERROR_TX_TERR0; - } - else - { - /* Transmission Mailbox 0 abort callback */ -#if USE_HAL_CAN_REGISTER_CALLBACKS == 1 - /* Call registered callback*/ - hcan->TxMailbox0AbortCallback(hcan); -#else - /* Call weak (surcharged) callback */ - HAL_CAN_TxMailbox0AbortCallback(hcan); -#endif /* USE_HAL_CAN_REGISTER_CALLBACKS */ - } - } - } - - /* Transmit Mailbox 1 management *****************************************/ - if ((tsrflags & CAN_TSR_RQCP1) != 0U) - { - /* Clear the Transmission Complete flag (and TXOK1,ALST1,TERR1 bits) */ - __HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_RQCP1); - - if ((tsrflags & CAN_TSR_TXOK1) != 0U) - { - /* Transmission Mailbox 1 complete callback */ -#if USE_HAL_CAN_REGISTER_CALLBACKS == 1 - /* Call registered callback*/ - hcan->TxMailbox1CompleteCallback(hcan); -#else - /* Call weak (surcharged) callback */ - HAL_CAN_TxMailbox1CompleteCallback(hcan); -#endif /* USE_HAL_CAN_REGISTER_CALLBACKS */ - } - else - { - if ((tsrflags & CAN_TSR_ALST1) != 0U) - { - /* Update error code */ - errorcode |= HAL_CAN_ERROR_TX_ALST1; - } - else if ((tsrflags & CAN_TSR_TERR1) != 0U) - { - /* Update error code */ - errorcode |= HAL_CAN_ERROR_TX_TERR1; - } - else - { - /* Transmission Mailbox 1 abort callback */ -#if USE_HAL_CAN_REGISTER_CALLBACKS == 1 - /* Call registered callback*/ - hcan->TxMailbox1AbortCallback(hcan); -#else - /* Call weak (surcharged) callback */ - HAL_CAN_TxMailbox1AbortCallback(hcan); -#endif /* USE_HAL_CAN_REGISTER_CALLBACKS */ - } - } - } - - /* Transmit Mailbox 2 management *****************************************/ - if ((tsrflags & CAN_TSR_RQCP2) != 0U) - { - /* Clear the Transmission Complete flag (and TXOK2,ALST2,TERR2 bits) */ - __HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_RQCP2); - - if ((tsrflags & CAN_TSR_TXOK2) != 0U) - { - /* Transmission Mailbox 2 complete callback */ -#if USE_HAL_CAN_REGISTER_CALLBACKS == 1 - /* Call registered callback*/ - hcan->TxMailbox2CompleteCallback(hcan); -#else - /* Call weak (surcharged) callback */ - HAL_CAN_TxMailbox2CompleteCallback(hcan); -#endif /* USE_HAL_CAN_REGISTER_CALLBACKS */ - } - else - { - if ((tsrflags & CAN_TSR_ALST2) != 0U) - { - /* Update error code */ - errorcode |= HAL_CAN_ERROR_TX_ALST2; - } - else if ((tsrflags & CAN_TSR_TERR2) != 0U) - { - /* Update error code */ - errorcode |= HAL_CAN_ERROR_TX_TERR2; - } - else - { - /* Transmission Mailbox 2 abort callback */ -#if USE_HAL_CAN_REGISTER_CALLBACKS == 1 - /* Call registered callback*/ - hcan->TxMailbox2AbortCallback(hcan); -#else - /* Call weak (surcharged) callback */ - HAL_CAN_TxMailbox2AbortCallback(hcan); -#endif /* USE_HAL_CAN_REGISTER_CALLBACKS */ - } - } - } - } - - /* Receive FIFO 0 overrun interrupt management *****************************/ - if ((interrupts & CAN_IT_RX_FIFO0_OVERRUN) != 0U) - { - if ((rf0rflags & CAN_RF0R_FOVR0) != 0U) - { - /* Set CAN error code to Rx Fifo 0 overrun error */ - errorcode |= HAL_CAN_ERROR_RX_FOV0; - - /* Clear FIFO0 Overrun Flag */ - __HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_FOV0); - } - } - - /* Receive FIFO 0 full interrupt management ********************************/ - if ((interrupts & CAN_IT_RX_FIFO0_FULL) != 0U) - { - if ((rf0rflags & CAN_RF0R_FULL0) != 0U) - { - /* Clear FIFO 0 full Flag */ - __HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_FF0); - - /* Receive FIFO 0 full Callback */ -#if USE_HAL_CAN_REGISTER_CALLBACKS == 1 - /* Call registered callback*/ - hcan->RxFifo0FullCallback(hcan); -#else - /* Call weak (surcharged) callback */ - HAL_CAN_RxFifo0FullCallback(hcan); -#endif /* USE_HAL_CAN_REGISTER_CALLBACKS */ - } - } - - /* Receive FIFO 0 message pending interrupt management *********************/ - if ((interrupts & CAN_IT_RX_FIFO0_MSG_PENDING) != 0U) - { - /* Check if message is still pending */ - if ((hcan->Instance->RF0R & CAN_RF0R_FMP0) != 0U) - { - /* Receive FIFO 0 mesage pending Callback */ -#if USE_HAL_CAN_REGISTER_CALLBACKS == 1 - /* Call registered callback*/ - hcan->RxFifo0MsgPendingCallback(hcan); -#else - /* Call weak (surcharged) callback */ - HAL_CAN_RxFifo0MsgPendingCallback(hcan); -#endif /* USE_HAL_CAN_REGISTER_CALLBACKS */ - } - } - - /* Receive FIFO 1 overrun interrupt management *****************************/ - if ((interrupts & CAN_IT_RX_FIFO1_OVERRUN) != 0U) - { - if ((rf1rflags & CAN_RF1R_FOVR1) != 0U) - { - /* Set CAN error code to Rx Fifo 1 overrun error */ - errorcode |= HAL_CAN_ERROR_RX_FOV1; - - /* Clear FIFO1 Overrun Flag */ - __HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_FOV1); - } - } - - /* Receive FIFO 1 full interrupt management ********************************/ - if ((interrupts & CAN_IT_RX_FIFO1_FULL) != 0U) - { - if ((rf1rflags & CAN_RF1R_FULL1) != 0U) - { - /* Clear FIFO 1 full Flag */ - __HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_FF1); - - /* Receive FIFO 1 full Callback */ -#if USE_HAL_CAN_REGISTER_CALLBACKS == 1 - /* Call registered callback*/ - hcan->RxFifo1FullCallback(hcan); -#else - /* Call weak (surcharged) callback */ - HAL_CAN_RxFifo1FullCallback(hcan); -#endif /* USE_HAL_CAN_REGISTER_CALLBACKS */ - } - } - - /* Receive FIFO 1 message pending interrupt management *********************/ - if ((interrupts & CAN_IT_RX_FIFO1_MSG_PENDING) != 0U) - { - /* Check if message is still pending */ - if ((hcan->Instance->RF1R & CAN_RF1R_FMP1) != 0U) - { - /* Receive FIFO 1 mesage pending Callback */ -#if USE_HAL_CAN_REGISTER_CALLBACKS == 1 - /* Call registered callback*/ - hcan->RxFifo1MsgPendingCallback(hcan); -#else - /* Call weak (surcharged) callback */ - HAL_CAN_RxFifo1MsgPendingCallback(hcan); -#endif /* USE_HAL_CAN_REGISTER_CALLBACKS */ - } - } - - /* Sleep interrupt management *********************************************/ - if ((interrupts & CAN_IT_SLEEP_ACK) != 0U) - { - if ((msrflags & CAN_MSR_SLAKI) != 0U) - { - /* Clear Sleep interrupt Flag */ - __HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_SLAKI); - - /* Sleep Callback */ -#if USE_HAL_CAN_REGISTER_CALLBACKS == 1 - /* Call registered callback*/ - hcan->SleepCallback(hcan); -#else - /* Call weak (surcharged) callback */ - HAL_CAN_SleepCallback(hcan); -#endif /* USE_HAL_CAN_REGISTER_CALLBACKS */ - } - } - - /* WakeUp interrupt management *********************************************/ - if ((interrupts & CAN_IT_WAKEUP) != 0U) - { - if ((msrflags & CAN_MSR_WKUI) != 0U) - { - /* Clear WakeUp Flag */ - __HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_WKU); - - /* WakeUp Callback */ -#if USE_HAL_CAN_REGISTER_CALLBACKS == 1 - /* Call registered callback*/ - hcan->WakeUpFromRxMsgCallback(hcan); -#else - /* Call weak (surcharged) callback */ - HAL_CAN_WakeUpFromRxMsgCallback(hcan); -#endif /* USE_HAL_CAN_REGISTER_CALLBACKS */ - } - } - - /* Error interrupts management *********************************************/ - if ((interrupts & CAN_IT_ERROR) != 0U) - { - if ((msrflags & CAN_MSR_ERRI) != 0U) - { - /* Check Error Warning Flag */ - if (((interrupts & CAN_IT_ERROR_WARNING) != 0U) && - ((esrflags & CAN_ESR_EWGF) != 0U)) - { - /* Set CAN error code to Error Warning */ - errorcode |= HAL_CAN_ERROR_EWG; - - /* No need for clear of Error Warning Flag as read-only */ - } - - /* Check Error Passive Flag */ - if (((interrupts & CAN_IT_ERROR_PASSIVE) != 0U) && - ((esrflags & CAN_ESR_EPVF) != 0U)) - { - /* Set CAN error code to Error Passive */ - errorcode |= HAL_CAN_ERROR_EPV; - - /* No need for clear of Error Passive Flag as read-only */ - } - - /* Check Bus-off Flag */ - if (((interrupts & CAN_IT_BUSOFF) != 0U) && - ((esrflags & CAN_ESR_BOFF) != 0U)) - { - /* Set CAN error code to Bus-Off */ - errorcode |= HAL_CAN_ERROR_BOF; - - /* No need for clear of Error Bus-Off as read-only */ - } - - /* Check Last Error Code Flag */ - if (((interrupts & CAN_IT_LAST_ERROR_CODE) != 0U) && - ((esrflags & CAN_ESR_LEC) != 0U)) - { - switch (esrflags & CAN_ESR_LEC) - { - case (CAN_ESR_LEC_0): - /* Set CAN error code to Stuff error */ - errorcode |= HAL_CAN_ERROR_STF; - break; - case (CAN_ESR_LEC_1): - /* Set CAN error code to Form error */ - errorcode |= HAL_CAN_ERROR_FOR; - break; - case (CAN_ESR_LEC_1 | CAN_ESR_LEC_0): - /* Set CAN error code to Acknowledgement error */ - errorcode |= HAL_CAN_ERROR_ACK; - break; - case (CAN_ESR_LEC_2): - /* Set CAN error code to Bit recessive error */ - errorcode |= HAL_CAN_ERROR_BR; - break; - case (CAN_ESR_LEC_2 | CAN_ESR_LEC_0): - /* Set CAN error code to Bit Dominant error */ - errorcode |= HAL_CAN_ERROR_BD; - break; - case (CAN_ESR_LEC_2 | CAN_ESR_LEC_1): - /* Set CAN error code to CRC error */ - errorcode |= HAL_CAN_ERROR_CRC; - break; - default: - break; - } - - /* Clear Last error code Flag */ - CLEAR_BIT(hcan->Instance->ESR, CAN_ESR_LEC); - } - } - - /* Clear ERRI Flag */ - __HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_ERRI); - } - - /* Call the Error call Back in case of Errors */ - if (errorcode != HAL_CAN_ERROR_NONE) - { - /* Update error code in handle */ - hcan->ErrorCode |= errorcode; - - /* Call Error callback function */ -#if USE_HAL_CAN_REGISTER_CALLBACKS == 1 - /* Call registered callback*/ - hcan->ErrorCallback(hcan); -#else - /* Call weak (surcharged) callback */ - HAL_CAN_ErrorCallback(hcan); -#endif /* USE_HAL_CAN_REGISTER_CALLBACKS */ - } -} - -/** - * @} - */ - -/** @defgroup CAN_Exported_Functions_Group5 Callback functions - * @brief CAN Callback functions - * -@verbatim - ============================================================================== - ##### Callback functions ##### - ============================================================================== - [..] - This subsection provides the following callback functions: - (+) HAL_CAN_TxMailbox0CompleteCallback - (+) HAL_CAN_TxMailbox1CompleteCallback - (+) HAL_CAN_TxMailbox2CompleteCallback - (+) HAL_CAN_TxMailbox0AbortCallback - (+) HAL_CAN_TxMailbox1AbortCallback - (+) HAL_CAN_TxMailbox2AbortCallback - (+) HAL_CAN_RxFifo0MsgPendingCallback - (+) HAL_CAN_RxFifo0FullCallback - (+) HAL_CAN_RxFifo1MsgPendingCallback - (+) HAL_CAN_RxFifo1FullCallback - (+) HAL_CAN_SleepCallback - (+) HAL_CAN_WakeUpFromRxMsgCallback - (+) HAL_CAN_ErrorCallback - -@endverbatim - * @{ - */ - -/** - * @brief Transmission Mailbox 0 complete callback. - * @param hcan pointer to a CAN_HandleTypeDef structure that contains - * the configuration information for the specified CAN. - * @retval None - */ -__weak void HAL_CAN_TxMailbox0CompleteCallback(CAN_HandleTypeDef *hcan) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hcan); - - /* NOTE : This function Should not be modified, when the callback is needed, - the HAL_CAN_TxMailbox0CompleteCallback could be implemented in the - user file - */ -} - -/** - * @brief Transmission Mailbox 1 complete callback. - * @param hcan pointer to a CAN_HandleTypeDef structure that contains - * the configuration information for the specified CAN. - * @retval None - */ -__weak void HAL_CAN_TxMailbox1CompleteCallback(CAN_HandleTypeDef *hcan) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hcan); - - /* NOTE : This function Should not be modified, when the callback is needed, - the HAL_CAN_TxMailbox1CompleteCallback could be implemented in the - user file - */ -} - -/** - * @brief Transmission Mailbox 2 complete callback. - * @param hcan pointer to a CAN_HandleTypeDef structure that contains - * the configuration information for the specified CAN. - * @retval None - */ -__weak void HAL_CAN_TxMailbox2CompleteCallback(CAN_HandleTypeDef *hcan) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hcan); - - /* NOTE : This function Should not be modified, when the callback is needed, - the HAL_CAN_TxMailbox2CompleteCallback could be implemented in the - user file - */ -} - -/** - * @brief Transmission Mailbox 0 Cancellation callback. - * @param hcan pointer to an CAN_HandleTypeDef structure that contains - * the configuration information for the specified CAN. - * @retval None - */ -__weak void HAL_CAN_TxMailbox0AbortCallback(CAN_HandleTypeDef *hcan) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hcan); - - /* NOTE : This function Should not be modified, when the callback is needed, - the HAL_CAN_TxMailbox0AbortCallback could be implemented in the - user file - */ -} - -/** - * @brief Transmission Mailbox 1 Cancellation callback. - * @param hcan pointer to an CAN_HandleTypeDef structure that contains - * the configuration information for the specified CAN. - * @retval None - */ -__weak void HAL_CAN_TxMailbox1AbortCallback(CAN_HandleTypeDef *hcan) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hcan); - - /* NOTE : This function Should not be modified, when the callback is needed, - the HAL_CAN_TxMailbox1AbortCallback could be implemented in the - user file - */ -} - -/** - * @brief Transmission Mailbox 2 Cancellation callback. - * @param hcan pointer to an CAN_HandleTypeDef structure that contains - * the configuration information for the specified CAN. - * @retval None - */ -__weak void HAL_CAN_TxMailbox2AbortCallback(CAN_HandleTypeDef *hcan) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hcan); - - /* NOTE : This function Should not be modified, when the callback is needed, - the HAL_CAN_TxMailbox2AbortCallback could be implemented in the - user file - */ -} - -/** - * @brief Rx FIFO 0 message pending callback. - * @param hcan pointer to a CAN_HandleTypeDef structure that contains - * the configuration information for the specified CAN. - * @retval None - */ -__weak void HAL_CAN_RxFifo0MsgPendingCallback(CAN_HandleTypeDef *hcan) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hcan); - - /* NOTE : This function Should not be modified, when the callback is needed, - the HAL_CAN_RxFifo0MsgPendingCallback could be implemented in the - user file - */ -} - -/** - * @brief Rx FIFO 0 full callback. - * @param hcan pointer to a CAN_HandleTypeDef structure that contains - * the configuration information for the specified CAN. - * @retval None - */ -__weak void HAL_CAN_RxFifo0FullCallback(CAN_HandleTypeDef *hcan) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hcan); - - /* NOTE : This function Should not be modified, when the callback is needed, - the HAL_CAN_RxFifo0FullCallback could be implemented in the user - file - */ -} - -/** - * @brief Rx FIFO 1 message pending callback. - * @param hcan pointer to a CAN_HandleTypeDef structure that contains - * the configuration information for the specified CAN. - * @retval None - */ -__weak void HAL_CAN_RxFifo1MsgPendingCallback(CAN_HandleTypeDef *hcan) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hcan); - - /* NOTE : This function Should not be modified, when the callback is needed, - the HAL_CAN_RxFifo1MsgPendingCallback could be implemented in the - user file - */ -} - -/** - * @brief Rx FIFO 1 full callback. - * @param hcan pointer to a CAN_HandleTypeDef structure that contains - * the configuration information for the specified CAN. - * @retval None - */ -__weak void HAL_CAN_RxFifo1FullCallback(CAN_HandleTypeDef *hcan) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hcan); - - /* NOTE : This function Should not be modified, when the callback is needed, - the HAL_CAN_RxFifo1FullCallback could be implemented in the user - file - */ -} - -/** - * @brief Sleep callback. - * @param hcan pointer to a CAN_HandleTypeDef structure that contains - * the configuration information for the specified CAN. - * @retval None - */ -__weak void HAL_CAN_SleepCallback(CAN_HandleTypeDef *hcan) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hcan); - - /* NOTE : This function Should not be modified, when the callback is needed, - the HAL_CAN_SleepCallback could be implemented in the user file - */ -} - -/** - * @brief WakeUp from Rx message callback. - * @param hcan pointer to a CAN_HandleTypeDef structure that contains - * the configuration information for the specified CAN. - * @retval None - */ -__weak void HAL_CAN_WakeUpFromRxMsgCallback(CAN_HandleTypeDef *hcan) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hcan); - - /* NOTE : This function Should not be modified, when the callback is needed, - the HAL_CAN_WakeUpFromRxMsgCallback could be implemented in the - user file - */ -} - -/** - * @brief Error CAN callback. - * @param hcan pointer to a CAN_HandleTypeDef structure that contains - * the configuration information for the specified CAN. - * @retval None - */ -__weak void HAL_CAN_ErrorCallback(CAN_HandleTypeDef *hcan) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hcan); - - /* NOTE : This function Should not be modified, when the callback is needed, - the HAL_CAN_ErrorCallback could be implemented in the user file - */ -} - -/** - * @} - */ - -/** @defgroup CAN_Exported_Functions_Group6 Peripheral State and Error functions - * @brief CAN Peripheral State functions - * -@verbatim - ============================================================================== - ##### Peripheral State and Error functions ##### - ============================================================================== - [..] - This subsection provides functions allowing to : - (+) HAL_CAN_GetState() : Return the CAN state. - (+) HAL_CAN_GetError() : Return the CAN error codes if any. - (+) HAL_CAN_ResetError(): Reset the CAN error codes if any. - -@endverbatim - * @{ - */ - -/** - * @brief Return the CAN state. - * @param hcan pointer to a CAN_HandleTypeDef structure that contains - * the configuration information for the specified CAN. - * @retval HAL state - */ -HAL_CAN_StateTypeDef HAL_CAN_GetState(CAN_HandleTypeDef *hcan) -{ - HAL_CAN_StateTypeDef state = hcan->State; - - if ((state == HAL_CAN_STATE_READY) || - (state == HAL_CAN_STATE_LISTENING)) - { - /* Check sleep mode acknowledge flag */ - if ((hcan->Instance->MSR & CAN_MSR_SLAK) != 0U) - { - /* Sleep mode is active */ - state = HAL_CAN_STATE_SLEEP_ACTIVE; - } - /* Check sleep mode request flag */ - else if ((hcan->Instance->MCR & CAN_MCR_SLEEP) != 0U) - { - /* Sleep mode request is pending */ - state = HAL_CAN_STATE_SLEEP_PENDING; - } - else - { - /* Neither sleep mode request nor sleep mode acknowledge */ - } - } - - /* Return CAN state */ - return state; -} - -/** - * @brief Return the CAN error code. - * @param hcan pointer to a CAN_HandleTypeDef structure that contains - * the configuration information for the specified CAN. - * @retval CAN Error Code - */ -uint32_t HAL_CAN_GetError(CAN_HandleTypeDef *hcan) -{ - /* Return CAN error code */ - return hcan->ErrorCode; -} - -/** - * @brief Reset the CAN error code. - * @param hcan pointer to a CAN_HandleTypeDef structure that contains - * the configuration information for the specified CAN. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_CAN_ResetError(CAN_HandleTypeDef *hcan) -{ - HAL_StatusTypeDef status = HAL_OK; - HAL_CAN_StateTypeDef state = hcan->State; - - if ((state == HAL_CAN_STATE_READY) || - (state == HAL_CAN_STATE_LISTENING)) - { - /* Reset CAN error code */ - hcan->ErrorCode = 0U; - } - else - { - /* Update error code */ - hcan->ErrorCode |= HAL_CAN_ERROR_NOT_INITIALIZED; - - status = HAL_ERROR; - } - - /* Return the status */ - return status; -} - -/** - * @} - */ - -/** - * @} - */ - -#endif /* HAL_CAN_MODULE_ENABLED */ - -/** - * @} - */ - -#endif /* CAN */ - -/** - * @} - */ - -/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_cec.c b/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_cec.c deleted file mode 100644 index 07ecaba..0000000 --- a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_cec.c +++ /dev/null @@ -1,1001 +0,0 @@ -/** - ****************************************************************************** - * @file stm32f0xx_hal_cec.c - * @author MCD Application Team - * @brief CEC HAL module driver. - * This file provides firmware functions to manage the following - * functionalities of the High Definition Multimedia Interface - * Consumer Electronics Control Peripheral (CEC). - * + Initialization and de-initialization function - * + IO operation function - * + Peripheral Control function - * - * - @verbatim - =============================================================================== - ##### How to use this driver ##### - =============================================================================== - [..] - The CEC HAL driver can be used as follow: - - (#) Declare a CEC_HandleTypeDef handle structure. - (#) Initialize the CEC low level resources by implementing the HAL_CEC_MspInit ()API: - (##) Enable the CEC interface clock. - (##) CEC pins configuration: - (+++) Enable the clock for the CEC GPIOs. - (+++) Configure these CEC pins as alternate function pull-up. - (##) NVIC configuration if you need to use interrupt process (HAL_CEC_Transmit_IT() - and HAL_CEC_Receive_IT() APIs): - (+++) Configure the CEC interrupt priority. - (+++) Enable the NVIC CEC IRQ handle. - (+++) The specific CEC interrupts (Transmission complete interrupt, - RXNE interrupt and Error Interrupts) will be managed using the macros - __HAL_CEC_ENABLE_IT() and __HAL_CEC_DISABLE_IT() inside the transmit - and receive process. - - (#) Program the Signal Free Time (SFT) and SFT option, Tolerance, reception stop in - in case of Bit Rising Error, Error-Bit generation conditions, device logical - address and Listen mode in the hcec Init structure. - - (#) Initialize the CEC registers by calling the HAL_CEC_Init() API. - - [..] - (@) This API (HAL_CEC_Init()) configures also the low level Hardware (GPIO, CLOCK, CORTEX...etc) - by calling the customed HAL_CEC_MspInit() API. - *** Callback registration *** - ============================================= - - The compilation define USE_HAL_CEC_REGISTER_CALLBACKS when set to 1 - allows the user to configure dynamically the driver callbacks. - Use Functions @ref HAL_CEC_RegisterCallback() or HAL_CEC_RegisterXXXCallback() - to register an interrupt callback. - - Function @ref HAL_CEC_RegisterCallback() allows to register following callbacks: - (+) TxCpltCallback : Tx Transfer completed callback. - (+) ErrorCallback : callback for error detection. - (+) MspInitCallback : CEC MspInit. - (+) MspDeInitCallback : CEC MspDeInit. - This function takes as parameters the HAL peripheral handle, the Callback ID - and a pointer to the user callback function. - - For specific callback HAL_CEC_RxCpltCallback use dedicated register callbacks - @ref HAL_CEC_RegisterRxCpltCallback(). - - Use function @ref HAL_CEC_UnRegisterCallback() to reset a callback to the default - weak function. - @ref HAL_CEC_UnRegisterCallback() takes as parameters the HAL peripheral handle, - and the Callback ID. - This function allows to reset following callbacks: - (+) TxCpltCallback : Tx Transfer completed callback. - (+) ErrorCallback : callback for error detection. - (+) MspInitCallback : CEC MspInit. - (+) MspDeInitCallback : CEC MspDeInit. - - For callback HAL_CEC_RxCpltCallback use dedicated unregister callback : - @ref HAL_CEC_UnRegisterRxCpltCallback(). - - By default, after the @ref HAL_CEC_Init() and when the state is HAL_CEC_STATE_RESET - all callbacks are set to the corresponding weak functions : - examples @ref HAL_CEC_TxCpltCallback() , @ref HAL_CEC_RxCpltCallback(). - Exception done for MspInit and MspDeInit functions that are - reset to the legacy weak function in the @ref HAL_CEC_Init()/ @ref HAL_CEC_DeInit() only when - these callbacks are null (not registered beforehand). - if not, MspInit or MspDeInit are not null, the @ref HAL_CEC_Init() / @ref HAL_CEC_DeInit() - keep and use the user MspInit/MspDeInit functions (registered beforehand) - - Callbacks can be registered/unregistered in HAL_CEC_STATE_READY state only. - Exception done MspInit/MspDeInit callbacks that can be registered/unregistered - in HAL_CEC_STATE_READY or HAL_CEC_STATE_RESET state, - thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit. - In that case first register the MspInit/MspDeInit user callbacks - using @ref HAL_CEC_RegisterCallback() before calling @ref HAL_CEC_DeInit() - or @ref HAL_CEC_Init() function. - - When the compilation define USE_HAL_CEC_REGISTER_CALLBACKS is set to 0 or - not defined, the callback registration feature is not available and all callbacks - are set to the corresponding weak functions. - @endverbatim - ****************************************************************************** - * @attention - * - *

© Copyright (c) 2016 STMicroelectronics. - * All rights reserved.

- * - * This software component is licensed by ST under BSD 3-Clause license, - * the "License"; You may not use this file except in compliance with the - * License. You may obtain a copy of the License at: - * opensource.org/licenses/BSD-3-Clause - * - ****************************************************************************** - */ - -/* Includes ------------------------------------------------------------------*/ -#include "stm32f0xx_hal.h" - -/** @addtogroup STM32F0xx_HAL_Driver - * @{ - */ - -/** @defgroup CEC CEC - * @brief HAL CEC module driver - * @{ - */ -#ifdef HAL_CEC_MODULE_ENABLED -#if defined (CEC) - -/* Private typedef -----------------------------------------------------------*/ -/* Private define ------------------------------------------------------------*/ -/** @defgroup CEC_Private_Constants CEC Private Constants - * @{ - */ -/** - * @} - */ - -/* Private macro -------------------------------------------------------------*/ -/* Private variables ---------------------------------------------------------*/ -/* Private function prototypes -----------------------------------------------*/ -/** @defgroup CEC_Private_Functions CEC Private Functions - * @{ - */ -/** - * @} - */ - -/* Exported functions ---------------------------------------------------------*/ - -/** @defgroup CEC_Exported_Functions CEC Exported Functions - * @{ - */ - -/** @defgroup CEC_Exported_Functions_Group1 Initialization and de-initialization functions - * @brief Initialization and Configuration functions - * -@verbatim -=============================================================================== - ##### Initialization and Configuration functions ##### - =============================================================================== - [..] - This subsection provides a set of functions allowing to initialize the CEC - (+) The following parameters need to be configured: - (++) SignalFreeTime - (++) Tolerance - (++) BRERxStop (RX stopped or not upon Bit Rising Error) - (++) BREErrorBitGen (Error-Bit generation in case of Bit Rising Error) - (++) LBPEErrorBitGen (Error-Bit generation in case of Long Bit Period Error) - (++) BroadcastMsgNoErrorBitGen (Error-bit generation in case of broadcast message error) - (++) SignalFreeTimeOption (SFT Timer start definition) - (++) OwnAddress (CEC device address) - (++) ListenMode - -@endverbatim - * @{ - */ - -/** - * @brief Initializes the CEC mode according to the specified - * parameters in the CEC_InitTypeDef and creates the associated handle . - * @param hcec CEC handle - * @retval HAL status - */ -HAL_StatusTypeDef HAL_CEC_Init(CEC_HandleTypeDef *hcec) -{ - /* Check the CEC handle allocation */ - if ((hcec == NULL) || (hcec->Init.RxBuffer == NULL)) - { - return HAL_ERROR; - } - - /* Check the parameters */ - assert_param(IS_CEC_ALL_INSTANCE(hcec->Instance)); - assert_param(IS_CEC_SIGNALFREETIME(hcec->Init.SignalFreeTime)); - assert_param(IS_CEC_TOLERANCE(hcec->Init.Tolerance)); - assert_param(IS_CEC_BRERXSTOP(hcec->Init.BRERxStop)); - assert_param(IS_CEC_BREERRORBITGEN(hcec->Init.BREErrorBitGen)); - assert_param(IS_CEC_LBPEERRORBITGEN(hcec->Init.LBPEErrorBitGen)); - assert_param(IS_CEC_BROADCASTERROR_NO_ERRORBIT_GENERATION(hcec->Init.BroadcastMsgNoErrorBitGen)); - assert_param(IS_CEC_SFTOP(hcec->Init.SignalFreeTimeOption)); - assert_param(IS_CEC_LISTENING_MODE(hcec->Init.ListenMode)); - assert_param(IS_CEC_OWN_ADDRESS(hcec->Init.OwnAddress)); - -#if (USE_HAL_CEC_REGISTER_CALLBACKS == 1) - if (hcec->gState == HAL_CEC_STATE_RESET) - { - /* Allocate lock resource and initialize it */ - hcec->Lock = HAL_UNLOCKED; - - hcec->TxCpltCallback = HAL_CEC_TxCpltCallback; /* Legacy weak TxCpltCallback */ - hcec->RxCpltCallback = HAL_CEC_RxCpltCallback; /* Legacy weak RxCpltCallback */ - hcec->ErrorCallback = HAL_CEC_ErrorCallback; /* Legacy weak ErrorCallback */ - - if (hcec->MspInitCallback == NULL) - { - hcec->MspInitCallback = HAL_CEC_MspInit; /* Legacy weak MspInit */ - } - - /* Init the low level hardware */ - hcec->MspInitCallback(hcec); - } -#else - if (hcec->gState == HAL_CEC_STATE_RESET) - { - /* Allocate lock resource and initialize it */ - hcec->Lock = HAL_UNLOCKED; - /* Init the low level hardware : GPIO, CLOCK */ - HAL_CEC_MspInit(hcec); - } -#endif /* USE_HAL_CEC_REGISTER_CALLBACKS */ - - hcec->gState = HAL_CEC_STATE_BUSY; - - /* Disable the Peripheral */ - __HAL_CEC_DISABLE(hcec); - - /* Write to CEC Control Register */ - hcec->Instance->CFGR = hcec->Init.SignalFreeTime | hcec->Init.Tolerance | hcec->Init.BRERxStop | \ - hcec->Init.BREErrorBitGen | hcec->Init.LBPEErrorBitGen | hcec->Init.BroadcastMsgNoErrorBitGen | \ - hcec->Init.SignalFreeTimeOption | ((uint32_t)(hcec->Init.OwnAddress) << 16U) | \ - hcec->Init.ListenMode; - - /* Enable the following CEC Transmission/Reception interrupts as - * well as the following CEC Transmission/Reception Errors interrupts - * Rx Byte Received IT - * End of Reception IT - * Rx overrun - * Rx bit rising error - * Rx short bit period error - * Rx long bit period error - * Rx missing acknowledge - * Tx Byte Request IT - * End of Transmission IT - * Tx Missing Acknowledge IT - * Tx-Error IT - * Tx-Buffer Underrun IT - * Tx arbitration lost */ - __HAL_CEC_ENABLE_IT(hcec, CEC_IT_RXBR | CEC_IT_RXEND | CEC_IER_RX_ALL_ERR | CEC_IT_TXBR | CEC_IT_TXEND | - CEC_IER_TX_ALL_ERR); - - /* Enable the CEC Peripheral */ - __HAL_CEC_ENABLE(hcec); - - hcec->ErrorCode = HAL_CEC_ERROR_NONE; - hcec->gState = HAL_CEC_STATE_READY; - hcec->RxState = HAL_CEC_STATE_READY; - - return HAL_OK; -} - -/** - * @brief DeInitializes the CEC peripheral - * @param hcec CEC handle - * @retval HAL status - */ -HAL_StatusTypeDef HAL_CEC_DeInit(CEC_HandleTypeDef *hcec) -{ - /* Check the CEC handle allocation */ - if (hcec == NULL) - { - return HAL_ERROR; - } - - /* Check the parameters */ - assert_param(IS_CEC_ALL_INSTANCE(hcec->Instance)); - - hcec->gState = HAL_CEC_STATE_BUSY; - -#if (USE_HAL_CEC_REGISTER_CALLBACKS == 1) - if (hcec->MspDeInitCallback == NULL) - { - hcec->MspDeInitCallback = HAL_CEC_MspDeInit; /* Legacy weak MspDeInit */ - } - - /* DeInit the low level hardware */ - hcec->MspDeInitCallback(hcec); - -#else - /* DeInit the low level hardware */ - HAL_CEC_MspDeInit(hcec); -#endif /* USE_HAL_CEC_REGISTER_CALLBACKS */ - - /* Disable the Peripheral */ - __HAL_CEC_DISABLE(hcec); - - /* Clear Flags */ - __HAL_CEC_CLEAR_FLAG(hcec, CEC_FLAG_TXEND | CEC_FLAG_TXBR | CEC_FLAG_RXBR | CEC_FLAG_RXEND | CEC_ISR_ALL_ERROR); - - /* Disable the following CEC Transmission/Reception interrupts as - * well as the following CEC Transmission/Reception Errors interrupts - * Rx Byte Received IT - * End of Reception IT - * Rx overrun - * Rx bit rising error - * Rx short bit period error - * Rx long bit period error - * Rx missing acknowledge - * Tx Byte Request IT - * End of Transmission IT - * Tx Missing Acknowledge IT - * Tx-Error IT - * Tx-Buffer Underrun IT - * Tx arbitration lost */ - __HAL_CEC_DISABLE_IT(hcec, CEC_IT_RXBR | CEC_IT_RXEND | CEC_IER_RX_ALL_ERR | CEC_IT_TXBR | CEC_IT_TXEND | - CEC_IER_TX_ALL_ERR); - - hcec->ErrorCode = HAL_CEC_ERROR_NONE; - hcec->gState = HAL_CEC_STATE_RESET; - hcec->RxState = HAL_CEC_STATE_RESET; - - /* Process Unlock */ - __HAL_UNLOCK(hcec); - - return HAL_OK; -} - -/** - * @brief Initializes the Own Address of the CEC device - * @param hcec CEC handle - * @param CEC_OwnAddress The CEC own address. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_CEC_SetDeviceAddress(CEC_HandleTypeDef *hcec, uint16_t CEC_OwnAddress) -{ - /* Check the parameters */ - assert_param(IS_CEC_OWN_ADDRESS(CEC_OwnAddress)); - - if ((hcec->gState == HAL_CEC_STATE_READY) && (hcec->RxState == HAL_CEC_STATE_READY)) - { - /* Process Locked */ - __HAL_LOCK(hcec); - - hcec->gState = HAL_CEC_STATE_BUSY; - - /* Disable the Peripheral */ - __HAL_CEC_DISABLE(hcec); - - if (CEC_OwnAddress != CEC_OWN_ADDRESS_NONE) - { - hcec->Instance->CFGR |= ((uint32_t)CEC_OwnAddress << 16); - } - else - { - hcec->Instance->CFGR &= ~(CEC_CFGR_OAR); - } - - hcec->gState = HAL_CEC_STATE_READY; - hcec->ErrorCode = HAL_CEC_ERROR_NONE; - - /* Process Unlocked */ - __HAL_UNLOCK(hcec); - - /* Enable the Peripheral */ - __HAL_CEC_ENABLE(hcec); - - return HAL_OK; - } - else - { - return HAL_BUSY; - } -} - -/** - * @brief CEC MSP Init - * @param hcec CEC handle - * @retval None - */ -__weak void HAL_CEC_MspInit(CEC_HandleTypeDef *hcec) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hcec); - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_CEC_MspInit can be implemented in the user file - */ -} - -/** - * @brief CEC MSP DeInit - * @param hcec CEC handle - * @retval None - */ -__weak void HAL_CEC_MspDeInit(CEC_HandleTypeDef *hcec) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hcec); - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_CEC_MspDeInit can be implemented in the user file - */ -} -#if (USE_HAL_CEC_REGISTER_CALLBACKS == 1) -/** - * @brief Register a User CEC Callback - * To be used instead of the weak predefined callback - * @param hcec CEC handle - * @param CallbackID ID of the callback to be registered - * This parameter can be one of the following values: - * @arg @ref HAL_CEC_TX_CPLT_CB_ID Tx Complete callback ID - * @arg @ref HAL_CEC_ERROR_CB_ID Error callback ID - * @arg @ref HAL_CEC_MSPINIT_CB_ID MspInit callback ID - * @arg @ref HAL_CEC_MSPDEINIT_CB_ID MspDeInit callback ID - * @param pCallback pointer to the Callback function - * @retval HAL status - */ -HAL_StatusTypeDef HAL_CEC_RegisterCallback(CEC_HandleTypeDef *hcec, HAL_CEC_CallbackIDTypeDef CallbackID, - pCEC_CallbackTypeDef pCallback) -{ - HAL_StatusTypeDef status = HAL_OK; - - if (pCallback == NULL) - { - /* Update the error code */ - hcec->ErrorCode |= HAL_CEC_ERROR_INVALID_CALLBACK; - return HAL_ERROR; - } - /* Process locked */ - __HAL_LOCK(hcec); - - if (hcec->gState == HAL_CEC_STATE_READY) - { - switch (CallbackID) - { - case HAL_CEC_TX_CPLT_CB_ID : - hcec->TxCpltCallback = pCallback; - break; - - case HAL_CEC_ERROR_CB_ID : - hcec->ErrorCallback = pCallback; - break; - - case HAL_CEC_MSPINIT_CB_ID : - hcec->MspInitCallback = pCallback; - break; - - case HAL_CEC_MSPDEINIT_CB_ID : - hcec->MspDeInitCallback = pCallback; - break; - - default : - /* Update the error code */ - hcec->ErrorCode |= HAL_CEC_ERROR_INVALID_CALLBACK; - /* Return error status */ - status = HAL_ERROR; - break; - } - } - else if (hcec->gState == HAL_CEC_STATE_RESET) - { - switch (CallbackID) - { - case HAL_CEC_MSPINIT_CB_ID : - hcec->MspInitCallback = pCallback; - break; - - case HAL_CEC_MSPDEINIT_CB_ID : - hcec->MspDeInitCallback = pCallback; - break; - - default : - /* Update the error code */ - hcec->ErrorCode |= HAL_CEC_ERROR_INVALID_CALLBACK; - /* Return error status */ - status = HAL_ERROR; - break; - } - } - else - { - /* Update the error code */ - hcec->ErrorCode |= HAL_CEC_ERROR_INVALID_CALLBACK; - /* Return error status */ - status = HAL_ERROR; - } - - /* Release Lock */ - __HAL_UNLOCK(hcec); - - return status; -} - -/** - * @brief Unregister an CEC Callback - * CEC callabck is redirected to the weak predefined callback - * @param hcec uart handle - * @param CallbackID ID of the callback to be unregistered - * This parameter can be one of the following values: - * @arg @ref HAL_CEC_TX_CPLT_CB_ID Tx Complete callback ID - * @arg @ref HAL_CEC_ERROR_CB_ID Error callback ID - * @arg @ref HAL_CEC_MSPINIT_CB_ID MspInit callback ID - * @arg @ref HAL_CEC_MSPDEINIT_CB_ID MspDeInit callback ID - * @retval status - */ -HAL_StatusTypeDef HAL_CEC_UnRegisterCallback(CEC_HandleTypeDef *hcec, HAL_CEC_CallbackIDTypeDef CallbackID) -{ - HAL_StatusTypeDef status = HAL_OK; - - /* Process locked */ - __HAL_LOCK(hcec); - - if (hcec->gState == HAL_CEC_STATE_READY) - { - switch (CallbackID) - { - case HAL_CEC_TX_CPLT_CB_ID : - hcec->TxCpltCallback = HAL_CEC_TxCpltCallback; /* Legacy weak TxCpltCallback */ - break; - - case HAL_CEC_ERROR_CB_ID : - hcec->ErrorCallback = HAL_CEC_ErrorCallback; /* Legacy weak ErrorCallback */ - break; - - case HAL_CEC_MSPINIT_CB_ID : - hcec->MspInitCallback = HAL_CEC_MspInit; - break; - - case HAL_CEC_MSPDEINIT_CB_ID : - hcec->MspDeInitCallback = HAL_CEC_MspDeInit; - break; - - default : - /* Update the error code */ - hcec->ErrorCode |= HAL_CEC_ERROR_INVALID_CALLBACK; - /* Return error status */ - status = HAL_ERROR; - break; - } - } - else if (hcec->gState == HAL_CEC_STATE_RESET) - { - switch (CallbackID) - { - case HAL_CEC_MSPINIT_CB_ID : - hcec->MspInitCallback = HAL_CEC_MspInit; - break; - - case HAL_CEC_MSPDEINIT_CB_ID : - hcec->MspDeInitCallback = HAL_CEC_MspDeInit; - break; - - default : - /* Update the error code */ - hcec->ErrorCode |= HAL_CEC_ERROR_INVALID_CALLBACK; - /* Return error status */ - status = HAL_ERROR; - break; - } - } - else - { - /* Update the error code */ - hcec->ErrorCode |= HAL_CEC_ERROR_INVALID_CALLBACK; - /* Return error status */ - status = HAL_ERROR; - } - - /* Release Lock */ - __HAL_UNLOCK(hcec); - - return status; -} - -/** - * @brief Register CEC RX complete Callback - * To be used instead of the weak HAL_CEC_RxCpltCallback() predefined callback - * @param hcec CEC handle - * @param pCallback pointer to the Rx transfer compelete Callback function - * @retval HAL status - */ -HAL_StatusTypeDef HAL_CEC_RegisterRxCpltCallback(CEC_HandleTypeDef *hcec, pCEC_RxCallbackTypeDef pCallback) -{ - HAL_StatusTypeDef status = HAL_OK; - - if (pCallback == NULL) - { - /* Update the error code */ - hcec->ErrorCode |= HAL_CEC_ERROR_INVALID_CALLBACK; - return HAL_ERROR; - } - /* Process locked */ - __HAL_LOCK(hcec); - - if (HAL_CEC_STATE_READY == hcec->RxState) - { - hcec->RxCpltCallback = pCallback; - } - else - { - /* Update the error code */ - hcec->ErrorCode |= HAL_CEC_ERROR_INVALID_CALLBACK; - /* Return error status */ - status = HAL_ERROR; - } - - /* Release Lock */ - __HAL_UNLOCK(hcec); - return status; -} - -/** - * @brief UnRegister CEC RX complete Callback - * CEC RX complete Callback is redirected to the weak HAL_CEC_RxCpltCallback() predefined callback - * @param hcec CEC handle - * @retval HAL status - */ -HAL_StatusTypeDef HAL_CEC_UnRegisterRxCpltCallback(CEC_HandleTypeDef *hcec) -{ - HAL_StatusTypeDef status = HAL_OK; - - /* Process locked */ - __HAL_LOCK(hcec); - - if (HAL_CEC_STATE_READY == hcec->RxState) - { - hcec->RxCpltCallback = HAL_CEC_RxCpltCallback; /* Legacy weak CEC RxCpltCallback */ - } - else - { - /* Update the error code */ - hcec->ErrorCode |= HAL_CEC_ERROR_INVALID_CALLBACK; - /* Return error status */ - status = HAL_ERROR; - } - - /* Release Lock */ - __HAL_UNLOCK(hcec); - return status; -} -#endif /* USE_HAL_CEC_REGISTER_CALLBACKS */ - -/** - * @} - */ - -/** @defgroup CEC_Exported_Functions_Group2 Input and Output operation functions - * @brief CEC Transmit/Receive functions - * -@verbatim - =============================================================================== - ##### IO operation functions ##### - =============================================================================== - This subsection provides a set of functions allowing to manage the CEC data transfers. - - (#) The CEC handle must contain the initiator (TX side) and the destination (RX side) - logical addresses (4-bit long addresses, 0xF for broadcast messages destination) - - (#) The communication is performed using Interrupts. - These API's return the HAL status. - The end of the data processing will be indicated through the - dedicated CEC IRQ when using Interrupt mode. - The HAL_CEC_TxCpltCallback(), HAL_CEC_RxCpltCallback() user callbacks - will be executed respectively at the end of the transmit or Receive process - The HAL_CEC_ErrorCallback() user callback will be executed when a communication - error is detected - - (#) API's with Interrupt are : - (+) HAL_CEC_Transmit_IT() - (+) HAL_CEC_IRQHandler() - - (#) A set of User Callbacks are provided: - (+) HAL_CEC_TxCpltCallback() - (+) HAL_CEC_RxCpltCallback() - (+) HAL_CEC_ErrorCallback() - -@endverbatim - * @{ - */ - -/** - * @brief Send data in interrupt mode - * @param hcec CEC handle - * @param InitiatorAddress Initiator address - * @param DestinationAddress destination logical address - * @param pData pointer to input byte data buffer - * @param Size amount of data to be sent in bytes (without counting the header). - * 0 means only the header is sent (ping operation). - * Maximum TX size is 15 bytes (1 opcode and up to 14 operands). - * @retval HAL status - */ -HAL_StatusTypeDef HAL_CEC_Transmit_IT(CEC_HandleTypeDef *hcec, uint8_t InitiatorAddress, uint8_t DestinationAddress, - uint8_t *pData, uint32_t Size) -{ - /* if the IP isn't already busy and if there is no previous transmission - already pending due to arbitration lost */ - if (hcec->gState == HAL_CEC_STATE_READY) - { - if ((pData == NULL) && (Size > 0U)) - { - return HAL_ERROR; - } - - assert_param(IS_CEC_ADDRESS(DestinationAddress)); - assert_param(IS_CEC_ADDRESS(InitiatorAddress)); - assert_param(IS_CEC_MSGSIZE(Size)); - - /* Process Locked */ - __HAL_LOCK(hcec); - hcec->pTxBuffPtr = pData; - hcec->gState = HAL_CEC_STATE_BUSY_TX; - hcec->ErrorCode = HAL_CEC_ERROR_NONE; - - /* initialize the number of bytes to send, - * 0 means only one header is sent (ping operation) */ - hcec->TxXferCount = (uint16_t)Size; - - /* in case of no payload (Size = 0), sender is only pinging the system; - Set TX End of Message (TXEOM) bit, must be set before writing data to TXDR */ - if (Size == 0U) - { - __HAL_CEC_LAST_BYTE_TX_SET(hcec); - } - - /* send header block */ - hcec->Instance->TXDR = (uint32_t)(((uint32_t)InitiatorAddress << CEC_INITIATOR_LSB_POS) | DestinationAddress); - - /* Set TX Start of Message (TXSOM) bit */ - __HAL_CEC_FIRST_BYTE_TX_SET(hcec); - - /* Process Unlocked */ - __HAL_UNLOCK(hcec); - - return HAL_OK; - - } - else - { - return HAL_BUSY; - } -} - -/** - * @brief Get size of the received frame. - * @param hcec CEC handle - * @retval Frame size - */ -uint32_t HAL_CEC_GetLastReceivedFrameSize(CEC_HandleTypeDef *hcec) -{ - return hcec->RxXferSize; -} - -/** - * @brief Change Rx Buffer. - * @param hcec CEC handle - * @param Rxbuffer Rx Buffer - * @note This function can be called only inside the HAL_CEC_RxCpltCallback() - * @retval Frame size - */ -void HAL_CEC_ChangeRxBuffer(CEC_HandleTypeDef *hcec, uint8_t *Rxbuffer) -{ - hcec->Init.RxBuffer = Rxbuffer; -} - -/** - * @brief This function handles CEC interrupt requests. - * @param hcec CEC handle - * @retval None - */ -void HAL_CEC_IRQHandler(CEC_HandleTypeDef *hcec) -{ - - /* save interrupts register for further error or interrupts handling purposes */ - uint32_t reg; - reg = hcec->Instance->ISR; - - - /* ----------------------------Arbitration Lost Management----------------------------------*/ - /* CEC TX arbitration error interrupt occurred --------------------------------------*/ - if ((reg & CEC_FLAG_ARBLST) != 0U) - { - hcec->ErrorCode = HAL_CEC_ERROR_ARBLST; - __HAL_CEC_CLEAR_FLAG(hcec, CEC_FLAG_ARBLST); - } - - /* ----------------------------Rx Management----------------------------------*/ - /* CEC RX byte received interrupt ---------------------------------------------------*/ - if ((reg & CEC_FLAG_RXBR) != 0U) - { - /* reception is starting */ - hcec->RxState = HAL_CEC_STATE_BUSY_RX; - hcec->RxXferSize++; - /* read received byte */ - *hcec->Init.RxBuffer = (uint8_t) hcec->Instance->RXDR; - hcec->Init.RxBuffer++; - __HAL_CEC_CLEAR_FLAG(hcec, CEC_FLAG_RXBR); - } - - /* CEC RX end received interrupt ---------------------------------------------------*/ - if ((reg & CEC_FLAG_RXEND) != 0U) - { - /* clear IT */ - __HAL_CEC_CLEAR_FLAG(hcec, CEC_FLAG_RXEND); - - /* Rx process is completed, restore hcec->RxState to Ready */ - hcec->RxState = HAL_CEC_STATE_READY; - hcec->ErrorCode = HAL_CEC_ERROR_NONE; - hcec->Init.RxBuffer -= hcec->RxXferSize; -#if (USE_HAL_CEC_REGISTER_CALLBACKS == 1U) - hcec->RxCpltCallback(hcec, hcec->RxXferSize); -#else - HAL_CEC_RxCpltCallback(hcec, hcec->RxXferSize); -#endif /* USE_HAL_CEC_REGISTER_CALLBACKS */ - hcec->RxXferSize = 0U; - } - - /* ----------------------------Tx Management----------------------------------*/ - /* CEC TX byte request interrupt ------------------------------------------------*/ - if ((reg & CEC_FLAG_TXBR) != 0U) - { - if (hcec->TxXferCount == 0U) - { - /* if this is the last byte transmission, set TX End of Message (TXEOM) bit */ - __HAL_CEC_LAST_BYTE_TX_SET(hcec); - hcec->Instance->TXDR = *hcec->pTxBuffPtr; - hcec->pTxBuffPtr++; - } - else - { - hcec->Instance->TXDR = *hcec->pTxBuffPtr; - hcec->pTxBuffPtr++; - hcec->TxXferCount--; - } - /* clear Tx-Byte request flag */ - __HAL_CEC_CLEAR_FLAG(hcec, CEC_FLAG_TXBR); - } - - /* CEC TX end interrupt ------------------------------------------------*/ - if ((reg & CEC_FLAG_TXEND) != 0U) - { - __HAL_CEC_CLEAR_FLAG(hcec, CEC_FLAG_TXEND); - - /* Tx process is ended, restore hcec->gState to Ready */ - hcec->gState = HAL_CEC_STATE_READY; - /* Call the Process Unlocked before calling the Tx call back API to give the possibility to - start again the Transmission under the Tx call back API */ - __HAL_UNLOCK(hcec); - hcec->ErrorCode = HAL_CEC_ERROR_NONE; -#if (USE_HAL_CEC_REGISTER_CALLBACKS == 1U) - hcec->TxCpltCallback(hcec); -#else - HAL_CEC_TxCpltCallback(hcec); -#endif /* USE_HAL_CEC_REGISTER_CALLBACKS */ - } - - /* ----------------------------Rx/Tx Error Management----------------------------------*/ - if ((reg & (CEC_ISR_RXOVR | CEC_ISR_BRE | CEC_ISR_SBPE | CEC_ISR_LBPE | CEC_ISR_RXACKE | CEC_ISR_TXUDR | CEC_ISR_TXERR | - CEC_ISR_TXACKE)) != 0U) - { - hcec->ErrorCode = reg; - __HAL_CEC_CLEAR_FLAG(hcec, HAL_CEC_ERROR_RXOVR | HAL_CEC_ERROR_BRE | CEC_FLAG_LBPE | CEC_FLAG_SBPE | - HAL_CEC_ERROR_RXACKE | HAL_CEC_ERROR_TXUDR | HAL_CEC_ERROR_TXERR | HAL_CEC_ERROR_TXACKE); - - - if ((reg & (CEC_ISR_RXOVR | CEC_ISR_BRE | CEC_ISR_SBPE | CEC_ISR_LBPE | CEC_ISR_RXACKE)) != 0U) - { - hcec->Init.RxBuffer -= hcec->RxXferSize; - hcec->RxXferSize = 0U; - hcec->RxState = HAL_CEC_STATE_READY; - } - else if (((reg & CEC_ISR_ARBLST) == 0U) && ((reg & (CEC_ISR_TXUDR | CEC_ISR_TXERR | CEC_ISR_TXACKE)) != 0U)) - { - /* Set the CEC state ready to be able to start again the process */ - hcec->gState = HAL_CEC_STATE_READY; - } - else - { - /* Nothing todo*/ - } -#if (USE_HAL_CEC_REGISTER_CALLBACKS == 1U) - hcec->ErrorCallback(hcec); -#else - /* Error Call Back */ - HAL_CEC_ErrorCallback(hcec); -#endif /* USE_HAL_CEC_REGISTER_CALLBACKS */ - } - else - { - /* Nothing todo*/ - } -} - -/** - * @brief Tx Transfer completed callback - * @param hcec CEC handle - * @retval None - */ -__weak void HAL_CEC_TxCpltCallback(CEC_HandleTypeDef *hcec) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hcec); - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_CEC_TxCpltCallback can be implemented in the user file - */ -} - -/** - * @brief Rx Transfer completed callback - * @param hcec CEC handle - * @param RxFrameSize Size of frame - * @retval None - */ -__weak void HAL_CEC_RxCpltCallback(CEC_HandleTypeDef *hcec, uint32_t RxFrameSize) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hcec); - UNUSED(RxFrameSize); - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_CEC_RxCpltCallback can be implemented in the user file - */ -} - -/** - * @brief CEC error callbacks - * @param hcec CEC handle - * @retval None - */ -__weak void HAL_CEC_ErrorCallback(CEC_HandleTypeDef *hcec) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hcec); - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_CEC_ErrorCallback can be implemented in the user file - */ -} -/** - * @} - */ - -/** @defgroup CEC_Exported_Functions_Group3 Peripheral Control function - * @brief CEC control functions - * -@verbatim - =============================================================================== - ##### Peripheral Control function ##### - =============================================================================== - [..] - This subsection provides a set of functions allowing to control the CEC. - (+) HAL_CEC_GetState() API can be helpful to check in run-time the state of the CEC peripheral. - (+) HAL_CEC_GetError() API can be helpful to check in run-time the error of the CEC peripheral. -@endverbatim - * @{ - */ -/** - * @brief return the CEC state - * @param hcec pointer to a CEC_HandleTypeDef structure that contains - * the configuration information for the specified CEC module. - * @retval HAL state - */ -HAL_CEC_StateTypeDef HAL_CEC_GetState(CEC_HandleTypeDef *hcec) -{ - uint32_t temp1, temp2; - temp1 = hcec->gState; - temp2 = hcec->RxState; - - return (HAL_CEC_StateTypeDef)(temp1 | temp2); -} - -/** - * @brief Return the CEC error code - * @param hcec pointer to a CEC_HandleTypeDef structure that contains - * the configuration information for the specified CEC. - * @retval CEC Error Code - */ -uint32_t HAL_CEC_GetError(CEC_HandleTypeDef *hcec) -{ - return hcec->ErrorCode; -} - -/** - * @} - */ - -/** - * @} - */ -#endif /* CEC */ -#endif /* HAL_CEC_MODULE_ENABLED */ -/** - * @} - */ - -/** - * @} - */ - -/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_comp.c b/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_comp.c deleted file mode 100644 index 6b42523..0000000 --- a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_comp.c +++ /dev/null @@ -1,984 +0,0 @@ -/** - ****************************************************************************** - * @file stm32f0xx_hal_comp.c - * @author MCD Application Team - * @brief COMP HAL module driver. - * This file provides firmware functions to manage the following - * functionalities of the COMP peripheral: - * + Initialization/de-initialization functions - * + I/O operation functions - * + Peripheral Control functions - * + Peripheral State functions - * - @verbatim -================================================================================ - ##### COMP Peripheral features ##### -================================================================================ - - [..] - The STM32F0xx device family integrates up to 2 analog comparators COMP1 and COMP2: - (+) The non inverting input and inverting input can be set to GPIO pins. - - (+) The COMP output is available using HAL_COMP_GetOutputLevel() - and can be set on GPIO pins. - - (+) The COMP output can be redirected to embedded timers (TIM1, TIM2 and TIM3). - - (+) The comparators COMP1 and COMP2 can be combined in window mode. - - (+) The comparators have interrupt capability with wake-up - from Sleep and Stop modes (through the EXTI controller): - (++) COMP1 is internally connected to EXTI Line 21 - (++) COMP2 is internally connected to EXTI Line 22 - - (+) From the corresponding IRQ handler, the right interrupt source can be retrieved with the - macros __HAL_COMP_COMP1_EXTI_GET_FLAG() and __HAL_COMP_COMP2_EXTI_GET_FLAG(). - - - ##### How to use this driver ##### -================================================================================ - [..] - This driver provides functions to configure and program the Comparators of STM32F05x, STM32F07x and STM32F09x devices. - - To use the comparator, perform the following steps: - - (#) Fill in the HAL_COMP_MspInit() to - (++) Configure the comparator input in analog mode using HAL_GPIO_Init() - (++) Configure the comparator output in alternate function mode using HAL_GPIO_Init() to map the comparator - output to the GPIO pin - (++) If required enable the COMP interrupt by configuring and enabling EXTI line in Interrupt mode and - selecting the desired sensitivity level using HAL_GPIO_Init() function. After that enable the comparator - interrupt vector using HAL_NVIC_EnableIRQ() function. - - (#) Configure the comparator using HAL_COMP_Init() function: - (++) Select the inverting input (input minus) - (++) Select the non inverting input (input plus) - (++) Select the output polarity - (++) Select the output redirection - (++) Select the hysteresis level - (++) Select the power mode - (++) Select the event/interrupt mode - (++) Select the window mode - - -@@- HAL_COMP_Init() calls internally __HAL_RCC_SYSCFG_CLK_ENABLE() in order - to access the comparator(s) registers. - - (#) Enable the comparator using HAL_COMP_Start() function or HAL_COMP_Start_IT() function for interrupt mode. - - (#) Use HAL_COMP_TriggerCallback() and/or HAL_COMP_GetOutputLevel() functions - to manage comparator outputs (event/interrupt triggered and output level). - - (#) Disable the comparator using HAL_COMP_Stop() or HAL_COMP_Stop_IT() - function. - - (#) De-initialize the comparator using HAL_COMP_DeInit() function. - - (#) For safety purposes comparator(s) can be locked using HAL_COMP_Lock() function. - Only a MCU reset can reset that protection. - - *** Callback registration *** - ============================================= - [..] - - The compilation flag USE_HAL_COMP_REGISTER_CALLBACKS, when set to 1, - allows the user to configure dynamically the driver callbacks. - Use Functions @ref HAL_COMP_RegisterCallback() - to register an interrupt callback. - [..] - - Function @ref HAL_COMP_RegisterCallback() allows to register following callbacks: - (+) OperationCpltCallback : callback for End of operation. - (+) ErrorCallback : callback for error detection. - (+) MspInitCallback : callback for Msp Init. - (+) MspDeInitCallback : callback for Msp DeInit. - This function takes as parameters the HAL peripheral handle, the Callback ID - and a pointer to the user callback function. - [..] - - Use function @ref HAL_COMP_UnRegisterCallback to reset a callback to the default - weak function. - [..] - - @ref HAL_COMP_UnRegisterCallback takes as parameters the HAL peripheral handle, - and the Callback ID. - This function allows to reset following callbacks: - (+) OperationCpltCallback : callback for End of operation. - (+) ErrorCallback : callback for error detection. - (+) MspInitCallback : callback for Msp Init. - (+) MspDeInitCallback : callback for Msp DeInit. - [..] - - By default, after the @ref HAL_COMP_Init() and when the state is @ref HAL_COMP_STATE_RESET - all callbacks are set to the corresponding weak functions: - examples @ref HAL_COMP_OperationCpltCallback(), @ref HAL_COMP_ErrorCallback(). - Exception done for MspInit and MspDeInit functions that are - reset to the legacy weak functions in the @ref HAL_COMP_Init()/ @ref HAL_COMP_DeInit() only when - these callbacks are null (not registered beforehand). - [..] - - If MspInit or MspDeInit are not null, the @ref HAL_COMP_Init()/ @ref HAL_COMP_DeInit() - keep and use the user MspInit/MspDeInit callbacks (registered beforehand) whatever the state. - [..] - - Callbacks can be registered/unregistered in @ref HAL_COMP_STATE_READY state only. - Exception done MspInit/MspDeInit functions that can be registered/unregistered - in @ref HAL_COMP_STATE_READY or @ref HAL_COMP_STATE_RESET state, - thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit. - [..] - - Then, the user first registers the MspInit/MspDeInit user callbacks - using @ref HAL_COMP_RegisterCallback() before calling @ref HAL_COMP_DeInit() - or @ref HAL_COMP_Init() function. - [..] - - When the compilation flag USE_HAL_COMP_REGISTER_CALLBACKS is set to 0 or - not defined, the callback registration feature is not available and all callbacks - are set to the corresponding weak functions. - - @endverbatim - ****************************************************************************** - * @attention - * - *

© Copyright (c) 2016 STMicroelectronics. - * All rights reserved.

- * - * This software component is licensed by ST under BSD 3-Clause license, - * the "License"; You may not use this file except in compliance with the - * License. You may obtain a copy of the License at: - * opensource.org/licenses/BSD-3-Clause - * - ****************************************************************************** - */ - -/* - Additional Tables: - - Table 1. COMP Inputs for the STM32F05x, STM32F07x and STM32F09x devices - +--------------------------------------------------+ - | | | COMP1 | COMP2 | - |-----------------|----------------|---------------| - | | 1/4 VREFINT | OK | OK | - | | 1/2 VREFINT | OK | OK | - | | 3/4 VREFINT | OK | OK | - | Inverting Input | VREFINT | OK | OK | - | | DAC1 OUT (PA4) | OK | OK | - | | DAC2 OUT (PA5) | OK | OK | - | | IO1 | PA0 | PA2 | - |-----------------|----------------|-------|-------| - | Non Inverting | | PA1 | PA3 | - | Input | | | | - +--------------------------------------------------+ - - Table 2. COMP Outputs for the STM32F05x, STM32F07x and STM32F09x devices - +---------------+ - | COMP1 | COMP2 | - |-------|-------| - | PA0 | PA2 | - | PA6 | PA7 | - | PA11 | PA12 | - +---------------+ - - Table 3. COMP Outputs redirection to embedded timers for the STM32F05x, STM32F07x and STM32F09x devices - +---------------------------------+ - | COMP1 | COMP2 | - |----------------|----------------| - | TIM1 BKIN | TIM1 BKIN | - | | | - | TIM1 OCREFCLR | TIM1 OCREFCLR | - | | | - | TIM1 IC1 | TIM1 IC1 | - | | | - | TIM2 IC4 | TIM2 IC4 | - | | | - | TIM2 OCREFCLR | TIM2 OCREFCLR | - | | | - | TIM3 IC1 | TIM3 IC1 | - | | | - | TIM3 OCREFCLR | TIM3 OCREFCLR | - +---------------------------------+ - -*/ - -/* Includes ------------------------------------------------------------------*/ -#include "stm32f0xx_hal.h" - -#ifdef HAL_COMP_MODULE_ENABLED - -#if defined (COMP1) || defined (COMP2) - -/** @addtogroup STM32F0xx_HAL_Driver - * @{ - */ - -/** @defgroup COMP COMP - * @brief COMP HAL module driver - * @{ - */ - -/* Private typedef -----------------------------------------------------------*/ -/* Private define ------------------------------------------------------------*/ - -/** @defgroup COMP_Private_Constants COMP Private Constants - * @{ - */ - -/* Delay for COMP startup time. */ -/* Note: Delay required to reach propagation delay specification. */ -/* Literal set to maximum value (refer to device datasheet, */ -/* parameter "tSTART"). */ -/* Unit: us */ -#define COMP_DELAY_STARTUP_US (60U) /*!< Delay for COMP startup time */ - -/* CSR register reset value */ -#define COMP_CSR_RESET_VALUE (0x00000000U) -/* CSR register masks */ -#define COMP_CSR_RESET_PARAMETERS_MASK (0x00003FFFU) -#define COMP_CSR_UPDATE_PARAMETERS_MASK (0x00003FFEU) -/* CSR COMPx non inverting input mask */ -#define COMP_CSR_COMPxNONINSEL_MASK ((uint16_t)COMP_CSR_COMP1SW1) -/* CSR COMP2 shift */ -#define COMP_CSR_COMP1_SHIFT 0U -#define COMP_CSR_COMP2_SHIFT 16U -/** - * @} - */ -/* Private macro -------------------------------------------------------------*/ -/* Private variables ---------------------------------------------------------*/ -/* Private function prototypes -----------------------------------------------*/ -/* Private functions ---------------------------------------------------------*/ - -/** @defgroup COMP_Exported_Functions COMP Exported Functions - * @{ - */ - -/** @defgroup COMP_Exported_Functions_Group1 Initialization/de-initialization functions - * @brief Initialization and Configuration functions - * -@verbatim - =============================================================================== - ##### Initialization and Configuration functions ##### - =============================================================================== - [..] This section provides functions to initialize and de-initialize comparators - -@endverbatim - * @{ - */ - -/** - * @brief Initializes the COMP according to the specified - * parameters in the COMP_InitTypeDef and create the associated handle. - * @note If the selected comparator is locked, initialization can't be performed. - * To unlock the configuration, perform a system reset. - * @param hcomp COMP handle - * @retval HAL status - */ -HAL_StatusTypeDef HAL_COMP_Init(COMP_HandleTypeDef *hcomp) -{ - HAL_StatusTypeDef status = HAL_OK; - uint32_t regshift = COMP_CSR_COMP1_SHIFT; - - /* Check the COMP handle allocation and lock status */ - if((hcomp == NULL) || ((hcomp->State & COMP_STATE_BIT_LOCK) != RESET)) - { - status = HAL_ERROR; - } - else - { - /* Check the parameter */ - assert_param(IS_COMP_ALL_INSTANCE(hcomp->Instance)); - assert_param(IS_COMP_INVERTINGINPUT(hcomp->Init.InvertingInput)); - assert_param(IS_COMP_NONINVERTINGINPUT(hcomp->Init.NonInvertingInput)); - assert_param(IS_COMP_OUTPUT(hcomp->Init.Output)); - assert_param(IS_COMP_OUTPUTPOL(hcomp->Init.OutputPol)); - assert_param(IS_COMP_HYSTERESIS(hcomp->Init.Hysteresis)); - assert_param(IS_COMP_MODE(hcomp->Init.Mode)); - - if(hcomp->Init.NonInvertingInput == COMP_NONINVERTINGINPUT_DAC1SWITCHCLOSED) - { - assert_param(IS_COMP_DAC1SWITCH_INSTANCE(hcomp->Instance)); - } - - if(hcomp->Init.WindowMode != COMP_WINDOWMODE_DISABLE) - { - assert_param(IS_COMP_WINDOWMODE_INSTANCE(hcomp->Instance)); - } - - /* Init SYSCFG and the low level hardware to access comparators */ - __HAL_RCC_SYSCFG_CLK_ENABLE(); - -#if (USE_HAL_COMP_REGISTER_CALLBACKS == 1) - /* Init the COMP Callback settings */ - hcomp->TriggerCallback = HAL_COMP_TriggerCallback; /* Legacy weak callback */ - - if (hcomp->MspInitCallback == NULL) - { - hcomp->MspInitCallback = HAL_COMP_MspInit; /* Legacy weak MspInit */ - } - - /* Init the low level hardware */ - hcomp->MspInitCallback(hcomp); -#else - /* Init the low level hardware : SYSCFG to access comparators */ - HAL_COMP_MspInit(hcomp); -#endif /* USE_HAL_COMP_REGISTER_CALLBACKS */ - - if(hcomp->State == HAL_COMP_STATE_RESET) - { - /* Allocate lock resource and initialize it */ - hcomp->Lock = HAL_UNLOCKED; - } - - /* Change COMP peripheral state */ - hcomp->State = HAL_COMP_STATE_BUSY; - - /* Set COMP parameters */ - /* Set COMPxINSEL bits according to hcomp->Init.InvertingInput value */ - /* Set COMPxOUTSEL bits according to hcomp->Init.Output value */ - /* Set COMPxPOL bit according to hcomp->Init.OutputPol value */ - /* Set COMPxHYST bits according to hcomp->Init.Hysteresis value */ - /* Set COMPxMODE bits according to hcomp->Init.Mode value */ - if(hcomp->Instance == COMP2) - { - regshift = COMP_CSR_COMP2_SHIFT; - } - MODIFY_REG(COMP->CSR, - (COMP_CSR_COMPxINSEL | COMP_CSR_COMPxNONINSEL_MASK | \ - COMP_CSR_COMPxOUTSEL | COMP_CSR_COMPxPOL | \ - COMP_CSR_COMPxHYST | COMP_CSR_COMPxMODE) << regshift, - (hcomp->Init.InvertingInput | \ - hcomp->Init.NonInvertingInput | \ - hcomp->Init.Output | \ - hcomp->Init.OutputPol | \ - hcomp->Init.Hysteresis | \ - hcomp->Init.Mode) << regshift); - - if(hcomp->Init.WindowMode != COMP_WINDOWMODE_DISABLE) - { - COMP->CSR |= COMP_CSR_WNDWEN; - } - - /* Initialize the COMP state*/ - hcomp->State = HAL_COMP_STATE_READY; - } - - return status; -} - -/** - * @brief DeInitializes the COMP peripheral - * @note Deinitialization can't be performed if the COMP configuration is locked. - * To unlock the configuration, perform a system reset. - * @param hcomp COMP handle - * @retval HAL status - */ -HAL_StatusTypeDef HAL_COMP_DeInit(COMP_HandleTypeDef *hcomp) -{ - HAL_StatusTypeDef status = HAL_OK; - uint32_t regshift = COMP_CSR_COMP1_SHIFT; - - /* Check the COMP handle allocation and lock status */ - if((hcomp == NULL) || ((hcomp->State & COMP_STATE_BIT_LOCK) != RESET)) - { - status = HAL_ERROR; - } - else - { - /* Check the parameter */ - assert_param(IS_COMP_ALL_INSTANCE(hcomp->Instance)); - - /* Set COMP_CSR register to reset value for the corresponding COMP instance */ - if(hcomp->Instance == COMP2) - { - regshift = COMP_CSR_COMP2_SHIFT; - } - MODIFY_REG(COMP->CSR, - COMP_CSR_RESET_PARAMETERS_MASK << regshift, - COMP_CSR_RESET_VALUE << regshift); - -#if (USE_HAL_COMP_REGISTER_CALLBACKS == 1) - if (hcomp->MspDeInitCallback == NULL) - { - hcomp->MspDeInitCallback = HAL_COMP_MspDeInit; /* Legacy weak MspDeInit */ - } - - /* DeInit the low level hardware: SYSCFG, GPIO, CLOCK and NVIC */ - hcomp->MspDeInitCallback(hcomp); -#else - /* DeInit the low level hardware: SYSCFG, GPIO, CLOCK and NVIC */ - HAL_COMP_MspDeInit(hcomp); -#endif /* USE_HAL_COMP_REGISTER_CALLBACKS */ - - hcomp->State = HAL_COMP_STATE_RESET; - - /* Release Lock */ - __HAL_UNLOCK(hcomp); - } - - return status; -} - -/** - * @brief Initializes the COMP MSP. - * @param hcomp COMP handle - * @retval None - */ -__weak void HAL_COMP_MspInit(COMP_HandleTypeDef *hcomp) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hcomp); - - /* NOTE : This function Should not be modified, when the callback is needed, - the HAL_COMP_MspInit could be implenetd in the user file - */ -} - -/** - * @brief DeInitializes COMP MSP. - * @param hcomp COMP handle - * @retval None - */ -__weak void HAL_COMP_MspDeInit(COMP_HandleTypeDef *hcomp) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hcomp); - - /* NOTE : This function Should not be modified, when the callback is needed, - the HAL_COMP_MspDeInit could be implenetd in the user file - */ -} - -#if (USE_HAL_COMP_REGISTER_CALLBACKS == 1) -/** - * @brief Register a User COMP Callback - * To be used instead of the weak predefined callback - * @param hcomp Pointer to a COMP_HandleTypeDef structure that contains - * the configuration information for the specified COMP. - * @param CallbackID ID of the callback to be registered - * This parameter can be one of the following values: - * @arg @ref HAL_COMP_TRIGGER_CB_ID Trigger callback ID - * @arg @ref HAL_COMP_MSPINIT_CB_ID MspInit callback ID - * @arg @ref HAL_COMP_MSPDEINIT_CB_ID MspDeInit callback ID - * @param pCallback pointer to the Callback function - * @retval HAL status - */ -HAL_StatusTypeDef HAL_COMP_RegisterCallback(COMP_HandleTypeDef *hcomp, HAL_COMP_CallbackIDTypeDef CallbackID, pCOMP_CallbackTypeDef pCallback) -{ - HAL_StatusTypeDef status = HAL_OK; - - if (pCallback == NULL) - { - /* Update the error code */ - hcomp->ErrorCode |= HAL_COMP_ERROR_INVALID_CALLBACK; - - return HAL_ERROR; - } - - if (HAL_COMP_STATE_READY == hcomp->State) - { - switch (CallbackID) - { - case HAL_COMP_TRIGGER_CB_ID : - hcomp->TriggerCallback = pCallback; - break; - - case HAL_COMP_MSPINIT_CB_ID : - hcomp->MspInitCallback = pCallback; - break; - - case HAL_COMP_MSPDEINIT_CB_ID : - hcomp->MspDeInitCallback = pCallback; - break; - - default : - /* Update the error code */ - hcomp->ErrorCode |= HAL_COMP_ERROR_INVALID_CALLBACK; - - /* Return error status */ - status = HAL_ERROR; - break; - } - } - else if (HAL_COMP_STATE_RESET == hcomp->State) - { - switch (CallbackID) - { - case HAL_COMP_MSPINIT_CB_ID : - hcomp->MspInitCallback = pCallback; - break; - - case HAL_COMP_MSPDEINIT_CB_ID : - hcomp->MspDeInitCallback = pCallback; - break; - - default : - /* Update the error code */ - hcomp->ErrorCode |= HAL_COMP_ERROR_INVALID_CALLBACK; - - /* Return error status */ - status = HAL_ERROR; - break; - } - } - else - { - /* Update the error code */ - hcomp->ErrorCode |= HAL_COMP_ERROR_INVALID_CALLBACK; - - /* Return error status */ - status = HAL_ERROR; - } - - return status; -} - -/** - * @brief Unregister a COMP Callback - * COMP callback is redirected to the weak predefined callback - * @param hcomp Pointer to a COMP_HandleTypeDef structure that contains - * the configuration information for the specified COMP. - * @param CallbackID ID of the callback to be unregistered - * This parameter can be one of the following values: - * @arg @ref HAL_COMP_TRIGGER_CB_ID Trigger callback ID - * @arg @ref HAL_COMP_MSPINIT_CB_ID MspInit callback ID - * @arg @ref HAL_COMP_MSPDEINIT_CB_ID MspDeInit callback ID - * @retval HAL status - */ -HAL_StatusTypeDef HAL_COMP_UnRegisterCallback(COMP_HandleTypeDef *hcomp, HAL_COMP_CallbackIDTypeDef CallbackID) -{ - HAL_StatusTypeDef status = HAL_OK; - - if (HAL_COMP_STATE_READY == hcomp->State) - { - switch (CallbackID) - { - case HAL_COMP_TRIGGER_CB_ID : - hcomp->TriggerCallback = HAL_COMP_TriggerCallback; /* Legacy weak callback */ - break; - - case HAL_COMP_MSPINIT_CB_ID : - hcomp->MspInitCallback = HAL_COMP_MspInit; /* Legacy weak MspInit */ - break; - - case HAL_COMP_MSPDEINIT_CB_ID : - hcomp->MspDeInitCallback = HAL_COMP_MspDeInit; /* Legacy weak MspDeInit */ - break; - - default : - /* Update the error code */ - hcomp->ErrorCode |= HAL_COMP_ERROR_INVALID_CALLBACK; - - /* Return error status */ - status = HAL_ERROR; - break; - } - } - else if (HAL_COMP_STATE_RESET == hcomp->State) - { - switch (CallbackID) - { - case HAL_COMP_MSPINIT_CB_ID : - hcomp->MspInitCallback = HAL_COMP_MspInit; /* Legacy weak MspInit */ - break; - - case HAL_COMP_MSPDEINIT_CB_ID : - hcomp->MspDeInitCallback = HAL_COMP_MspDeInit; /* Legacy weak MspDeInit */ - break; - - default : - /* Update the error code */ - hcomp->ErrorCode |= HAL_COMP_ERROR_INVALID_CALLBACK; - - /* Return error status */ - status = HAL_ERROR; - break; - } - } - else - { - /* Update the error code */ - hcomp->ErrorCode |= HAL_COMP_ERROR_INVALID_CALLBACK; - - /* Return error status */ - status = HAL_ERROR; - } - - return status; -} - -#endif /* USE_HAL_COMP_REGISTER_CALLBACKS */ - -/** - * @} - */ - -/** @defgroup COMP_Exported_Functions_Group2 I/O operation functions - * @brief Data transfers functions - * -@verbatim - =============================================================================== - ##### IO operation functions ##### - =============================================================================== - [..] - This subsection provides a set of functions allowing to manage the COMP data - transfers. - -@endverbatim - * @{ - */ - -/** - * @brief Start the comparator - * @param hcomp COMP handle - * @retval HAL status - */ -HAL_StatusTypeDef HAL_COMP_Start(COMP_HandleTypeDef *hcomp) -{ - uint32_t wait_loop_index = 0U; - HAL_StatusTypeDef status = HAL_OK; - uint32_t regshift = COMP_CSR_COMP1_SHIFT; - - /* Check the COMP handle allocation and lock status */ - if((hcomp == NULL) || ((hcomp->State & COMP_STATE_BIT_LOCK) != RESET)) - { - status = HAL_ERROR; - } - else - { - /* Check the parameter */ - assert_param(IS_COMP_ALL_INSTANCE(hcomp->Instance)); - - if(hcomp->State == HAL_COMP_STATE_READY) - { - /* Enable the selected comparator */ - if(hcomp->Instance == COMP2) - { - regshift = COMP_CSR_COMP2_SHIFT; - } - SET_BIT(COMP->CSR, COMP_CSR_COMPxEN << regshift); - - /* Set HAL COMP handle state */ - hcomp->State = HAL_COMP_STATE_BUSY; - - /* Delay for COMP startup time */ - wait_loop_index = (COMP_DELAY_STARTUP_US * (SystemCoreClock / 1000000U)); - while(wait_loop_index != 0U) - { - wait_loop_index--; - } - } - else - { - status = HAL_ERROR; - } - } - - return status; -} - -/** - * @brief Stop the comparator - * @param hcomp COMP handle - * @retval HAL status - */ -HAL_StatusTypeDef HAL_COMP_Stop(COMP_HandleTypeDef *hcomp) -{ - HAL_StatusTypeDef status = HAL_OK; - uint32_t regshift = COMP_CSR_COMP1_SHIFT; - - /* Check the COMP handle allocation and lock status */ - if((hcomp == NULL) || ((hcomp->State & COMP_STATE_BIT_LOCK) != RESET)) - { - status = HAL_ERROR; - } - else - { - /* Check the parameter */ - assert_param(IS_COMP_ALL_INSTANCE(hcomp->Instance)); - - if(hcomp->State == HAL_COMP_STATE_BUSY) - { - /* Disable the selected comparator */ - if(hcomp->Instance == COMP2) - { - regshift = COMP_CSR_COMP2_SHIFT; - } - CLEAR_BIT(COMP->CSR, COMP_CSR_COMPxEN << regshift); - - hcomp->State = HAL_COMP_STATE_READY; - } - else - { - status = HAL_ERROR; - } - } - - return status; -} - -/** - * @brief Enables the interrupt and starts the comparator - * @param hcomp COMP handle - * @retval HAL status. - */ -HAL_StatusTypeDef HAL_COMP_Start_IT(COMP_HandleTypeDef *hcomp) -{ - HAL_StatusTypeDef status = HAL_OK; - uint32_t extiline = 0U; - - /* Check the parameter */ - assert_param(IS_COMP_TRIGGERMODE(hcomp->Init.TriggerMode)); - - status = HAL_COMP_Start(hcomp); - if(status == HAL_OK) - { - /* Check the Exti Line output configuration */ - extiline = COMP_GET_EXTI_LINE(hcomp->Instance); - /* Configure the rising edge */ - if((hcomp->Init.TriggerMode & COMP_TRIGGERMODE_IT_RISING) != RESET) - { - SET_BIT(EXTI->RTSR, extiline); - } - else - { - CLEAR_BIT(EXTI->RTSR, extiline); - } - /* Configure the falling edge */ - if((hcomp->Init.TriggerMode & COMP_TRIGGERMODE_IT_FALLING) != RESET) - { - SET_BIT(EXTI->FTSR, extiline); - } - else - { - CLEAR_BIT(EXTI->FTSR, extiline); - } - - /* Clear COMP EXTI pending bit */ - WRITE_REG(EXTI->PR, extiline); - - /* Enable Exti interrupt mode */ - SET_BIT(EXTI->IMR, extiline); - } - - return status; -} - -/** - * @brief Disable the interrupt and Stop the comparator - * @param hcomp COMP handle - * @retval HAL status - */ -HAL_StatusTypeDef HAL_COMP_Stop_IT(COMP_HandleTypeDef *hcomp) -{ - HAL_StatusTypeDef status = HAL_OK; - - /* Disable the Exti Line interrupt mode */ - CLEAR_BIT(EXTI->IMR, COMP_GET_EXTI_LINE(hcomp->Instance)); - - status = HAL_COMP_Stop(hcomp); - - return status; -} - -/** - * @brief Comparator IRQ Handler - * @param hcomp COMP handle - * @retval HAL status - */ -void HAL_COMP_IRQHandler(COMP_HandleTypeDef *hcomp) -{ - uint32_t extiline = COMP_GET_EXTI_LINE(hcomp->Instance); - - /* Check COMP Exti flag */ - if(READ_BIT(EXTI->PR, extiline) != RESET) - { - /* Clear COMP Exti pending bit */ - WRITE_REG(EXTI->PR, extiline); - - /* COMP trigger callback */ -#if (USE_HAL_COMP_REGISTER_CALLBACKS == 1) - hcomp->TriggerCallback(hcomp); -#else - HAL_COMP_TriggerCallback(hcomp); -#endif /* USE_HAL_COMP_REGISTER_CALLBACKS */ - } -} - -/** - * @} - */ - -/** @defgroup COMP_Exported_Functions_Group3 Peripheral Control functions - * @brief management functions - * -@verbatim - =============================================================================== - ##### Peripheral Control functions ##### - =============================================================================== - [..] - This subsection provides a set of functions allowing to control the COMP data - transfers. - -@endverbatim - * @{ - */ - -/** - * @brief Lock the selected comparator configuration. - * @param hcomp COMP handle - * @retval HAL status - */ -HAL_StatusTypeDef HAL_COMP_Lock(COMP_HandleTypeDef *hcomp) -{ - HAL_StatusTypeDef status = HAL_OK; - uint32_t regshift = COMP_CSR_COMP1_SHIFT; - - /* Check the COMP handle allocation and lock status */ - if((hcomp == NULL) || ((hcomp->State & COMP_STATE_BIT_LOCK) != RESET)) - { - status = HAL_ERROR; - } - else - { - /* Check the parameter */ - assert_param(IS_COMP_ALL_INSTANCE(hcomp->Instance)); - - /* Set lock flag */ - hcomp->State |= COMP_STATE_BIT_LOCK; - - /* Set the lock bit corresponding to selected comparator */ - if(hcomp->Instance == COMP2) - { - regshift = COMP_CSR_COMP2_SHIFT; - } - SET_BIT(COMP->CSR, COMP_CSR_COMPxLOCK << regshift); - } - - return status; -} - -/** - * @brief Return the output level (high or low) of the selected comparator. - * The output level depends on the selected polarity. - * If the polarity is not inverted: - * - Comparator output is low when the non-inverting input is at a lower - * voltage than the inverting input - * - Comparator output is high when the non-inverting input is at a higher - * voltage than the inverting input - * If the polarity is inverted: - * - Comparator output is high when the non-inverting input is at a lower - * voltage than the inverting input - * - Comparator output is low when the non-inverting input is at a higher - * voltage than the inverting input - * @param hcomp COMP handle - * @retval Returns the selected comparator output level: COMP_OUTPUTLEVEL_LOW or COMP_OUTPUTLEVEL_HIGH. - * - */ -uint32_t HAL_COMP_GetOutputLevel(COMP_HandleTypeDef *hcomp) -{ - uint32_t level=0; - uint32_t regshift = COMP_CSR_COMP1_SHIFT; - - /* Check the parameter */ - assert_param(IS_COMP_ALL_INSTANCE(hcomp->Instance)); - - if(hcomp->Instance == COMP2) - { - regshift = COMP_CSR_COMP2_SHIFT; - } - level = READ_BIT(COMP->CSR, COMP_CSR_COMPxOUT << regshift); - - if(level != 0U) - { - return(COMP_OUTPUTLEVEL_HIGH); - } - return(COMP_OUTPUTLEVEL_LOW); -} - -/** - * @brief Comparator trigger callback. - * @param hcomp COMP handle - * @retval None - */ -__weak void HAL_COMP_TriggerCallback(COMP_HandleTypeDef *hcomp) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hcomp); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_COMP_TriggerCallback should be implemented in the user file - */ -} - - -/** - * @} - */ - -/** @defgroup COMP_Exported_Functions_Group4 Peripheral State functions - * @brief Peripheral State functions - * -@verbatim - =============================================================================== - ##### Peripheral State functions ##### - =============================================================================== - [..] - This subsection permit to get in run-time the status of the peripheral - and the data flow. - -@endverbatim - * @{ - */ - -/** - * @brief Return the COMP state - * @param hcomp COMP handle - * @retval HAL state - */ -uint32_t HAL_COMP_GetState(COMP_HandleTypeDef *hcomp) -{ - /* Check the COMP handle allocation */ - if(hcomp == NULL) - { - return HAL_COMP_STATE_RESET; - } - - /* Check the parameter */ - assert_param(IS_COMP_ALL_INSTANCE(hcomp->Instance)); - - return hcomp->State; -} - -/** - * @brief Return the COMP error code. - * @param hcomp COMP handle - * @retval COMP error code - */ -uint32_t HAL_COMP_GetError(COMP_HandleTypeDef *hcomp) -{ - /* Check the parameters */ - assert_param(IS_COMP_ALL_INSTANCE(hcomp->Instance)); - - return hcomp->ErrorCode; -} - -/** - * @} - */ - -/** - * @} - */ - -/** - * @} - */ - -/** - * @} - */ - -#endif /* COMP1 || COMP2 */ - -#endif /* HAL_COMP_MODULE_ENABLED */ - -/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_cortex.c b/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_cortex.c deleted file mode 100644 index cbe3f5b..0000000 --- a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_cortex.c +++ /dev/null @@ -1,341 +0,0 @@ -/** - ****************************************************************************** - * @file stm32f0xx_hal_cortex.c - * @author MCD Application Team - * @brief CORTEX HAL module driver. - * This file provides firmware functions to manage the following - * functionalities of the CORTEX: - * + Initialization and de-initialization functions - * + Peripheral Control functions - * - * @verbatim - ============================================================================== - ##### How to use this driver ##### - ============================================================================== - - [..] - *** How to configure Interrupts using CORTEX HAL driver *** - =========================================================== - [..] - This section provides functions allowing to configure the NVIC interrupts (IRQ). - The Cortex-M0 exceptions are managed by CMSIS functions. - (#) Enable and Configure the priority of the selected IRQ Channels. - The priority can be 0..3. - - -@- Lower priority values gives higher priority. - -@- Priority Order: - (#@) Lowest priority. - (#@) Lowest hardware priority (IRQn position). - - (#) Configure the priority of the selected IRQ Channels using HAL_NVIC_SetPriority() - - (#) Enable the selected IRQ Channels using HAL_NVIC_EnableIRQ() - - -@- Negative value of IRQn_Type are not allowed. - - - [..] - *** How to configure Systick using CORTEX HAL driver *** - ======================================================== - [..] - Setup SysTick Timer for time base. - - (+) The HAL_SYSTICK_Config()function calls the SysTick_Config() function which - is a CMSIS function that: - (++) Configures the SysTick Reload register with value passed as function parameter. - (++) Configures the SysTick IRQ priority to the lowest value (0x03). - (++) Resets the SysTick Counter register. - (++) Configures the SysTick Counter clock source to be Core Clock Source (HCLK). - (++) Enables the SysTick Interrupt. - (++) Starts the SysTick Counter. - - (+) You can change the SysTick Clock source to be HCLK_Div8 by calling the macro - HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK_DIV8) just after the - HAL_SYSTICK_Config() function call. The HAL_SYSTICK_CLKSourceConfig() macro is defined - inside the stm32f0xx_hal_cortex.h file. - - (+) You can change the SysTick IRQ priority by calling the - HAL_NVIC_SetPriority(SysTick_IRQn,...) function just after the HAL_SYSTICK_Config() function - call. The HAL_NVIC_SetPriority() call the NVIC_SetPriority() function which is a CMSIS function. - - (+) To adjust the SysTick time base, use the following formula: - - Reload Value = SysTick Counter Clock (Hz) x Desired Time base (s) - (++) Reload Value is the parameter to be passed for HAL_SYSTICK_Config() function - (++) Reload Value should not exceed 0xFFFFFF - - @endverbatim - ****************************************************************************** - * @attention - * - *

© Copyright (c) 2016 STMicroelectronics. - * All rights reserved.

- * - * This software component is licensed by ST under BSD 3-Clause license, - * the "License"; You may not use this file except in compliance with the - * License. You may obtain a copy of the License at: - * opensource.org/licenses/BSD-3-Clause - * - ****************************************************************************** - */ - -/* Includes ------------------------------------------------------------------*/ -#include "stm32f0xx_hal.h" - -/** @addtogroup STM32F0xx_HAL_Driver - * @{ - */ - -/** @defgroup CORTEX CORTEX - * @brief CORTEX CORTEX HAL module driver - * @{ - */ - -#ifdef HAL_CORTEX_MODULE_ENABLED - -/* Private typedef -----------------------------------------------------------*/ -/* Private define ------------------------------------------------------------*/ -/* Private macro -------------------------------------------------------------*/ -/* Private variables ---------------------------------------------------------*/ -/* Private function prototypes -----------------------------------------------*/ -/* Exported functions ---------------------------------------------------------*/ - -/** @defgroup CORTEX_Exported_Functions CORTEX Exported Functions - * @{ - */ - - -/** @defgroup CORTEX_Exported_Functions_Group1 Initialization and de-initialization functions - * @brief Initialization and Configuration functions - * -@verbatim - ============================================================================== - ##### Initialization and de-initialization functions ##### - ============================================================================== - [..] - This section provides the CORTEX HAL driver functions allowing to configure Interrupts - Systick functionalities - -@endverbatim - * @{ - */ - -/** - * @brief Sets the priority of an interrupt. - * @param IRQn External interrupt number . - * This parameter can be an enumerator of IRQn_Type enumeration - * (For the complete STM32 Devices IRQ Channels list, please refer to stm32f0xx.h file) - * @param PreemptPriority The preemption priority for the IRQn channel. - * This parameter can be a value between 0 and 3. - * A lower priority value indicates a higher priority - * @param SubPriority the subpriority level for the IRQ channel. - * with stm32f0xx devices, this parameter is a dummy value and it is ignored, because - * no subpriority supported in Cortex M0 based products. - * @retval None - */ -void HAL_NVIC_SetPriority(IRQn_Type IRQn, uint32_t PreemptPriority, uint32_t SubPriority) -{ - /* Check the parameters */ - assert_param(IS_NVIC_PREEMPTION_PRIORITY(PreemptPriority)); - NVIC_SetPriority(IRQn,PreemptPriority); -} - -/** - * @brief Enables a device specific interrupt in the NVIC interrupt controller. - * @note To configure interrupts priority correctly, the NVIC_PriorityGroupConfig() - * function should be called before. - * @param IRQn External interrupt number. - * This parameter can be an enumerator of IRQn_Type enumeration - * (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32f0xxxx.h)) - * @retval None - */ -void HAL_NVIC_EnableIRQ(IRQn_Type IRQn) -{ - /* Check the parameters */ - assert_param(IS_NVIC_DEVICE_IRQ(IRQn)); - - /* Enable interrupt */ - NVIC_EnableIRQ(IRQn); -} - -/** - * @brief Disables a device specific interrupt in the NVIC interrupt controller. - * @param IRQn External interrupt number. - * This parameter can be an enumerator of IRQn_Type enumeration - * (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32f0xxxx.h)) - * @retval None - */ -void HAL_NVIC_DisableIRQ(IRQn_Type IRQn) -{ - /* Check the parameters */ - assert_param(IS_NVIC_DEVICE_IRQ(IRQn)); - - /* Disable interrupt */ - NVIC_DisableIRQ(IRQn); -} - -/** - * @brief Initiates a system reset request to reset the MCU. - * @retval None - */ -void HAL_NVIC_SystemReset(void) -{ - /* System Reset */ - NVIC_SystemReset(); -} - -/** - * @brief Initializes the System Timer and its interrupt, and starts the System Tick Timer. - * Counter is in free running mode to generate periodic interrupts. - * @param TicksNumb Specifies the ticks Number of ticks between two interrupts. - * @retval status: - 0 Function succeeded. - * - 1 Function failed. - */ -uint32_t HAL_SYSTICK_Config(uint32_t TicksNumb) -{ - return SysTick_Config(TicksNumb); -} -/** - * @} - */ - -/** @defgroup CORTEX_Exported_Functions_Group2 Peripheral Control functions - * @brief Cortex control functions - * -@verbatim - ============================================================================== - ##### Peripheral Control functions ##### - ============================================================================== - [..] - This subsection provides a set of functions allowing to control the CORTEX - (NVIC, SYSTICK) functionalities. - - -@endverbatim - * @{ - */ - - -/** - * @brief Gets the priority of an interrupt. - * @param IRQn External interrupt number. - * This parameter can be an enumerator of IRQn_Type enumeration - * (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32f0xxxx.h)) - * @retval None - */ -uint32_t HAL_NVIC_GetPriority(IRQn_Type IRQn) -{ - /* Get priority for Cortex-M system or device specific interrupts */ - return NVIC_GetPriority(IRQn); -} - -/** - * @brief Sets Pending bit of an external interrupt. - * @param IRQn External interrupt number - * This parameter can be an enumerator of IRQn_Type enumeration - * (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32f0xxxx.h)) - * @retval None - */ -void HAL_NVIC_SetPendingIRQ(IRQn_Type IRQn) -{ - /* Check the parameters */ - assert_param(IS_NVIC_DEVICE_IRQ(IRQn)); - - /* Set interrupt pending */ - NVIC_SetPendingIRQ(IRQn); -} - -/** - * @brief Gets Pending Interrupt (reads the pending register in the NVIC - * and returns the pending bit for the specified interrupt). - * @param IRQn External interrupt number. - * This parameter can be an enumerator of IRQn_Type enumeration - * (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32f0xxxx.h)) - * @retval status: - 0 Interrupt status is not pending. - * - 1 Interrupt status is pending. - */ -uint32_t HAL_NVIC_GetPendingIRQ(IRQn_Type IRQn) -{ - /* Check the parameters */ - assert_param(IS_NVIC_DEVICE_IRQ(IRQn)); - - /* Return 1 if pending else 0 */ - return NVIC_GetPendingIRQ(IRQn); -} - -/** - * @brief Clears the pending bit of an external interrupt. - * @param IRQn External interrupt number. - * This parameter can be an enumerator of IRQn_Type enumeration - * (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32f0xxxx.h)) - * @retval None - */ -void HAL_NVIC_ClearPendingIRQ(IRQn_Type IRQn) -{ - /* Check the parameters */ - assert_param(IS_NVIC_DEVICE_IRQ(IRQn)); - - /* Clear pending interrupt */ - NVIC_ClearPendingIRQ(IRQn); -} - -/** - * @brief Configures the SysTick clock source. - * @param CLKSource specifies the SysTick clock source. - * This parameter can be one of the following values: - * @arg SYSTICK_CLKSOURCE_HCLK_DIV8: AHB clock divided by 8 selected as SysTick clock source. - * @arg SYSTICK_CLKSOURCE_HCLK: AHB clock selected as SysTick clock source. - * @retval None - */ -void HAL_SYSTICK_CLKSourceConfig(uint32_t CLKSource) -{ - /* Check the parameters */ - assert_param(IS_SYSTICK_CLK_SOURCE(CLKSource)); - if (CLKSource == SYSTICK_CLKSOURCE_HCLK) - { - SysTick->CTRL |= SYSTICK_CLKSOURCE_HCLK; - } - else - { - SysTick->CTRL &= ~SYSTICK_CLKSOURCE_HCLK; - } -} - -/** - * @brief This function handles SYSTICK interrupt request. - * @retval None - */ -void HAL_SYSTICK_IRQHandler(void) -{ - HAL_SYSTICK_Callback(); -} - -/** - * @brief SYSTICK callback. - * @retval None - */ -__weak void HAL_SYSTICK_Callback(void) -{ - /* NOTE : This function Should not be modified, when the callback is needed, - the HAL_SYSTICK_Callback could be implemented in the user file - */ -} - -/** - * @} - */ - -/** - * @} - */ - -#endif /* HAL_CORTEX_MODULE_ENABLED */ -/** - * @} - */ - -/** - * @} - */ - -/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_crc.c b/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_crc.c deleted file mode 100644 index f78e66b..0000000 --- a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_crc.c +++ /dev/null @@ -1,520 +0,0 @@ -/** - ****************************************************************************** - * @file stm32f0xx_hal_crc.c - * @author MCD Application Team - * @brief CRC HAL module driver. - * This file provides firmware functions to manage the following - * functionalities of the Cyclic Redundancy Check (CRC) peripheral: - * + Initialization and de-initialization functions - * + Peripheral Control functions - * + Peripheral State functions - * - @verbatim - =============================================================================== - ##### How to use this driver ##### - =============================================================================== - [..] - (+) Enable CRC AHB clock using __HAL_RCC_CRC_CLK_ENABLE(); - (+) Initialize CRC calculator - (++) specify generating polynomial (peripheral default or non-default one) - (++) specify initialization value (peripheral default or non-default one) - (++) specify input data format - (++) specify input or output data inversion mode if any - (+) Use HAL_CRC_Accumulate() function to compute the CRC value of the - input data buffer starting with the previously computed CRC as - initialization value - (+) Use HAL_CRC_Calculate() function to compute the CRC value of the - input data buffer starting with the defined initialization value - (default or non-default) to initiate CRC calculation - - @endverbatim - ****************************************************************************** - * @attention - * - *

© Copyright (c) 2016 STMicroelectronics. - * All rights reserved.

- * - * This software component is licensed by ST under BSD 3-Clause license, - * the "License"; You may not use this file except in compliance with the - * License. You may obtain a copy of the License at: - * opensource.org/licenses/BSD-3-Clause - * - ****************************************************************************** - */ - -/* Includes ------------------------------------------------------------------*/ -#include "stm32f0xx_hal.h" - -/** @addtogroup STM32F0xx_HAL_Driver - * @{ - */ - -/** @defgroup CRC CRC - * @brief CRC HAL module driver. - * @{ - */ - -#ifdef HAL_CRC_MODULE_ENABLED - -/* Private typedef -----------------------------------------------------------*/ -/* Private define ------------------------------------------------------------*/ -/* Private macro -------------------------------------------------------------*/ -/* Private variables ---------------------------------------------------------*/ -/* Private function prototypes -----------------------------------------------*/ -/** @defgroup CRC_Private_Functions CRC Private Functions - * @{ - */ -static uint32_t CRC_Handle_8(CRC_HandleTypeDef *hcrc, uint8_t pBuffer[], uint32_t BufferLength); -static uint32_t CRC_Handle_16(CRC_HandleTypeDef *hcrc, uint16_t pBuffer[], uint32_t BufferLength); -/** - * @} - */ - -/* Exported functions --------------------------------------------------------*/ - -/** @defgroup CRC_Exported_Functions CRC Exported Functions - * @{ - */ - -/** @defgroup CRC_Exported_Functions_Group1 Initialization and de-initialization functions - * @brief Initialization and Configuration functions. - * -@verbatim - =============================================================================== - ##### Initialization and de-initialization functions ##### - =============================================================================== - [..] This section provides functions allowing to: - (+) Initialize the CRC according to the specified parameters - in the CRC_InitTypeDef and create the associated handle - (+) DeInitialize the CRC peripheral - (+) Initialize the CRC MSP (MCU Specific Package) - (+) DeInitialize the CRC MSP - -@endverbatim - * @{ - */ - -/** - * @brief Initialize the CRC according to the specified - * parameters in the CRC_InitTypeDef and create the associated handle. - * @param hcrc CRC handle - * @retval HAL status - */ -HAL_StatusTypeDef HAL_CRC_Init(CRC_HandleTypeDef *hcrc) -{ - /* Check the CRC handle allocation */ - if (hcrc == NULL) - { - return HAL_ERROR; - } - - /* Check the parameters */ - assert_param(IS_CRC_ALL_INSTANCE(hcrc->Instance)); - - if (hcrc->State == HAL_CRC_STATE_RESET) - { - /* Allocate lock resource and initialize it */ - hcrc->Lock = HAL_UNLOCKED; - /* Init the low level hardware */ - HAL_CRC_MspInit(hcrc); - } - - hcrc->State = HAL_CRC_STATE_BUSY; - -#if defined(CRC_POL_POL) - /* check whether or not non-default generating polynomial has been - * picked up by user */ - assert_param(IS_DEFAULT_POLYNOMIAL(hcrc->Init.DefaultPolynomialUse)); - if (hcrc->Init.DefaultPolynomialUse == DEFAULT_POLYNOMIAL_ENABLE) - { - /* initialize peripheral with default generating polynomial */ - WRITE_REG(hcrc->Instance->POL, DEFAULT_CRC32_POLY); - MODIFY_REG(hcrc->Instance->CR, CRC_CR_POLYSIZE, CRC_POLYLENGTH_32B); - } - else - { - /* initialize CRC peripheral with generating polynomial defined by user */ - if (HAL_CRCEx_Polynomial_Set(hcrc, hcrc->Init.GeneratingPolynomial, hcrc->Init.CRCLength) != HAL_OK) - { - return HAL_ERROR; - } - } -#endif /* CRC_POL_POL */ - - /* check whether or not non-default CRC initial value has been - * picked up by user */ - assert_param(IS_DEFAULT_INIT_VALUE(hcrc->Init.DefaultInitValueUse)); - if (hcrc->Init.DefaultInitValueUse == DEFAULT_INIT_VALUE_ENABLE) - { - WRITE_REG(hcrc->Instance->INIT, DEFAULT_CRC_INITVALUE); - } - else - { - WRITE_REG(hcrc->Instance->INIT, hcrc->Init.InitValue); - } - - - /* set input data inversion mode */ - assert_param(IS_CRC_INPUTDATA_INVERSION_MODE(hcrc->Init.InputDataInversionMode)); - MODIFY_REG(hcrc->Instance->CR, CRC_CR_REV_IN, hcrc->Init.InputDataInversionMode); - - /* set output data inversion mode */ - assert_param(IS_CRC_OUTPUTDATA_INVERSION_MODE(hcrc->Init.OutputDataInversionMode)); - MODIFY_REG(hcrc->Instance->CR, CRC_CR_REV_OUT, hcrc->Init.OutputDataInversionMode); - - /* makes sure the input data format (bytes, halfwords or words stream) - * is properly specified by user */ - assert_param(IS_CRC_INPUTDATA_FORMAT(hcrc->InputDataFormat)); - - /* Change CRC peripheral state */ - hcrc->State = HAL_CRC_STATE_READY; - - /* Return function status */ - return HAL_OK; -} - -/** - * @brief DeInitialize the CRC peripheral. - * @param hcrc CRC handle - * @retval HAL status - */ -HAL_StatusTypeDef HAL_CRC_DeInit(CRC_HandleTypeDef *hcrc) -{ - /* Check the CRC handle allocation */ - if (hcrc == NULL) - { - return HAL_ERROR; - } - - /* Check the parameters */ - assert_param(IS_CRC_ALL_INSTANCE(hcrc->Instance)); - - /* Check the CRC peripheral state */ - if (hcrc->State == HAL_CRC_STATE_BUSY) - { - return HAL_BUSY; - } - - /* Change CRC peripheral state */ - hcrc->State = HAL_CRC_STATE_BUSY; - - /* Reset CRC calculation unit */ - __HAL_CRC_DR_RESET(hcrc); - - /* Reset IDR register content */ - CLEAR_BIT(hcrc->Instance->IDR, CRC_IDR_IDR); - - /* DeInit the low level hardware */ - HAL_CRC_MspDeInit(hcrc); - - /* Change CRC peripheral state */ - hcrc->State = HAL_CRC_STATE_RESET; - - /* Process unlocked */ - __HAL_UNLOCK(hcrc); - - /* Return function status */ - return HAL_OK; -} - -/** - * @brief Initializes the CRC MSP. - * @param hcrc CRC handle - * @retval None - */ -__weak void HAL_CRC_MspInit(CRC_HandleTypeDef *hcrc) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hcrc); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_CRC_MspInit can be implemented in the user file - */ -} - -/** - * @brief DeInitialize the CRC MSP. - * @param hcrc CRC handle - * @retval None - */ -__weak void HAL_CRC_MspDeInit(CRC_HandleTypeDef *hcrc) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hcrc); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_CRC_MspDeInit can be implemented in the user file - */ -} - -/** - * @} - */ - -/** @defgroup CRC_Exported_Functions_Group2 Peripheral Control functions - * @brief management functions. - * -@verbatim - =============================================================================== - ##### Peripheral Control functions ##### - =============================================================================== - [..] This section provides functions allowing to: - (+) compute the 7, 8, 16 or 32-bit CRC value of an 8, 16 or 32-bit data buffer - using combination of the previous CRC value and the new one. - - [..] or - - (+) compute the 7, 8, 16 or 32-bit CRC value of an 8, 16 or 32-bit data buffer - independently of the previous CRC value. - -@endverbatim - * @{ - */ - -/** - * @brief Compute the 7, 8, 16 or 32-bit CRC value of an 8, 16 or 32-bit data buffer - * starting with the previously computed CRC as initialization value. - * @param hcrc CRC handle - * @param pBuffer pointer to the input data buffer, exact input data format is - * provided by hcrc->InputDataFormat. - * @param BufferLength input data buffer length (number of bytes if pBuffer - * type is * uint8_t, number of half-words if pBuffer type is * uint16_t, - * number of words if pBuffer type is * uint32_t). - * @note By default, the API expects a uint32_t pointer as input buffer parameter. - * Input buffer pointers with other types simply need to be cast in uint32_t - * and the API will internally adjust its input data processing based on the - * handle field hcrc->InputDataFormat. - * @retval uint32_t CRC (returned value LSBs for CRC shorter than 32 bits) - */ -uint32_t HAL_CRC_Accumulate(CRC_HandleTypeDef *hcrc, uint32_t pBuffer[], uint32_t BufferLength) -{ - uint32_t index; /* CRC input data buffer index */ - uint32_t temp = 0U; /* CRC output (read from hcrc->Instance->DR register) */ - - /* Change CRC peripheral state */ - hcrc->State = HAL_CRC_STATE_BUSY; - - switch (hcrc->InputDataFormat) - { - case CRC_INPUTDATA_FORMAT_WORDS: - /* Enter Data to the CRC calculator */ - for (index = 0U; index < BufferLength; index++) - { - hcrc->Instance->DR = pBuffer[index]; - } - temp = hcrc->Instance->DR; - break; - - case CRC_INPUTDATA_FORMAT_BYTES: - temp = CRC_Handle_8(hcrc, (uint8_t *)pBuffer, BufferLength); - break; - - case CRC_INPUTDATA_FORMAT_HALFWORDS: - temp = CRC_Handle_16(hcrc, (uint16_t *)(void *)pBuffer, BufferLength); /* Derogation MisraC2012 R.11.5 */ - break; - default: - break; - } - - /* Change CRC peripheral state */ - hcrc->State = HAL_CRC_STATE_READY; - - /* Return the CRC computed value */ - return temp; -} - -/** - * @brief Compute the 7, 8, 16 or 32-bit CRC value of an 8, 16 or 32-bit data buffer - * starting with hcrc->Instance->INIT as initialization value. - * @param hcrc CRC handle - * @param pBuffer pointer to the input data buffer, exact input data format is - * provided by hcrc->InputDataFormat. - * @param BufferLength input data buffer length (number of bytes if pBuffer - * type is * uint8_t, number of half-words if pBuffer type is * uint16_t, - * number of words if pBuffer type is * uint32_t). - * @note By default, the API expects a uint32_t pointer as input buffer parameter. - * Input buffer pointers with other types simply need to be cast in uint32_t - * and the API will internally adjust its input data processing based on the - * handle field hcrc->InputDataFormat. - * @retval uint32_t CRC (returned value LSBs for CRC shorter than 32 bits) - */ -uint32_t HAL_CRC_Calculate(CRC_HandleTypeDef *hcrc, uint32_t pBuffer[], uint32_t BufferLength) -{ - uint32_t index; /* CRC input data buffer index */ - uint32_t temp = 0U; /* CRC output (read from hcrc->Instance->DR register) */ - - /* Change CRC peripheral state */ - hcrc->State = HAL_CRC_STATE_BUSY; - - /* Reset CRC Calculation Unit (hcrc->Instance->INIT is - * written in hcrc->Instance->DR) */ - __HAL_CRC_DR_RESET(hcrc); - - switch (hcrc->InputDataFormat) - { - case CRC_INPUTDATA_FORMAT_WORDS: - /* Enter 32-bit input data to the CRC calculator */ - for (index = 0U; index < BufferLength; index++) - { - hcrc->Instance->DR = pBuffer[index]; - } - temp = hcrc->Instance->DR; - break; - - case CRC_INPUTDATA_FORMAT_BYTES: - /* Specific 8-bit input data handling */ - temp = CRC_Handle_8(hcrc, (uint8_t *)pBuffer, BufferLength); - break; - - case CRC_INPUTDATA_FORMAT_HALFWORDS: - /* Specific 16-bit input data handling */ - temp = CRC_Handle_16(hcrc, (uint16_t *)(void *)pBuffer, BufferLength); /* Derogation MisraC2012 R.11.5 */ - break; - - default: - break; - } - - /* Change CRC peripheral state */ - hcrc->State = HAL_CRC_STATE_READY; - - /* Return the CRC computed value */ - return temp; -} - -/** - * @} - */ - -/** @defgroup CRC_Exported_Functions_Group3 Peripheral State functions - * @brief Peripheral State functions. - * -@verbatim - =============================================================================== - ##### Peripheral State functions ##### - =============================================================================== - [..] - This subsection permits to get in run-time the status of the peripheral. - -@endverbatim - * @{ - */ - -/** - * @brief Return the CRC handle state. - * @param hcrc CRC handle - * @retval HAL state - */ -HAL_CRC_StateTypeDef HAL_CRC_GetState(CRC_HandleTypeDef *hcrc) -{ - /* Return CRC handle state */ - return hcrc->State; -} - -/** - * @} - */ - -/** - * @} - */ - -/** @addtogroup CRC_Private_Functions - * @{ - */ - -/** - * @brief Enter 8-bit input data to the CRC calculator. - * Specific data handling to optimize processing time. - * @param hcrc CRC handle - * @param pBuffer pointer to the input data buffer - * @param BufferLength input data buffer length - * @retval uint32_t CRC (returned value LSBs for CRC shorter than 32 bits) - */ -static uint32_t CRC_Handle_8(CRC_HandleTypeDef *hcrc, uint8_t pBuffer[], uint32_t BufferLength) -{ - uint32_t i; /* input data buffer index */ - uint16_t data; - __IO uint16_t *pReg; - - /* Processing time optimization: 4 bytes are entered in a row with a single word write, - * last bytes must be carefully fed to the CRC calculator to ensure a correct type - * handling by the peripheral */ - for (i = 0U; i < (BufferLength / 4U); i++) - { - hcrc->Instance->DR = ((uint32_t)pBuffer[4U * i] << 24U) | \ - ((uint32_t)pBuffer[(4U * i) + 1U] << 16U) | \ - ((uint32_t)pBuffer[(4U * i) + 2U] << 8U) | \ - (uint32_t)pBuffer[(4U * i) + 3U]; - } - /* last bytes specific handling */ - if ((BufferLength % 4U) != 0U) - { - if ((BufferLength % 4U) == 1U) - { - *(__IO uint8_t *)(__IO void *)(&hcrc->Instance->DR) = pBuffer[4U * i]; /* Derogation MisraC2012 R.11.5 */ - } - if ((BufferLength % 4U) == 2U) - { - data = ((uint16_t)(pBuffer[4U * i]) << 8U) | (uint16_t)pBuffer[(4U * i) + 1U]; - pReg = (__IO uint16_t *)(__IO void *)(&hcrc->Instance->DR); /* Derogation MisraC2012 R.11.5 */ - *pReg = data; - } - if ((BufferLength % 4U) == 3U) - { - data = ((uint16_t)(pBuffer[4U * i]) << 8U) | (uint16_t)pBuffer[(4U * i) + 1U]; - pReg = (__IO uint16_t *)(__IO void *)(&hcrc->Instance->DR); /* Derogation MisraC2012 R.11.5 */ - *pReg = data; - - *(__IO uint8_t *)(__IO void *)(&hcrc->Instance->DR) = pBuffer[(4U * i) + 2U]; /* Derogation MisraC2012 R.11.5 */ - } - } - - /* Return the CRC computed value */ - return hcrc->Instance->DR; -} - -/** - * @brief Enter 16-bit input data to the CRC calculator. - * Specific data handling to optimize processing time. - * @param hcrc CRC handle - * @param pBuffer pointer to the input data buffer - * @param BufferLength input data buffer length - * @retval uint32_t CRC (returned value LSBs for CRC shorter than 32 bits) - */ -static uint32_t CRC_Handle_16(CRC_HandleTypeDef *hcrc, uint16_t pBuffer[], uint32_t BufferLength) -{ - uint32_t i; /* input data buffer index */ - __IO uint16_t *pReg; - - /* Processing time optimization: 2 HalfWords are entered in a row with a single word write, - * in case of odd length, last HalfWord must be carefully fed to the CRC calculator to ensure - * a correct type handling by the peripheral */ - for (i = 0U; i < (BufferLength / 2U); i++) - { - hcrc->Instance->DR = ((uint32_t)pBuffer[2U * i] << 16U) | (uint32_t)pBuffer[(2U * i) + 1U]; - } - if ((BufferLength % 2U) != 0U) - { - pReg = (__IO uint16_t *)(__IO void *)(&hcrc->Instance->DR); /* Derogation MisraC2012 R.11.5 */ - *pReg = pBuffer[2U * i]; - } - - /* Return the CRC computed value */ - return hcrc->Instance->DR; -} - -/** - * @} - */ - -#endif /* HAL_CRC_MODULE_ENABLED */ -/** - * @} - */ - -/** - * @} - */ - -/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_crc_ex.c b/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_crc_ex.c deleted file mode 100644 index f9856c0..0000000 --- a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_crc_ex.c +++ /dev/null @@ -1,227 +0,0 @@ -/** - ****************************************************************************** - * @file stm32f0xx_hal_crc_ex.c - * @author MCD Application Team - * @brief Extended CRC HAL module driver. - * This file provides firmware functions to manage the extended - * functionalities of the CRC peripheral. - * - @verbatim -================================================================================ - ##### How to use this driver ##### -================================================================================ - [..] - (+) Set user-defined generating polynomial thru HAL_CRCEx_Polynomial_Set() - (+) Configure Input or Output data inversion - - @endverbatim - ****************************************************************************** - * @attention - * - *

© Copyright (c) 2016 STMicroelectronics. - * All rights reserved.

- * - * This software component is licensed by ST under BSD 3-Clause license, - * the "License"; You may not use this file except in compliance with the - * License. You may obtain a copy of the License at: - * opensource.org/licenses/BSD-3-Clause - * - ****************************************************************************** - */ - -/* Includes ------------------------------------------------------------------*/ -#include "stm32f0xx_hal.h" - -/** @addtogroup STM32F0xx_HAL_Driver - * @{ - */ - -/** @defgroup CRCEx CRCEx - * @brief CRC Extended HAL module driver - * @{ - */ - -#ifdef HAL_CRC_MODULE_ENABLED - -/* Private typedef -----------------------------------------------------------*/ -/* Private define ------------------------------------------------------------*/ -/* Private macro -------------------------------------------------------------*/ -/* Private variables ---------------------------------------------------------*/ -/* Private function prototypes -----------------------------------------------*/ -/* Exported functions --------------------------------------------------------*/ - -/** @defgroup CRCEx_Exported_Functions CRC Extended Exported Functions - * @{ - */ - -/** @defgroup CRCEx_Exported_Functions_Group1 Extended Initialization/de-initialization functions - * @brief Extended Initialization and Configuration functions. - * -@verbatim - =============================================================================== - ##### Extended configuration functions ##### - =============================================================================== - [..] This section provides functions allowing to: - (+) Configure the generating polynomial - (+) Configure the input data inversion - (+) Configure the output data inversion - -@endverbatim - * @{ - */ - - -#if defined(CRC_POL_POL) -/** - * @brief Initialize the CRC polynomial if different from default one. - * @param hcrc CRC handle - * @param Pol CRC generating polynomial (7, 8, 16 or 32-bit long). - * This parameter is written in normal representation, e.g. - * @arg for a polynomial of degree 7, X^7 + X^6 + X^5 + X^2 + 1 is written 0x65 - * @arg for a polynomial of degree 16, X^16 + X^12 + X^5 + 1 is written 0x1021 - * @param PolyLength CRC polynomial length. - * This parameter can be one of the following values: - * @arg @ref CRC_POLYLENGTH_7B 7-bit long CRC (generating polynomial of degree 7) - * @arg @ref CRC_POLYLENGTH_8B 8-bit long CRC (generating polynomial of degree 8) - * @arg @ref CRC_POLYLENGTH_16B 16-bit long CRC (generating polynomial of degree 16) - * @arg @ref CRC_POLYLENGTH_32B 32-bit long CRC (generating polynomial of degree 32) - * @retval HAL status - */ -HAL_StatusTypeDef HAL_CRCEx_Polynomial_Set(CRC_HandleTypeDef *hcrc, uint32_t Pol, uint32_t PolyLength) -{ - HAL_StatusTypeDef status = HAL_OK; - uint32_t msb = 31U; /* polynomial degree is 32 at most, so msb is initialized to max value */ - - /* Check the parameters */ - assert_param(IS_CRC_POL_LENGTH(PolyLength)); - - /* check polynomial definition vs polynomial size: - * polynomial length must be aligned with polynomial - * definition. HAL_ERROR is reported if Pol degree is - * larger than that indicated by PolyLength. - * Look for MSB position: msb will contain the degree of - * the second to the largest polynomial member. E.g., for - * X^7 + X^6 + X^5 + X^2 + 1, msb = 6. */ - while ((msb-- > 0U) && ((Pol & ((uint32_t)(0x1U) << (msb & 0x1FU))) == 0U)) - { - } - - switch (PolyLength) - { - case CRC_POLYLENGTH_7B: - if (msb >= HAL_CRC_LENGTH_7B) - { - status = HAL_ERROR; - } - break; - case CRC_POLYLENGTH_8B: - if (msb >= HAL_CRC_LENGTH_8B) - { - status = HAL_ERROR; - } - break; - case CRC_POLYLENGTH_16B: - if (msb >= HAL_CRC_LENGTH_16B) - { - status = HAL_ERROR; - } - break; - - case CRC_POLYLENGTH_32B: - /* no polynomial definition vs. polynomial length issue possible */ - break; - default: - status = HAL_ERROR; - break; - } - if (status == HAL_OK) - { - /* set generating polynomial */ - WRITE_REG(hcrc->Instance->POL, Pol); - - /* set generating polynomial size */ - MODIFY_REG(hcrc->Instance->CR, CRC_CR_POLYSIZE, PolyLength); - } - /* Return function status */ - return status; -} -#endif /* CRC_POL_POL */ - -/** - * @brief Set the Reverse Input data mode. - * @param hcrc CRC handle - * @param InputReverseMode Input Data inversion mode. - * This parameter can be one of the following values: - * @arg @ref CRC_INPUTDATA_INVERSION_NONE no change in bit order (default value) - * @arg @ref CRC_INPUTDATA_INVERSION_BYTE Byte-wise bit reversal - * @arg @ref CRC_INPUTDATA_INVERSION_HALFWORD HalfWord-wise bit reversal - * @arg @ref CRC_INPUTDATA_INVERSION_WORD Word-wise bit reversal - * @retval HAL status - */ -HAL_StatusTypeDef HAL_CRCEx_Input_Data_Reverse(CRC_HandleTypeDef *hcrc, uint32_t InputReverseMode) -{ - /* Check the parameters */ - assert_param(IS_CRC_INPUTDATA_INVERSION_MODE(InputReverseMode)); - - /* Change CRC peripheral state */ - hcrc->State = HAL_CRC_STATE_BUSY; - - /* set input data inversion mode */ - MODIFY_REG(hcrc->Instance->CR, CRC_CR_REV_IN, InputReverseMode); - /* Change CRC peripheral state */ - hcrc->State = HAL_CRC_STATE_READY; - - /* Return function status */ - return HAL_OK; -} - -/** - * @brief Set the Reverse Output data mode. - * @param hcrc CRC handle - * @param OutputReverseMode Output Data inversion mode. - * This parameter can be one of the following values: - * @arg @ref CRC_OUTPUTDATA_INVERSION_DISABLE no CRC inversion (default value) - * @arg @ref CRC_OUTPUTDATA_INVERSION_ENABLE bit-level inversion (e.g. for a 8-bit CRC: 0xB5 becomes 0xAD) - * @retval HAL status - */ -HAL_StatusTypeDef HAL_CRCEx_Output_Data_Reverse(CRC_HandleTypeDef *hcrc, uint32_t OutputReverseMode) -{ - /* Check the parameters */ - assert_param(IS_CRC_OUTPUTDATA_INVERSION_MODE(OutputReverseMode)); - - /* Change CRC peripheral state */ - hcrc->State = HAL_CRC_STATE_BUSY; - - /* set output data inversion mode */ - MODIFY_REG(hcrc->Instance->CR, CRC_CR_REV_OUT, OutputReverseMode); - - /* Change CRC peripheral state */ - hcrc->State = HAL_CRC_STATE_READY; - - /* Return function status */ - return HAL_OK; -} - - - - -/** - * @} - */ - - -/** - * @} - */ - - -#endif /* HAL_CRC_MODULE_ENABLED */ -/** - * @} - */ - -/** - * @} - */ - -/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_dac.c b/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_dac.c deleted file mode 100644 index 86a2fc2..0000000 --- a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_dac.c +++ /dev/null @@ -1,1090 +0,0 @@ -/** - ****************************************************************************** - * @file stm32f0xx_hal_dac.c - * @author MCD Application Team - * @brief DAC HAL module driver. - * This file provides firmware functions to manage the following - * functionalities of the Digital to Analog Converter (DAC) peripheral: - * + Initialization and de-initialization functions - * + IO operation functions - * + Peripheral Control functions - * + Peripheral State and Errors functions - * - * - @verbatim - ============================================================================== - ##### DAC Peripheral features ##### - ============================================================================== - [..] - *** DAC Channels *** - ==================== - [..] - STM32F0 devices integrates no, one or two 12-bit Digital Analog Converters. - STM32F05x devices have one converter (channel1) - STM32F07x & STM32F09x devices have two converters (i.e. channel1 & channel2) - - When 2 converters are present (i.e. channel1 & channel2) they - can be used independently or simultaneously (dual mode): - (#) DAC channel1 with DAC_OUT1 (PA4) as output - (#) DAC channel2 with DAC_OUT2 (PA5) as output - - *** DAC Triggers *** - ==================== - [..] - Digital to Analog conversion can be non-triggered using DAC_TRIGGER_NONE - and DAC_OUT1/DAC_OUT2 is available once writing to DHRx register. - [..] - Digital to Analog conversion can be triggered by: - (#) External event: EXTI Line 9 (any GPIOx_PIN_9) using DAC_TRIGGER_EXT_IT9. - The used pin (GPIOx_PIN_9) must be configured in input mode. - - (#) Timers TRGO: TIM2, TIM3, TIM6, and TIM15 - (DAC_TRIGGER_T2_TRGO, DAC_TRIGGER_T3_TRGO...) - - (#) Software using DAC_TRIGGER_SOFTWARE - - *** DAC Buffer mode feature *** - =============================== - [..] - Each DAC channel integrates an output buffer that can be used to - reduce the output impedance, and to drive external loads directly - without having to add an external operational amplifier. - To enable, the output buffer use - sConfig.DAC_OutputBuffer = DAC_OUTPUTBUFFER_ENABLE; - [..] - (@) Refer to the device datasheet for more details about output - impedance value with and without output buffer. - - *** GPIO configurations guidelines *** - ===================== - [..] - When a DAC channel is used (ex channel1 on PA4) and the other is not - (ex channel1 on PA5 is configured in Analog and disabled). - Channel1 may disturb channel2 as coupling effect. - Note that there is no coupling on channel2 as soon as channel2 is turned on. - Coupling on adjacent channel could be avoided as follows: - when unused PA5 is configured as INPUT PULL-UP or DOWN. - PA5 is configured in ANALOG just before it is turned on. - - *** DAC wave generation feature *** - =================================== - [..] - Both DAC channels can be used to generate - (#) Noise wave - (#) Triangle wave - - *** DAC data format *** - ======================= - [..] - The DAC data format can be: - (#) 8-bit right alignment using DAC_ALIGN_8B_R - (#) 12-bit left alignment using DAC_ALIGN_12B_L - (#) 12-bit right alignment using DAC_ALIGN_12B_R - - *** DAC data value to voltage correspondance *** - ================================================ - [..] - The analog output voltage on each DAC channel pin is determined - by the following equation: - [..] - DAC_OUTx = VREF+ * DOR / 4095 - (+) with DOR is the Data Output Register - [..] - VEF+ is the input voltage reference (refer to the device datasheet) - [..] - e.g. To set DAC_OUT1 to 0.7V, use - (+) Assuming that VREF+ = 3.3V, DAC_OUT1 = (3.3 * 868) / 4095 = 0.7V - - *** DMA requests *** - ===================== - [..] - A DMA1 request can be generated when an external trigger (but not - a software trigger) occurs if DMA1 requests are enabled using - HAL_DAC_Start_DMA() - [..] - DMA1 requests are mapped as following: - (#) DAC channel1 : mapped on DMA1 channel3 which must be - already configured - (#) DAC channel2 : mapped on DMA1 channel4 which must be - already configured - - (@) For Dual mode and specific signal (Triangle and noise) generation please - refer to Extended Features Driver description - STM32F0 devices with one channel (one converting capability) does not - support Dual mode and specific signal (Triangle and noise) generation. - - ##### How to use this driver ##### - ============================================================================== - [..] - (+) DAC APB clock must be enabled to get write access to DAC - registers using HAL_DAC_Init() - (+) Configure DAC_OUTx (DAC_OUT1: PA4, DAC_OUT2: PA5) in analog mode. - (+) Configure the DAC channel using HAL_DAC_ConfigChannel() function. - (+) Enable the DAC channel using HAL_DAC_Start() or HAL_DAC_Start_DMA() functions. - - *** Polling mode IO operation *** - ================================= - [..] - (+) Start the DAC peripheral using HAL_DAC_Start() - (+) To read the DAC last data output value, use the HAL_DAC_GetValue() function. - (+) Stop the DAC peripheral using HAL_DAC_Stop() - - *** DMA mode IO operation *** - ============================== - [..] - (+) Start the DAC peripheral using HAL_DAC_Start_DMA(), at this stage the user specify the length - of data to be transferred at each end of conversion - (+) At the middle of data transfer HAL_DAC_ConvHalfCpltCallbackCh1() or HAL_DACEx_ConvHalfCpltCallbackCh2() - function is executed and user can add his own code by customization of function pointer - HAL_DAC_ConvHalfCpltCallbackCh1() or HAL_DACEx_ConvHalfCpltCallbackCh2() - (+) At The end of data transfer HAL_DAC_ConvCpltCallbackCh1() or HAL_DACEx_ConvHalfCpltCallbackCh2() - function is executed and user can add his own code by customization of function pointer - HAL_DAC_ConvCpltCallbackCh1() or HAL_DACEx_ConvHalfCpltCallbackCh2() - (+) In case of transfer Error, HAL_DAC_ErrorCallbackCh1() function is executed and user can - add his own code by customization of function pointer HAL_DAC_ErrorCallbackCh1 - (+) In case of DMA underrun, DAC interruption triggers and execute internal function HAL_DAC_IRQHandler. - HAL_DAC_DMAUnderrunCallbackCh1() or HAL_DACEx_DMAUnderrunCallbackCh2() - function is executed and user can add his own code by customization of function pointer - HAL_DAC_DMAUnderrunCallbackCh1() or HAL_DACEx_DMAUnderrunCallbackCh2() and - add his own code by customization of function pointer HAL_DAC_ErrorCallbackCh1() - (+) Stop the DAC peripheral using HAL_DAC_Stop_DMA() - - *** Callback registration *** - ============================================= - [..] - The compilation define USE_HAL_DAC_REGISTER_CALLBACKS when set to 1 - allows the user to configure dynamically the driver callbacks. - - Use Functions @ref HAL_DAC_RegisterCallback() to register a user callback, - it allows to register following callbacks: - (+) ConvCpltCallbackCh1 : callback when a half transfer is completed on Ch1. - (+) ConvHalfCpltCallbackCh1 : callback when a transfer is completed on Ch1. - (+) ErrorCallbackCh1 : callback when an error occurs on Ch1. - (+) DMAUnderrunCallbackCh1 : callback when an error occurs on Ch1. - (+) ConvCpltCallbackCh2 : callback when a half transfer is completed on Ch2. - (+) ConvHalfCpltCallbackCh2 : callback when a transfer is completed on Ch2. - (+) ErrorCallbackCh2 : callback when an error occurs on Ch2. - (+) DMAUnderrunCallbackCh2 : callback when an error occurs on Ch2. - (+) MspInitCallback : DAC MspInit. - (+) MspDeInitCallback : DAC MspdeInit. - This function takes as parameters the HAL peripheral handle, the Callback ID - and a pointer to the user callback function. - - Use function @ref HAL_DAC_UnRegisterCallback() to reset a callback to the default - weak (surcharged) function. It allows to reset following callbacks: - (+) ConvCpltCallbackCh1 : callback when a half transfer is completed on Ch1. - (+) ConvHalfCpltCallbackCh1 : callback when a transfer is completed on Ch1. - (+) ErrorCallbackCh1 : callback when an error occurs on Ch1. - (+) DMAUnderrunCallbackCh1 : callback when an error occurs on Ch1. - (+) ConvCpltCallbackCh2 : callback when a half transfer is completed on Ch2. - (+) ConvHalfCpltCallbackCh2 : callback when a transfer is completed on Ch2. - (+) ErrorCallbackCh2 : callback when an error occurs on Ch2. - (+) DMAUnderrunCallbackCh2 : callback when an error occurs on Ch2. - (+) MspInitCallback : DAC MspInit. - (+) MspDeInitCallback : DAC MspdeInit. - (+) All Callbacks - This function) takes as parameters the HAL peripheral handle and the Callback ID. - - By default, after the @ref HAL_DAC_Init and if the state is HAL_DAC_STATE_RESET - all callbacks are reset to the corresponding legacy weak (surcharged) functions. - Exception done for MspInit and MspDeInit callbacks that are respectively - reset to the legacy weak (surcharged) functions in the @ref HAL_DAC_Init - and @ref HAL_DAC_DeInit only when these callbacks are null (not registered beforehand). - If not, MspInit or MspDeInit are not null, the @ref HAL_DAC_Init and @ref HAL_DAC_DeInit - keep and use the user MspInit/MspDeInit callbacks (registered beforehand) - - Callbacks can be registered/unregistered in READY state only. - Exception done for MspInit/MspDeInit callbacks that can be registered/unregistered - in READY or RESET state, thus registered (user) MspInit/DeInit callbacks can be used - during the Init/DeInit. - In that case first register the MspInit/MspDeInit user callbacks - using @ref HAL_DAC_RegisterCallback before calling @ref HAL_DAC_DeInit - or @ref HAL_DAC_Init function. - - When The compilation define USE_HAL_DAC_REGISTER_CALLBACKS is set to 0 or - not defined, the callback registering feature is not available - and weak (surcharged) callbacks are used. - - *** DAC HAL driver macros list *** - ============================================= - [..] - Below the list of most used macros in DAC HAL driver. - - (+) __HAL_DAC_ENABLE : Enable the DAC peripheral - (+) __HAL_DAC_DISABLE : Disable the DAC peripheral - (+) __HAL_DAC_CLEAR_FLAG: Clear the DAC's pending flags - (+) __HAL_DAC_GET_FLAG: Get the selected DAC's flag status - - [..] - (@) You can refer to the DAC HAL driver header file for more useful macros - - @endverbatim - ****************************************************************************** - * @attention - * - *

© Copyright (c) 2016 STMicroelectronics. - * All rights reserved.

- * - * This software component is licensed by ST under BSD 3-Clause license, - * the "License"; You may not use this file except in compliance with the - * License. You may obtain a copy of the License at: - * opensource.org/licenses/BSD-3-Clause - * - ****************************************************************************** - */ - - -/* Includes ------------------------------------------------------------------*/ -#include "stm32f0xx_hal.h" - -/** @addtogroup STM32F0xx_HAL_Driver - * @{ - */ - -#ifdef HAL_DAC_MODULE_ENABLED - -#if defined (DAC1) - -/** @defgroup DAC DAC - * @brief DAC driver modules - * @{ - */ - -/* Private typedef -----------------------------------------------------------*/ -/* Private define ------------------------------------------------------------*/ -/* Private macro -------------------------------------------------------------*/ -/** @defgroup DAC_Private_Macros DAC Private Macros - * @{ - */ -/** - * @} - */ - -/* Private variables ---------------------------------------------------------*/ -/* Private function prototypes -----------------------------------------------*/ -/** @defgroup DAC_Private_Functions DAC Private Functions - * @{ - */ -/** - * @} - */ - -/* Exported functions -------------------------------------------------------*/ - -/** @defgroup DAC_Exported_Functions DAC Exported Functions - * @{ - */ - -/** @defgroup DAC_Exported_Functions_Group1 Initialization and de-initialization functions - * @brief Initialization and Configuration functions - * -@verbatim - ============================================================================== - ##### Initialization and de-initialization functions ##### - ============================================================================== - [..] This section provides functions allowing to: - (+) Initialize and configure the DAC. - (+) De-initialize the DAC. - -@endverbatim - * @{ - */ - -/** - * @brief Initialize the DAC peripheral according to the specified parameters - * in the DAC_InitStruct and initialize the associated handle. - * @param hdac pointer to a DAC_HandleTypeDef structure that contains - * the configuration information for the specified DAC. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_DAC_Init(DAC_HandleTypeDef* hdac) -{ - /* Check DAC handle */ - if(hdac == NULL) - { - return HAL_ERROR; - } - /* Check the parameters */ - assert_param(IS_DAC_ALL_INSTANCE(hdac->Instance)); - - if (hdac->State == HAL_DAC_STATE_RESET) - { -#if (USE_HAL_DAC_REGISTER_CALLBACKS == 1) - /* Init the DAC Callback settings */ - hdac->ConvCpltCallbackCh1 = HAL_DAC_ConvCpltCallbackCh1; - hdac->ConvHalfCpltCallbackCh1 = HAL_DAC_ConvHalfCpltCallbackCh1; - hdac->ErrorCallbackCh1 = HAL_DAC_ErrorCallbackCh1; - hdac->DMAUnderrunCallbackCh1 = HAL_DAC_DMAUnderrunCallbackCh1; - - hdac->ConvCpltCallbackCh2 = HAL_DACEx_ConvCpltCallbackCh2; - hdac->ConvHalfCpltCallbackCh2 = HAL_DACEx_ConvHalfCpltCallbackCh2; - hdac->ErrorCallbackCh2 = HAL_DACEx_ErrorCallbackCh2; - hdac->DMAUnderrunCallbackCh2 = HAL_DACEx_DMAUnderrunCallbackCh2; - - if (hdac->MspInitCallback == NULL) - { - hdac->MspInitCallback = HAL_DAC_MspInit; - } -#endif /* USE_HAL_DAC_REGISTER_CALLBACKS */ - - /* Allocate lock resource and initialize it */ - hdac->Lock = HAL_UNLOCKED; - -#if (USE_HAL_DAC_REGISTER_CALLBACKS == 1) - /* Init the low level hardware */ - hdac->MspInitCallback(hdac); -#else - /* Init the low level hardware */ - HAL_DAC_MspInit(hdac); -#endif /* USE_HAL_DAC_REGISTER_CALLBACKS */ - } - - /* Initialize the DAC state*/ - hdac->State = HAL_DAC_STATE_BUSY; - - /* Set DAC error code to none */ - hdac->ErrorCode = HAL_DAC_ERROR_NONE; - - /* Initialize the DAC state*/ - hdac->State = HAL_DAC_STATE_READY; - - /* Return function status */ - return HAL_OK; -} - -/** - * @brief Deinitialize the DAC peripheral registers to their default reset values. - * @param hdac pointer to a DAC_HandleTypeDef structure that contains - * the configuration information for the specified DAC. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_DAC_DeInit(DAC_HandleTypeDef* hdac) -{ - /* Check DAC handle */ - if(hdac == NULL) - { - return HAL_ERROR; - } - - /* Check the parameters */ - assert_param(IS_DAC_ALL_INSTANCE(hdac->Instance)); - - /* Change DAC state */ - hdac->State = HAL_DAC_STATE_BUSY; - -#if (USE_HAL_DAC_REGISTER_CALLBACKS == 1) - if(hdac->MspDeInitCallback == NULL) - { - hdac->MspDeInitCallback = HAL_DAC_MspDeInit; - } - /* DeInit the low level hardware */ - hdac->MspDeInitCallback(hdac); - -#else - /* DeInit the low level hardware */ - HAL_DAC_MspDeInit(hdac); -#endif /* USE_HAL_DAC_REGISTER_CALLBACKS */ - - /* Set DAC error code to none */ - hdac->ErrorCode = HAL_DAC_ERROR_NONE; - - /* Change DAC state */ - hdac->State = HAL_DAC_STATE_RESET; - - /* Release Lock */ - __HAL_UNLOCK(hdac); - - /* Return function status */ - return HAL_OK; -} - -/** - * @brief Initialize the DAC MSP. - * @param hdac pointer to a DAC_HandleTypeDef structure that contains - * the configuration information for the specified DAC. - * @retval None - */ -__weak void HAL_DAC_MspInit(DAC_HandleTypeDef* hdac) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hdac); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_DAC_MspInit could be implemented in the user file - */ -} - -/** - * @brief DeInitialize the DAC MSP. - * @param hdac pointer to a DAC_HandleTypeDef structure that contains - * the configuration information for the specified DAC. - * @retval None - */ -__weak void HAL_DAC_MspDeInit(DAC_HandleTypeDef* hdac) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hdac); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_DAC_MspDeInit could be implemented in the user file - */ -} - -/** - * @} - */ - -/** @defgroup DAC_Exported_Functions_Group2 IO operation functions - * @brief IO operation functions - * -@verbatim - ============================================================================== - ##### IO operation functions ##### - ============================================================================== - [..] This section provides functions allowing to: - (+) Start conversion. - (+) Stop conversion. - (+) Start conversion and enable DMA transfer. - (+) Stop conversion and disable DMA transfer. - (+) Set the specified data holding register value for DAC channel. - -@endverbatim - * @{ - */ - -/** - * @brief Enables DAC and starts conversion of channel. - * @param hdac pointer to a DAC_HandleTypeDef structure that contains - * the configuration information for the specified DAC. - * @param Channel The selected DAC channel. - * This parameter can be one of the following values: - * @arg DAC_CHANNEL_1: DAC Channel1 selected - * @arg DAC_CHANNEL_2: DAC Channel2 selected - * @retval HAL status - */ -__weak HAL_StatusTypeDef HAL_DAC_Start(DAC_HandleTypeDef* hdac, uint32_t Channel) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hdac); - UNUSED(Channel); - - /* Note : This function is defined into this file for library reference. */ - /* Function content is located into file stm32f0xx_hal_dac_ex.c */ - - /* Return error status as not implemented here */ - return HAL_ERROR; -} - -/** - * @brief Disables DAC and stop conversion of channel. - * @param hdac pointer to a DAC_HandleTypeDef structure that contains - * the configuration information for the specified DAC. - * @param Channel The selected DAC channel. - * This parameter can be one of the following values: - * @arg DAC_CHANNEL_1: DAC Channel1 selected - * @arg DAC_CHANNEL_2: DAC Channel2 selected - * @retval HAL status - */ -HAL_StatusTypeDef HAL_DAC_Stop(DAC_HandleTypeDef* hdac, uint32_t Channel) -{ - /* Check the parameters */ - assert_param(IS_DAC_CHANNEL(Channel)); - - /* Disable the Peripheral */ - __HAL_DAC_DISABLE(hdac, Channel); - - /* Change DAC state */ - hdac->State = HAL_DAC_STATE_READY; - - /* Return function status */ - return HAL_OK; -} - -/** - * @brief Enables DAC and starts conversion of channel. - * @param hdac pointer to a DAC_HandleTypeDef structure that contains - * the configuration information for the specified DAC. - * @param Channel The selected DAC channel. - * This parameter can be one of the following values: - * @arg DAC_CHANNEL_1: DAC Channel1 selected - * @arg DAC_CHANNEL_2: DAC Channel2 selected - * @param pData The destination peripheral Buffer address. - * @param Length The length of data to be transferred from memory to DAC peripheral - * @param Alignment Specifies the data alignment for DAC channel. - * This parameter can be one of the following values: - * @arg DAC_ALIGN_8B_R: 8bit right data alignment selected - * @arg DAC_ALIGN_12B_L: 12bit left data alignment selected - * @arg DAC_ALIGN_12B_R: 12bit right data alignment selected - * @retval HAL status - */ -__weak HAL_StatusTypeDef HAL_DAC_Start_DMA(DAC_HandleTypeDef* hdac, uint32_t Channel, uint32_t* pData, uint32_t Length, uint32_t Alignment) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hdac); - UNUSED(Channel); - UNUSED(pData); - UNUSED(Length); - UNUSED(Alignment); - - /* Note : This function is defined into this file for library reference. */ - /* Function content is located into file stm32f0xx_hal_dac_ex.c */ - - /* Return error status as not implemented here */ - return HAL_ERROR; -} - -/** - * @brief Disables DAC and stop conversion of channel. - * @param hdac pointer to a DAC_HandleTypeDef structure that contains - * the configuration information for the specified DAC. - * @param Channel The selected DAC channel. - * This parameter can be one of the following values: - * @arg DAC_CHANNEL_1: DAC Channel1 selected - * @arg DAC_CHANNEL_2: DAC Channel2 selected - * @retval HAL status - */ -HAL_StatusTypeDef HAL_DAC_Stop_DMA(DAC_HandleTypeDef* hdac, uint32_t Channel) -{ - HAL_StatusTypeDef status = HAL_OK; - - /* Check the parameters */ - assert_param(IS_DAC_CHANNEL(Channel)); - - /* Disable the selected DAC channel DMA request */ - hdac->Instance->CR &= ~(DAC_CR_DMAEN1 << Channel); - - /* Disable the Peripheral */ - __HAL_DAC_DISABLE(hdac, Channel); - - /* Disable the DMA channel */ - /* Channel1 is used */ - if (Channel == DAC_CHANNEL_1) - { - /* Disable the DMA channel */ - status = HAL_DMA_Abort(hdac->DMA_Handle1); - - /* Disable the DAC DMA underrun interrupt */ - __HAL_DAC_DISABLE_IT(hdac, DAC_IT_DMAUDR1); - } - -#if defined(DAC_CHANNEL2_SUPPORT) - - else /* Channel2 is used */ - { - /* Disable the DMA channel */ - status = HAL_DMA_Abort(hdac->DMA_Handle2); - - /* Disable the DAC DMA underrun interrupt */ - __HAL_DAC_DISABLE_IT(hdac, DAC_IT_DMAUDR2); - } -#endif /* DAC_CHANNEL2_SUPPORT */ - - /* Check if DMA Channel effectively disabled */ - if (status != HAL_OK) - { - /* Update DAC state machine to error */ - hdac->State = HAL_DAC_STATE_ERROR; - } - else - { - /* Change DAC state */ - hdac->State = HAL_DAC_STATE_READY; - } - - /* Return function status */ - return status; -} - -/** - * @brief Handles DAC interrupt request - * @param hdac pointer to a DAC_HandleTypeDef structure that contains - * the configuration information for the specified DAC. - * @retval None - */ -__weak void HAL_DAC_IRQHandler(DAC_HandleTypeDef* hdac) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hdac); - - /* Note : This function is defined into this file for library reference. */ - /* Function content is located into file stm32f0xx_hal_dac_ex.c */ -} - -/** - * @brief Set the specified data holding register value for DAC channel. - * @param hdac pointer to a DAC_HandleTypeDef structure that contains - * the configuration information for the specified DAC. - * @param Channel The selected DAC channel. - * This parameter can be one of the following values: - * @arg DAC_CHANNEL_1: DAC Channel1 selected - * @arg DAC_CHANNEL_2: DAC Channel2 selected - * @param Alignment Specifies the data alignment. - * This parameter can be one of the following values: - * @arg DAC_ALIGN_8B_R: 8bit right data alignment selected - * @arg DAC_ALIGN_12B_L: 12bit left data alignment selected - * @arg DAC_ALIGN_12B_R: 12bit right data alignment selected - * @param Data Data to be loaded in the selected data holding register. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_DAC_SetValue(DAC_HandleTypeDef* hdac, uint32_t Channel, uint32_t Alignment, uint32_t Data) -{ - __IO uint32_t tmp = 0; - - /* Check the parameters */ - assert_param(IS_DAC_CHANNEL(Channel)); - assert_param(IS_DAC_ALIGN(Alignment)); - assert_param(IS_DAC_DATA(Data)); - - tmp = (uint32_t)hdac->Instance; - if(Channel == DAC_CHANNEL_1) - { - tmp += DAC_DHR12R1_ALIGNMENT(Alignment); - } - else - { - tmp += DAC_DHR12R2_ALIGNMENT(Alignment); - } - - /* Set the DAC channel1 selected data holding register */ - *(__IO uint32_t *) tmp = Data; - - /* Return function status */ - return HAL_OK; -} - -/** - * @brief Conversion complete callback in non blocking mode for Channel1 - * @param hdac pointer to a DAC_HandleTypeDef structure that contains - * the configuration information for the specified DAC. - * @retval None - */ -__weak void HAL_DAC_ConvCpltCallbackCh1(DAC_HandleTypeDef* hdac) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hdac); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_DAC_ConvCpltCallbackCh1 could be implemented in the user file - */ -} - -/** - * @brief Conversion half DMA transfer callback in non-blocking mode for Channel1 - * @param hdac pointer to a DAC_HandleTypeDef structure that contains - * the configuration information for the specified DAC. - * @retval None - */ -__weak void HAL_DAC_ConvHalfCpltCallbackCh1(DAC_HandleTypeDef* hdac) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hdac); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_DAC_ConvHalfCpltCallbackCh1 could be implemented in the user file - */ -} - -/** - * @brief Error DAC callback for Channel1. - * @param hdac pointer to a DAC_HandleTypeDef structure that contains - * the configuration information for the specified DAC. - * @retval None - */ -__weak void HAL_DAC_ErrorCallbackCh1(DAC_HandleTypeDef *hdac) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hdac); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_DAC_ErrorCallbackCh1 could be implemented in the user file - */ -} - -/** - * @brief DMA underrun DAC callback for channel1. - * @param hdac pointer to a DAC_HandleTypeDef structure that contains - * the configuration information for the specified DAC. - * @retval None - */ -__weak void HAL_DAC_DMAUnderrunCallbackCh1(DAC_HandleTypeDef *hdac) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hdac); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_DAC_DMAUnderrunCallbackCh1 could be implemented in the user file - */ -} - -/** - * @} - */ - -/** @defgroup DAC_Exported_Functions_Group3 Peripheral Control functions - * @brief Peripheral Control functions - * -@verbatim - ============================================================================== - ##### Peripheral Control functions ##### - ============================================================================== - [..] This section provides functions allowing to: - (+) Configure channels. - (+) Get result of conversion. - -@endverbatim - * @{ - */ - -/** - * @brief Returns the last data output value of the selected DAC channel. - * @param hdac pointer to a DAC_HandleTypeDef structure that contains - * the configuration information for the specified DAC. - * @param Channel The selected DAC channel. - * This parameter can be one of the following values: - * @arg DAC_CHANNEL_1: DAC Channel1 selected - * @arg DAC_CHANNEL_2: DAC Channel2 selected - * @retval The selected DAC channel data output value. - */ -__weak uint32_t HAL_DAC_GetValue(DAC_HandleTypeDef* hdac, uint32_t Channel) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hdac); - UNUSED(Channel); - - /* Note : This function is defined into this file for library reference. */ - /* Function content is located into file stm32f0xx_hal_dac_ex.c */ - - /* Return error status as not implemented here */ - return HAL_ERROR; -} - -/** - * @brief Configures the selected DAC channel. - * @param hdac pointer to a DAC_HandleTypeDef structure that contains - * the configuration information for the specified DAC. - * @param sConfig DAC configuration structure. - * @param Channel The selected DAC channel. - * This parameter can be one of the following values: - * @arg DAC_CHANNEL_1: DAC Channel1 selected - * @arg DAC_CHANNEL_2: DAC Channel2 selected - * @retval HAL status - */ -__weak HAL_StatusTypeDef HAL_DAC_ConfigChannel(DAC_HandleTypeDef* hdac, DAC_ChannelConfTypeDef* sConfig, uint32_t Channel) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hdac); - UNUSED(sConfig); - UNUSED(Channel); - - /* Note : This function is defined into this file for library reference. */ - /* Function content is located into file stm32f0xx_hal_dac_ex.c */ - - /* Return error status as not implemented here */ - return HAL_ERROR; -} - -/** - * @} - */ - -/** @defgroup DAC_Exported_Functions_Group4 Peripheral State and Errors functions - * @brief Peripheral State and Errors functions - * -@verbatim - ============================================================================== - ##### Peripheral State and Errors functions ##### - ============================================================================== - [..] - This subsection provides functions allowing to - (+) Check the DAC state. - (+) Check the DAC Errors. - -@endverbatim - * @{ - */ - -/** - * @brief return the DAC handle state - * @param hdac pointer to a DAC_HandleTypeDef structure that contains - * the configuration information for the specified DAC. - * @retval HAL state - */ -HAL_DAC_StateTypeDef HAL_DAC_GetState(DAC_HandleTypeDef* hdac) -{ - /* Return DAC handle state */ - return hdac->State; -} - - -/** - * @brief Return the DAC error code - * @param hdac pointer to a DAC_HandleTypeDef structure that contains - * the configuration information for the specified DAC. - * @retval DAC Error Code - */ -uint32_t HAL_DAC_GetError(DAC_HandleTypeDef *hdac) -{ - return hdac->ErrorCode; -} - -/** - * @} - */ - - -/** - * @} - */ - -/** @addtogroup DAC_Exported_Functions - * @{ - */ - -/** @addtogroup DAC_Exported_Functions_Group1 - * @{ - */ -#if (USE_HAL_DAC_REGISTER_CALLBACKS == 1) -/** - * @brief Register a User DAC Callback - * To be used instead of the weak (surcharged) predefined callback - * @param hdac DAC handle - * @param CallbackID ID of the callback to be registered - * This parameter can be one of the following values: - * @arg @ref HAL_DAC_ERROR_INVALID_CALLBACK DAC Error Callback ID - * @arg @ref HAL_DAC_CH1_COMPLETE_CB_ID DAC CH1 Complete Callback ID - * @arg @ref HAL_DAC_CH1_HALF_COMPLETE_CB_ID DAC CH1 Half Complete Callback ID - * @arg @ref HAL_DAC_CH1_ERROR_ID DAC CH1 Error Callback ID - * @arg @ref HAL_DAC_CH1_UNDERRUN_CB_ID DAC CH1 UnderRun Callback ID - * @arg @ref HAL_DAC_CH2_COMPLETE_CB_ID DAC CH2 Complete Callback ID - * @arg @ref HAL_DAC_CH2_HALF_COMPLETE_CB_ID DAC CH2 Half Complete Callback ID - * @arg @ref HAL_DAC_CH2_ERROR_ID DAC CH2 Error Callback ID - * @arg @ref HAL_DAC_CH2_UNDERRUN_CB_ID DAC CH2 UnderRun Callback ID - * @arg @ref HAL_DAC_MSPINIT_CB_ID DAC MSP Init Callback ID - * @arg @ref HAL_DAC_MSPDEINIT_CB_ID DAC MSP DeInit Callback ID - * - * @param pCallback pointer to the Callback function - * @retval status - */ -HAL_StatusTypeDef HAL_DAC_RegisterCallback(DAC_HandleTypeDef *hdac, HAL_DAC_CallbackIDTypeDef CallbackID, - pDAC_CallbackTypeDef pCallback) -{ - HAL_StatusTypeDef status = HAL_OK; - - if (pCallback == NULL) - { - /* Update the error code */ - hdac->ErrorCode |= HAL_DAC_ERROR_INVALID_CALLBACK; - return HAL_ERROR; - } - - /* Process locked */ - __HAL_LOCK(hdac); - - if (hdac->State == HAL_DAC_STATE_READY) - { - switch (CallbackID) - { - case HAL_DAC_CH1_COMPLETE_CB_ID : - hdac->ConvCpltCallbackCh1 = pCallback; - break; - case HAL_DAC_CH1_HALF_COMPLETE_CB_ID : - hdac->ConvHalfCpltCallbackCh1 = pCallback; - break; - case HAL_DAC_CH1_ERROR_ID : - hdac->ErrorCallbackCh1 = pCallback; - break; - case HAL_DAC_CH1_UNDERRUN_CB_ID : - hdac->DMAUnderrunCallbackCh1 = pCallback; - break; - case HAL_DAC_CH2_COMPLETE_CB_ID : - hdac->ConvCpltCallbackCh2 = pCallback; - break; - case HAL_DAC_CH2_HALF_COMPLETE_CB_ID : - hdac->ConvHalfCpltCallbackCh2 = pCallback; - break; - case HAL_DAC_CH2_ERROR_ID : - hdac->ErrorCallbackCh2 = pCallback; - break; - case HAL_DAC_CH2_UNDERRUN_CB_ID : - hdac->DMAUnderrunCallbackCh2 = pCallback; - break; - case HAL_DAC_MSPINIT_CB_ID : - hdac->MspInitCallback = pCallback; - break; - case HAL_DAC_MSPDEINIT_CB_ID : - hdac->MspDeInitCallback = pCallback; - break; - default : - /* Update the error code */ - hdac->ErrorCode |= HAL_DAC_ERROR_INVALID_CALLBACK; - /* update return status */ - status = HAL_ERROR; - break; - } - } - else if (hdac->State == HAL_DAC_STATE_RESET) - { - switch (CallbackID) - { - case HAL_DAC_MSPINIT_CB_ID : - hdac->MspInitCallback = pCallback; - break; - case HAL_DAC_MSPDEINIT_CB_ID : - hdac->MspDeInitCallback = pCallback; - break; - default : - /* Update the error code */ - hdac->ErrorCode |= HAL_DAC_ERROR_INVALID_CALLBACK; - /* update return status */ - status = HAL_ERROR; - break; - } - } - else - { - /* Update the error code */ - hdac->ErrorCode |= HAL_DAC_ERROR_INVALID_CALLBACK; - /* update return status */ - status = HAL_ERROR; - } - - /* Release Lock */ - __HAL_UNLOCK(hdac); - return status; -} - -/** - * @brief Unregister a User DAC Callback - * DAC Callback is redirected to the weak (surcharged) predefined callback - * @param hdac DAC handle - * @param CallbackID ID of the callback to be unregistered - * This parameter can be one of the following values: - * @arg @ref HAL_DAC_CH1_COMPLETE_CB_ID DAC CH1 tranfer Complete Callback ID - * @arg @ref HAL_DAC_CH1_HALF_COMPLETE_CB_ID DAC CH1 Half Complete Callback ID - * @arg @ref HAL_DAC_CH1_ERROR_ID DAC CH1 Error Callback ID - * @arg @ref HAL_DAC_CH1_UNDERRUN_CB_ID DAC CH1 UnderRun Callback ID - * @arg @ref HAL_DAC_CH2_COMPLETE_CB_ID DAC CH2 Complete Callback ID - * @arg @ref HAL_DAC_CH2_HALF_COMPLETE_CB_ID DAC CH2 Half Complete Callback ID - * @arg @ref HAL_DAC_CH2_ERROR_ID DAC CH2 Error Callback ID - * @arg @ref HAL_DAC_CH2_UNDERRUN_CB_ID DAC CH2 UnderRun Callback ID - * @arg @ref HAL_DAC_MSPINIT_CB_ID DAC MSP Init Callback ID - * @arg @ref HAL_DAC_MSPDEINIT_CB_ID DAC MSP DeInit Callback ID - * @arg @ref HAL_DAC_ALL_CB_ID DAC All callbacks - * @retval status - */ -HAL_StatusTypeDef HAL_DAC_UnRegisterCallback(DAC_HandleTypeDef *hdac, HAL_DAC_CallbackIDTypeDef CallbackID) -{ - HAL_StatusTypeDef status = HAL_OK; - - /* Process locked */ - __HAL_LOCK(hdac); - - if (hdac->State == HAL_DAC_STATE_READY) - { - switch (CallbackID) - { - case HAL_DAC_CH1_COMPLETE_CB_ID : - hdac->ConvCpltCallbackCh1 = HAL_DAC_ConvCpltCallbackCh1; - break; - case HAL_DAC_CH1_HALF_COMPLETE_CB_ID : - hdac->ConvHalfCpltCallbackCh1 = HAL_DAC_ConvHalfCpltCallbackCh1; - break; - case HAL_DAC_CH1_ERROR_ID : - hdac->ErrorCallbackCh1 = HAL_DAC_ErrorCallbackCh1; - break; - case HAL_DAC_CH1_UNDERRUN_CB_ID : - hdac->DMAUnderrunCallbackCh1 = HAL_DAC_DMAUnderrunCallbackCh1; - break; - case HAL_DAC_CH2_COMPLETE_CB_ID : - hdac->ConvCpltCallbackCh2 = HAL_DACEx_ConvCpltCallbackCh2; - break; - case HAL_DAC_CH2_HALF_COMPLETE_CB_ID : - hdac->ConvHalfCpltCallbackCh2 = HAL_DACEx_ConvHalfCpltCallbackCh2; - break; - case HAL_DAC_CH2_ERROR_ID : - hdac->ErrorCallbackCh2 = HAL_DACEx_ErrorCallbackCh2; - break; - case HAL_DAC_CH2_UNDERRUN_CB_ID : - hdac->DMAUnderrunCallbackCh2 = HAL_DACEx_DMAUnderrunCallbackCh2; - break; - case HAL_DAC_MSPINIT_CB_ID : - hdac->MspInitCallback = HAL_DAC_MspInit; - break; - case HAL_DAC_MSPDEINIT_CB_ID : - hdac->MspDeInitCallback = HAL_DAC_MspDeInit; - break; - case HAL_DAC_ALL_CB_ID : - hdac->ConvCpltCallbackCh1 = HAL_DAC_ConvCpltCallbackCh1; - hdac->ConvHalfCpltCallbackCh1 = HAL_DAC_ConvHalfCpltCallbackCh1; - hdac->ErrorCallbackCh1 = HAL_DAC_ErrorCallbackCh1; - hdac->DMAUnderrunCallbackCh1 = HAL_DAC_DMAUnderrunCallbackCh1; - hdac->ConvCpltCallbackCh2 = HAL_DACEx_ConvCpltCallbackCh2; - hdac->ConvHalfCpltCallbackCh2 = HAL_DACEx_ConvHalfCpltCallbackCh2; - hdac->ErrorCallbackCh2 = HAL_DACEx_ErrorCallbackCh2; - hdac->DMAUnderrunCallbackCh2 = HAL_DACEx_DMAUnderrunCallbackCh2; - hdac->MspInitCallback = HAL_DAC_MspInit; - hdac->MspDeInitCallback = HAL_DAC_MspDeInit; - break; - default : - /* Update the error code */ - hdac->ErrorCode |= HAL_DAC_ERROR_INVALID_CALLBACK; - /* update return status */ - status = HAL_ERROR; - break; - } - } - else if (hdac->State == HAL_DAC_STATE_RESET) - { - switch (CallbackID) - { - case HAL_DAC_MSPINIT_CB_ID : - hdac->MspInitCallback = HAL_DAC_MspInit; - break; - case HAL_DAC_MSPDEINIT_CB_ID : - hdac->MspDeInitCallback = HAL_DAC_MspDeInit; - break; - default : - /* Update the error code */ - hdac->ErrorCode |= HAL_DAC_ERROR_INVALID_CALLBACK; - /* update return status */ - status = HAL_ERROR; - break; - } - } - else - { - /* Update the error code */ - hdac->ErrorCode |= HAL_DAC_ERROR_INVALID_CALLBACK; - /* update return status */ - status = HAL_ERROR; - } - - /* Release Lock */ - __HAL_UNLOCK(hdac); - return status; -} -#endif /* USE_HAL_DAC_REGISTER_CALLBACKS */ - -/** - * @} - */ - - -/** - * @} - */ - - -/** - * @} - */ -#endif /* DAC1 */ - -#endif /* HAL_DAC_MODULE_ENABLED */ - -/** - * @} - */ - - -/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_dac_ex.c b/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_dac_ex.c deleted file mode 100644 index feac2b8..0000000 --- a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_dac_ex.c +++ /dev/null @@ -1,1183 +0,0 @@ -/** - ****************************************************************************** - * @file stm32f0xx_hal_dac_ex.c - * @author MCD Application Team - * @brief DAC HAL module driver. - * This file provides firmware functions to manage the extended - * functionalities of the DAC peripheral. - * - * - @verbatim - ============================================================================== - ##### How to use this driver ##### - ============================================================================== - [..] - (+) When Dual mode is enabled (i.e. DAC Channel1 and Channel2 are used simultaneously) : - Use HAL_DACEx_DualGetValue() to get digital data to be converted and use - HAL_DACEx_DualSetValue() to set digital value to converted simultaneously in Channel 1 and Channel 2. - (+) Use HAL_DACEx_TriangleWaveGenerate() to generate Triangle signal. - (+) Use HAL_DACEx_NoiseWaveGenerate() to generate Noise signal. - - @endverbatim - ****************************************************************************** - * @attention - * - *

© Copyright (c) 2016 STMicroelectronics. - * All rights reserved.

- * - * This software component is licensed by ST under BSD 3-Clause license, - * the "License"; You may not use this file except in compliance with the - * License. You may obtain a copy of the License at: - * opensource.org/licenses/BSD-3-Clause - * - ****************************************************************************** - */ - - -/* Includes ------------------------------------------------------------------*/ -#include "stm32f0xx_hal.h" - -/** @addtogroup STM32F0xx_HAL_Driver - * @{ - */ - -#ifdef HAL_DAC_MODULE_ENABLED - -/** @addtogroup DAC - * @{ - */ - -#if defined(STM32F051x8) || defined(STM32F058xx) || \ - defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \ - defined(STM32F091xC) || defined(STM32F098xx) - -/** @addtogroup DAC_Private_Functions - * @{ - */ -static void DAC_DMAConvCpltCh1(DMA_HandleTypeDef *hdma); -static void DAC_DMAErrorCh1(DMA_HandleTypeDef *hdma); -static void DAC_DMAHalfConvCpltCh1(DMA_HandleTypeDef *hdma); -/** - * @} - */ - -#endif /* STM32F051x8 STM32F058xx */ - /* STM32F071xB STM32F072xB STM32F078xx */ - /* STM32F091xC STM32F098xx */ - -#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \ - defined(STM32F091xC) || defined(STM32F098xx) - -/** @addtogroup DAC_Private_Functions - * @{ - */ - -/* DAC_DMAConvCpltCh2 / DAC_DMAErrorCh2 / DAC_DMAHalfConvCpltCh2 */ -/* are set by HAL_DAC_Start_DMA */ - -void DAC_DMAConvCpltCh2(DMA_HandleTypeDef *hdma); -void DAC_DMAErrorCh2(DMA_HandleTypeDef *hdma); -void DAC_DMAHalfConvCpltCh2(DMA_HandleTypeDef *hdma); -/** - * @} - */ - -#endif /* STM32F071xB STM32F072xB STM32F078xx */ - /* STM32F091xC STM32F098xx */ - -/** @addtogroup DAC_Exported_Functions - * @{ - */ - -/** @addtogroup DAC_Exported_Functions_Group3 - * @{ - */ - -#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \ - defined(STM32F091xC) || defined(STM32F098xx) - -/** - * @brief Configures the selected DAC channel. - * @param hdac pointer to a DAC_HandleTypeDef structure that contains - * the configuration information for the specified DAC. - * @param sConfig DAC configuration structure. - * @param Channel The selected DAC channel. - * This parameter can be one of the following values: - * @arg DAC_CHANNEL_1: DAC Channel1 selected - * @arg DAC_CHANNEL_2: DAC Channel2 selected - * @retval HAL status - */ -HAL_StatusTypeDef HAL_DAC_ConfigChannel(DAC_HandleTypeDef* hdac, DAC_ChannelConfTypeDef* sConfig, uint32_t Channel) -{ - uint32_t tmpreg1 = 0U, tmpreg2 = 0U; - - /* Check the DAC parameters */ - assert_param(IS_DAC_TRIGGER(sConfig->DAC_Trigger)); - assert_param(IS_DAC_OUTPUT_BUFFER_STATE(sConfig->DAC_OutputBuffer)); - assert_param(IS_DAC_TRIGGER(sConfig->DAC_Trigger)); - assert_param(IS_DAC_CHANNEL(Channel)); - - /* Process locked */ - __HAL_LOCK(hdac); - - /* Change DAC state */ - hdac->State = HAL_DAC_STATE_BUSY; - - /* Get the DAC CR value */ - tmpreg1 = hdac->Instance->CR; - /* Clear BOFFx, TENx, TSELx, WAVEx and MAMPx bits */ - tmpreg1 &= ~(((uint32_t)(DAC_CR_MAMP1 | DAC_CR_WAVE1 | DAC_CR_TSEL1 | DAC_CR_TEN1 | DAC_CR_BOFF1)) << Channel); - /* Configure for the selected DAC channel: buffer output, trigger */ - /* Set TSELx and TENx bits according to DAC_Trigger value */ - /* Set BOFFx bit according to DAC_OutputBuffer value */ - tmpreg2 = (sConfig->DAC_Trigger | sConfig->DAC_OutputBuffer); - /* Calculate CR register value depending on DAC_Channel */ - tmpreg1 |= tmpreg2 << Channel; - /* Write to DAC CR */ - hdac->Instance->CR = tmpreg1; - - /* Change DAC state */ - hdac->State = HAL_DAC_STATE_READY; - - /* Process unlocked */ - __HAL_UNLOCK(hdac); - - /* Return function status */ - return HAL_OK; -} - -#endif /* STM32F071xB STM32F072xB STM32F078xx */ - /* STM32F091xC STM32F098xx */ - -#if defined (STM32F051x8) || defined (STM32F058xx) - -/** - * @brief Configures the selected DAC channel. - * @param hdac pointer to a DAC_HandleTypeDef structure that contains - * the configuration information for the specified DAC. - * @param sConfig DAC configuration structure. - * @param Channel The selected DAC channel. - * This parameter can be one of the following values: - * @arg DAC_CHANNEL_1: DAC Channel1 selected - * @retval HAL status - */ -HAL_StatusTypeDef HAL_DAC_ConfigChannel(DAC_HandleTypeDef* hdac, DAC_ChannelConfTypeDef* sConfig, uint32_t Channel) -{ - uint32_t tmpreg1 = 0U, tmpreg2 = 0U; - - /* Check the DAC parameters */ - assert_param(IS_DAC_TRIGGER(sConfig->DAC_Trigger)); - assert_param(IS_DAC_OUTPUT_BUFFER_STATE(sConfig->DAC_OutputBuffer)); - assert_param(IS_DAC_TRIGGER(sConfig->DAC_Trigger)); - assert_param(IS_DAC_CHANNEL(Channel)); - - /* Process locked */ - __HAL_LOCK(hdac); - - /* Change DAC state */ - hdac->State = HAL_DAC_STATE_BUSY; - - /* Get the DAC CR value */ - tmpreg1 = hdac->Instance->CR; - /* Clear BOFFx, TENx, TSELx, WAVEx and MAMPx bits */ - tmpreg1 &= ~(((uint32_t)(DAC_CR_TSEL1 | DAC_CR_TEN1 | DAC_CR_BOFF1)) << Channel); - /* Configure for the selected DAC channel: buffer output, trigger */ - /* Set TSELx and TENx bits according to DAC_Trigger value */ - /* Set BOFFx bit according to DAC_OutputBuffer value */ - tmpreg2 = (sConfig->DAC_Trigger | sConfig->DAC_OutputBuffer); - /* Calculate CR register value depending on DAC_Channel */ - tmpreg1 |= tmpreg2 << Channel; - /* Write to DAC CR */ - hdac->Instance->CR = tmpreg1; - - /* Change DAC state */ - hdac->State = HAL_DAC_STATE_READY; - - /* Process unlocked */ - __HAL_UNLOCK(hdac); - - /* Return function status */ - return HAL_OK; -} - -#endif /* STM32F051x8 STM32F058xx */ - -#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \ - defined(STM32F091xC) || defined(STM32F098xx) -/* DAC 1 has 2 channels 1 & 2 */ - -/** - * @brief Returns the last data output value of the selected DAC channel. - * @param hdac pointer to a DAC_HandleTypeDef structure that contains - * the configuration information for the specified DAC. - * @param Channel The selected DAC channel. - * This parameter can be one of the following values: - * @arg DAC_CHANNEL_1: DAC Channel1 selected - * @arg DAC_CHANNEL_2: DAC Channel2 selected - * @retval The selected DAC channel data output value. - */ -uint32_t HAL_DAC_GetValue(DAC_HandleTypeDef* hdac, uint32_t Channel) -{ - /* Check the parameters */ - assert_param(IS_DAC_CHANNEL(Channel)); - - /* Returns the DAC channel data output register value */ - if(Channel == DAC_CHANNEL_1) - { - return hdac->Instance->DOR1; - } - else - { - return hdac->Instance->DOR2; - } -} - -#endif /* STM32F071xB STM32F072xB STM32F078xx */ - /* STM32F091xC STM32F098xx */ - -#if defined (STM32F051x8) || defined (STM32F058xx) - -/* DAC 1 has 1 channels */ - -/** - * @brief Returns the last data output value of the selected DAC channel. - * @param hdac pointer to a DAC_HandleTypeDef structure that contains - * the configuration information for the specified DAC. - * @param Channel The selected DAC channel. - * This parameter can be one of the following values: - * @arg DAC_CHANNEL_1: DAC Channel1 selected - * @retval The selected DAC channel data output value. - */ -uint32_t HAL_DAC_GetValue(DAC_HandleTypeDef* hdac, uint32_t Channel) -{ - /* Check the parameters */ - assert_param(IS_DAC_CHANNEL(Channel)); - - /* Returns the DAC channel data output register value */ - return hdac->Instance->DOR1; -} - - - -#endif /* STM32F051x8 STM32F058xx */ - -/** - * @} - */ - -/** @addtogroup DAC_Exported_Functions_Group2 - * @{ - */ - -#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \ - defined(STM32F091xC) || defined(STM32F098xx) - -/** - * @brief Enables DAC and starts conversion of channel. - * @param hdac pointer to a DAC_HandleTypeDef structure that contains - * the configuration information for the specified DAC. - * @param Channel The selected DAC channel. - * This parameter can be one of the following values: - * @arg DAC_CHANNEL_1: DAC Channel1 selected - * @arg DAC_CHANNEL_2: DAC Channel2 selected - * @retval HAL status - */ -HAL_StatusTypeDef HAL_DAC_Start(DAC_HandleTypeDef* hdac, uint32_t Channel) -{ - /* Check the parameters */ - assert_param(IS_DAC_CHANNEL(Channel)); - - /* Process locked */ - __HAL_LOCK(hdac); - - /* Change DAC state */ - hdac->State = HAL_DAC_STATE_BUSY; - - /* Enable the Peripharal */ - __HAL_DAC_ENABLE(hdac, Channel); - - if(Channel == DAC_CHANNEL_1) - { - /* Check if software trigger enabled */ - if((hdac->Instance->CR & (DAC_CR_TEN1 | DAC_CR_TSEL1)) == (DAC_CR_TEN1 | DAC_CR_TSEL1)) - { - /* Enable the selected DAC software conversion */ - SET_BIT(hdac->Instance->SWTRIGR, DAC_SWTRIGR_SWTRIG1); - } - } - else - { - /* Check if software trigger enabled */ - if((hdac->Instance->CR & (DAC_CR_TEN2 | DAC_CR_TSEL2)) == (DAC_CR_TEN2 | DAC_CR_TSEL2)) - { - /* Enable the selected DAC software conversion*/ - SET_BIT(hdac->Instance->SWTRIGR, DAC_SWTRIGR_SWTRIG2); - } - } - - /* Change DAC state */ - hdac->State = HAL_DAC_STATE_READY; - - /* Process unlocked */ - __HAL_UNLOCK(hdac); - - /* Return function status */ - return HAL_OK; -} - -/** - * @brief Enables DAC and starts conversion of channel. - * @param hdac pointer to a DAC_HandleTypeDef structure that contains - * the configuration information for the specified DAC. - * @param Channel The selected DAC channel. - * This parameter can be one of the following values: - * @arg DAC_CHANNEL_1: DAC Channel1 selected - * @arg DAC_CHANNEL_2: DAC Channel2 selected - * @param pData The destination peripheral Buffer address. - * @param Length The length of data to be transferred from memory to DAC peripheral - * @param Alignment Specifies the data alignment for DAC channel. - * This parameter can be one of the following values: - * @arg DAC_ALIGN_8B_R: 8bit right data alignment selected - * @arg DAC_ALIGN_12B_L: 12bit left data alignment selected - * @arg DAC_ALIGN_12B_R: 12bit right data alignment selected - * @retval HAL status - */ -HAL_StatusTypeDef HAL_DAC_Start_DMA(DAC_HandleTypeDef* hdac, uint32_t Channel, uint32_t* pData, uint32_t Length, uint32_t Alignment) -{ - uint32_t tmpreg = 0U; - - /* Check the parameters */ - assert_param(IS_DAC_CHANNEL(Channel)); - assert_param(IS_DAC_ALIGN(Alignment)); - - /* Process locked */ - __HAL_LOCK(hdac); - - /* Change DAC state */ - hdac->State = HAL_DAC_STATE_BUSY; - - if(Channel == DAC_CHANNEL_1) - { - /* Set the DMA transfer complete callback for channel1 */ - hdac->DMA_Handle1->XferCpltCallback = DAC_DMAConvCpltCh1; - - /* Set the DMA half transfer complete callback for channel1 */ - hdac->DMA_Handle1->XferHalfCpltCallback = DAC_DMAHalfConvCpltCh1; - - /* Set the DMA error callback for channel1 */ - hdac->DMA_Handle1->XferErrorCallback = DAC_DMAErrorCh1; - - /* Enable the selected DAC channel1 DMA request */ - SET_BIT(hdac->Instance->CR, DAC_CR_DMAEN1); - - /* Case of use of channel 1 */ - switch(Alignment) - { - case DAC_ALIGN_12B_R: - /* Get DHR12R1 address */ - tmpreg = (uint32_t)&hdac->Instance->DHR12R1; - break; - case DAC_ALIGN_12B_L: - /* Get DHR12L1 address */ - tmpreg = (uint32_t)&hdac->Instance->DHR12L1; - break; - case DAC_ALIGN_8B_R: - /* Get DHR8R1 address */ - tmpreg = (uint32_t)&hdac->Instance->DHR8R1; - break; - default: - break; - } - } - else - { - /* Set the DMA transfer complete callback for channel2 */ - hdac->DMA_Handle2->XferCpltCallback = DAC_DMAConvCpltCh2; - - /* Set the DMA half transfer complete callback for channel2 */ - hdac->DMA_Handle2->XferHalfCpltCallback = DAC_DMAHalfConvCpltCh2; - - /* Set the DMA error callback for channel2 */ - hdac->DMA_Handle2->XferErrorCallback = DAC_DMAErrorCh2; - - /* Enable the selected DAC channel2 DMA request */ - SET_BIT(hdac->Instance->CR, DAC_CR_DMAEN2); - - /* Case of use of channel 2 */ - switch(Alignment) - { - case DAC_ALIGN_12B_R: - /* Get DHR12R2 address */ - tmpreg = (uint32_t)&hdac->Instance->DHR12R2; - break; - case DAC_ALIGN_12B_L: - /* Get DHR12L2 address */ - tmpreg = (uint32_t)&hdac->Instance->DHR12L2; - break; - case DAC_ALIGN_8B_R: - /* Get DHR8R2 address */ - tmpreg = (uint32_t)&hdac->Instance->DHR8R2; - break; - default: - break; - } - } - - /* Enable the DMA channel */ - if(Channel == DAC_CHANNEL_1) - { - /* Enable the DAC DMA underrun interrupt */ - __HAL_DAC_ENABLE_IT(hdac, DAC_IT_DMAUDR1); - - /* Enable the DMA channel */ - HAL_DMA_Start_IT(hdac->DMA_Handle1, (uint32_t)pData, tmpreg, Length); - } - else - { - /* Enable the DAC DMA underrun interrupt */ - __HAL_DAC_ENABLE_IT(hdac, DAC_IT_DMAUDR2); - - /* Enable the DMA channel */ - HAL_DMA_Start_IT(hdac->DMA_Handle2, (uint32_t)pData, tmpreg, Length); - } - - /* Enable the Peripharal */ - __HAL_DAC_ENABLE(hdac, Channel); - - /* Process Unlocked */ - __HAL_UNLOCK(hdac); - - /* Return function status */ - return HAL_OK; -} - - - -#endif /* STM32F071xB STM32F072xB STM32F078xx */ - /* STM32F091xC STM32F098xx */ - -#if defined (STM32F051x8) || defined (STM32F058xx) - -HAL_StatusTypeDef HAL_DAC_Start(DAC_HandleTypeDef* hdac, uint32_t Channel) -{ - /* Check the parameters */ - assert_param(IS_DAC_CHANNEL(Channel)); - - /* Process locked */ - __HAL_LOCK(hdac); - - /* Change DAC state */ - hdac->State = HAL_DAC_STATE_BUSY; - - /* Enable the Peripharal */ - __HAL_DAC_ENABLE(hdac, Channel); - - if(Channel == DAC_CHANNEL_1) - { - /* Check if software trigger enabled */ - if((hdac->Instance->CR & (DAC_CR_TEN1 | DAC_CR_TSEL1)) == (DAC_CR_TEN1 | DAC_CR_TSEL1)) - { - /* Enable the selected DAC software conversion */ - SET_BIT(hdac->Instance->SWTRIGR, DAC_SWTRIGR_SWTRIG1); - } - } - - /* Change DAC state */ - hdac->State = HAL_DAC_STATE_READY; - - /* Process unlocked */ - __HAL_UNLOCK(hdac); - - /* Return function status */ - return HAL_OK; -} - -/** - * @brief Enables DAC and starts conversion of channel. - * @param hdac pointer to a DAC_HandleTypeDef structure that contains - * the configuration information for the specified DAC. - * @param Channel The selected DAC channel. - * This parameter can be one of the following values: - * @arg DAC_CHANNEL_1: DAC Channel1 selected - * @param pData The destination peripheral Buffer address. - * @param Length The length of data to be transferred from memory to DAC peripheral - * @param Alignment Specifies the data alignment for DAC channel. - * This parameter can be one of the following values: - * @arg DAC_ALIGN_8B_R: 8bit right data alignment selected - * @arg DAC_ALIGN_12B_L: 12bit left data alignment selected - * @arg DAC_ALIGN_12B_R: 12bit right data alignment selected - * @retval HAL status - */ -HAL_StatusTypeDef HAL_DAC_Start_DMA(DAC_HandleTypeDef* hdac, uint32_t Channel, uint32_t* pData, uint32_t Length, uint32_t Alignment) -{ - uint32_t tmpreg = 0U; - - /* Check the parameters */ - assert_param(IS_DAC_CHANNEL(Channel)); - assert_param(IS_DAC_ALIGN(Alignment)); - - /* Process locked */ - __HAL_LOCK(hdac); - - /* Change DAC state */ - hdac->State = HAL_DAC_STATE_BUSY; - - /* Set the DMA transfer complete callback for channel1 */ - hdac->DMA_Handle1->XferCpltCallback = DAC_DMAConvCpltCh1; - - /* Set the DMA half transfer complete callback for channel1 */ - hdac->DMA_Handle1->XferHalfCpltCallback = DAC_DMAHalfConvCpltCh1; - - /* Set the DMA error callback for channel1 */ - hdac->DMA_Handle1->XferErrorCallback = DAC_DMAErrorCh1; - - /* Enable the selected DAC channel1 DMA request */ - SET_BIT(hdac->Instance->CR, DAC_CR_DMAEN1); - - /* Case of use of channel 1 */ - switch(Alignment) - { - case DAC_ALIGN_12B_R: - /* Get DHR12R1 address */ - tmpreg = (uint32_t)&hdac->Instance->DHR12R1; - break; - case DAC_ALIGN_12B_L: - /* Get DHR12L1 address */ - tmpreg = (uint32_t)&hdac->Instance->DHR12L1; - break; - case DAC_ALIGN_8B_R: - /* Get DHR8R1 address */ - tmpreg = (uint32_t)&hdac->Instance->DHR8R1; - break; - default: - break; - } - - /* Enable the DMA channel */ - /* Enable the DAC DMA underrun interrupt */ - __HAL_DAC_ENABLE_IT(hdac, DAC_IT_DMAUDR1); - - /* Enable the DMA channel */ - HAL_DMA_Start_IT(hdac->DMA_Handle1, (uint32_t)pData, tmpreg, Length); - - /* Enable the DAC DMA underrun interrupt */ - __HAL_DAC_ENABLE_IT(hdac, DAC_IT_DMAUDR1); - - /* Enable the DMA channel */ - HAL_DMA_Start_IT(hdac->DMA_Handle1, (uint32_t)pData, tmpreg, Length); - - /* Enable the Peripharal */ - __HAL_DAC_ENABLE(hdac, Channel); - - /* Process Unlocked */ - __HAL_UNLOCK(hdac); - - /* Return function status */ - return HAL_OK; -} - -#endif /* STM32F051x8 STM32F058xx */ - -#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \ - defined(STM32F091xC) || defined(STM32F098xx) -/* DAC channel 2 is available on top of DAC channel 1 */ - -/** - * @brief Handles DAC interrupt request - * @param hdac pointer to a DAC_HandleTypeDef structure that contains - * the configuration information for the specified DAC. - * @retval None - */ -void HAL_DAC_IRQHandler(DAC_HandleTypeDef* hdac) -{ - if(__HAL_DAC_GET_IT_SOURCE(hdac, DAC_IT_DMAUDR1)) - { - /* Check underrun channel 1 flag */ - if(__HAL_DAC_GET_FLAG(hdac, DAC_FLAG_DMAUDR1)) - { - /* Change DAC state to error state */ - hdac->State = HAL_DAC_STATE_ERROR; - - /* Set DAC error code to channel1 DMA underrun error */ - hdac->ErrorCode |= HAL_DAC_ERROR_DMAUNDERRUNCH1; - - /* Clear the underrun flag */ - __HAL_DAC_CLEAR_FLAG(hdac,DAC_FLAG_DMAUDR1); - - /* Disable the selected DAC channel1 DMA request */ - hdac->Instance->CR &= ~DAC_CR_DMAEN1; - - /* Error callback */ - HAL_DAC_DMAUnderrunCallbackCh1(hdac); - } - } - if(__HAL_DAC_GET_IT_SOURCE(hdac, DAC_IT_DMAUDR2)) - { - /* Check underrun channel 2 flag */ - if(__HAL_DAC_GET_FLAG(hdac, DAC_FLAG_DMAUDR2)) - { - /* Change DAC state to error state */ - hdac->State = HAL_DAC_STATE_ERROR; - - /* Set DAC error code to channel2 DMA underrun error */ - hdac->ErrorCode |= HAL_DAC_ERROR_DMAUNDERRUNCH2; - - /* Clear the underrun flag */ - __HAL_DAC_CLEAR_FLAG(hdac,DAC_FLAG_DMAUDR2); - - /* Disable the selected DAC channel1 DMA request */ - hdac->Instance->CR &= ~DAC_CR_DMAEN2; - - /* Error callback */ - HAL_DACEx_DMAUnderrunCallbackCh2(hdac); - } - } -} - -#endif /* STM32F071xB STM32F072xB STM32F078xx */ - /* STM32F091xC STM32F098xx */ - -#if defined (STM32F051x8) || defined (STM32F058xx) -/* DAC channel 2 is NOT available. Only DAC channel 1 is available */ - -/** - * @brief Handles DAC interrupt request - * @param hdac pointer to a DAC_HandleTypeDef structure that contains - * the configuration information for the specified DAC. - * @retval None - */ -void HAL_DAC_IRQHandler(DAC_HandleTypeDef* hdac) -{ - if(__HAL_DAC_GET_IT_SOURCE(hdac, DAC_IT_DMAUDR1)) - { - /* Check Overrun flag */ - if(__HAL_DAC_GET_FLAG(hdac, DAC_FLAG_DMAUDR1)) - { - /* Change DAC state to error state */ - hdac->State = HAL_DAC_STATE_ERROR; - - /* Set DAC error code to chanel1 DMA underrun error */ - hdac->ErrorCode |= HAL_DAC_ERROR_DMAUNDERRUNCH1; - - /* Clear the underrun flag */ - __HAL_DAC_CLEAR_FLAG(hdac,DAC_FLAG_DMAUDR1); - - /* Disable the selected DAC channel1 DMA request */ - hdac->Instance->CR &= ~DAC_CR_DMAEN1; - - /* Error callback */ - HAL_DAC_DMAUnderrunCallbackCh1(hdac); - } - } -} - -#endif /* STM32F051x8 STM32F058xx */ - -/** - * @} - */ - -/** - * @} - */ - -#if defined(STM32F051x8) || defined(STM32F058xx) || \ - defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \ - defined(STM32F091xC) || defined(STM32F098xx) - -/** @addtogroup DAC_Private_Functions - * @{ - */ - -/** - * @brief DMA conversion complete callback. - * @param hdma pointer to a DMA_HandleTypeDef structure that contains - * the configuration information for the specified DMA module. - * @retval None - */ -static void DAC_DMAConvCpltCh1(DMA_HandleTypeDef *hdma) -{ - DAC_HandleTypeDef* hdac = ( DAC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; - - HAL_DAC_ConvCpltCallbackCh1(hdac); - - hdac->State= HAL_DAC_STATE_READY; -} - -/** - * @brief DMA half transfer complete callback. - * @param hdma pointer to a DMA_HandleTypeDef structure that contains - * the configuration information for the specified DMA module. - * @retval None - */ -static void DAC_DMAHalfConvCpltCh1(DMA_HandleTypeDef *hdma) -{ - DAC_HandleTypeDef* hdac = ( DAC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; - /* Conversion complete callback */ - HAL_DAC_ConvHalfCpltCallbackCh1(hdac); -} - -/** - * @brief DMA error callback - * @param hdma pointer to a DMA_HandleTypeDef structure that contains - * the configuration information for the specified DMA module. - * @retval None - */ -static void DAC_DMAErrorCh1(DMA_HandleTypeDef *hdma) -{ - DAC_HandleTypeDef* hdac = ( DAC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; - - /* Set DAC error code to DMA error */ - hdac->ErrorCode |= HAL_DAC_ERROR_DMA; - - HAL_DAC_ErrorCallbackCh1(hdac); - - hdac->State= HAL_DAC_STATE_READY; -} -/** - * @} - */ -#endif /* STM32F051x8 STM32F058xx */ - /* STM32F071xB STM32F072xB STM32F078xx */ - /* STM32F091xC STM32F098xx */ - -#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \ - defined(STM32F091xC) || defined(STM32F098xx) - -/** @addtogroup DAC_Private_Functions - * @{ - */ - -/** - * @brief DMA conversion complete callback. - * @param hdma pointer to a DMA_HandleTypeDef structure that contains - * the configuration information for the specified DMA module. - * @retval None - */ -void DAC_DMAConvCpltCh2(DMA_HandleTypeDef *hdma) -{ - DAC_HandleTypeDef* hdac = ( DAC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; - -#if (USE_HAL_DAC_REGISTER_CALLBACKS == 1) - hdac->ConvCpltCallbackCh2(hdac); -#else - HAL_DACEx_ConvCpltCallbackCh2(hdac); -#endif - - hdac->State= HAL_DAC_STATE_READY; -} - -/** - * @brief DMA half transfer complete callback. - * @param hdma pointer to a DMA_HandleTypeDef structure that contains - * the configuration information for the specified DMA module. - * @retval None - */ -void DAC_DMAHalfConvCpltCh2(DMA_HandleTypeDef *hdma) -{ - DAC_HandleTypeDef* hdac = ( DAC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; - - /* Conversion complete callback */ -#if (USE_HAL_DAC_REGISTER_CALLBACKS == 1) - hdac->ConvHalfCpltCallbackCh2(hdac); -#else - HAL_DACEx_ConvHalfCpltCallbackCh2(hdac); -#endif -} - -/** - * @brief DMA error callback - * @param hdma pointer to a DMA_HandleTypeDef structure that contains - * the configuration information for the specified DMA module. - * @retval None - */ -void DAC_DMAErrorCh2(DMA_HandleTypeDef *hdma) -{ - DAC_HandleTypeDef* hdac = ( DAC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; - - /* Set DAC error code to DMA error */ - hdac->ErrorCode |= HAL_DAC_ERROR_DMA; - -#if (USE_HAL_DAC_REGISTER_CALLBACKS == 1) - hdac->ErrorCallbackCh2(hdac); -#else - HAL_DACEx_ErrorCallbackCh2(hdac); -#endif - hdac->State= HAL_DAC_STATE_READY; -} - -/** - * @} - */ - -#endif /* STM32F071xB STM32F072xB STM32F078xx */ - /* STM32F091xC STM32F098xx */ - -/** - * @} - */ - -/** @defgroup DACEx DACEx - * @brief DACEx driver module - * @{ - */ - -/* Private typedef -----------------------------------------------------------*/ -/* Private define ------------------------------------------------------------*/ -/* Private macro -------------------------------------------------------------*/ -/** @defgroup DACEx_Private_Macros DACEx Private Macros - * @{ - */ -/** - * @} - */ - -/* Private variables ---------------------------------------------------------*/ -/* Private function prototypes -----------------------------------------------*/ -/* Private functions ---------------------------------------------------------*/ - -/** @defgroup DACEx_Exported_Functions DACEx Exported Functions - * @{ - */ - -/** @defgroup DACEx_Exported_Functions_Group1 Extended features functions - * @brief Extended features functions - * -@verbatim - ============================================================================== - ##### Extended features functions ##### - ============================================================================== - [..] This section provides functions allowing to: - (+) Start conversion. - (+) Stop conversion. - (+) Start conversion and enable DMA transfer. - (+) Stop conversion and disable DMA transfer. - (+) Get result of conversion. - (+) Get result of dual mode conversion. - -@endverbatim - * @{ - */ - -#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \ - defined(STM32F091xC) || defined(STM32F098xx) - -/** - * @brief Returns the last data output value of the selected DAC channel. - * @param hdac pointer to a DAC_HandleTypeDef structure that contains - * the configuration information for the specified DAC. - * @retval The selected DAC channel data output value. - */ -uint32_t HAL_DACEx_DualGetValue(DAC_HandleTypeDef* hdac) -{ - uint32_t tmp = 0U; - - tmp |= hdac->Instance->DOR1; - - /* DAC channel 2 is present in DAC 1 */ - tmp |= hdac->Instance->DOR2 << 16U; - - /* Returns the DAC channel data output register value */ - return tmp; -} - -#endif /* STM32F071xB STM32F072xB STM32F078xx */ - /* STM32F091xC STM32F098xx */ - -#if defined (STM32F051x8) || defined (STM32F058xx) - -/** - * @brief Returns the last data output value of the selected DAC channel. - * @param hdac pointer to a DAC_HandleTypeDef structure that contains - * the configuration information for the specified DAC. - * @retval The selected DAC channel data output value. - */ -uint32_t HAL_DACEx_DualGetValue(DAC_HandleTypeDef* hdac) -{ - uint32_t tmp = 0U; - - tmp |= hdac->Instance->DOR1; - - /* Returns the DAC channel data output register value */ - return tmp; -} - -#endif /* STM32F051x8 STM32F058xx */ - -#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \ - defined(STM32F091xC) || defined(STM32F098xx) - -/** - * @brief Enables or disables the selected DAC channel wave generation. - * @param hdac pointer to a DAC_HandleTypeDef structure that contains - * the configuration information for the specified DAC. - * @param Channel The selected DAC channel. - * This parameter can be one of the following values: - * DAC_CHANNEL_1 / DAC_CHANNEL_2 - * @param Amplitude Select max triangle amplitude. - * This parameter can be one of the following values: - * @arg DAC_TRIANGLEAMPLITUDE_1: Select max triangle amplitude of 1 - * @arg DAC_TRIANGLEAMPLITUDE_3: Select max triangle amplitude of 3 - * @arg DAC_TRIANGLEAMPLITUDE_7: Select max triangle amplitude of 7 - * @arg DAC_TRIANGLEAMPLITUDE_15: Select max triangle amplitude of 15 - * @arg DAC_TRIANGLEAMPLITUDE_31: Select max triangle amplitude of 31 - * @arg DAC_TRIANGLEAMPLITUDE_63: Select max triangle amplitude of 63 - * @arg DAC_TRIANGLEAMPLITUDE_127: Select max triangle amplitude of 127 - * @arg DAC_TRIANGLEAMPLITUDE_255: Select max triangle amplitude of 255 - * @arg DAC_TRIANGLEAMPLITUDE_511: Select max triangle amplitude of 511 - * @arg DAC_TRIANGLEAMPLITUDE_1023: Select max triangle amplitude of 1023 - * @arg DAC_TRIANGLEAMPLITUDE_2047: Select max triangle amplitude of 2047 - * @arg DAC_TRIANGLEAMPLITUDE_4095: Select max triangle amplitude of 4095 - * @retval HAL status - */ -HAL_StatusTypeDef HAL_DACEx_TriangleWaveGenerate(DAC_HandleTypeDef* hdac, uint32_t Channel, uint32_t Amplitude) -{ - /* Check the parameters */ - assert_param(IS_DAC_CHANNEL(Channel)); - assert_param(IS_DAC_LFSR_UNMASK_TRIANGLE_AMPLITUDE(Amplitude)); - - /* Process locked */ - __HAL_LOCK(hdac); - - /* Change DAC state */ - hdac->State = HAL_DAC_STATE_BUSY; - - /* Enable the selected wave generation for the selected DAC channel */ - MODIFY_REG(hdac->Instance->CR, ((DAC_CR_WAVE1)|(DAC_CR_MAMP1))<State = HAL_DAC_STATE_READY; - - /* Process unlocked */ - __HAL_UNLOCK(hdac); - - /* Return function status */ - return HAL_OK; -} - -/** - * @brief Enables or disables the selected DAC channel wave generation. - * @param hdac pointer to a DAC_HandleTypeDef structure that contains - * the configuration information for the specified DAC. - * @param Channel The selected DAC channel. - * This parameter can be one of the following values: - * DAC_CHANNEL_1 / DAC_CHANNEL_2 - * @param Amplitude Unmask DAC channel LFSR for noise wave generation. - * This parameter can be one of the following values: - * @arg DAC_LFSRUNMASK_BIT0: Unmask DAC channel LFSR bit0 for noise wave generation - * @arg DAC_LFSRUNMASK_BITS1_0: Unmask DAC channel LFSR bit[1:0] for noise wave generation - * @arg DAC_LFSRUNMASK_BITS2_0: Unmask DAC channel LFSR bit[2:0] for noise wave generation - * @arg DAC_LFSRUNMASK_BITS3_0: Unmask DAC channel LFSR bit[3:0] for noise wave generation - * @arg DAC_LFSRUNMASK_BITS4_0: Unmask DAC channel LFSR bit[4:0] for noise wave generation - * @arg DAC_LFSRUNMASK_BITS5_0: Unmask DAC channel LFSR bit[5:0] for noise wave generation - * @arg DAC_LFSRUNMASK_BITS6_0: Unmask DAC channel LFSR bit[6:0] for noise wave generation - * @arg DAC_LFSRUNMASK_BITS7_0: Unmask DAC channel LFSR bit[7:0] for noise wave generation - * @arg DAC_LFSRUNMASK_BITS8_0: Unmask DAC channel LFSR bit[8:0] for noise wave generation - * @arg DAC_LFSRUNMASK_BITS9_0: Unmask DAC channel LFSR bit[9:0] for noise wave generation - * @arg DAC_LFSRUNMASK_BITS10_0: Unmask DAC channel LFSR bit[10:0] for noise wave generation - * @arg DAC_LFSRUNMASK_BITS11_0: Unmask DAC channel LFSR bit[11:0] for noise wave generation - * @retval HAL status - */ -HAL_StatusTypeDef HAL_DACEx_NoiseWaveGenerate(DAC_HandleTypeDef* hdac, uint32_t Channel, uint32_t Amplitude) -{ - /* Check the parameters */ - assert_param(IS_DAC_CHANNEL(Channel)); - assert_param(IS_DAC_LFSR_UNMASK_TRIANGLE_AMPLITUDE(Amplitude)); - - /* Process locked */ - __HAL_LOCK(hdac); - - /* Change DAC state */ - hdac->State = HAL_DAC_STATE_BUSY; - - /* Enable the selected wave generation for the selected DAC channel */ - MODIFY_REG(hdac->Instance->CR, ((DAC_CR_WAVE1)|(DAC_CR_MAMP1))<State = HAL_DAC_STATE_READY; - - /* Process unlocked */ - __HAL_UNLOCK(hdac); - - /* Return function status */ - return HAL_OK; -} - -#endif /* STM32F071xB STM32F072xB STM32F078xx */ - /* STM32F091xC STM32F098xx */ - -/** - * @} - */ - -/** - * @} - */ - -#if defined(STM32F051x8) || defined(STM32F058xx) || \ - defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \ - defined(STM32F091xC) || defined(STM32F098xx) - -/** @addtogroup DACEx_Exported_Functions - * @{ - */ - -/** @addtogroup DACEx_Exported_Functions_Group1 - * @brief Extended features functions - * @{ - */ - -/** - * @brief Set the specified data holding register value for dual DAC channel. - * @param hdac pointer to a DAC_HandleTypeDef structure that contains - * the configuration information for the specified DAC. - * @param Alignment Specifies the data alignment for dual channel DAC. - * This parameter can be one of the following values: - * DAC_ALIGN_8B_R: 8bit right data alignment selected - * DAC_ALIGN_12B_L: 12bit left data alignment selected - * DAC_ALIGN_12B_R: 12bit right data alignment selected - * @param Data1 Data for DAC Channel2 to be loaded in the selected data holding register. - * @param Data2 Data for DAC Channel1 to be loaded in the selected data holding register. - * @note In dual mode, a unique register access is required to write in both - * DAC channels at the same time. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_DACEx_DualSetValue(DAC_HandleTypeDef* hdac, uint32_t Alignment, uint32_t Data1, uint32_t Data2) -{ - uint32_t data = 0U, tmp = 0U; - - /* Check the parameters */ - assert_param(IS_DAC_ALIGN(Alignment)); - assert_param(IS_DAC_DATA(Data1)); - assert_param(IS_DAC_DATA(Data2)); - - /* Calculate and set dual DAC data holding register value */ - if (Alignment == DAC_ALIGN_8B_R) - { - data = ((uint32_t)Data2 << 8U) | Data1; - } - else - { - data = ((uint32_t)Data2 << 16U) | Data1; - } - - tmp = (uint32_t)hdac->Instance; - tmp += DAC_DHR12RD_ALIGNMENT(Alignment); - - /* Set the dual DAC selected data holding register */ - *(__IO uint32_t *)tmp = data; - - /* Return function status */ - return HAL_OK; -} - -/** - * @} - */ - -/** - * @} - */ - -#endif /* STM32F051x8 STM32F058xx */ - /* STM32F071xB STM32F072xB STM32F078xx */ - /* STM32F091xC STM32F098xx */ - -#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || \ - defined(STM32F091xC) || defined(STM32F098xx) - -/** @addtogroup DACEx_Exported_Functions - * @{ - */ - -/** @addtogroup DACEx_Exported_Functions_Group1 - * @brief Extended features functions - * @{ - */ - -/** - * @brief Conversion complete callback in non blocking mode for Channel2 - * @param hdac pointer to a DAC_HandleTypeDef structure that contains - * the configuration information for the specified DAC. - * @retval None - */ -__weak void HAL_DACEx_ConvCpltCallbackCh2(DAC_HandleTypeDef* hdac) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hdac); - - /* NOTE : This function Should not be modified, when the callback is needed, - the HAL_DAC_ConvCpltCallback could be implemented in the user file - */ -} - -/** - * @brief Conversion half DMA transfer callback in non blocking mode for Channel2 - * @param hdac pointer to a DAC_HandleTypeDef structure that contains - * the configuration information for the specified DAC. - * @retval None - */ -__weak void HAL_DACEx_ConvHalfCpltCallbackCh2(DAC_HandleTypeDef* hdac) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hdac); - - /* NOTE : This function Should not be modified, when the callback is needed, - the HAL_DAC_ConvHalfCpltCallbackCh2 could be implemented in the user file - */ -} - -/** - * @brief Error DAC callback for Channel2. - * @param hdac pointer to a DAC_HandleTypeDef structure that contains - * the configuration information for the specified DAC. - * @retval None - */ -__weak void HAL_DACEx_ErrorCallbackCh2(DAC_HandleTypeDef *hdac) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hdac); - - /* NOTE : This function Should not be modified, when the callback is needed, - the HAL_DAC_ErrorCallback could be implemented in the user file - */ -} - -/** - * @brief DMA underrun DAC callback for channel2. - * @param hdac pointer to a DAC_HandleTypeDef structure that contains - * the configuration information for the specified DAC. - * @retval None - */ -__weak void HAL_DACEx_DMAUnderrunCallbackCh2(DAC_HandleTypeDef *hdac) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hdac); - - /* NOTE : This function Should not be modified, when the callback is needed, - the HAL_DAC_DMAUnderrunCallbackCh2 could be implemented in the user file - */ -} - -/** - * @} - */ - -/** - * @} - */ - -#endif /* STM32F071xB STM32F072xB STM32F078xx */ - /* STM32F091xC STM32F098xx */ - -/** - * @} - */ - -#endif /* HAL_DAC_MODULE_ENABLED */ - -/** - * @} - */ - -/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_dma.c b/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_dma.c deleted file mode 100644 index b7f91a4..0000000 --- a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_dma.c +++ /dev/null @@ -1,901 +0,0 @@ -/** - ****************************************************************************** - * @file stm32f0xx_hal_dma.c - * @author MCD Application Team - * @brief DMA HAL module driver. - * - * This file provides firmware functions to manage the following - * functionalities of the Direct Memory Access (DMA) peripheral: - * + Initialization and de-initialization functions - * + IO operation functions - * + Peripheral State and errors functions - @verbatim - ============================================================================== - ##### How to use this driver ##### - ============================================================================== - [..] - (#) Enable and configure the peripheral to be connected to the DMA Channel - (except for internal SRAM / FLASH memories: no initialization is - necessary). Please refer to Reference manual for connection between peripherals - and DMA requests . - - (#) For a given Channel, program the required configuration through the following parameters: - Transfer Direction, Source and Destination data formats, - Circular or Normal mode, Channel Priority level, Source and Destination Increment mode, - using HAL_DMA_Init() function. - - (#) Use HAL_DMA_GetState() function to return the DMA state and HAL_DMA_GetError() in case of error - detection. - - (#) Use HAL_DMA_Abort() function to abort the current transfer - - -@- In Memory-to-Memory transfer mode, Circular mode is not allowed. - *** Polling mode IO operation *** - ================================= - [..] - (+) Use HAL_DMA_Start() to start DMA transfer after the configuration of Source - address and destination address and the Length of data to be transferred - (+) Use HAL_DMA_PollForTransfer() to poll for the end of current transfer, in this - case a fixed Timeout can be configured by User depending from his application. - - *** Interrupt mode IO operation *** - =================================== - [..] - (+) Configure the DMA interrupt priority using HAL_NVIC_SetPriority() - (+) Enable the DMA IRQ handler using HAL_NVIC_EnableIRQ() - (+) Use HAL_DMA_Start_IT() to start DMA transfer after the configuration of - Source address and destination address and the Length of data to be transferred. - In this case the DMA interrupt is configured - (+) Use HAL_DMA_Channel_IRQHandler() called under DMA_IRQHandler() Interrupt subroutine - (+) At the end of data transfer HAL_DMA_IRQHandler() function is executed and user can - add his own function by customization of function pointer XferCpltCallback and - XferErrorCallback (i.e a member of DMA handle structure). - - *** DMA HAL driver macros list *** - ============================================= - [..] - Below the list of most used macros in DMA HAL driver. - - [..] - (@) You can refer to the DMA HAL driver header file for more useful macros - - @endverbatim - ****************************************************************************** - * @attention - * - *

© Copyright (c) 2016 STMicroelectronics. - * All rights reserved.

- * - * This software component is licensed by ST under BSD 3-Clause license, - * the "License"; You may not use this file except in compliance with the - * License. You may obtain a copy of the License at: - * opensource.org/licenses/BSD-3-Clause - * - ****************************************************************************** - */ - -/* Includes ------------------------------------------------------------------*/ -#include "stm32f0xx_hal.h" - -/** @addtogroup STM32F0xx_HAL_Driver - * @{ - */ - - -/** @defgroup DMA DMA - * @brief DMA HAL module driver - * @{ - */ - -#ifdef HAL_DMA_MODULE_ENABLED - -/* Private typedef -----------------------------------------------------------*/ -/* Private define ------------------------------------------------------------*/ -/* Private macro -------------------------------------------------------------*/ -/* Private variables ---------------------------------------------------------*/ -/* Private function prototypes -----------------------------------------------*/ -/** @defgroup DMA_Private_Functions DMA Private Functions - * @{ - */ -static void DMA_SetConfig(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t DataLength); -static void DMA_CalcBaseAndBitshift(DMA_HandleTypeDef *hdma); -/** - * @} - */ - -/* Exported functions ---------------------------------------------------------*/ - -/** @defgroup DMA_Exported_Functions DMA Exported Functions - * @{ - */ - -/** @defgroup DMA_Exported_Functions_Group1 Initialization and de-initialization functions - * @brief Initialization and de-initialization functions - * -@verbatim - =============================================================================== - ##### Initialization and de-initialization functions ##### - =============================================================================== - [..] - This section provides functions allowing to initialize the DMA Channel source - and destination addresses, incrementation and data sizes, transfer direction, - circular/normal mode selection, memory-to-memory mode selection and Channel priority value. - [..] - The HAL_DMA_Init() function follows the DMA configuration procedures as described in - reference manual. - -@endverbatim - * @{ - */ - -/** - * @brief Initialize the DMA according to the specified - * parameters in the DMA_InitTypeDef and initialize the associated handle. - * @param hdma Pointer to a DMA_HandleTypeDef structure that contains - * the configuration information for the specified DMA Channel. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_DMA_Init(DMA_HandleTypeDef *hdma) -{ - uint32_t tmp = 0U; - - /* Check the DMA handle allocation */ - if(NULL == hdma) - { - return HAL_ERROR; - } - - /* Check the parameters */ - assert_param(IS_DMA_ALL_INSTANCE(hdma->Instance)); - assert_param(IS_DMA_DIRECTION(hdma->Init.Direction)); - assert_param(IS_DMA_PERIPHERAL_INC_STATE(hdma->Init.PeriphInc)); - assert_param(IS_DMA_MEMORY_INC_STATE(hdma->Init.MemInc)); - assert_param(IS_DMA_PERIPHERAL_DATA_SIZE(hdma->Init.PeriphDataAlignment)); - assert_param(IS_DMA_MEMORY_DATA_SIZE(hdma->Init.MemDataAlignment)); - assert_param(IS_DMA_MODE(hdma->Init.Mode)); - assert_param(IS_DMA_PRIORITY(hdma->Init.Priority)); - - /* Change DMA peripheral state */ - hdma->State = HAL_DMA_STATE_BUSY; - - /* Get the CR register value */ - tmp = hdma->Instance->CCR; - - /* Clear PL, MSIZE, PSIZE, MINC, PINC, CIRC, DIR bits */ - tmp &= ((uint32_t)~(DMA_CCR_PL | DMA_CCR_MSIZE | DMA_CCR_PSIZE | \ - DMA_CCR_MINC | DMA_CCR_PINC | DMA_CCR_CIRC | \ - DMA_CCR_DIR)); - - /* Prepare the DMA Channel configuration */ - tmp |= hdma->Init.Direction | - hdma->Init.PeriphInc | hdma->Init.MemInc | - hdma->Init.PeriphDataAlignment | hdma->Init.MemDataAlignment | - hdma->Init.Mode | hdma->Init.Priority; - - /* Write to DMA Channel CR register */ - hdma->Instance->CCR = tmp; - - /* Initialize DmaBaseAddress and ChannelIndex parameters used - by HAL_DMA_IRQHandler() and HAL_DMA_PollForTransfer() */ - DMA_CalcBaseAndBitshift(hdma); - - /* Initialise the error code */ - hdma->ErrorCode = HAL_DMA_ERROR_NONE; - - /* Initialize the DMA state*/ - hdma->State = HAL_DMA_STATE_READY; - - /* Allocate lock resource and initialize it */ - hdma->Lock = HAL_UNLOCKED; - - return HAL_OK; -} - -/** - * @brief DeInitialize the DMA peripheral - * @param hdma pointer to a DMA_HandleTypeDef structure that contains - * the configuration information for the specified DMA Channel. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_DMA_DeInit(DMA_HandleTypeDef *hdma) -{ - /* Check the DMA handle allocation */ - if(NULL == hdma) - { - return HAL_ERROR; - } - - /* Check the parameters */ - assert_param(IS_DMA_ALL_INSTANCE(hdma->Instance)); - - /* Disable the selected DMA Channelx */ - hdma->Instance->CCR &= ~DMA_CCR_EN; - - /* Reset DMA Channel control register */ - hdma->Instance->CCR = 0U; - - /* Reset DMA Channel Number of Data to Transfer register */ - hdma->Instance->CNDTR = 0U; - - /* Reset DMA Channel peripheral address register */ - hdma->Instance->CPAR = 0U; - - /* Reset DMA Channel memory address register */ - hdma->Instance->CMAR = 0U; - -/* Get DMA Base Address */ - DMA_CalcBaseAndBitshift(hdma); - - /* Clear all flags */ - hdma->DmaBaseAddress->IFCR = DMA_FLAG_GL1 << hdma->ChannelIndex; - - /* Clean callbacks */ - hdma->XferCpltCallback = NULL; - hdma->XferHalfCpltCallback = NULL; - hdma->XferErrorCallback = NULL; - hdma->XferAbortCallback = NULL; - - /* Reset the error code */ - hdma->ErrorCode = HAL_DMA_ERROR_NONE; - - /* Reset the DMA state */ - hdma->State = HAL_DMA_STATE_RESET; - - /* Release Lock */ - __HAL_UNLOCK(hdma); - - return HAL_OK; -} - -/** - * @} - */ - -/** @defgroup DMA_Exported_Functions_Group2 Input and Output operation functions - * @brief I/O operation functions - * -@verbatim - =============================================================================== - ##### IO operation functions ##### - =============================================================================== - [..] This section provides functions allowing to: - (+) Configure the source, destination address and data length and Start DMA transfer - (+) Configure the source, destination address and data length and - Start DMA transfer with interrupt - (+) Abort DMA transfer - (+) Poll for transfer complete - (+) Handle DMA interrupt request - -@endverbatim - * @{ - */ - -/** - * @brief Start the DMA Transfer. - * @param hdma pointer to a DMA_HandleTypeDef structure that contains - * the configuration information for the specified DMA Channel. - * @param SrcAddress The source memory Buffer address - * @param DstAddress The destination memory Buffer address - * @param DataLength The length of data to be transferred from source to destination - * @retval HAL status - */ -HAL_StatusTypeDef HAL_DMA_Start(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t DataLength) -{ - HAL_StatusTypeDef status = HAL_OK; - - /* Check the parameters */ - assert_param(IS_DMA_BUFFER_SIZE(DataLength)); - - /* Process locked */ - __HAL_LOCK(hdma); - - if(HAL_DMA_STATE_READY == hdma->State) - { - /* Change DMA peripheral state */ - hdma->State = HAL_DMA_STATE_BUSY; - - hdma->ErrorCode = HAL_DMA_ERROR_NONE; - - /* Disable the peripheral */ - hdma->Instance->CCR &= ~DMA_CCR_EN; - - /* Configure the source, destination address and the data length */ - DMA_SetConfig(hdma, SrcAddress, DstAddress, DataLength); - - /* Enable the Peripheral */ - hdma->Instance->CCR |= DMA_CCR_EN; - } - else - { - /* Process Unlocked */ - __HAL_UNLOCK(hdma); - - /* Remain BUSY */ - status = HAL_BUSY; - } - - return status; -} - -/** - * @brief Start the DMA Transfer with interrupt enabled. - * @param hdma pointer to a DMA_HandleTypeDef structure that contains - * the configuration information for the specified DMA Channel. - * @param SrcAddress The source memory Buffer address - * @param DstAddress The destination memory Buffer address - * @param DataLength The length of data to be transferred from source to destination - * @retval HAL status - */ -HAL_StatusTypeDef HAL_DMA_Start_IT(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t DataLength) -{ - HAL_StatusTypeDef status = HAL_OK; - - /* Check the parameters */ - assert_param(IS_DMA_BUFFER_SIZE(DataLength)); - - /* Process locked */ - __HAL_LOCK(hdma); - - if(HAL_DMA_STATE_READY == hdma->State) - { - /* Change DMA peripheral state */ - hdma->State = HAL_DMA_STATE_BUSY; - - hdma->ErrorCode = HAL_DMA_ERROR_NONE; - - /* Disable the peripheral */ - hdma->Instance->CCR &= ~DMA_CCR_EN; - - /* Configure the source, destination address and the data length */ - DMA_SetConfig(hdma, SrcAddress, DstAddress, DataLength); - - /* Enable the transfer complete, & transfer error interrupts */ - /* Half transfer interrupt is optional: enable it only if associated callback is available */ - if(NULL != hdma->XferHalfCpltCallback ) - { - hdma->Instance->CCR |= (DMA_IT_TC | DMA_IT_HT | DMA_IT_TE); - } - else - { - hdma->Instance->CCR |= (DMA_IT_TC | DMA_IT_TE); - hdma->Instance->CCR &= ~DMA_IT_HT; - } - - /* Enable the Peripheral */ - hdma->Instance->CCR |= DMA_CCR_EN; - } - else - { - /* Process Unlocked */ - __HAL_UNLOCK(hdma); - - /* Remain BUSY */ - status = HAL_BUSY; - } - - return status; -} - -/** - * @brief Abort the DMA Transfer. - * @param hdma pointer to a DMA_HandleTypeDef structure that contains - * the configuration information for the specified DMA Channel. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_DMA_Abort(DMA_HandleTypeDef *hdma) -{ - if(hdma->State != HAL_DMA_STATE_BUSY) - { - /* no transfer ongoing */ - hdma->ErrorCode = HAL_DMA_ERROR_NO_XFER; - - /* Process Unlocked */ - __HAL_UNLOCK(hdma); - - return HAL_ERROR; - } - else - { - /* Disable DMA IT */ - hdma->Instance->CCR &= ~(DMA_IT_TC | DMA_IT_HT | DMA_IT_TE); - - /* Disable the channel */ - hdma->Instance->CCR &= ~DMA_CCR_EN; - - /* Clear all flags */ - hdma->DmaBaseAddress->IFCR = (DMA_FLAG_GL1 << hdma->ChannelIndex); - } - /* Change the DMA state*/ - hdma->State = HAL_DMA_STATE_READY; - - /* Process Unlocked */ - __HAL_UNLOCK(hdma); - - return HAL_OK; -} - -/** - * @brief Abort the DMA Transfer in Interrupt mode. - * @param hdma pointer to a DMA_HandleTypeDef structure that contains - * the configuration information for the specified DMA Stream. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_DMA_Abort_IT(DMA_HandleTypeDef *hdma) -{ - HAL_StatusTypeDef status = HAL_OK; - - if(HAL_DMA_STATE_BUSY != hdma->State) - { - /* no transfer ongoing */ - hdma->ErrorCode = HAL_DMA_ERROR_NO_XFER; - - status = HAL_ERROR; - } - else - { - - /* Disable DMA IT */ - hdma->Instance->CCR &= ~(DMA_IT_TC | DMA_IT_HT | DMA_IT_TE); - - /* Disable the channel */ - hdma->Instance->CCR &= ~DMA_CCR_EN; - - /* Clear all flags */ - hdma->DmaBaseAddress->IFCR = DMA_FLAG_GL1 << hdma->ChannelIndex; - - /* Change the DMA state */ - hdma->State = HAL_DMA_STATE_READY; - - /* Process Unlocked */ - __HAL_UNLOCK(hdma); - - /* Call User Abort callback */ - if(hdma->XferAbortCallback != NULL) - { - hdma->XferAbortCallback(hdma); - } - } - return status; -} - -/** - * @brief Polling for transfer complete. - * @param hdma pointer to a DMA_HandleTypeDef structure that contains - * the configuration information for the specified DMA Channel. - * @param CompleteLevel Specifies the DMA level complete. - * @param Timeout Timeout duration. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_DMA_PollForTransfer(DMA_HandleTypeDef *hdma, uint32_t CompleteLevel, uint32_t Timeout) -{ - uint32_t temp; - uint32_t tickstart = 0U; - - if(HAL_DMA_STATE_BUSY != hdma->State) - { - /* no transfer ongoing */ - hdma->ErrorCode = HAL_DMA_ERROR_NO_XFER; - __HAL_UNLOCK(hdma); - return HAL_ERROR; - } - - /* Polling mode not supported in circular mode */ - if (RESET != (hdma->Instance->CCR & DMA_CCR_CIRC)) - { - hdma->ErrorCode = HAL_DMA_ERROR_NOT_SUPPORTED; - return HAL_ERROR; - } - - /* Get the level transfer complete flag */ - if(HAL_DMA_FULL_TRANSFER == CompleteLevel) - { - /* Transfer Complete flag */ - temp = DMA_FLAG_TC1 << hdma->ChannelIndex; - } - else - { - /* Half Transfer Complete flag */ - temp = DMA_FLAG_HT1 << hdma->ChannelIndex; - } - - /* Get tick */ - tickstart = HAL_GetTick(); - - while(RESET == (hdma->DmaBaseAddress->ISR & temp)) - { - if(RESET != (hdma->DmaBaseAddress->ISR & (DMA_FLAG_TE1 << hdma->ChannelIndex))) - { - /* When a DMA transfer error occurs */ - /* A hardware clear of its EN bits is performed */ - /* Clear all flags */ - hdma->DmaBaseAddress->IFCR = DMA_FLAG_GL1 << hdma->ChannelIndex; - - /* Update error code */ - hdma->ErrorCode = HAL_DMA_ERROR_TE; - - /* Change the DMA state */ - hdma->State= HAL_DMA_STATE_READY; - - /* Process Unlocked */ - __HAL_UNLOCK(hdma); - - return HAL_ERROR; - } - /* Check for the Timeout */ - if(Timeout != HAL_MAX_DELAY) - { - if((Timeout == 0U) || ((HAL_GetTick() - tickstart) > Timeout)) - { - /* Update error code */ - hdma->ErrorCode = HAL_DMA_ERROR_TIMEOUT; - - /* Change the DMA state */ - hdma->State = HAL_DMA_STATE_READY; - - /* Process Unlocked */ - __HAL_UNLOCK(hdma); - - return HAL_ERROR; - } - } - } - - if(HAL_DMA_FULL_TRANSFER == CompleteLevel) - { - /* Clear the transfer complete flag */ - hdma->DmaBaseAddress->IFCR = DMA_FLAG_TC1 << hdma->ChannelIndex; - - /* The selected Channelx EN bit is cleared (DMA is disabled and - all transfers are complete) */ - hdma->State = HAL_DMA_STATE_READY; - } - else - { - /* Clear the half transfer complete flag */ - hdma->DmaBaseAddress->IFCR = DMA_FLAG_HT1 << hdma->ChannelIndex; - } - - /* Process unlocked */ - __HAL_UNLOCK(hdma); - - return HAL_OK; -} - -/** - * @brief Handle DMA interrupt request. - * @param hdma pointer to a DMA_HandleTypeDef structure that contains - * the configuration information for the specified DMA Channel. - * @retval None - */ -void HAL_DMA_IRQHandler(DMA_HandleTypeDef *hdma) -{ - uint32_t flag_it = hdma->DmaBaseAddress->ISR; - uint32_t source_it = hdma->Instance->CCR; - - /* Half Transfer Complete Interrupt management ******************************/ - if ((RESET != (flag_it & (DMA_FLAG_HT1 << hdma->ChannelIndex))) && (RESET != (source_it & DMA_IT_HT))) - { - /* Disable the half transfer interrupt if the DMA mode is not CIRCULAR */ - if((hdma->Instance->CCR & DMA_CCR_CIRC) == 0U) - { - /* Disable the half transfer interrupt */ - hdma->Instance->CCR &= ~DMA_IT_HT; - } - - /* Clear the half transfer complete flag */ - hdma->DmaBaseAddress->IFCR = DMA_FLAG_HT1 << hdma->ChannelIndex; - - /* DMA peripheral state is not updated in Half Transfer */ - /* State is updated only in Transfer Complete case */ - - if(hdma->XferHalfCpltCallback != NULL) - { - /* Half transfer callback */ - hdma->XferHalfCpltCallback(hdma); - } - } - - /* Transfer Complete Interrupt management ***********************************/ - else if ((RESET != (flag_it & (DMA_FLAG_TC1 << hdma->ChannelIndex))) && (RESET != (source_it & DMA_IT_TC))) - { - if((hdma->Instance->CCR & DMA_CCR_CIRC) == 0U) - { - /* Disable the transfer complete & transfer error interrupts */ - /* if the DMA mode is not CIRCULAR */ - hdma->Instance->CCR &= ~(DMA_IT_TC | DMA_IT_TE); - - /* Change the DMA state */ - hdma->State = HAL_DMA_STATE_READY; - } - - /* Clear the transfer complete flag */ - hdma->DmaBaseAddress->IFCR = DMA_FLAG_TC1 << hdma->ChannelIndex; - - /* Process Unlocked */ - __HAL_UNLOCK(hdma); - - if(hdma->XferCpltCallback != NULL) - { - /* Transfer complete callback */ - hdma->XferCpltCallback(hdma); - } - } - - /* Transfer Error Interrupt management ***************************************/ - else if (( RESET != (flag_it & (DMA_FLAG_TE1 << hdma->ChannelIndex))) && (RESET != (source_it & DMA_IT_TE))) - { - /* When a DMA transfer error occurs */ - /* A hardware clear of its EN bits is performed */ - /* Then, disable all DMA interrupts */ - hdma->Instance->CCR &= ~(DMA_IT_TC | DMA_IT_HT | DMA_IT_TE); - - /* Clear all flags */ - hdma->DmaBaseAddress->IFCR = DMA_FLAG_GL1 << hdma->ChannelIndex; - - /* Update error code */ - hdma->ErrorCode = HAL_DMA_ERROR_TE; - - /* Change the DMA state */ - hdma->State = HAL_DMA_STATE_READY; - - /* Process Unlocked */ - __HAL_UNLOCK(hdma); - - if(hdma->XferErrorCallback != NULL) - { - /* Transfer error callback */ - hdma->XferErrorCallback(hdma); - } - } -} - -/** - * @brief Register callbacks - * @param hdma pointer to a DMA_HandleTypeDef structure that contains - * the configuration information for the specified DMA Stream. - * @param CallbackID User Callback identifer - * a HAL_DMA_CallbackIDTypeDef ENUM as parameter. - * @param pCallback pointer to private callback function which has pointer to - * a DMA_HandleTypeDef structure as parameter. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_DMA_RegisterCallback(DMA_HandleTypeDef *hdma, HAL_DMA_CallbackIDTypeDef CallbackID, void (* pCallback)( DMA_HandleTypeDef * _hdma)) -{ - HAL_StatusTypeDef status = HAL_OK; - - /* Process locked */ - __HAL_LOCK(hdma); - - if(HAL_DMA_STATE_READY == hdma->State) - { - switch (CallbackID) - { - case HAL_DMA_XFER_CPLT_CB_ID: - hdma->XferCpltCallback = pCallback; - break; - - case HAL_DMA_XFER_HALFCPLT_CB_ID: - hdma->XferHalfCpltCallback = pCallback; - break; - - case HAL_DMA_XFER_ERROR_CB_ID: - hdma->XferErrorCallback = pCallback; - break; - - case HAL_DMA_XFER_ABORT_CB_ID: - hdma->XferAbortCallback = pCallback; - break; - - default: - status = HAL_ERROR; - break; - } - } - else - { - status = HAL_ERROR; - } - - /* Release Lock */ - __HAL_UNLOCK(hdma); - - return status; -} - -/** - * @brief UnRegister callbacks - * @param hdma pointer to a DMA_HandleTypeDef structure that contains - * the configuration information for the specified DMA Stream. - * @param CallbackID User Callback identifer - * a HAL_DMA_CallbackIDTypeDef ENUM as parameter. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_DMA_UnRegisterCallback(DMA_HandleTypeDef *hdma, HAL_DMA_CallbackIDTypeDef CallbackID) -{ - HAL_StatusTypeDef status = HAL_OK; - - /* Process locked */ - __HAL_LOCK(hdma); - - if(HAL_DMA_STATE_READY == hdma->State) - { - switch (CallbackID) - { - case HAL_DMA_XFER_CPLT_CB_ID: - hdma->XferCpltCallback = NULL; - break; - - case HAL_DMA_XFER_HALFCPLT_CB_ID: - hdma->XferHalfCpltCallback = NULL; - break; - - case HAL_DMA_XFER_ERROR_CB_ID: - hdma->XferErrorCallback = NULL; - break; - - case HAL_DMA_XFER_ABORT_CB_ID: - hdma->XferAbortCallback = NULL; - break; - - case HAL_DMA_XFER_ALL_CB_ID: - hdma->XferCpltCallback = NULL; - hdma->XferHalfCpltCallback = NULL; - hdma->XferErrorCallback = NULL; - hdma->XferAbortCallback = NULL; - break; - - default: - status = HAL_ERROR; - break; - } - } - else - { - status = HAL_ERROR; - } - - /* Release Lock */ - __HAL_UNLOCK(hdma); - - return status; -} - -/** - * @} - */ - -/** @defgroup DMA_Exported_Functions_Group3 Peripheral State functions - * @brief Peripheral State functions - * -@verbatim - =============================================================================== - ##### State and Errors functions ##### - =============================================================================== - [..] - This subsection provides functions allowing to - (+) Check the DMA state - (+) Get error code - -@endverbatim - * @{ - */ - -/** - * @brief Returns the DMA state. - * @param hdma pointer to a DMA_HandleTypeDef structure that contains - * the configuration information for the specified DMA Channel. - * @retval HAL state - */ -HAL_DMA_StateTypeDef HAL_DMA_GetState(DMA_HandleTypeDef *hdma) -{ - return hdma->State; -} - -/** - * @brief Return the DMA error code - * @param hdma pointer to a DMA_HandleTypeDef structure that contains - * the configuration information for the specified DMA Channel. - * @retval DMA Error Code - */ -uint32_t HAL_DMA_GetError(DMA_HandleTypeDef *hdma) -{ - return hdma->ErrorCode; -} - -/** - * @} - */ - -/** - * @} - */ - -/** @addtogroup DMA_Private_Functions - * @{ - */ - -/** - * @brief Set the DMA Transfer parameters. - * @param hdma pointer to a DMA_HandleTypeDef structure that contains - * the configuration information for the specified DMA Channel. - * @param SrcAddress The source memory Buffer address - * @param DstAddress The destination memory Buffer address - * @param DataLength The length of data to be transferred from source to destination - * @retval HAL status - */ -static void DMA_SetConfig(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t DataLength) -{ - /* Clear all flags */ - hdma->DmaBaseAddress->IFCR = (DMA_FLAG_GL1 << hdma->ChannelIndex); - - /* Configure DMA Channel data length */ - hdma->Instance->CNDTR = DataLength; - - /* Memory to Peripheral */ - if((hdma->Init.Direction) == DMA_MEMORY_TO_PERIPH) - { - /* Configure DMA Channel destination address */ - hdma->Instance->CPAR = DstAddress; - - /* Configure DMA Channel source address */ - hdma->Instance->CMAR = SrcAddress; - } - /* Peripheral to Memory */ - else - { - /* Configure DMA Channel source address */ - hdma->Instance->CPAR = SrcAddress; - - /* Configure DMA Channel destination address */ - hdma->Instance->CMAR = DstAddress; - } -} - -/** - * @brief set the DMA base address and channel index depending on DMA instance - * @param hdma pointer to a DMA_HandleTypeDef structure that contains - * the configuration information for the specified DMA Stream. - * @retval None - */ -static void DMA_CalcBaseAndBitshift(DMA_HandleTypeDef *hdma) -{ -#if defined (DMA2) - /* calculation of the channel index */ - if ((uint32_t)(hdma->Instance) < (uint32_t)(DMA2_Channel1)) - { - /* DMA1 */ - hdma->ChannelIndex = (((uint32_t)hdma->Instance - (uint32_t)DMA1_Channel1) / ((uint32_t)DMA1_Channel2 - (uint32_t)DMA1_Channel1)) << 2U; - hdma->DmaBaseAddress = DMA1; - } - else - { - /* DMA2 */ - hdma->ChannelIndex = (((uint32_t)hdma->Instance - (uint32_t)DMA2_Channel1) / ((uint32_t)DMA2_Channel2 - (uint32_t)DMA2_Channel1)) << 2U; - hdma->DmaBaseAddress = DMA2; - } -#else - /* calculation of the channel index */ - /* DMA1 */ - hdma->ChannelIndex = (((uint32_t)hdma->Instance - (uint32_t)DMA1_Channel1) / ((uint32_t)DMA1_Channel2 - (uint32_t)DMA1_Channel1)) << 2U; - hdma->DmaBaseAddress = DMA1; -#endif -} - -/** - * @} - */ - -/** - * @} - */ -#endif /* HAL_DMA_MODULE_ENABLED */ - -/** - * @} - */ - - /** - * @} - */ - -/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_exti.c b/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_exti.c deleted file mode 100644 index 1adb8f7..0000000 --- a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_exti.c +++ /dev/null @@ -1,559 +0,0 @@ -/** - ****************************************************************************** - * @file stm32f0xx_hal_exti.c - * @author MCD Application Team - * @brief EXTI HAL module driver. - * This file provides firmware functions to manage the following - * functionalities of the Extended Interrupts and events controller (EXTI) peripheral: - * + Initialization and de-initialization functions - * + IO operation functions - * - @verbatim - ============================================================================== - ##### EXTI Peripheral features ##### - ============================================================================== - [..] - (+) Each Exti line can be configured within this driver. - - (+) Exti line can be configured in 3 different modes - (++) Interrupt - (++) Event - (++) Both of them - - (+) Configurable Exti lines can be configured with 3 different triggers - (++) Rising - (++) Falling - (++) Both of them - - (+) When set in interrupt mode, configurable Exti lines have two different - interrupts pending registers which allow to distinguish which transition - occurs: - (++) Rising edge pending interrupt - (++) Falling - - (+) Exti lines 0 to 15 are linked to gpio pin number 0 to 15. Gpio port can - be selected through multiplexer. - - ##### How to use this driver ##### - ============================================================================== - [..] - - (#) Configure the EXTI line using HAL_EXTI_SetConfigLine(). - (++) Choose the interrupt line number by setting "Line" member from - EXTI_ConfigTypeDef structure. - (++) Configure the interrupt and/or event mode using "Mode" member from - EXTI_ConfigTypeDef structure. - (++) For configurable lines, configure rising and/or falling trigger - "Trigger" member from EXTI_ConfigTypeDef structure. - (++) For Exti lines linked to gpio, choose gpio port using "GPIOSel" - member from GPIO_InitTypeDef structure. - - (#) Get current Exti configuration of a dedicated line using - HAL_EXTI_GetConfigLine(). - (++) Provide exiting handle as parameter. - (++) Provide pointer on EXTI_ConfigTypeDef structure as second parameter. - - (#) Clear Exti configuration of a dedicated line using HAL_EXTI_GetConfigLine(). - (++) Provide exiting handle as parameter. - - (#) Register callback to treat Exti interrupts using HAL_EXTI_RegisterCallback(). - (++) Provide exiting handle as first parameter. - (++) Provide which callback will be registered using one value from - EXTI_CallbackIDTypeDef. - (++) Provide callback function pointer. - - (#) Get interrupt pending bit using HAL_EXTI_GetPending(). - - (#) Clear interrupt pending bit using HAL_EXTI_GetPending(). - - (#) Generate software interrupt using HAL_EXTI_GenerateSWI(). - - @endverbatim - ****************************************************************************** - * @attention - * - *

© Copyright (c) 2019 STMicroelectronics. - * All rights reserved.

- * - * This software component is licensed by ST under BSD 3-Clause license, - * the "License"; You may not use this file except in compliance with the - * License. You may obtain a copy of the License at: - * opensource.org/licenses/BSD-3-Clause - * - ****************************************************************************** - */ - -/* Includes ------------------------------------------------------------------*/ -#include "stm32f0xx_hal.h" - -/** @addtogroup STM32F0xx_HAL_Driver - * @{ - */ - -/** @addtogroup EXTI - * @{ - */ -/** MISRA C:2012 deviation rule has been granted for following rule: - * Rule-18.1_b - Medium: Array `EXTICR' 1st subscript interval [0,7] may be out - * of bounds [0,3] in following API : - * HAL_EXTI_SetConfigLine - * HAL_EXTI_GetConfigLine - * HAL_EXTI_ClearConfigLine - */ - -#ifdef HAL_EXTI_MODULE_ENABLED - -/* Private typedef -----------------------------------------------------------*/ -/* Private defines -----------------------------------------------------------*/ -/** @defgroup EXTI_Private_Constants EXTI Private Constants - * @{ - */ - -/** - * @} - */ - -/* Private macros ------------------------------------------------------------*/ -/* Private variables ---------------------------------------------------------*/ -/* Private function prototypes -----------------------------------------------*/ -/* Exported functions --------------------------------------------------------*/ - -/** @addtogroup EXTI_Exported_Functions - * @{ - */ - -/** @addtogroup EXTI_Exported_Functions_Group1 - * @brief Configuration functions - * -@verbatim - =============================================================================== - ##### Configuration functions ##### - =============================================================================== - -@endverbatim - * @{ - */ - -/** - * @brief Set configuration of a dedicated Exti line. - * @param hexti Exti handle. - * @param pExtiConfig Pointer on EXTI configuration to be set. - * @retval HAL Status. - */ -HAL_StatusTypeDef HAL_EXTI_SetConfigLine(EXTI_HandleTypeDef *hexti, EXTI_ConfigTypeDef *pExtiConfig) -{ - uint32_t regval; - uint32_t linepos; - uint32_t maskline; - - /* Check null pointer */ - if ((hexti == NULL) || (pExtiConfig == NULL)) - { - return HAL_ERROR; - } - - /* Check parameters */ - assert_param(IS_EXTI_LINE(pExtiConfig->Line)); - assert_param(IS_EXTI_MODE(pExtiConfig->Mode)); - - /* Assign line number to handle */ - hexti->Line = pExtiConfig->Line; - - /* Compute line mask */ - linepos = (pExtiConfig->Line & EXTI_PIN_MASK); - maskline = (1uL << linepos); - - /* Configure triggers for configurable lines */ - if ((pExtiConfig->Line & EXTI_CONFIG) != 0x00u) - { - assert_param(IS_EXTI_TRIGGER(pExtiConfig->Trigger)); - - /* Configure rising trigger */ - /* Mask or set line */ - if ((pExtiConfig->Trigger & EXTI_TRIGGER_RISING) != 0x00u) - { - EXTI->RTSR |= maskline; - } - else - { - EXTI->RTSR &= ~maskline; - } - - /* Configure falling trigger */ - /* Mask or set line */ - if ((pExtiConfig->Trigger & EXTI_TRIGGER_FALLING) != 0x00u) - { - EXTI->FTSR |= maskline; - } - else - { - EXTI->FTSR &= ~maskline; - } - - - /* Configure gpio port selection in case of gpio exti line */ - if ((pExtiConfig->Line & EXTI_GPIO) == EXTI_GPIO) - { - assert_param(IS_EXTI_GPIO_PORT(pExtiConfig->GPIOSel)); - assert_param(IS_EXTI_GPIO_PIN(linepos)); - - regval = SYSCFG->EXTICR[linepos >> 2u]; - regval &= ~(SYSCFG_EXTICR1_EXTI0 << (SYSCFG_EXTICR1_EXTI1_Pos * (linepos & 0x03u))); - regval |= (pExtiConfig->GPIOSel << (SYSCFG_EXTICR1_EXTI1_Pos * (linepos & 0x03u))); - SYSCFG->EXTICR[linepos >> 2u] = regval; - } - } - - /* Configure interrupt mode : read current mode */ - /* Mask or set line */ - if ((pExtiConfig->Mode & EXTI_MODE_INTERRUPT) != 0x00u) - { - EXTI->IMR |= maskline; - } - else - { - EXTI->IMR &= ~maskline; - } - - /* Configure event mode : read current mode */ - /* Mask or set line */ - if ((pExtiConfig->Mode & EXTI_MODE_EVENT) != 0x00u) - { - EXTI->EMR |= maskline; - } - else - { - EXTI->EMR &= ~maskline; - } - - return HAL_OK; -} - -/** - * @brief Get configuration of a dedicated Exti line. - * @param hexti Exti handle. - * @param pExtiConfig Pointer on structure to store Exti configuration. - * @retval HAL Status. - */ -HAL_StatusTypeDef HAL_EXTI_GetConfigLine(EXTI_HandleTypeDef *hexti, EXTI_ConfigTypeDef *pExtiConfig) -{ - uint32_t regval; - uint32_t linepos; - uint32_t maskline; - - /* Check null pointer */ - if ((hexti == NULL) || (pExtiConfig == NULL)) - { - return HAL_ERROR; - } - - /* Check the parameter */ - assert_param(IS_EXTI_LINE(hexti->Line)); - - /* Store handle line number to configuration structure */ - pExtiConfig->Line = hexti->Line; - - /* Compute line mask */ - linepos = (pExtiConfig->Line & EXTI_PIN_MASK); - maskline = (1uL << linepos); - - /* 1] Get core mode : interrupt */ - - /* Check if selected line is enable */ - if ((EXTI->IMR & maskline) != 0x00u) - { - pExtiConfig->Mode = EXTI_MODE_INTERRUPT; - } - else - { - pExtiConfig->Mode = EXTI_MODE_NONE; - } - - /* Get event mode */ - /* Check if selected line is enable */ - if ((EXTI->EMR & maskline) != 0x00u) - { - pExtiConfig->Mode |= EXTI_MODE_EVENT; - } - - /* 2] Get trigger for configurable lines : rising */ - if ((pExtiConfig->Line & EXTI_CONFIG) != 0x00u) - { - /* Check if configuration of selected line is enable */ - if ((EXTI->RTSR & maskline) != 0x00u) - { - pExtiConfig->Trigger = EXTI_TRIGGER_RISING; - } - else - { - pExtiConfig->Trigger = EXTI_TRIGGER_NONE; - } - - /* Get falling configuration */ - /* Check if configuration of selected line is enable */ - if ((EXTI->FTSR & maskline) != 0x00u) - { - pExtiConfig->Trigger |= EXTI_TRIGGER_FALLING; - } - - /* Get Gpio port selection for gpio lines */ - if ((pExtiConfig->Line & EXTI_GPIO) == EXTI_GPIO) - { - assert_param(IS_EXTI_GPIO_PIN(linepos)); - - regval = SYSCFG->EXTICR[linepos >> 2u]; - pExtiConfig->GPIOSel = ((regval << (SYSCFG_EXTICR1_EXTI1_Pos * (3uL - (linepos & 0x03u)))) >> 24); - } - else - { - pExtiConfig->GPIOSel = 0x00u; - } - } - else - { - /* No Trigger selected */ - pExtiConfig->Trigger = EXTI_TRIGGER_NONE; - pExtiConfig->GPIOSel = 0x00u; - } - - return HAL_OK; -} - -/** - * @brief Clear whole configuration of a dedicated Exti line. - * @param hexti Exti handle. - * @retval HAL Status. - */ -HAL_StatusTypeDef HAL_EXTI_ClearConfigLine(EXTI_HandleTypeDef *hexti) -{ - uint32_t regval; - uint32_t linepos; - uint32_t maskline; - - /* Check null pointer */ - if (hexti == NULL) - { - return HAL_ERROR; - } - - /* Check the parameter */ - assert_param(IS_EXTI_LINE(hexti->Line)); - - /* compute line mask */ - linepos = (hexti->Line & EXTI_PIN_MASK); - maskline = (1uL << linepos); - - /* 1] Clear interrupt mode */ - EXTI->IMR = (EXTI->IMR & ~maskline); - - /* 2] Clear event mode */ - EXTI->EMR = (EXTI->EMR & ~maskline); - - /* 3] Clear triggers in case of configurable lines */ - if ((hexti->Line & EXTI_CONFIG) != 0x00u) - { - EXTI->RTSR = (EXTI->RTSR & ~maskline); - EXTI->FTSR = (EXTI->FTSR & ~maskline); - - /* Get Gpio port selection for gpio lines */ - if ((hexti->Line & EXTI_GPIO) == EXTI_GPIO) - { - assert_param(IS_EXTI_GPIO_PIN(linepos)); - - regval = SYSCFG->EXTICR[linepos >> 2u]; - regval &= ~(SYSCFG_EXTICR1_EXTI0 << (SYSCFG_EXTICR1_EXTI1_Pos * (linepos & 0x03u))); - SYSCFG->EXTICR[linepos >> 2u] = regval; - } - } - - return HAL_OK; -} - -/** - * @brief Register callback for a dedicated Exti line. - * @param hexti Exti handle. - * @param CallbackID User callback identifier. - * This parameter can be one of @arg @ref EXTI_CallbackIDTypeDef values. - * @param pPendingCbfn function pointer to be stored as callback. - * @retval HAL Status. - */ -HAL_StatusTypeDef HAL_EXTI_RegisterCallback(EXTI_HandleTypeDef *hexti, EXTI_CallbackIDTypeDef CallbackID, void (*pPendingCbfn)(void)) -{ - HAL_StatusTypeDef status = HAL_OK; - - switch (CallbackID) - { - case HAL_EXTI_COMMON_CB_ID: - hexti->PendingCallback = pPendingCbfn; - break; - - default: - status = HAL_ERROR; - break; - } - - return status; -} - -/** - * @brief Store line number as handle private field. - * @param hexti Exti handle. - * @param ExtiLine Exti line number. - * This parameter can be from 0 to @ref EXTI_LINE_NB. - * @retval HAL Status. - */ -HAL_StatusTypeDef HAL_EXTI_GetHandle(EXTI_HandleTypeDef *hexti, uint32_t ExtiLine) -{ - /* Check the parameters */ - assert_param(IS_EXTI_LINE(ExtiLine)); - - /* Check null pointer */ - if (hexti == NULL) - { - return HAL_ERROR; - } - else - { - /* Store line number as handle private field */ - hexti->Line = ExtiLine; - - return HAL_OK; - } -} - -/** - * @} - */ - -/** @addtogroup EXTI_Exported_Functions_Group2 - * @brief EXTI IO functions. - * -@verbatim - =============================================================================== - ##### IO operation functions ##### - =============================================================================== - -@endverbatim - * @{ - */ - -/** - * @brief Handle EXTI interrupt request. - * @param hexti Exti handle. - * @retval none. - */ -void HAL_EXTI_IRQHandler(EXTI_HandleTypeDef *hexti) -{ - uint32_t regval; - uint32_t maskline; - - /* Compute line mask */ - maskline = (1uL << (hexti->Line & EXTI_PIN_MASK)); - - /* Get pending bit */ - regval = (EXTI->PR & maskline); - if (regval != 0x00u) - { - /* Clear pending bit */ - EXTI->PR = maskline; - - /* Call callback */ - if (hexti->PendingCallback != NULL) - { - hexti->PendingCallback(); - } - } -} - -/** - * @brief Get interrupt pending bit of a dedicated line. - * @param hexti Exti handle. - * @param Edge Specify which pending edge as to be checked. - * This parameter can be one of the following values: - * @arg @ref EXTI_TRIGGER_RISING_FALLING - * This parameter is kept for compatibility with other series. - * @retval 1 if interrupt is pending else 0. - */ -uint32_t HAL_EXTI_GetPending(EXTI_HandleTypeDef *hexti, uint32_t Edge) -{ - uint32_t regval; - uint32_t linepos; - uint32_t maskline; - - /* Check parameters */ - assert_param(IS_EXTI_LINE(hexti->Line)); - assert_param(IS_EXTI_CONFIG_LINE(hexti->Line)); - assert_param(IS_EXTI_PENDING_EDGE(Edge)); - - /* Compute line mask */ - linepos = (hexti->Line & EXTI_PIN_MASK); - maskline = (1uL << linepos); - - /* return 1 if bit is set else 0 */ - regval = ((EXTI->PR & maskline) >> linepos); - return regval; -} - -/** - * @brief Clear interrupt pending bit of a dedicated line. - * @param hexti Exti handle. - * @param Edge Specify which pending edge as to be clear. - * This parameter can be one of the following values: - * @arg @ref EXTI_TRIGGER_RISING_FALLING - * This parameter is kept for compatibility with other series. - * @retval None. - */ -void HAL_EXTI_ClearPending(EXTI_HandleTypeDef *hexti, uint32_t Edge) -{ - uint32_t maskline; - - /* Check parameters */ - assert_param(IS_EXTI_LINE(hexti->Line)); - assert_param(IS_EXTI_CONFIG_LINE(hexti->Line)); - assert_param(IS_EXTI_PENDING_EDGE(Edge)); - - /* Compute line mask */ - maskline = (1uL << (hexti->Line & EXTI_PIN_MASK)); - - /* Clear Pending bit */ - EXTI->PR = maskline; -} - -/** - * @brief Generate a software interrupt for a dedicated line. - * @param hexti Exti handle. - * @retval None. - */ -void HAL_EXTI_GenerateSWI(EXTI_HandleTypeDef *hexti) -{ - uint32_t maskline; - - /* Check parameters */ - assert_param(IS_EXTI_LINE(hexti->Line)); - assert_param(IS_EXTI_CONFIG_LINE(hexti->Line)); - - /* Compute line mask */ - maskline = (1uL << (hexti->Line & EXTI_PIN_MASK)); - - /* Generate Software interrupt */ - EXTI->SWIER = maskline; -} - -/** - * @} - */ - -/** - * @} - */ - -#endif /* HAL_EXTI_MODULE_ENABLED */ -/** - * @} - */ - -/** - * @} - */ - -/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_flash.c b/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_flash.c deleted file mode 100644 index 94ad6e9..0000000 --- a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_flash.c +++ /dev/null @@ -1,694 +0,0 @@ -/** - ****************************************************************************** - * @file stm32f0xx_hal_flash.c - * @author MCD Application Team - * @brief FLASH HAL module driver. - * This file provides firmware functions to manage the following - * functionalities of the internal FLASH memory: - * + Program operations functions - * + Memory Control functions - * + Peripheral State functions - * - @verbatim - ============================================================================== - ##### FLASH peripheral features ##### - ============================================================================== - [..] The Flash memory interface manages CPU AHB I-Code and D-Code accesses - to the Flash memory. It implements the erase and program Flash memory operations - and the read and write protection mechanisms. - - [..] The Flash memory interface accelerates code execution with a system of instruction - prefetch. - - [..] The FLASH main features are: - (+) Flash memory read operations - (+) Flash memory program/erase operations - (+) Read / write protections - (+) Prefetch on I-Code - (+) Option Bytes programming - - - ##### How to use this driver ##### - ============================================================================== - [..] - This driver provides functions and macros to configure and program the FLASH - memory of all STM32F0xx devices. - - (#) FLASH Memory I/O Programming functions: this group includes all needed - functions to erase and program the main memory: - (++) Lock and Unlock the FLASH interface - (++) Erase function: Erase page, erase all pages - (++) Program functions: half word, word and doubleword - (#) FLASH Option Bytes Programming functions: this group includes all needed - functions to manage the Option Bytes: - (++) Lock and Unlock the Option Bytes - (++) Set/Reset the write protection - (++) Set the Read protection Level - (++) Program the user Option Bytes - (++) Launch the Option Bytes loader - (++) Erase Option Bytes - (++) Program the data Option Bytes - (++) Get the Write protection. - (++) Get the user option bytes. - - (#) Interrupts and flags management functions : this group - includes all needed functions to: - (++) Handle FLASH interrupts - (++) Wait for last FLASH operation according to its status - (++) Get error flag status - - [..] In addition to these function, this driver includes a set of macros allowing - to handle the following operations: - - (+) Set/Get the latency - (+) Enable/Disable the prefetch buffer - (+) Enable/Disable the FLASH interrupts - (+) Monitor the FLASH flags status - - @endverbatim - ****************************************************************************** - * @attention - * - *

© Copyright (c) 2016 STMicroelectronics. - * All rights reserved.

- * - * This software component is licensed by ST under BSD 3-Clause license, - * the "License"; You may not use this file except in compliance with the - * License. You may obtain a copy of the License at: - * opensource.org/licenses/BSD-3-Clause - * - ****************************************************************************** - */ - -/* Includes ------------------------------------------------------------------*/ -#include "stm32f0xx_hal.h" - -/** @addtogroup STM32F0xx_HAL_Driver - * @{ - */ - -#ifdef HAL_FLASH_MODULE_ENABLED - -/** @defgroup FLASH FLASH - * @brief FLASH HAL module driver - * @{ - */ - -/* Private typedef -----------------------------------------------------------*/ -/* Private define ------------------------------------------------------------*/ -/** @defgroup FLASH_Private_Constants FLASH Private Constants - * @{ - */ -/** - * @} - */ - -/* Private macro ---------------------------- ---------------------------------*/ -/** @defgroup FLASH_Private_Macros FLASH Private Macros - * @{ - */ - -/** - * @} - */ - -/* Private variables ---------------------------------------------------------*/ -/** @defgroup FLASH_Private_Variables FLASH Private Variables - * @{ - */ -/* Variables used for Erase pages under interruption*/ -FLASH_ProcessTypeDef pFlash; -/** - * @} - */ - -/* Private function prototypes -----------------------------------------------*/ -/** @defgroup FLASH_Private_Functions FLASH Private Functions - * @{ - */ -static void FLASH_Program_HalfWord(uint32_t Address, uint16_t Data); -static void FLASH_SetErrorCode(void); -extern void FLASH_PageErase(uint32_t PageAddress); -/** - * @} - */ - -/* Exported functions ---------------------------------------------------------*/ -/** @defgroup FLASH_Exported_Functions FLASH Exported Functions - * @{ - */ - -/** @defgroup FLASH_Exported_Functions_Group1 Programming operation functions - * @brief Programming operation functions - * -@verbatim -@endverbatim - * @{ - */ - -/** - * @brief Program halfword, word or double word at a specified address - * @note The function HAL_FLASH_Unlock() should be called before to unlock the FLASH interface - * The function HAL_FLASH_Lock() should be called after to lock the FLASH interface - * - * @note If an erase and a program operations are requested simultaneously, - * the erase operation is performed before the program one. - * - * @note FLASH should be previously erased before new programming (only exception to this - * is when 0x0000 is programmed) - * - * @param TypeProgram Indicate the way to program at a specified address. - * This parameter can be a value of @ref FLASH_Type_Program - * @param Address Specifie the address to be programmed. - * @param Data Specifie the data to be programmed - * - * @retval HAL_StatusTypeDef HAL Status - */ -HAL_StatusTypeDef HAL_FLASH_Program(uint32_t TypeProgram, uint32_t Address, uint64_t Data) -{ - HAL_StatusTypeDef status = HAL_ERROR; - uint8_t index = 0U; - uint8_t nbiterations = 0U; - - /* Process Locked */ - __HAL_LOCK(&pFlash); - - /* Check the parameters */ - assert_param(IS_FLASH_TYPEPROGRAM(TypeProgram)); - assert_param(IS_FLASH_PROGRAM_ADDRESS(Address)); - - /* Wait for last operation to be completed */ - status = FLASH_WaitForLastOperation(FLASH_TIMEOUT_VALUE); - - if(status == HAL_OK) - { - if(TypeProgram == FLASH_TYPEPROGRAM_HALFWORD) - { - /* Program halfword (16-bit) at a specified address. */ - nbiterations = 1U; - } - else if(TypeProgram == FLASH_TYPEPROGRAM_WORD) - { - /* Program word (32-bit = 2*16-bit) at a specified address. */ - nbiterations = 2U; - } - else - { - /* Program double word (64-bit = 4*16-bit) at a specified address. */ - nbiterations = 4U; - } - - for (index = 0U; index < nbiterations; index++) - { - FLASH_Program_HalfWord((Address + (2U*index)), (uint16_t)(Data >> (16U*index))); - - /* Wait for last operation to be completed */ - status = FLASH_WaitForLastOperation(FLASH_TIMEOUT_VALUE); - - /* If the program operation is completed, disable the PG Bit */ - CLEAR_BIT(FLASH->CR, FLASH_CR_PG); - /* In case of error, stop programming procedure */ - if (status != HAL_OK) - { - break; - } - } - } - - /* Process Unlocked */ - __HAL_UNLOCK(&pFlash); - - return status; -} - -/** - * @brief Program halfword, word or double word at a specified address with interrupt enabled. - * @note The function HAL_FLASH_Unlock() should be called before to unlock the FLASH interface - * The function HAL_FLASH_Lock() should be called after to lock the FLASH interface - * - * @note If an erase and a program operations are requested simultaneously, - * the erase operation is performed before the program one. - * - * @param TypeProgram Indicate the way to program at a specified address. - * This parameter can be a value of @ref FLASH_Type_Program - * @param Address Specifie the address to be programmed. - * @param Data Specifie the data to be programmed - * - * @retval HAL_StatusTypeDef HAL Status - */ -HAL_StatusTypeDef HAL_FLASH_Program_IT(uint32_t TypeProgram, uint32_t Address, uint64_t Data) -{ - HAL_StatusTypeDef status = HAL_OK; - - /* Process Locked */ - __HAL_LOCK(&pFlash); - - /* Check the parameters */ - assert_param(IS_FLASH_TYPEPROGRAM(TypeProgram)); - assert_param(IS_FLASH_PROGRAM_ADDRESS(Address)); - - /* Enable End of FLASH Operation and Error source interrupts */ - __HAL_FLASH_ENABLE_IT(FLASH_IT_EOP | FLASH_IT_ERR); - - pFlash.Address = Address; - pFlash.Data = Data; - - if(TypeProgram == FLASH_TYPEPROGRAM_HALFWORD) - { - pFlash.ProcedureOnGoing = FLASH_PROC_PROGRAMHALFWORD; - /* Program halfword (16-bit) at a specified address. */ - pFlash.DataRemaining = 1U; - } - else if(TypeProgram == FLASH_TYPEPROGRAM_WORD) - { - pFlash.ProcedureOnGoing = FLASH_PROC_PROGRAMWORD; - /* Program word (32-bit : 2*16-bit) at a specified address. */ - pFlash.DataRemaining = 2U; - } - else - { - pFlash.ProcedureOnGoing = FLASH_PROC_PROGRAMDOUBLEWORD; - /* Program double word (64-bit : 4*16-bit) at a specified address. */ - pFlash.DataRemaining = 4U; - } - - /* Program halfword (16-bit) at a specified address. */ - FLASH_Program_HalfWord(Address, (uint16_t)Data); - - return status; -} - -/** - * @brief This function handles FLASH interrupt request. - * @retval None - */ -void HAL_FLASH_IRQHandler(void) -{ - uint32_t addresstmp = 0U; - - /* Check FLASH operation error flags */ - if(__HAL_FLASH_GET_FLAG(FLASH_FLAG_WRPERR) ||__HAL_FLASH_GET_FLAG(FLASH_FLAG_PGERR)) - { - /* Return the faulty address */ - addresstmp = pFlash.Address; - /* Reset address */ - pFlash.Address = 0xFFFFFFFFU; - - /* Save the Error code */ - FLASH_SetErrorCode(); - - /* FLASH error interrupt user callback */ - HAL_FLASH_OperationErrorCallback(addresstmp); - - /* Stop the procedure ongoing */ - pFlash.ProcedureOnGoing = FLASH_PROC_NONE; - } - - /* Check FLASH End of Operation flag */ - if(__HAL_FLASH_GET_FLAG(FLASH_FLAG_EOP)) - { - /* Clear FLASH End of Operation pending bit */ - __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP); - - /* Process can continue only if no error detected */ - if(pFlash.ProcedureOnGoing != FLASH_PROC_NONE) - { - if(pFlash.ProcedureOnGoing == FLASH_PROC_PAGEERASE) - { - /* Nb of pages to erased can be decreased */ - pFlash.DataRemaining--; - - /* Check if there are still pages to erase */ - if(pFlash.DataRemaining != 0U) - { - addresstmp = pFlash.Address; - /*Indicate user which sector has been erased */ - HAL_FLASH_EndOfOperationCallback(addresstmp); - - /*Increment sector number*/ - addresstmp = pFlash.Address + FLASH_PAGE_SIZE; - pFlash.Address = addresstmp; - - /* If the erase operation is completed, disable the PER Bit */ - CLEAR_BIT(FLASH->CR, FLASH_CR_PER); - - FLASH_PageErase(addresstmp); - } - else - { - /* No more pages to Erase, user callback can be called. */ - /* Reset Sector and stop Erase pages procedure */ - pFlash.Address = addresstmp = 0xFFFFFFFFU; - pFlash.ProcedureOnGoing = FLASH_PROC_NONE; - /* FLASH EOP interrupt user callback */ - HAL_FLASH_EndOfOperationCallback(addresstmp); - } - } - else if(pFlash.ProcedureOnGoing == FLASH_PROC_MASSERASE) - { - /* Operation is completed, disable the MER Bit */ - CLEAR_BIT(FLASH->CR, FLASH_CR_MER); - - /* MassErase ended. Return the selected bank */ - /* FLASH EOP interrupt user callback */ - HAL_FLASH_EndOfOperationCallback(0); - - /* Stop Mass Erase procedure*/ - pFlash.ProcedureOnGoing = FLASH_PROC_NONE; - } - else - { - /* Nb of 16-bit data to program can be decreased */ - pFlash.DataRemaining--; - - /* Check if there are still 16-bit data to program */ - if(pFlash.DataRemaining != 0U) - { - /* Increment address to 16-bit */ - pFlash.Address += 2; - addresstmp = pFlash.Address; - - /* Shift to have next 16-bit data */ - pFlash.Data = (pFlash.Data >> 16U); - - /* Operation is completed, disable the PG Bit */ - CLEAR_BIT(FLASH->CR, FLASH_CR_PG); - - /*Program halfword (16-bit) at a specified address.*/ - FLASH_Program_HalfWord(addresstmp, (uint16_t)pFlash.Data); - } - else - { - /* Program ended. Return the selected address */ - /* FLASH EOP interrupt user callback */ - if (pFlash.ProcedureOnGoing == FLASH_PROC_PROGRAMHALFWORD) - { - HAL_FLASH_EndOfOperationCallback(pFlash.Address); - } - else if (pFlash.ProcedureOnGoing == FLASH_PROC_PROGRAMWORD) - { - HAL_FLASH_EndOfOperationCallback(pFlash.Address - 2U); - } - else - { - HAL_FLASH_EndOfOperationCallback(pFlash.Address - 6U); - } - - /* Reset Address and stop Program procedure */ - pFlash.Address = 0xFFFFFFFFU; - pFlash.ProcedureOnGoing = FLASH_PROC_NONE; - } - } - } - } - - - if(pFlash.ProcedureOnGoing == FLASH_PROC_NONE) - { - /* Operation is completed, disable the PG, PER and MER Bits */ - CLEAR_BIT(FLASH->CR, (FLASH_CR_PG | FLASH_CR_PER | FLASH_CR_MER)); - - /* Disable End of FLASH Operation and Error source interrupts */ - __HAL_FLASH_DISABLE_IT(FLASH_IT_EOP | FLASH_IT_ERR); - - /* Process Unlocked */ - __HAL_UNLOCK(&pFlash); - } -} - -/** - * @brief FLASH end of operation interrupt callback - * @param ReturnValue The value saved in this parameter depends on the ongoing procedure - * - Mass Erase: No return value expected - * - Pages Erase: Address of the page which has been erased - * (if 0xFFFFFFFF, it means that all the selected pages have been erased) - * - Program: Address which was selected for data program - * @retval none - */ -__weak void HAL_FLASH_EndOfOperationCallback(uint32_t ReturnValue) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(ReturnValue); - - /* NOTE : This function Should not be modified, when the callback is needed, - the HAL_FLASH_EndOfOperationCallback could be implemented in the user file - */ -} - -/** - * @brief FLASH operation error interrupt callback - * @param ReturnValue The value saved in this parameter depends on the ongoing procedure - * - Mass Erase: No return value expected - * - Pages Erase: Address of the page which returned an error - * - Program: Address which was selected for data program - * @retval none - */ -__weak void HAL_FLASH_OperationErrorCallback(uint32_t ReturnValue) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(ReturnValue); - - /* NOTE : This function Should not be modified, when the callback is needed, - the HAL_FLASH_OperationErrorCallback could be implemented in the user file - */ -} - -/** - * @} - */ - -/** @defgroup FLASH_Exported_Functions_Group2 Peripheral Control functions - * @brief management functions - * -@verbatim - =============================================================================== - ##### Peripheral Control functions ##### - =============================================================================== - [..] - This subsection provides a set of functions allowing to control the FLASH - memory operations. - -@endverbatim - * @{ - */ - -/** - * @brief Unlock the FLASH control register access - * @retval HAL Status - */ -HAL_StatusTypeDef HAL_FLASH_Unlock(void) -{ - HAL_StatusTypeDef status = HAL_OK; - - if(READ_BIT(FLASH->CR, FLASH_CR_LOCK) != RESET) - { - /* Authorize the FLASH Registers access */ - WRITE_REG(FLASH->KEYR, FLASH_KEY1); - WRITE_REG(FLASH->KEYR, FLASH_KEY2); - - /* Verify Flash is unlocked */ - if(READ_BIT(FLASH->CR, FLASH_CR_LOCK) != RESET) - { - status = HAL_ERROR; - } - } - - return status; -} - -/** - * @brief Locks the FLASH control register access - * @retval HAL Status - */ -HAL_StatusTypeDef HAL_FLASH_Lock(void) -{ - /* Set the LOCK Bit to lock the FLASH Registers access */ - SET_BIT(FLASH->CR, FLASH_CR_LOCK); - - return HAL_OK; -} - -/** - * @brief Unlock the FLASH Option Control Registers access. - * @retval HAL Status - */ -HAL_StatusTypeDef HAL_FLASH_OB_Unlock(void) -{ - if (HAL_IS_BIT_CLR(FLASH->CR, FLASH_CR_OPTWRE)) - { - /* Authorizes the Option Byte register programming */ - WRITE_REG(FLASH->OPTKEYR, FLASH_OPTKEY1); - WRITE_REG(FLASH->OPTKEYR, FLASH_OPTKEY2); - } - else - { - return HAL_ERROR; - } - - return HAL_OK; -} - -/** - * @brief Lock the FLASH Option Control Registers access. - * @retval HAL Status - */ -HAL_StatusTypeDef HAL_FLASH_OB_Lock(void) -{ - /* Clear the OPTWRE Bit to lock the FLASH Option Byte Registers access */ - CLEAR_BIT(FLASH->CR, FLASH_CR_OPTWRE); - - return HAL_OK; -} - -/** - * @brief Launch the option byte loading. - * @note This function will reset automatically the MCU. - * @retval HAL Status - */ -HAL_StatusTypeDef HAL_FLASH_OB_Launch(void) -{ - /* Set the OBL_Launch bit to launch the option byte loading */ - SET_BIT(FLASH->CR, FLASH_CR_OBL_LAUNCH); - - /* Wait for last operation to be completed */ - return(FLASH_WaitForLastOperation(FLASH_TIMEOUT_VALUE)); -} - -/** - * @} - */ - -/** @defgroup FLASH_Exported_Functions_Group3 Peripheral errors functions - * @brief Peripheral errors functions - * -@verbatim - =============================================================================== - ##### Peripheral Errors functions ##### - =============================================================================== - [..] - This subsection permit to get in run-time errors of the FLASH peripheral. - -@endverbatim - * @{ - */ - -/** - * @brief Get the specific FLASH error flag. - * @retval FLASH_ErrorCode The returned value can be: - * @ref FLASH_Error_Codes - */ -uint32_t HAL_FLASH_GetError(void) -{ - return pFlash.ErrorCode; -} - -/** - * @} - */ - -/** - * @} - */ - -/** @addtogroup FLASH_Private_Functions - * @{ - */ - -/** - * @brief Program a half-word (16-bit) at a specified address. - * @param Address specify the address to be programmed. - * @param Data specify the data to be programmed. - * @retval None - */ -static void FLASH_Program_HalfWord(uint32_t Address, uint16_t Data) -{ - /* Clean the error context */ - pFlash.ErrorCode = HAL_FLASH_ERROR_NONE; - - /* Proceed to program the new data */ - SET_BIT(FLASH->CR, FLASH_CR_PG); - - /* Write data in the address */ - *(__IO uint16_t*)Address = Data; -} - -/** - * @brief Wait for a FLASH operation to complete. - * @param Timeout maximum flash operation timeout - * @retval HAL Status - */ -HAL_StatusTypeDef FLASH_WaitForLastOperation(uint32_t Timeout) -{ - /* Wait for the FLASH operation to complete by polling on BUSY flag to be reset. - Even if the FLASH operation fails, the BUSY flag will be reset and an error - flag will be set */ - - uint32_t tickstart = HAL_GetTick(); - - while(__HAL_FLASH_GET_FLAG(FLASH_FLAG_BSY)) - { - if (Timeout != HAL_MAX_DELAY) - { - if((Timeout == 0U) || ((HAL_GetTick()-tickstart) > Timeout)) - { - return HAL_TIMEOUT; - } - } - } - - /* Check FLASH End of Operation flag */ - if (__HAL_FLASH_GET_FLAG(FLASH_FLAG_EOP)) - { - /* Clear FLASH End of Operation pending bit */ - __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP); - } - - if(__HAL_FLASH_GET_FLAG(FLASH_FLAG_WRPERR) || - __HAL_FLASH_GET_FLAG(FLASH_FLAG_PGERR)) - { - /*Save the error code*/ - FLASH_SetErrorCode(); - return HAL_ERROR; - } - - /* There is no error flag set */ - return HAL_OK; -} - - -/** - * @brief Set the specific FLASH error flag. - * @retval None - */ -static void FLASH_SetErrorCode(void) -{ - uint32_t flags = 0U; - - if(__HAL_FLASH_GET_FLAG(FLASH_FLAG_WRPERR)) - { - pFlash.ErrorCode |= HAL_FLASH_ERROR_WRP; - flags |= FLASH_FLAG_WRPERR; - } - if(__HAL_FLASH_GET_FLAG(FLASH_FLAG_PGERR)) - { - pFlash.ErrorCode |= HAL_FLASH_ERROR_PROG; - flags |= FLASH_FLAG_PGERR; - } - /* Clear FLASH error pending bits */ - __HAL_FLASH_CLEAR_FLAG(flags); -} -/** - * @} - */ - -/** - * @} - */ - -#endif /* HAL_FLASH_MODULE_ENABLED */ - -/** - * @} - */ - -/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_flash_ex.c b/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_flash_ex.c deleted file mode 100644 index c86705f..0000000 --- a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_flash_ex.c +++ /dev/null @@ -1,984 +0,0 @@ -/** - ****************************************************************************** - * @file stm32f0xx_hal_flash_ex.c - * @author MCD Application Team - * @brief Extended FLASH HAL module driver. - * - * This file provides firmware functions to manage the following - * functionalities of the FLASH peripheral: - * + Extended Initialization/de-initialization functions - * + Extended I/O operation functions - * + Extended Peripheral Control functions - * - @verbatim - ============================================================================== - ##### Flash peripheral extended features ##### - ============================================================================== - - ##### How to use this driver ##### - ============================================================================== - [..] This driver provides functions to configure and program the FLASH memory - of all STM32F0xxx devices. It includes - - (++) Set/Reset the write protection - (++) Program the user Option Bytes - (++) Get the Read protection Level - - @endverbatim - ****************************************************************************** - * @attention - * - *

© Copyright (c) 2016 STMicroelectronics. - * All rights reserved.

- * - * This software component is licensed by ST under BSD 3-Clause license, - * the "License"; You may not use this file except in compliance with the - * License. You may obtain a copy of the License at: - * opensource.org/licenses/BSD-3-Clause - * - ****************************************************************************** - */ - -/* Includes ------------------------------------------------------------------*/ -#include "stm32f0xx_hal.h" - -/** @addtogroup STM32F0xx_HAL_Driver - * @{ - */ -#ifdef HAL_FLASH_MODULE_ENABLED - -/** @addtogroup FLASH - * @{ - */ -/** @addtogroup FLASH_Private_Variables - * @{ - */ -/* Variables used for Erase pages under interruption*/ -extern FLASH_ProcessTypeDef pFlash; -/** - * @} - */ - -/** - * @} - */ - -/** @defgroup FLASHEx FLASHEx - * @brief FLASH HAL Extension module driver - * @{ - */ - -/* Private typedef -----------------------------------------------------------*/ -/* Private define ------------------------------------------------------------*/ -/** @defgroup FLASHEx_Private_Constants FLASHEx Private Constants - * @{ - */ -#define FLASH_POSITION_IWDGSW_BIT 8U -#define FLASH_POSITION_OB_USERDATA0_BIT 16U -#define FLASH_POSITION_OB_USERDATA1_BIT 24U -/** - * @} - */ - -/* Private macro -------------------------------------------------------------*/ -/** @defgroup FLASHEx_Private_Macros FLASHEx Private Macros - * @{ - */ -/** - * @} - */ - -/* Private variables ---------------------------------------------------------*/ -/* Private function prototypes -----------------------------------------------*/ -/** @defgroup FLASHEx_Private_Functions FLASHEx Private Functions - * @{ - */ -/* Erase operations */ -static void FLASH_MassErase(void); -void FLASH_PageErase(uint32_t PageAddress); - -/* Option bytes control */ -static HAL_StatusTypeDef FLASH_OB_EnableWRP(uint32_t WriteProtectPage); -static HAL_StatusTypeDef FLASH_OB_DisableWRP(uint32_t WriteProtectPage); -static HAL_StatusTypeDef FLASH_OB_RDP_LevelConfig(uint8_t ReadProtectLevel); -static HAL_StatusTypeDef FLASH_OB_UserConfig(uint8_t UserConfig); -static HAL_StatusTypeDef FLASH_OB_ProgramData(uint32_t Address, uint8_t Data); -static uint32_t FLASH_OB_GetWRP(void); -static uint32_t FLASH_OB_GetRDP(void); -static uint8_t FLASH_OB_GetUser(void); - -/** - * @} - */ - -/* Exported functions ---------------------------------------------------------*/ -/** @defgroup FLASHEx_Exported_Functions FLASHEx Exported Functions - * @{ - */ - -/** @defgroup FLASHEx_Exported_Functions_Group1 FLASHEx Memory Erasing functions - * @brief FLASH Memory Erasing functions - * -@verbatim - ============================================================================== - ##### FLASH Erasing Programming functions ##### - ============================================================================== - - [..] The FLASH Memory Erasing functions, includes the following functions: - (+) @ref HAL_FLASHEx_Erase: return only when erase has been done - (+) @ref HAL_FLASHEx_Erase_IT: end of erase is done when @ref HAL_FLASH_EndOfOperationCallback - is called with parameter 0xFFFFFFFF - - [..] Any operation of erase should follow these steps: - (#) Call the @ref HAL_FLASH_Unlock() function to enable the flash control register and - program memory access. - (#) Call the desired function to erase page. - (#) Call the @ref HAL_FLASH_Lock() to disable the flash program memory access - (recommended to protect the FLASH memory against possible unwanted operation). - -@endverbatim - * @{ - */ - - -/** - * @brief Perform a mass erase or erase the specified FLASH memory pages - * @note To correctly run this function, the @ref HAL_FLASH_Unlock() function - * must be called before. - * Call the @ref HAL_FLASH_Lock() to disable the flash memory access - * (recommended to protect the FLASH memory against possible unwanted operation) - * @param[in] pEraseInit pointer to an FLASH_EraseInitTypeDef structure that - * contains the configuration information for the erasing. - * - * @param[out] PageError pointer to variable that - * contains the configuration information on faulty page in case of error - * (0xFFFFFFFF means that all the pages have been correctly erased) - * - * @retval HAL_StatusTypeDef HAL Status - */ -HAL_StatusTypeDef HAL_FLASHEx_Erase(FLASH_EraseInitTypeDef *pEraseInit, uint32_t *PageError) -{ - HAL_StatusTypeDef status = HAL_ERROR; - uint32_t address = 0U; - - /* Process Locked */ - __HAL_LOCK(&pFlash); - - /* Check the parameters */ - assert_param(IS_FLASH_TYPEERASE(pEraseInit->TypeErase)); - - if (pEraseInit->TypeErase == FLASH_TYPEERASE_MASSERASE) - { - /* Mass Erase requested for Bank1 */ - /* Wait for last operation to be completed */ - if (FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE) == HAL_OK) - { - /*Mass erase to be done*/ - FLASH_MassErase(); - - /* Wait for last operation to be completed */ - status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE); - - /* If the erase operation is completed, disable the MER Bit */ - CLEAR_BIT(FLASH->CR, FLASH_CR_MER); - } - } - else - { - /* Page Erase is requested */ - /* Check the parameters */ - assert_param(IS_FLASH_PROGRAM_ADDRESS(pEraseInit->PageAddress)); - assert_param(IS_FLASH_NB_PAGES(pEraseInit->PageAddress, pEraseInit->NbPages)); - - /* Page Erase requested on address located on bank1 */ - /* Wait for last operation to be completed */ - if (FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE) == HAL_OK) - { - /*Initialization of PageError variable*/ - *PageError = 0xFFFFFFFFU; - - /* Erase page by page to be done*/ - for(address = pEraseInit->PageAddress; - address < ((pEraseInit->NbPages * FLASH_PAGE_SIZE) + pEraseInit->PageAddress); - address += FLASH_PAGE_SIZE) - { - FLASH_PageErase(address); - - /* Wait for last operation to be completed */ - status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE); - - /* If the erase operation is completed, disable the PER Bit */ - CLEAR_BIT(FLASH->CR, FLASH_CR_PER); - - if (status != HAL_OK) - { - /* In case of error, stop erase procedure and return the faulty address */ - *PageError = address; - break; - } - } - } - } - - /* Process Unlocked */ - __HAL_UNLOCK(&pFlash); - - return status; -} - -/** - * @brief Perform a mass erase or erase the specified FLASH memory pages with interrupt enabled - * @note To correctly run this function, the @ref HAL_FLASH_Unlock() function - * must be called before. - * Call the @ref HAL_FLASH_Lock() to disable the flash memory access - * (recommended to protect the FLASH memory against possible unwanted operation) - * @param pEraseInit pointer to an FLASH_EraseInitTypeDef structure that - * contains the configuration information for the erasing. - * - * @retval HAL_StatusTypeDef HAL Status - */ -HAL_StatusTypeDef HAL_FLASHEx_Erase_IT(FLASH_EraseInitTypeDef *pEraseInit) -{ - HAL_StatusTypeDef status = HAL_OK; - - /* Process Locked */ - __HAL_LOCK(&pFlash); - - /* If procedure already ongoing, reject the next one */ - if (pFlash.ProcedureOnGoing != FLASH_PROC_NONE) - { - return HAL_ERROR; - } - - /* Check the parameters */ - assert_param(IS_FLASH_TYPEERASE(pEraseInit->TypeErase)); - - /* Enable End of FLASH Operation and Error source interrupts */ - __HAL_FLASH_ENABLE_IT(FLASH_IT_EOP | FLASH_IT_ERR); - - if (pEraseInit->TypeErase == FLASH_TYPEERASE_MASSERASE) - { - /*Mass erase to be done*/ - pFlash.ProcedureOnGoing = FLASH_PROC_MASSERASE; - FLASH_MassErase(); - } - else - { - /* Erase by page to be done*/ - - /* Check the parameters */ - assert_param(IS_FLASH_PROGRAM_ADDRESS(pEraseInit->PageAddress)); - assert_param(IS_FLASH_NB_PAGES(pEraseInit->PageAddress, pEraseInit->NbPages)); - - pFlash.ProcedureOnGoing = FLASH_PROC_PAGEERASE; - pFlash.DataRemaining = pEraseInit->NbPages; - pFlash.Address = pEraseInit->PageAddress; - - /*Erase 1st page and wait for IT*/ - FLASH_PageErase(pEraseInit->PageAddress); - } - - return status; -} - -/** - * @} - */ - -/** @defgroup FLASHEx_Exported_Functions_Group2 Option Bytes Programming functions - * @brief Option Bytes Programming functions - * -@verbatim - ============================================================================== - ##### Option Bytes Programming functions ##### - ============================================================================== - [..] - This subsection provides a set of functions allowing to control the FLASH - option bytes operations. - -@endverbatim - * @{ - */ - -/** - * @brief Erases the FLASH option bytes. - * @note This functions erases all option bytes except the Read protection (RDP). - * The function @ref HAL_FLASH_Unlock() should be called before to unlock the FLASH interface - * The function @ref HAL_FLASH_OB_Unlock() should be called before to unlock the options bytes - * The function @ref HAL_FLASH_OB_Launch() should be called after to force the reload of the options bytes - * (system reset will occur) - * @retval HAL status - */ - -HAL_StatusTypeDef HAL_FLASHEx_OBErase(void) -{ - uint8_t rdptmp = OB_RDP_LEVEL_0; - HAL_StatusTypeDef status = HAL_ERROR; - - /* Get the actual read protection Option Byte value */ - rdptmp = FLASH_OB_GetRDP(); - - /* Wait for last operation to be completed */ - status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE); - - if(status == HAL_OK) - { - /* Clean the error context */ - pFlash.ErrorCode = HAL_FLASH_ERROR_NONE; - - /* If the previous operation is completed, proceed to erase the option bytes */ - SET_BIT(FLASH->CR, FLASH_CR_OPTER); - SET_BIT(FLASH->CR, FLASH_CR_STRT); - - /* Wait for last operation to be completed */ - status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE); - - /* If the erase operation is completed, disable the OPTER Bit */ - CLEAR_BIT(FLASH->CR, FLASH_CR_OPTER); - - if(status == HAL_OK) - { - /* Restore the last read protection Option Byte value */ - status = FLASH_OB_RDP_LevelConfig(rdptmp); - } - } - - /* Return the erase status */ - return status; -} - -/** - * @brief Program option bytes - * @note The function @ref HAL_FLASH_Unlock() should be called before to unlock the FLASH interface - * The function @ref HAL_FLASH_OB_Unlock() should be called before to unlock the options bytes - * The function @ref HAL_FLASH_OB_Launch() should be called after to force the reload of the options bytes - * (system reset will occur) - * - * @param pOBInit pointer to an FLASH_OBInitStruct structure that - * contains the configuration information for the programming. - * - * @retval HAL_StatusTypeDef HAL Status - */ -HAL_StatusTypeDef HAL_FLASHEx_OBProgram(FLASH_OBProgramInitTypeDef *pOBInit) -{ - HAL_StatusTypeDef status = HAL_ERROR; - - /* Process Locked */ - __HAL_LOCK(&pFlash); - - /* Check the parameters */ - assert_param(IS_OPTIONBYTE(pOBInit->OptionType)); - - /* Write protection configuration */ - if((pOBInit->OptionType & OPTIONBYTE_WRP) == OPTIONBYTE_WRP) - { - assert_param(IS_WRPSTATE(pOBInit->WRPState)); - if (pOBInit->WRPState == OB_WRPSTATE_ENABLE) - { - /* Enable of Write protection on the selected page */ - status = FLASH_OB_EnableWRP(pOBInit->WRPPage); - } - else - { - /* Disable of Write protection on the selected page */ - status = FLASH_OB_DisableWRP(pOBInit->WRPPage); - } - if (status != HAL_OK) - { - /* Process Unlocked */ - __HAL_UNLOCK(&pFlash); - return status; - } - } - - /* Read protection configuration */ - if((pOBInit->OptionType & OPTIONBYTE_RDP) == OPTIONBYTE_RDP) - { - status = FLASH_OB_RDP_LevelConfig(pOBInit->RDPLevel); - if (status != HAL_OK) - { - /* Process Unlocked */ - __HAL_UNLOCK(&pFlash); - return status; - } - } - - /* USER configuration */ - if((pOBInit->OptionType & OPTIONBYTE_USER) == OPTIONBYTE_USER) - { - status = FLASH_OB_UserConfig(pOBInit->USERConfig); - if (status != HAL_OK) - { - /* Process Unlocked */ - __HAL_UNLOCK(&pFlash); - return status; - } - } - - /* DATA configuration*/ - if((pOBInit->OptionType & OPTIONBYTE_DATA) == OPTIONBYTE_DATA) - { - status = FLASH_OB_ProgramData(pOBInit->DATAAddress, pOBInit->DATAData); - if (status != HAL_OK) - { - /* Process Unlocked */ - __HAL_UNLOCK(&pFlash); - return status; - } - } - - /* Process Unlocked */ - __HAL_UNLOCK(&pFlash); - - return status; -} - -/** - * @brief Get the Option byte configuration - * @param pOBInit pointer to an FLASH_OBInitStruct structure that - * contains the configuration information for the programming. - * - * @retval None - */ -void HAL_FLASHEx_OBGetConfig(FLASH_OBProgramInitTypeDef *pOBInit) -{ - pOBInit->OptionType = OPTIONBYTE_WRP | OPTIONBYTE_RDP | OPTIONBYTE_USER; - - /*Get WRP*/ - pOBInit->WRPPage = FLASH_OB_GetWRP(); - - /*Get RDP Level*/ - pOBInit->RDPLevel = FLASH_OB_GetRDP(); - - /*Get USER*/ - pOBInit->USERConfig = FLASH_OB_GetUser(); -} - -/** - * @brief Get the Option byte user data - * @param DATAAdress Address of the option byte DATA - * This parameter can be one of the following values: - * @arg @ref OB_DATA_ADDRESS_DATA0 - * @arg @ref OB_DATA_ADDRESS_DATA1 - * @retval Value programmed in USER data - */ -uint32_t HAL_FLASHEx_OBGetUserData(uint32_t DATAAdress) -{ - uint32_t value = 0U; - - if (DATAAdress == OB_DATA_ADDRESS_DATA0) - { - /* Get value programmed in OB USER Data0 */ - value = READ_BIT(FLASH->OBR, FLASH_OBR_DATA0) >> FLASH_POSITION_OB_USERDATA0_BIT; - } - else - { - /* Get value programmed in OB USER Data1 */ - value = READ_BIT(FLASH->OBR, FLASH_OBR_DATA1) >> FLASH_POSITION_OB_USERDATA1_BIT; - } - - return value; -} - -/** - * @} - */ - -/** - * @} - */ - -/** @addtogroup FLASHEx_Private_Functions - * @{ - */ - -/** - * @brief Full erase of FLASH memory Bank - * - * @retval None - */ -static void FLASH_MassErase(void) -{ - /* Clean the error context */ - pFlash.ErrorCode = HAL_FLASH_ERROR_NONE; - - /* Only bank1 will be erased*/ - SET_BIT(FLASH->CR, FLASH_CR_MER); - SET_BIT(FLASH->CR, FLASH_CR_STRT); -} - -/** - * @brief Enable the write protection of the desired pages - * @note An option byte erase is done automatically in this function. - * @note When the memory read protection level is selected (RDP level = 1), - * it is not possible to program or erase the flash page i if - * debug features are connected or boot code is executed in RAM, even if nWRPi = 1 - * - * @param WriteProtectPage specifies the page(s) to be write protected. - * The value of this parameter depend on device used within the same series - * @retval HAL status - */ -static HAL_StatusTypeDef FLASH_OB_EnableWRP(uint32_t WriteProtectPage) -{ - HAL_StatusTypeDef status = HAL_OK; - uint16_t WRP0_Data = 0xFFFFU; -#if defined(OB_WRP1_WRP1) - uint16_t WRP1_Data = 0xFFFFU; -#endif /* OB_WRP1_WRP1 */ -#if defined(OB_WRP2_WRP2) - uint16_t WRP2_Data = 0xFFFFU; -#endif /* OB_WRP2_WRP2 */ -#if defined(OB_WRP3_WRP3) - uint16_t WRP3_Data = 0xFFFFU; -#endif /* OB_WRP3_WRP3 */ - - /* Check the parameters */ - assert_param(IS_OB_WRP(WriteProtectPage)); - - /* Get current write protected pages and the new pages to be protected ******/ - WriteProtectPage = (uint32_t)(~((~FLASH_OB_GetWRP()) | WriteProtectPage)); - -#if defined(OB_WRP_PAGES0TO15MASK) - WRP0_Data = (uint16_t)(WriteProtectPage & OB_WRP_PAGES0TO15MASK); -#elif defined(OB_WRP_PAGES0TO31MASK) - WRP0_Data = (uint16_t)(WriteProtectPage & OB_WRP_PAGES0TO31MASK); -#endif /* OB_WRP_PAGES0TO31MASK */ - -#if defined(OB_WRP_PAGES16TO31MASK) - WRP1_Data = (uint16_t)((WriteProtectPage & OB_WRP_PAGES16TO31MASK) >> 8U); -#elif defined(OB_WRP_PAGES32TO63MASK) - WRP1_Data = (uint16_t)((WriteProtectPage & OB_WRP_PAGES32TO63MASK) >> 8U); -#endif /* OB_WRP_PAGES32TO63MASK */ - -#if defined(OB_WRP_PAGES32TO47MASK) - WRP2_Data = (uint16_t)((WriteProtectPage & OB_WRP_PAGES32TO47MASK) >> 16U); -#endif /* OB_WRP_PAGES32TO47MASK */ - -#if defined(OB_WRP_PAGES48TO63MASK) - WRP3_Data = (uint16_t)((WriteProtectPage & OB_WRP_PAGES48TO63MASK) >> 24U); -#elif defined(OB_WRP_PAGES48TO127MASK) - WRP3_Data = (uint16_t)((WriteProtectPage & OB_WRP_PAGES48TO127MASK) >> 24U); -#endif /* OB_WRP_PAGES48TO63MASK */ - - /* Wait for last operation to be completed */ - status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE); - - if(status == HAL_OK) - { - /* Clean the error context */ - pFlash.ErrorCode = HAL_FLASH_ERROR_NONE; - - /* To be able to write again option byte, need to perform a option byte erase */ - status = HAL_FLASHEx_OBErase(); - if (status == HAL_OK) - { - /* Enable write protection */ - SET_BIT(FLASH->CR, FLASH_CR_OPTPG); - -#if defined(OB_WRP0_WRP0) - if(WRP0_Data != 0xFFU) - { - OB->WRP0 &= WRP0_Data; - - /* Wait for last operation to be completed */ - status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE); - } -#endif /* OB_WRP0_WRP0 */ - -#if defined(OB_WRP1_WRP1) - if((status == HAL_OK) && (WRP1_Data != 0xFFU)) - { - OB->WRP1 &= WRP1_Data; - - /* Wait for last operation to be completed */ - status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE); - } -#endif /* OB_WRP1_WRP1 */ - -#if defined(OB_WRP2_WRP2) - if((status == HAL_OK) && (WRP2_Data != 0xFFU)) - { - OB->WRP2 &= WRP2_Data; - - /* Wait for last operation to be completed */ - status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE); - } -#endif /* OB_WRP2_WRP2 */ - -#if defined(OB_WRP3_WRP3) - if((status == HAL_OK) && (WRP3_Data != 0xFFU)) - { - OB->WRP3 &= WRP3_Data; - - /* Wait for last operation to be completed */ - status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE); - } -#endif /* OB_WRP3_WRP3 */ - - /* if the program operation is completed, disable the OPTPG Bit */ - CLEAR_BIT(FLASH->CR, FLASH_CR_OPTPG); - } - } - - return status; -} - -/** - * @brief Disable the write protection of the desired pages - * @note An option byte erase is done automatically in this function. - * @note When the memory read protection level is selected (RDP level = 1), - * it is not possible to program or erase the flash page i if - * debug features are connected or boot code is executed in RAM, even if nWRPi = 1 - * - * @param WriteProtectPage specifies the page(s) to be write unprotected. - * The value of this parameter depend on device used within the same series - * @retval HAL status - */ -static HAL_StatusTypeDef FLASH_OB_DisableWRP(uint32_t WriteProtectPage) -{ - HAL_StatusTypeDef status = HAL_OK; - uint16_t WRP0_Data = 0xFFFFU; -#if defined(OB_WRP1_WRP1) - uint16_t WRP1_Data = 0xFFFFU; -#endif /* OB_WRP1_WRP1 */ -#if defined(OB_WRP2_WRP2) - uint16_t WRP2_Data = 0xFFFFU; -#endif /* OB_WRP2_WRP2 */ -#if defined(OB_WRP3_WRP3) - uint16_t WRP3_Data = 0xFFFFU; -#endif /* OB_WRP3_WRP3 */ - - /* Check the parameters */ - assert_param(IS_OB_WRP(WriteProtectPage)); - - /* Get current write protected pages and the new pages to be unprotected ******/ - WriteProtectPage = (FLASH_OB_GetWRP() | WriteProtectPage); - -#if defined(OB_WRP_PAGES0TO15MASK) - WRP0_Data = (uint16_t)(WriteProtectPage & OB_WRP_PAGES0TO15MASK); -#elif defined(OB_WRP_PAGES0TO31MASK) - WRP0_Data = (uint16_t)(WriteProtectPage & OB_WRP_PAGES0TO31MASK); -#endif /* OB_WRP_PAGES0TO31MASK */ - -#if defined(OB_WRP_PAGES16TO31MASK) - WRP1_Data = (uint16_t)((WriteProtectPage & OB_WRP_PAGES16TO31MASK) >> 8U); -#elif defined(OB_WRP_PAGES32TO63MASK) - WRP1_Data = (uint16_t)((WriteProtectPage & OB_WRP_PAGES32TO63MASK) >> 8U); -#endif /* OB_WRP_PAGES32TO63MASK */ - -#if defined(OB_WRP_PAGES32TO47MASK) - WRP2_Data = (uint16_t)((WriteProtectPage & OB_WRP_PAGES32TO47MASK) >> 16U); -#endif /* OB_WRP_PAGES32TO47MASK */ - -#if defined(OB_WRP_PAGES48TO63MASK) - WRP3_Data = (uint16_t)((WriteProtectPage & OB_WRP_PAGES48TO63MASK) >> 24U); -#elif defined(OB_WRP_PAGES48TO127MASK) - WRP3_Data = (uint16_t)((WriteProtectPage & OB_WRP_PAGES48TO127MASK) >> 24U); -#endif /* OB_WRP_PAGES48TO63MASK */ - - - /* Wait for last operation to be completed */ - status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE); - - if(status == HAL_OK) - { - /* Clean the error context */ - pFlash.ErrorCode = HAL_FLASH_ERROR_NONE; - - /* To be able to write again option byte, need to perform a option byte erase */ - status = HAL_FLASHEx_OBErase(); - if (status == HAL_OK) - { - SET_BIT(FLASH->CR, FLASH_CR_OPTPG); - -#if defined(OB_WRP0_WRP0) - if(WRP0_Data != 0xFFU) - { - OB->WRP0 |= WRP0_Data; - - /* Wait for last operation to be completed */ - status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE); - } -#endif /* OB_WRP0_WRP0 */ - -#if defined(OB_WRP1_WRP1) - if((status == HAL_OK) && (WRP1_Data != 0xFFU)) - { - OB->WRP1 |= WRP1_Data; - - /* Wait for last operation to be completed */ - status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE); - } -#endif /* OB_WRP1_WRP1 */ - -#if defined(OB_WRP2_WRP2) - if((status == HAL_OK) && (WRP2_Data != 0xFFU)) - { - OB->WRP2 |= WRP2_Data; - - /* Wait for last operation to be completed */ - status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE); - } -#endif /* OB_WRP2_WRP2 */ - -#if defined(OB_WRP3_WRP3) - if((status == HAL_OK) && (WRP3_Data != 0xFFU)) - { - OB->WRP3 |= WRP3_Data; - - /* Wait for last operation to be completed */ - status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE); - } -#endif /* OB_WRP3_WRP3 */ - - /* if the program operation is completed, disable the OPTPG Bit */ - CLEAR_BIT(FLASH->CR, FLASH_CR_OPTPG); - } - } - return status; -} - -/** - * @brief Set the read protection level. - * @param ReadProtectLevel specifies the read protection level. - * This parameter can be one of the following values: - * @arg @ref OB_RDP_LEVEL_0 No protection - * @arg @ref OB_RDP_LEVEL_1 Read protection of the memory - * @arg @ref OB_RDP_LEVEL_2 Full chip protection - * @note Warning: When enabling OB_RDP level 2 it's no more possible to go back to level 1 or 0 - * @retval HAL status - */ -static HAL_StatusTypeDef FLASH_OB_RDP_LevelConfig(uint8_t ReadProtectLevel) -{ - HAL_StatusTypeDef status = HAL_OK; - - /* Check the parameters */ - assert_param(IS_OB_RDP_LEVEL(ReadProtectLevel)); - - /* Wait for last operation to be completed */ - status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE); - - if(status == HAL_OK) - { - /* Clean the error context */ - pFlash.ErrorCode = HAL_FLASH_ERROR_NONE; - - /* If the previous operation is completed, proceed to erase the option bytes */ - SET_BIT(FLASH->CR, FLASH_CR_OPTER); - SET_BIT(FLASH->CR, FLASH_CR_STRT); - - /* Wait for last operation to be completed */ - status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE); - - /* If the erase operation is completed, disable the OPTER Bit */ - CLEAR_BIT(FLASH->CR, FLASH_CR_OPTER); - - if(status == HAL_OK) - { - /* Enable the Option Bytes Programming operation */ - SET_BIT(FLASH->CR, FLASH_CR_OPTPG); - - WRITE_REG(OB->RDP, ReadProtectLevel); - - /* Wait for last operation to be completed */ - status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE); - - /* if the program operation is completed, disable the OPTPG Bit */ - CLEAR_BIT(FLASH->CR, FLASH_CR_OPTPG); - } - } - - return status; -} - -/** - * @brief Program the FLASH User Option Byte. - * @note Programming of the OB should be performed only after an erase (otherwise PGERR occurs) - * @param UserConfig The FLASH User Option Bytes values: IWDG_SW(Bit0), RST_STOP(Bit1), RST_STDBY(Bit2), nBOOT1(Bit4), - * VDDA_Analog_Monitoring(Bit5) and SRAM_Parity_Enable(Bit6). - * For few devices, following option bytes are available: nBOOT0(Bit3) & BOOT_SEL(Bit7). - * @retval HAL status - */ -static HAL_StatusTypeDef FLASH_OB_UserConfig(uint8_t UserConfig) -{ - HAL_StatusTypeDef status = HAL_OK; - - /* Check the parameters */ - assert_param(IS_OB_IWDG_SOURCE((UserConfig&OB_IWDG_SW))); - assert_param(IS_OB_STOP_SOURCE((UserConfig&OB_STOP_NO_RST))); - assert_param(IS_OB_STDBY_SOURCE((UserConfig&OB_STDBY_NO_RST))); - assert_param(IS_OB_BOOT1((UserConfig&OB_BOOT1_SET))); - assert_param(IS_OB_VDDA_ANALOG((UserConfig&OB_VDDA_ANALOG_ON))); - assert_param(IS_OB_SRAM_PARITY((UserConfig&OB_SRAM_PARITY_RESET))); -#if defined(FLASH_OBR_BOOT_SEL) - assert_param(IS_OB_BOOT_SEL((UserConfig&OB_BOOT_SEL_SET))); - assert_param(IS_OB_BOOT0((UserConfig&OB_BOOT0_SET))); -#endif /* FLASH_OBR_BOOT_SEL */ - - /* Wait for last operation to be completed */ - status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE); - - if(status == HAL_OK) - { - /* Clean the error context */ - pFlash.ErrorCode = HAL_FLASH_ERROR_NONE; - - /* Enable the Option Bytes Programming operation */ - SET_BIT(FLASH->CR, FLASH_CR_OPTPG); - -#if defined(FLASH_OBR_BOOT_SEL) - OB->USER = UserConfig; -#else - OB->USER = (UserConfig | 0x88U); -#endif - - /* Wait for last operation to be completed */ - status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE); - - /* if the program operation is completed, disable the OPTPG Bit */ - CLEAR_BIT(FLASH->CR, FLASH_CR_OPTPG); - } - - return status; -} - -/** - * @brief Programs a half word at a specified Option Byte Data address. - * @note The function @ref HAL_FLASH_Unlock() should be called before to unlock the FLASH interface - * The function @ref HAL_FLASH_OB_Unlock() should be called before to unlock the options bytes - * The function @ref HAL_FLASH_OB_Launch() should be called after to force the reload of the options bytes - * (system reset will occur) - * Programming of the OB should be performed only after an erase (otherwise PGERR occurs) - * @param Address specifies the address to be programmed. - * This parameter can be 0x1FFFF804 or 0x1FFFF806. - * @param Data specifies the data to be programmed. - * @retval HAL status - */ -static HAL_StatusTypeDef FLASH_OB_ProgramData(uint32_t Address, uint8_t Data) -{ - HAL_StatusTypeDef status = HAL_ERROR; - - /* Check the parameters */ - assert_param(IS_OB_DATA_ADDRESS(Address)); - - /* Wait for last operation to be completed */ - status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE); - - if(status == HAL_OK) - { - /* Clean the error context */ - pFlash.ErrorCode = HAL_FLASH_ERROR_NONE; - - /* Enables the Option Bytes Programming operation */ - SET_BIT(FLASH->CR, FLASH_CR_OPTPG); - *(__IO uint16_t*)Address = Data; - - /* Wait for last operation to be completed */ - status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE); - - /* If the program operation is completed, disable the OPTPG Bit */ - CLEAR_BIT(FLASH->CR, FLASH_CR_OPTPG); - } - /* Return the Option Byte Data Program Status */ - return status; -} - -/** - * @brief Return the FLASH Write Protection Option Bytes value. - * @retval The FLASH Write Protection Option Bytes value - */ -static uint32_t FLASH_OB_GetWRP(void) -{ - /* Return the FLASH write protection Register value */ - return (uint32_t)(READ_REG(FLASH->WRPR)); -} - -/** - * @brief Returns the FLASH Read Protection level. - * @retval FLASH RDP level - * This parameter can be one of the following values: - * @arg @ref OB_RDP_LEVEL_0 No protection - * @arg @ref OB_RDP_LEVEL_1 Read protection of the memory - * @arg @ref OB_RDP_LEVEL_2 Full chip protection - */ -static uint32_t FLASH_OB_GetRDP(void) -{ - uint32_t tmp_reg; - - /* Read RDP level bits */ - tmp_reg = READ_BIT(FLASH->OBR, (FLASH_OBR_RDPRT1 | FLASH_OBR_RDPRT2)); - - if (tmp_reg == 0U) - { - return OB_RDP_LEVEL_0; - } - else if ((tmp_reg & FLASH_OBR_RDPRT2) == FLASH_OBR_RDPRT2) - { - return OB_RDP_LEVEL_2; - } - else - { - return OB_RDP_LEVEL_1; - } -} - -/** - * @brief Return the FLASH User Option Byte value. - * @retval The FLASH User Option Bytes values: IWDG_SW(Bit0), RST_STOP(Bit1), RST_STDBY(Bit2), nBOOT1(Bit4), - * VDDA_Analog_Monitoring(Bit5) and SRAM_Parity_Enable(Bit6). - * For few devices, following option bytes are available: nBOOT0(Bit3) & BOOT_SEL(Bit7). - */ -static uint8_t FLASH_OB_GetUser(void) -{ - /* Return the User Option Byte */ - return (uint8_t)((READ_REG(FLASH->OBR) & FLASH_OBR_USER) >> FLASH_POSITION_IWDGSW_BIT); -} - -/** - * @} - */ - -/** - * @} - */ - -/** @addtogroup FLASH - * @{ - */ - -/** @addtogroup FLASH_Private_Functions - * @{ - */ - -/** - * @brief Erase the specified FLASH memory page - * @param PageAddress FLASH page to erase - * The value of this parameter depend on device used within the same series - * - * @retval None - */ -void FLASH_PageErase(uint32_t PageAddress) -{ - /* Clean the error context */ - pFlash.ErrorCode = HAL_FLASH_ERROR_NONE; - - /* Proceed to erase the page */ - SET_BIT(FLASH->CR, FLASH_CR_PER); - WRITE_REG(FLASH->AR, PageAddress); - SET_BIT(FLASH->CR, FLASH_CR_STRT); -} - -/** - * @} - */ - -/** - * @} - */ - -#endif /* HAL_FLASH_MODULE_ENABLED */ -/** - * @} - */ - -/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_gpio.c b/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_gpio.c deleted file mode 100644 index 6faa77a..0000000 --- a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_gpio.c +++ /dev/null @@ -1,543 +0,0 @@ -/** - ****************************************************************************** - * @file stm32f0xx_hal_gpio.c - * @author MCD Application Team - * @brief GPIO HAL module driver. - * This file provides firmware functions to manage the following - * functionalities of the General Purpose Input/Output (GPIO) peripheral: - * + Initialization and de-initialization functions - * + IO operation functions - * - @verbatim - ============================================================================== - ##### GPIO Peripheral features ##### - ============================================================================== - [..] - (+) Each port bit of the general-purpose I/O (GPIO) ports can be individually - configured by software in several modes: - (++) Input mode - (++) Analog mode - (++) Output mode - (++) Alternate function mode - (++) External interrupt/event lines - - (+) During and just after reset, the alternate functions and external interrupt - lines are not active and the I/O ports are configured in input floating mode. - - (+) All GPIO pins have weak internal pull-up and pull-down resistors, which can be - activated or not. - - (+) In Output or Alternate mode, each IO can be configured on open-drain or push-pull - type and the IO speed can be selected depending on the VDD value. - - (+) The microcontroller IO pins are connected to onboard peripherals/modules through a - multiplexer that allows only one peripheral alternate function (AF) connected - to an IO pin at a time. In this way, there can be no conflict between peripherals - sharing the same IO pin. - - (+) All ports have external interrupt/event capability. To use external interrupt - lines, the port must be configured in input mode. All available GPIO pins are - connected to the 16 external interrupt/event lines from EXTI0 to EXTI15. - - (+) The external interrupt/event controller consists of up to 28 edge detectors - (16 lines are connected to GPIO) for generating event/interrupt requests (each - input line can be independently configured to select the type (interrupt or event) - and the corresponding trigger event (rising or falling or both). Each line can - also be masked independently. - - ##### How to use this driver ##### - ============================================================================== - [..] - (#) Enable the GPIO AHB clock using the following function : __HAL_RCC_GPIOx_CLK_ENABLE(). - - (#) Configure the GPIO pin(s) using HAL_GPIO_Init(). - (++) Configure the IO mode using "Mode" member from GPIO_InitTypeDef structure - (++) Activate Pull-up, Pull-down resistor using "Pull" member from GPIO_InitTypeDef - structure. - (++) In case of Output or alternate function mode selection: the speed is - configured through "Speed" member from GPIO_InitTypeDef structure. - (++) In alternate mode is selection, the alternate function connected to the IO - is configured through "Alternate" member from GPIO_InitTypeDef structure. - (++) Analog mode is required when a pin is to be used as ADC channel - or DAC output. - (++) In case of external interrupt/event selection the "Mode" member from - GPIO_InitTypeDef structure select the type (interrupt or event) and - the corresponding trigger event (rising or falling or both). - - (#) In case of external interrupt/event mode selection, configure NVIC IRQ priority - mapped to the EXTI line using HAL_NVIC_SetPriority() and enable it using - HAL_NVIC_EnableIRQ(). - - (#) HAL_GPIO_DeInit allows to set register values to their reset value. It's also - recommended to use it to unconfigure pin which was used as an external interrupt - or in event mode. That's the only way to reset corresponding bit in EXTI & SYSCFG - registers. - - (#) To get the level of a pin configured in input mode use HAL_GPIO_ReadPin(). - - (#) To set/reset the level of a pin configured in output mode use - HAL_GPIO_WritePin()/HAL_GPIO_TogglePin(). - - (#) To lock pin configuration until next reset use HAL_GPIO_LockPin(). - - (#) During and just after reset, the alternate functions are not - active and the GPIO pins are configured in input floating mode (except JTAG - pins). - - (#) The LSE oscillator pins OSC32_IN and OSC32_OUT can be used as general purpose - (PC14 and PC15, respectively) when the LSE oscillator is off. The LSE has - priority over the GPIO function. - - (#) The HSE oscillator pins OSC_IN/OSC_OUT can be used as - general purpose PF0 and PF1, respectively, when the HSE oscillator is off. - The HSE has priority over the GPIO function. - - @endverbatim - ****************************************************************************** - * @attention - * - *

© Copyright (c) 2016 STMicroelectronics. - * All rights reserved.

- * - * This software component is licensed by ST under BSD 3-Clause license, - * the "License"; You may not use this file except in compliance with the - * License. You may obtain a copy of the License at: - * opensource.org/licenses/BSD-3-Clause - * - ****************************************************************************** - */ - -/* Includes ------------------------------------------------------------------*/ -#include "stm32f0xx_hal.h" - -/** @addtogroup STM32F0xx_HAL_Driver - * @{ - */ - -/** @defgroup GPIO GPIO - * @brief GPIO HAL module driver - * @{ - */ - -/** MISRA C:2012 deviation rule has been granted for following rules: - * Rule-18.1_d - Medium: Array pointer `GPIOx' is accessed with index [..,..] - * which may be out of array bounds [..,UNKNOWN] in following APIs: - * HAL_GPIO_Init - * HAL_GPIO_DeInit - */ - -#ifdef HAL_GPIO_MODULE_ENABLED - -/* Private typedef -----------------------------------------------------------*/ -/* Private defines -----------------------------------------------------------*/ -/** @defgroup GPIO_Private_Defines GPIO Private Defines - * @{ - */ -#define GPIO_MODE (0x00000003U) -#define EXTI_MODE (0x10000000U) -#define GPIO_MODE_IT (0x00010000U) -#define GPIO_MODE_EVT (0x00020000U) -#define RISING_EDGE (0x00100000U) -#define FALLING_EDGE (0x00200000U) -#define GPIO_OUTPUT_TYPE (0x00000010U) - -#define GPIO_NUMBER (16U) -/** - * @} - */ - -/* Private macros ------------------------------------------------------------*/ -/* Private variables ---------------------------------------------------------*/ -/* Private function prototypes -----------------------------------------------*/ -/* Exported functions --------------------------------------------------------*/ - -/** @defgroup GPIO_Exported_Functions GPIO Exported Functions - * @{ - */ - -/** @defgroup GPIO_Exported_Functions_Group1 Initialization/de-initialization functions - * @brief Initialization and Configuration functions - * -@verbatim - =============================================================================== - ##### Initialization and de-initialization functions ##### - =============================================================================== - -@endverbatim - * @{ - */ - -/** - * @brief Initialize the GPIOx peripheral according to the specified parameters in the GPIO_Init. - * @param GPIOx where x can be (A..F) to select the GPIO peripheral for STM32F0 family - * @param GPIO_Init pointer to a GPIO_InitTypeDef structure that contains - * the configuration information for the specified GPIO peripheral. - * @retval None - */ -void HAL_GPIO_Init(GPIO_TypeDef *GPIOx, GPIO_InitTypeDef *GPIO_Init) -{ - uint32_t position = 0x00u; - uint32_t iocurrent; - uint32_t temp; - - /* Check the parameters */ - assert_param(IS_GPIO_ALL_INSTANCE(GPIOx)); - assert_param(IS_GPIO_PIN(GPIO_Init->Pin)); - assert_param(IS_GPIO_MODE(GPIO_Init->Mode)); - assert_param(IS_GPIO_PULL(GPIO_Init->Pull)); - - /* Configure the port pins */ - while (((GPIO_Init->Pin) >> position) != 0x00u) - { - /* Get current io position */ - iocurrent = (GPIO_Init->Pin) & (1uL << position); - - if (iocurrent != 0x00u) - { - /*--------------------- GPIO Mode Configuration ------------------------*/ - /* In case of Alternate function mode selection */ - if((GPIO_Init->Mode == GPIO_MODE_AF_PP) || (GPIO_Init->Mode == GPIO_MODE_AF_OD)) - { - /* Check the Alternate function parameters */ - assert_param(IS_GPIO_AF_INSTANCE(GPIOx)); - assert_param(IS_GPIO_AF(GPIO_Init->Alternate)); - - /* Configure Alternate function mapped with the current IO */ - temp = GPIOx->AFR[position >> 3u]; - temp &= ~(0xFu << ((position & 0x07u) * 4u)); - temp |= ((GPIO_Init->Alternate) << ((position & 0x07u) * 4u)); - GPIOx->AFR[position >> 3u] = temp; - } - - /* Configure IO Direction mode (Input, Output, Alternate or Analog) */ - temp = GPIOx->MODER; - temp &= ~(GPIO_MODER_MODER0 << (position * 2u)); - temp |= ((GPIO_Init->Mode & GPIO_MODE) << (position * 2u)); - GPIOx->MODER = temp; - - /* In case of Output or Alternate function mode selection */ - if((GPIO_Init->Mode == GPIO_MODE_OUTPUT_PP) || (GPIO_Init->Mode == GPIO_MODE_AF_PP) || - (GPIO_Init->Mode == GPIO_MODE_OUTPUT_OD) || (GPIO_Init->Mode == GPIO_MODE_AF_OD)) - { - /* Check the Speed parameter */ - assert_param(IS_GPIO_SPEED(GPIO_Init->Speed)); - /* Configure the IO Speed */ - temp = GPIOx->OSPEEDR; - temp &= ~(GPIO_OSPEEDER_OSPEEDR0 << (position * 2u)); - temp |= (GPIO_Init->Speed << (position * 2u)); - GPIOx->OSPEEDR = temp; - - /* Configure the IO Output Type */ - temp = GPIOx->OTYPER; - temp &= ~(GPIO_OTYPER_OT_0 << position) ; - temp |= (((GPIO_Init->Mode & GPIO_OUTPUT_TYPE) >> 4u) << position); - GPIOx->OTYPER = temp; - } - - /* Activate the Pull-up or Pull down resistor for the current IO */ - temp = GPIOx->PUPDR; - temp &= ~(GPIO_PUPDR_PUPDR0 << (position * 2u)); - temp |= ((GPIO_Init->Pull) << (position * 2u)); - GPIOx->PUPDR = temp; - - /*--------------------- EXTI Mode Configuration ------------------------*/ - /* Configure the External Interrupt or event for the current IO */ - if((GPIO_Init->Mode & EXTI_MODE) == EXTI_MODE) - { - /* Enable SYSCFG Clock */ - __HAL_RCC_SYSCFG_CLK_ENABLE(); - - temp = SYSCFG->EXTICR[position >> 2u]; - temp &= ~(0x0FuL << (4u * (position & 0x03u))); - temp |= (GPIO_GET_INDEX(GPIOx) << (4u * (position & 0x03u))); - SYSCFG->EXTICR[position >> 2u] = temp; - - /* Clear EXTI line configuration */ - temp = EXTI->IMR; - temp &= ~(iocurrent); - if((GPIO_Init->Mode & GPIO_MODE_IT) == GPIO_MODE_IT) - { - temp |= iocurrent; - } - EXTI->IMR = temp; - - temp = EXTI->EMR; - temp &= ~(iocurrent); - if((GPIO_Init->Mode & GPIO_MODE_EVT) == GPIO_MODE_EVT) - { - temp |= iocurrent; - } - EXTI->EMR = temp; - - /* Clear Rising Falling edge configuration */ - temp = EXTI->RTSR; - temp &= ~(iocurrent); - if((GPIO_Init->Mode & RISING_EDGE) == RISING_EDGE) - { - temp |= iocurrent; - } - EXTI->RTSR = temp; - - temp = EXTI->FTSR; - temp &= ~(iocurrent); - if((GPIO_Init->Mode & FALLING_EDGE) == FALLING_EDGE) - { - temp |= iocurrent; - } - EXTI->FTSR = temp; - } - } - - position++; - } -} - -/** - * @brief De-initialize the GPIOx peripheral registers to their default reset values. - * @param GPIOx where x can be (A..F) to select the GPIO peripheral for STM32F0 family - * @param GPIO_Pin specifies the port bit to be written. - * This parameter can be one of GPIO_PIN_x where x can be (0..15). - * @retval None - */ -void HAL_GPIO_DeInit(GPIO_TypeDef *GPIOx, uint32_t GPIO_Pin) -{ - uint32_t position = 0x00u; - uint32_t iocurrent; - uint32_t tmp; - - /* Check the parameters */ - assert_param(IS_GPIO_ALL_INSTANCE(GPIOx)); - assert_param(IS_GPIO_PIN(GPIO_Pin)); - - /* Configure the port pins */ - while ((GPIO_Pin >> position) != 0x00u) - { - /* Get current io position */ - iocurrent = (GPIO_Pin) & (1uL << position); - - if (iocurrent != 0x00u) - { - /*------------------------- EXTI Mode Configuration --------------------*/ - /* Clear the External Interrupt or Event for the current IO */ - - tmp = SYSCFG->EXTICR[position >> 2u]; - tmp &= (0x0FuL << (4u * (position & 0x03u))); - if (tmp == (GPIO_GET_INDEX(GPIOx) << (4u * (position & 0x03u)))) - { - /* Clear EXTI line configuration */ - EXTI->IMR &= ~((uint32_t)iocurrent); - EXTI->EMR &= ~((uint32_t)iocurrent); - - /* Clear Rising Falling edge configuration */ - EXTI->RTSR &= ~((uint32_t)iocurrent); - EXTI->FTSR &= ~((uint32_t)iocurrent); - - /* Configure the External Interrupt or event for the current IO */ - tmp = 0x0FuL << (4u * (position & 0x03u)); - SYSCFG->EXTICR[position >> 2u] &= ~tmp; - } - - /*------------------------- GPIO Mode Configuration --------------------*/ - /* Configure IO Direction in Input Floating Mode */ - GPIOx->MODER &= ~(GPIO_MODER_MODER0 << (position * 2u)); - - /* Configure the default Alternate Function in current IO */ - GPIOx->AFR[position >> 3u] &= ~(0xFu << ((uint32_t)(position & 0x07u) * 4u)) ; - - /* Configure the default value for IO Speed */ - GPIOx->OSPEEDR &= ~(GPIO_OSPEEDER_OSPEEDR0 << (position * 2u)); - - /* Configure the default value IO Output Type */ - GPIOx->OTYPER &= ~(GPIO_OTYPER_OT_0 << position) ; - - /* Deactivate the Pull-up and Pull-down resistor for the current IO */ - GPIOx->PUPDR &= ~(GPIO_PUPDR_PUPDR0 << (position * 2U)); - } - - position++; - } -} - -/** - * @} - */ - -/** @defgroup GPIO_Exported_Functions_Group2 IO operation functions - * @brief GPIO Read, Write, Toggle, Lock and EXTI management functions. - * -@verbatim - =============================================================================== - ##### IO operation functions ##### - =============================================================================== - -@endverbatim - * @{ - */ - -/** - * @brief Read the specified input port pin. - * @param GPIOx where x can be (A..F) to select the GPIO peripheral for STM32F0 family - * @param GPIO_Pin specifies the port bit to read. - * This parameter can be GPIO_PIN_x where x can be (0..15). - * @retval The input port pin value. - */ -GPIO_PinState HAL_GPIO_ReadPin(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin) -{ - GPIO_PinState bitstatus; - - /* Check the parameters */ - assert_param(IS_GPIO_PIN(GPIO_Pin)); - - if ((GPIOx->IDR & GPIO_Pin) != (uint32_t)GPIO_PIN_RESET) - { - bitstatus = GPIO_PIN_SET; - } - else - { - bitstatus = GPIO_PIN_RESET; - } - return bitstatus; - } - -/** - * @brief Set or clear the selected data port bit. - * @note This function uses GPIOx_BSRR and GPIOx_BRR registers to allow atomic read/modify - * accesses. In this way, there is no risk of an IRQ occurring between - * the read and the modify access. - * - * @param GPIOx where x can be (A..H) to select the GPIO peripheral for STM32F0 family - * @param GPIO_Pin specifies the port bit to be written. - * This parameter can be one of GPIO_PIN_x where x can be (0..15). - * @param PinState specifies the value to be written to the selected bit. - * This parameter can be one of the GPIO_PinState enum values: - * @arg GPIO_PIN_RESET: to clear the port pin - * @arg GPIO_PIN_SET: to set the port pin - * @retval None - */ -void HAL_GPIO_WritePin(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin, GPIO_PinState PinState) -{ - /* Check the parameters */ - assert_param(IS_GPIO_PIN(GPIO_Pin)); - assert_param(IS_GPIO_PIN_ACTION(PinState)); - - if (PinState != GPIO_PIN_RESET) - { - GPIOx->BSRR = (uint32_t)GPIO_Pin; - } - else - { - GPIOx->BRR = (uint32_t)GPIO_Pin; - } -} - -/** - * @brief Toggle the specified GPIO pin. - * @param GPIOx where x can be (A..F) to select the GPIO peripheral for STM32F0 family - * @param GPIO_Pin specifies the pin to be toggled. - * @retval None - */ -void HAL_GPIO_TogglePin(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin) -{ - /* Check the parameters */ - assert_param(IS_GPIO_PIN(GPIO_Pin)); - - if ((GPIOx->ODR & GPIO_Pin) != 0X00u) - { - GPIOx->BSRR = (uint32_t)GPIO_Pin << GPIO_NUMBER; - } - else - { - GPIOx->BSRR = (uint32_t)GPIO_Pin; - } -} - -/** -* @brief Locks GPIO Pins configuration registers. -* @note The locked registers are GPIOx_MODER, GPIOx_OTYPER, GPIOx_OSPEEDR, -* GPIOx_PUPDR, GPIOx_AFRL and GPIOx_AFRH. -* @note The configuration of the locked GPIO pins can no longer be modified -* until the next reset. - * @param GPIOx where x can be (A..F) to select the GPIO peripheral for STM32F0 family - * @param GPIO_Pin specifies the port bits to be locked. -* This parameter can be any combination of GPIO_Pin_x where x can be (0..15). -* @retval None -*/ -HAL_StatusTypeDef HAL_GPIO_LockPin(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin) -{ - __IO uint32_t tmp = GPIO_LCKR_LCKK; - - /* Check the parameters */ - assert_param(IS_GPIO_LOCK_INSTANCE(GPIOx)); - assert_param(IS_GPIO_PIN(GPIO_Pin)); - - /* Apply lock key write sequence */ - SET_BIT(tmp, GPIO_Pin); - /* Set LCKx bit(s): LCKK='1' + LCK[15-0] */ - GPIOx->LCKR = tmp; - /* Reset LCKx bit(s): LCKK='0' + LCK[15-0] */ - GPIOx->LCKR = GPIO_Pin; - /* Set LCKx bit(s): LCKK='1' + LCK[15-0] */ - GPIOx->LCKR = tmp; - /* Read LCKK register. This read is mandatory to complete key lock sequence */ - tmp = GPIOx->LCKR; - - /* read again in order to confirm lock is active */ - if((GPIOx->LCKR & GPIO_LCKR_LCKK) != 0x00u) - { - return HAL_OK; - } - else - { - return HAL_ERROR; - } -} - -/** - * @brief Handle EXTI interrupt request. - * @param GPIO_Pin Specifies the port pin connected to corresponding EXTI line. - * @retval None - */ -void HAL_GPIO_EXTI_IRQHandler(uint16_t GPIO_Pin) -{ - /* EXTI line interrupt detected */ - if(__HAL_GPIO_EXTI_GET_IT(GPIO_Pin) != 0x00u) - { - __HAL_GPIO_EXTI_CLEAR_IT(GPIO_Pin); - HAL_GPIO_EXTI_Callback(GPIO_Pin); - } -} - -/** - * @brief EXTI line detection callback. - * @param GPIO_Pin Specifies the port pin connected to corresponding EXTI line. - * @retval None - */ -__weak void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(GPIO_Pin); - - /* NOTE: This function should not be modified, when the callback is needed, - the HAL_GPIO_EXTI_Callback could be implemented in the user file - */ -} - -/** - * @} - */ - - -/** - * @} - */ - -#endif /* HAL_GPIO_MODULE_ENABLED */ -/** - * @} - */ - -/** - * @} - */ - -/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_i2c.c b/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_i2c.c deleted file mode 100644 index 7c2bf82..0000000 --- a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_i2c.c +++ /dev/null @@ -1,6501 +0,0 @@ -/** - ****************************************************************************** - * @file stm32f0xx_hal_i2c.c - * @author MCD Application Team - * @brief I2C HAL module driver. - * This file provides firmware functions to manage the following - * functionalities of the Inter Integrated Circuit (I2C) peripheral: - * + Initialization and de-initialization functions - * + IO operation functions - * + Peripheral State and Errors functions - * - @verbatim - ============================================================================== - ##### How to use this driver ##### - ============================================================================== - [..] - The I2C HAL driver can be used as follows: - - (#) Declare a I2C_HandleTypeDef handle structure, for example: - I2C_HandleTypeDef hi2c; - - (#)Initialize the I2C low level resources by implementing the @ref HAL_I2C_MspInit() API: - (##) Enable the I2Cx interface clock - (##) I2C pins configuration - (+++) Enable the clock for the I2C GPIOs - (+++) Configure I2C pins as alternate function open-drain - (##) NVIC configuration if you need to use interrupt process - (+++) Configure the I2Cx interrupt priority - (+++) Enable the NVIC I2C IRQ Channel - (##) DMA Configuration if you need to use DMA process - (+++) Declare a DMA_HandleTypeDef handle structure for the transmit or receive channel - (+++) Enable the DMAx interface clock using - (+++) Configure the DMA handle parameters - (+++) Configure the DMA Tx or Rx channel - (+++) Associate the initialized DMA handle to the hi2c DMA Tx or Rx handle - (+++) Configure the priority and enable the NVIC for the transfer complete interrupt on - the DMA Tx or Rx channel - - (#) Configure the Communication Clock Timing, Own Address1, Master Addressing mode, Dual Addressing mode, - Own Address2, Own Address2 Mask, General call and Nostretch mode in the hi2c Init structure. - - (#) Initialize the I2C registers by calling the @ref HAL_I2C_Init(), configures also the low level Hardware - (GPIO, CLOCK, NVIC...etc) by calling the customized @ref HAL_I2C_MspInit(&hi2c) API. - - (#) To check if target device is ready for communication, use the function @ref HAL_I2C_IsDeviceReady() - - (#) For I2C IO and IO MEM operations, three operation modes are available within this driver : - - *** Polling mode IO operation *** - ================================= - [..] - (+) Transmit in master mode an amount of data in blocking mode using @ref HAL_I2C_Master_Transmit() - (+) Receive in master mode an amount of data in blocking mode using @ref HAL_I2C_Master_Receive() - (+) Transmit in slave mode an amount of data in blocking mode using @ref HAL_I2C_Slave_Transmit() - (+) Receive in slave mode an amount of data in blocking mode using @ref HAL_I2C_Slave_Receive() - - *** Polling mode IO MEM operation *** - ===================================== - [..] - (+) Write an amount of data in blocking mode to a specific memory address using @ref HAL_I2C_Mem_Write() - (+) Read an amount of data in blocking mode from a specific memory address using @ref HAL_I2C_Mem_Read() - - - *** Interrupt mode IO operation *** - =================================== - [..] - (+) Transmit in master mode an amount of data in non-blocking mode using @ref HAL_I2C_Master_Transmit_IT() - (+) At transmission end of transfer, @ref HAL_I2C_MasterTxCpltCallback() is executed and user can - add his own code by customization of function pointer @ref HAL_I2C_MasterTxCpltCallback() - (+) Receive in master mode an amount of data in non-blocking mode using @ref HAL_I2C_Master_Receive_IT() - (+) At reception end of transfer, @ref HAL_I2C_MasterRxCpltCallback() is executed and user can - add his own code by customization of function pointer @ref HAL_I2C_MasterRxCpltCallback() - (+) Transmit in slave mode an amount of data in non-blocking mode using @ref HAL_I2C_Slave_Transmit_IT() - (+) At transmission end of transfer, @ref HAL_I2C_SlaveTxCpltCallback() is executed and user can - add his own code by customization of function pointer @ref HAL_I2C_SlaveTxCpltCallback() - (+) Receive in slave mode an amount of data in non-blocking mode using @ref HAL_I2C_Slave_Receive_IT() - (+) At reception end of transfer, @ref HAL_I2C_SlaveRxCpltCallback() is executed and user can - add his own code by customization of function pointer @ref HAL_I2C_SlaveRxCpltCallback() - (+) In case of transfer Error, @ref HAL_I2C_ErrorCallback() function is executed and user can - add his own code by customization of function pointer @ref HAL_I2C_ErrorCallback() - (+) Abort a master I2C process communication with Interrupt using @ref HAL_I2C_Master_Abort_IT() - (+) End of abort process, @ref HAL_I2C_AbortCpltCallback() is executed and user can - add his own code by customization of function pointer @ref HAL_I2C_AbortCpltCallback() - (+) Discard a slave I2C process communication using @ref __HAL_I2C_GENERATE_NACK() macro. - This action will inform Master to generate a Stop condition to discard the communication. - - - *** Interrupt mode or DMA mode IO sequential operation *** - ========================================================== - [..] - (@) These interfaces allow to manage a sequential transfer with a repeated start condition - when a direction change during transfer - [..] - (+) A specific option field manage the different steps of a sequential transfer - (+) Option field values are defined through @ref I2C_XFEROPTIONS and are listed below: - (++) I2C_FIRST_AND_LAST_FRAME: No sequential usage, functionnal is same as associated interfaces in no sequential mode - (++) I2C_FIRST_FRAME: Sequential usage, this option allow to manage a sequence with start condition, address - and data to transfer without a final stop condition - (++) I2C_FIRST_AND_NEXT_FRAME: Sequential usage (Master only), this option allow to manage a sequence with start condition, address - and data to transfer without a final stop condition, an then permit a call the same master sequential interface - several times (like @ref HAL_I2C_Master_Seq_Transmit_IT() then @ref HAL_I2C_Master_Seq_Transmit_IT() - or @ref HAL_I2C_Master_Seq_Transmit_DMA() then @ref HAL_I2C_Master_Seq_Transmit_DMA()) - (++) I2C_NEXT_FRAME: Sequential usage, this option allow to manage a sequence with a restart condition, address - and with new data to transfer if the direction change or manage only the new data to transfer - if no direction change and without a final stop condition in both cases - (++) I2C_LAST_FRAME: Sequential usage, this option allow to manage a sequance with a restart condition, address - and with new data to transfer if the direction change or manage only the new data to transfer - if no direction change and with a final stop condition in both cases - (++) I2C_LAST_FRAME_NO_STOP: Sequential usage (Master only), this option allow to manage a restart condition after several call of the same master sequential - interface several times (link with option I2C_FIRST_AND_NEXT_FRAME). - Usage can, transfer several bytes one by one using HAL_I2C_Master_Seq_Transmit_IT(option I2C_FIRST_AND_NEXT_FRAME then I2C_NEXT_FRAME) - or HAL_I2C_Master_Seq_Receive_IT(option I2C_FIRST_AND_NEXT_FRAME then I2C_NEXT_FRAME) - or HAL_I2C_Master_Seq_Transmit_DMA(option I2C_FIRST_AND_NEXT_FRAME then I2C_NEXT_FRAME) - or HAL_I2C_Master_Seq_Receive_DMA(option I2C_FIRST_AND_NEXT_FRAME then I2C_NEXT_FRAME). - Then usage of this option I2C_LAST_FRAME_NO_STOP at the last Transmit or Receive sequence permit to call the oposite interface Receive or Transmit - without stopping the communication and so generate a restart condition. - (++) I2C_OTHER_FRAME: Sequential usage (Master only), this option allow to manage a restart condition after each call of the same master sequential - interface. - Usage can, transfer several bytes one by one with a restart with slave address between each bytes using HAL_I2C_Master_Seq_Transmit_IT(option I2C_FIRST_FRAME then I2C_OTHER_FRAME) - or HAL_I2C_Master_Seq_Receive_IT(option I2C_FIRST_FRAME then I2C_OTHER_FRAME) - or HAL_I2C_Master_Seq_Transmit_DMA(option I2C_FIRST_FRAME then I2C_OTHER_FRAME) - or HAL_I2C_Master_Seq_Receive_DMA(option I2C_FIRST_FRAME then I2C_OTHER_FRAME). - Then usage of this option I2C_OTHER_AND_LAST_FRAME at the last frame to help automatic generation of STOP condition. - - (+) Differents sequential I2C interfaces are listed below: - (++) Sequential transmit in master I2C mode an amount of data in non-blocking mode using @ref HAL_I2C_Master_Seq_Transmit_IT() - or using @ref HAL_I2C_Master_Seq_Transmit_DMA() - (+++) At transmission end of current frame transfer, @ref HAL_I2C_MasterTxCpltCallback() is executed and user can - add his own code by customization of function pointer @ref HAL_I2C_MasterTxCpltCallback() - (++) Sequential receive in master I2C mode an amount of data in non-blocking mode using @ref HAL_I2C_Master_Seq_Receive_IT() - or using @ref HAL_I2C_Master_Seq_Receive_DMA() - (+++) At reception end of current frame transfer, @ref HAL_I2C_MasterRxCpltCallback() is executed and user can - add his own code by customization of function pointer @ref HAL_I2C_MasterRxCpltCallback() - (++) Abort a master IT or DMA I2C process communication with Interrupt using @ref HAL_I2C_Master_Abort_IT() - (+++) End of abort process, @ref HAL_I2C_AbortCpltCallback() is executed and user can - add his own code by customization of function pointer @ref HAL_I2C_AbortCpltCallback() - (++) Enable/disable the Address listen mode in slave I2C mode using @ref HAL_I2C_EnableListen_IT() @ref HAL_I2C_DisableListen_IT() - (+++) When address slave I2C match, @ref HAL_I2C_AddrCallback() is executed and user can - add his own code to check the Address Match Code and the transmission direction request by master (Write/Read). - (+++) At Listen mode end @ref HAL_I2C_ListenCpltCallback() is executed and user can - add his own code by customization of function pointer @ref HAL_I2C_ListenCpltCallback() - (++) Sequential transmit in slave I2C mode an amount of data in non-blocking mode using @ref HAL_I2C_Slave_Seq_Transmit_IT() - or using @ref HAL_I2C_Slave_Seq_Transmit_DMA() - (+++) At transmission end of current frame transfer, @ref HAL_I2C_SlaveTxCpltCallback() is executed and user can - add his own code by customization of function pointer @ref HAL_I2C_SlaveTxCpltCallback() - (++) Sequential receive in slave I2C mode an amount of data in non-blocking mode using @ref HAL_I2C_Slave_Seq_Receive_IT() - or using @ref HAL_I2C_Slave_Seq_Receive_DMA() - (+++) At reception end of current frame transfer, @ref HAL_I2C_SlaveRxCpltCallback() is executed and user can - add his own code by customization of function pointer @ref HAL_I2C_SlaveRxCpltCallback() - (++) In case of transfer Error, @ref HAL_I2C_ErrorCallback() function is executed and user can - add his own code by customization of function pointer @ref HAL_I2C_ErrorCallback() - (++) Discard a slave I2C process communication using @ref __HAL_I2C_GENERATE_NACK() macro. - This action will inform Master to generate a Stop condition to discard the communication. - - *** Interrupt mode IO MEM operation *** - ======================================= - [..] - (+) Write an amount of data in non-blocking mode with Interrupt to a specific memory address using - @ref HAL_I2C_Mem_Write_IT() - (+) At Memory end of write transfer, @ref HAL_I2C_MemTxCpltCallback() is executed and user can - add his own code by customization of function pointer @ref HAL_I2C_MemTxCpltCallback() - (+) Read an amount of data in non-blocking mode with Interrupt from a specific memory address using - @ref HAL_I2C_Mem_Read_IT() - (+) At Memory end of read transfer, @ref HAL_I2C_MemRxCpltCallback() is executed and user can - add his own code by customization of function pointer @ref HAL_I2C_MemRxCpltCallback() - (+) In case of transfer Error, @ref HAL_I2C_ErrorCallback() function is executed and user can - add his own code by customization of function pointer @ref HAL_I2C_ErrorCallback() - - *** DMA mode IO operation *** - ============================== - [..] - (+) Transmit in master mode an amount of data in non-blocking mode (DMA) using - @ref HAL_I2C_Master_Transmit_DMA() - (+) At transmission end of transfer, @ref HAL_I2C_MasterTxCpltCallback() is executed and user can - add his own code by customization of function pointer @ref HAL_I2C_MasterTxCpltCallback() - (+) Receive in master mode an amount of data in non-blocking mode (DMA) using - @ref HAL_I2C_Master_Receive_DMA() - (+) At reception end of transfer, @ref HAL_I2C_MasterRxCpltCallback() is executed and user can - add his own code by customization of function pointer @ref HAL_I2C_MasterRxCpltCallback() - (+) Transmit in slave mode an amount of data in non-blocking mode (DMA) using - @ref HAL_I2C_Slave_Transmit_DMA() - (+) At transmission end of transfer, @ref HAL_I2C_SlaveTxCpltCallback() is executed and user can - add his own code by customization of function pointer @ref HAL_I2C_SlaveTxCpltCallback() - (+) Receive in slave mode an amount of data in non-blocking mode (DMA) using - @ref HAL_I2C_Slave_Receive_DMA() - (+) At reception end of transfer, @ref HAL_I2C_SlaveRxCpltCallback() is executed and user can - add his own code by customization of function pointer @ref HAL_I2C_SlaveRxCpltCallback() - (+) In case of transfer Error, @ref HAL_I2C_ErrorCallback() function is executed and user can - add his own code by customization of function pointer @ref HAL_I2C_ErrorCallback() - (+) Abort a master I2C process communication with Interrupt using @ref HAL_I2C_Master_Abort_IT() - (+) End of abort process, @ref HAL_I2C_AbortCpltCallback() is executed and user can - add his own code by customization of function pointer @ref HAL_I2C_AbortCpltCallback() - (+) Discard a slave I2C process communication using @ref __HAL_I2C_GENERATE_NACK() macro. - This action will inform Master to generate a Stop condition to discard the communication. - - *** DMA mode IO MEM operation *** - ================================= - [..] - (+) Write an amount of data in non-blocking mode with DMA to a specific memory address using - @ref HAL_I2C_Mem_Write_DMA() - (+) At Memory end of write transfer, @ref HAL_I2C_MemTxCpltCallback() is executed and user can - add his own code by customization of function pointer @ref HAL_I2C_MemTxCpltCallback() - (+) Read an amount of data in non-blocking mode with DMA from a specific memory address using - @ref HAL_I2C_Mem_Read_DMA() - (+) At Memory end of read transfer, @ref HAL_I2C_MemRxCpltCallback() is executed and user can - add his own code by customization of function pointer @ref HAL_I2C_MemRxCpltCallback() - (+) In case of transfer Error, @ref HAL_I2C_ErrorCallback() function is executed and user can - add his own code by customization of function pointer @ref HAL_I2C_ErrorCallback() - - - *** I2C HAL driver macros list *** - ================================== - [..] - Below the list of most used macros in I2C HAL driver. - - (+) @ref __HAL_I2C_ENABLE: Enable the I2C peripheral - (+) @ref __HAL_I2C_DISABLE: Disable the I2C peripheral - (+) @ref __HAL_I2C_GENERATE_NACK: Generate a Non-Acknowledge I2C peripheral in Slave mode - (+) @ref __HAL_I2C_GET_FLAG: Check whether the specified I2C flag is set or not - (+) @ref __HAL_I2C_CLEAR_FLAG: Clear the specified I2C pending flag - (+) @ref __HAL_I2C_ENABLE_IT: Enable the specified I2C interrupt - (+) @ref __HAL_I2C_DISABLE_IT: Disable the specified I2C interrupt - - *** Callback registration *** - ============================================= - [..] - The compilation flag USE_HAL_I2C_REGISTER_CALLBACKS when set to 1 - allows the user to configure dynamically the driver callbacks. - Use Functions @ref HAL_I2C_RegisterCallback() or @ref HAL_I2C_RegisterAddrCallback() - to register an interrupt callback. - [..] - Function @ref HAL_I2C_RegisterCallback() allows to register following callbacks: - (+) MasterTxCpltCallback : callback for Master transmission end of transfer. - (+) MasterRxCpltCallback : callback for Master reception end of transfer. - (+) SlaveTxCpltCallback : callback for Slave transmission end of transfer. - (+) SlaveRxCpltCallback : callback for Slave reception end of transfer. - (+) ListenCpltCallback : callback for end of listen mode. - (+) MemTxCpltCallback : callback for Memory transmission end of transfer. - (+) MemRxCpltCallback : callback for Memory reception end of transfer. - (+) ErrorCallback : callback for error detection. - (+) AbortCpltCallback : callback for abort completion process. - (+) MspInitCallback : callback for Msp Init. - (+) MspDeInitCallback : callback for Msp DeInit. - This function takes as parameters the HAL peripheral handle, the Callback ID - and a pointer to the user callback function. - [..] - For specific callback AddrCallback use dedicated register callbacks : @ref HAL_I2C_RegisterAddrCallback(). - [..] - Use function @ref HAL_I2C_UnRegisterCallback to reset a callback to the default - weak function. - @ref HAL_I2C_UnRegisterCallback takes as parameters the HAL peripheral handle, - and the Callback ID. - This function allows to reset following callbacks: - (+) MasterTxCpltCallback : callback for Master transmission end of transfer. - (+) MasterRxCpltCallback : callback for Master reception end of transfer. - (+) SlaveTxCpltCallback : callback for Slave transmission end of transfer. - (+) SlaveRxCpltCallback : callback for Slave reception end of transfer. - (+) ListenCpltCallback : callback for end of listen mode. - (+) MemTxCpltCallback : callback for Memory transmission end of transfer. - (+) MemRxCpltCallback : callback for Memory reception end of transfer. - (+) ErrorCallback : callback for error detection. - (+) AbortCpltCallback : callback for abort completion process. - (+) MspInitCallback : callback for Msp Init. - (+) MspDeInitCallback : callback for Msp DeInit. - [..] - For callback AddrCallback use dedicated register callbacks : @ref HAL_I2C_UnRegisterAddrCallback(). - [..] - By default, after the @ref HAL_I2C_Init() and when the state is @ref HAL_I2C_STATE_RESET - all callbacks are set to the corresponding weak functions: - examples @ref HAL_I2C_MasterTxCpltCallback(), @ref HAL_I2C_MasterRxCpltCallback(). - Exception done for MspInit and MspDeInit functions that are - reset to the legacy weak functions in the @ref HAL_I2C_Init()/ @ref HAL_I2C_DeInit() only when - these callbacks are null (not registered beforehand). - If MspInit or MspDeInit are not null, the @ref HAL_I2C_Init()/ @ref HAL_I2C_DeInit() - keep and use the user MspInit/MspDeInit callbacks (registered beforehand) whatever the state. - [..] - Callbacks can be registered/unregistered in @ref HAL_I2C_STATE_READY state only. - Exception done MspInit/MspDeInit functions that can be registered/unregistered - in @ref HAL_I2C_STATE_READY or @ref HAL_I2C_STATE_RESET state, - thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit. - Then, the user first registers the MspInit/MspDeInit user callbacks - using @ref HAL_I2C_RegisterCallback() before calling @ref HAL_I2C_DeInit() - or @ref HAL_I2C_Init() function. - [..] - When the compilation flag USE_HAL_I2C_REGISTER_CALLBACKS is set to 0 or - not defined, the callback registration feature is not available and all callbacks - are set to the corresponding weak functions. - - [..] - (@) You can refer to the I2C HAL driver header file for more useful macros - - @endverbatim - ****************************************************************************** - * @attention - * - *

© Copyright (c) 2016 STMicroelectronics. - * All rights reserved.

- * - * This software component is licensed by ST under BSD 3-Clause license, - * the "License"; You may not use this file except in compliance with the - * License. You may obtain a copy of the License at: - * opensource.org/licenses/BSD-3-Clause - * - ****************************************************************************** - */ - -/* Includes ------------------------------------------------------------------*/ -#include "stm32f0xx_hal.h" - -/** @addtogroup STM32F0xx_HAL_Driver - * @{ - */ - -/** @defgroup I2C I2C - * @brief I2C HAL module driver - * @{ - */ - -#ifdef HAL_I2C_MODULE_ENABLED - -/* Private typedef -----------------------------------------------------------*/ -/* Private define ------------------------------------------------------------*/ - -/** @defgroup I2C_Private_Define I2C Private Define - * @{ - */ -#define TIMING_CLEAR_MASK (0xF0FFFFFFU) /*!< I2C TIMING clear register Mask */ -#define I2C_TIMEOUT_ADDR (10000U) /*!< 10 s */ -#define I2C_TIMEOUT_BUSY (25U) /*!< 25 ms */ -#define I2C_TIMEOUT_DIR (25U) /*!< 25 ms */ -#define I2C_TIMEOUT_RXNE (25U) /*!< 25 ms */ -#define I2C_TIMEOUT_STOPF (25U) /*!< 25 ms */ -#define I2C_TIMEOUT_TC (25U) /*!< 25 ms */ -#define I2C_TIMEOUT_TCR (25U) /*!< 25 ms */ -#define I2C_TIMEOUT_TXIS (25U) /*!< 25 ms */ -#define I2C_TIMEOUT_FLAG (25U) /*!< 25 ms */ - -#define MAX_NBYTE_SIZE 255U -#define SlaveAddr_SHIFT 7U -#define SlaveAddr_MSK 0x06U - -/* Private define for @ref PreviousState usage */ -#define I2C_STATE_MSK ((uint32_t)((uint32_t)((uint32_t)HAL_I2C_STATE_BUSY_TX | (uint32_t)HAL_I2C_STATE_BUSY_RX) & (uint32_t)(~((uint32_t)HAL_I2C_STATE_READY)))) /*!< Mask State define, keep only RX and TX bits */ -#define I2C_STATE_NONE ((uint32_t)(HAL_I2C_MODE_NONE)) /*!< Default Value */ -#define I2C_STATE_MASTER_BUSY_TX ((uint32_t)(((uint32_t)HAL_I2C_STATE_BUSY_TX & I2C_STATE_MSK) | (uint32_t)HAL_I2C_MODE_MASTER)) /*!< Master Busy TX, combinaison of State LSB and Mode enum */ -#define I2C_STATE_MASTER_BUSY_RX ((uint32_t)(((uint32_t)HAL_I2C_STATE_BUSY_RX & I2C_STATE_MSK) | (uint32_t)HAL_I2C_MODE_MASTER)) /*!< Master Busy RX, combinaison of State LSB and Mode enum */ -#define I2C_STATE_SLAVE_BUSY_TX ((uint32_t)(((uint32_t)HAL_I2C_STATE_BUSY_TX & I2C_STATE_MSK) | (uint32_t)HAL_I2C_MODE_SLAVE)) /*!< Slave Busy TX, combinaison of State LSB and Mode enum */ -#define I2C_STATE_SLAVE_BUSY_RX ((uint32_t)(((uint32_t)HAL_I2C_STATE_BUSY_RX & I2C_STATE_MSK) | (uint32_t)HAL_I2C_MODE_SLAVE)) /*!< Slave Busy RX, combinaison of State LSB and Mode enum */ -#define I2C_STATE_MEM_BUSY_TX ((uint32_t)(((uint32_t)HAL_I2C_STATE_BUSY_TX & I2C_STATE_MSK) | (uint32_t)HAL_I2C_MODE_MEM)) /*!< Memory Busy TX, combinaison of State LSB and Mode enum */ -#define I2C_STATE_MEM_BUSY_RX ((uint32_t)(((uint32_t)HAL_I2C_STATE_BUSY_RX & I2C_STATE_MSK) | (uint32_t)HAL_I2C_MODE_MEM)) /*!< Memory Busy RX, combinaison of State LSB and Mode enum */ - - -/* Private define to centralize the enable/disable of Interrupts */ -#define I2C_XFER_TX_IT (0x00000001U) -#define I2C_XFER_RX_IT (0x00000002U) -#define I2C_XFER_LISTEN_IT (0x00000004U) - -#define I2C_XFER_ERROR_IT (0x00000011U) -#define I2C_XFER_CPLT_IT (0x00000012U) -#define I2C_XFER_RELOAD_IT (0x00000012U) - -/* Private define Sequential Transfer Options default/reset value */ -#define I2C_NO_OPTION_FRAME (0xFFFF0000U) -/** - * @} - */ - -/* Private macro -------------------------------------------------------------*/ -/* Private variables ---------------------------------------------------------*/ -/* Private function prototypes -----------------------------------------------*/ - -/** @defgroup I2C_Private_Functions I2C Private Functions - * @{ - */ -/* Private functions to handle DMA transfer */ -static void I2C_DMAMasterTransmitCplt(DMA_HandleTypeDef *hdma); -static void I2C_DMAMasterReceiveCplt(DMA_HandleTypeDef *hdma); -static void I2C_DMASlaveTransmitCplt(DMA_HandleTypeDef *hdma); -static void I2C_DMASlaveReceiveCplt(DMA_HandleTypeDef *hdma); -static void I2C_DMAError(DMA_HandleTypeDef *hdma); -static void I2C_DMAAbort(DMA_HandleTypeDef *hdma); - -/* Private functions to handle IT transfer */ -static void I2C_ITAddrCplt(I2C_HandleTypeDef *hi2c, uint32_t ITFlags); -static void I2C_ITMasterSeqCplt(I2C_HandleTypeDef *hi2c); -static void I2C_ITSlaveSeqCplt(I2C_HandleTypeDef *hi2c); -static void I2C_ITMasterCplt(I2C_HandleTypeDef *hi2c, uint32_t ITFlags); -static void I2C_ITSlaveCplt(I2C_HandleTypeDef *hi2c, uint32_t ITFlags); -static void I2C_ITListenCplt(I2C_HandleTypeDef *hi2c, uint32_t ITFlags); -static void I2C_ITError(I2C_HandleTypeDef *hi2c, uint32_t ErrorCode); - -/* Private functions to handle IT transfer */ -static HAL_StatusTypeDef I2C_RequestMemoryWrite(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint32_t Timeout, uint32_t Tickstart); -static HAL_StatusTypeDef I2C_RequestMemoryRead(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint32_t Timeout, uint32_t Tickstart); - -/* Private functions for I2C transfer IRQ handler */ -static HAL_StatusTypeDef I2C_Master_ISR_IT(struct __I2C_HandleTypeDef *hi2c, uint32_t ITFlags, uint32_t ITSources); -static HAL_StatusTypeDef I2C_Slave_ISR_IT(struct __I2C_HandleTypeDef *hi2c, uint32_t ITFlags, uint32_t ITSources); -static HAL_StatusTypeDef I2C_Master_ISR_DMA(struct __I2C_HandleTypeDef *hi2c, uint32_t ITFlags, uint32_t ITSources); -static HAL_StatusTypeDef I2C_Slave_ISR_DMA(struct __I2C_HandleTypeDef *hi2c, uint32_t ITFlags, uint32_t ITSources); - -/* Private functions to handle flags during polling transfer */ -static HAL_StatusTypeDef I2C_WaitOnFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Flag, FlagStatus Status, uint32_t Timeout, uint32_t Tickstart); -static HAL_StatusTypeDef I2C_WaitOnTXISFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Timeout, uint32_t Tickstart); -static HAL_StatusTypeDef I2C_WaitOnRXNEFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Timeout, uint32_t Tickstart); -static HAL_StatusTypeDef I2C_WaitOnSTOPFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Timeout, uint32_t Tickstart); -static HAL_StatusTypeDef I2C_IsAcknowledgeFailed(I2C_HandleTypeDef *hi2c, uint32_t Timeout, uint32_t Tickstart); - -/* Private functions to centralize the enable/disable of Interrupts */ -static void I2C_Enable_IRQ(I2C_HandleTypeDef *hi2c, uint16_t InterruptRequest); -static void I2C_Disable_IRQ(I2C_HandleTypeDef *hi2c, uint16_t InterruptRequest); - -/* Private function to flush TXDR register */ -static void I2C_Flush_TXDR(I2C_HandleTypeDef *hi2c); - -/* Private function to handle start, restart or stop a transfer */ -static void I2C_TransferConfig(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t Size, uint32_t Mode, uint32_t Request); - -/* Private function to Convert Specific options */ -static void I2C_ConvertOtherXferOptions(I2C_HandleTypeDef *hi2c); -/** - * @} - */ - -/* Exported functions --------------------------------------------------------*/ - -/** @defgroup I2C_Exported_Functions I2C Exported Functions - * @{ - */ - -/** @defgroup I2C_Exported_Functions_Group1 Initialization and de-initialization functions - * @brief Initialization and Configuration functions - * -@verbatim - =============================================================================== - ##### Initialization and de-initialization functions ##### - =============================================================================== - [..] This subsection provides a set of functions allowing to initialize and - deinitialize the I2Cx peripheral: - - (+) User must Implement HAL_I2C_MspInit() function in which he configures - all related peripherals resources (CLOCK, GPIO, DMA, IT and NVIC ). - - (+) Call the function HAL_I2C_Init() to configure the selected device with - the selected configuration: - (++) Clock Timing - (++) Own Address 1 - (++) Addressing mode (Master, Slave) - (++) Dual Addressing mode - (++) Own Address 2 - (++) Own Address 2 Mask - (++) General call mode - (++) Nostretch mode - - (+) Call the function HAL_I2C_DeInit() to restore the default configuration - of the selected I2Cx peripheral. - -@endverbatim - * @{ - */ - -/** - * @brief Initializes the I2C according to the specified parameters - * in the I2C_InitTypeDef and initialize the associated handle. - * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains - * the configuration information for the specified I2C. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_I2C_Init(I2C_HandleTypeDef *hi2c) -{ - /* Check the I2C handle allocation */ - if (hi2c == NULL) - { - return HAL_ERROR; - } - - /* Check the parameters */ - assert_param(IS_I2C_ALL_INSTANCE(hi2c->Instance)); - assert_param(IS_I2C_OWN_ADDRESS1(hi2c->Init.OwnAddress1)); - assert_param(IS_I2C_ADDRESSING_MODE(hi2c->Init.AddressingMode)); - assert_param(IS_I2C_DUAL_ADDRESS(hi2c->Init.DualAddressMode)); - assert_param(IS_I2C_OWN_ADDRESS2(hi2c->Init.OwnAddress2)); - assert_param(IS_I2C_OWN_ADDRESS2_MASK(hi2c->Init.OwnAddress2Masks)); - assert_param(IS_I2C_GENERAL_CALL(hi2c->Init.GeneralCallMode)); - assert_param(IS_I2C_NO_STRETCH(hi2c->Init.NoStretchMode)); - - if (hi2c->State == HAL_I2C_STATE_RESET) - { - /* Allocate lock resource and initialize it */ - hi2c->Lock = HAL_UNLOCKED; - -#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) - /* Init the I2C Callback settings */ - hi2c->MasterTxCpltCallback = HAL_I2C_MasterTxCpltCallback; /* Legacy weak MasterTxCpltCallback */ - hi2c->MasterRxCpltCallback = HAL_I2C_MasterRxCpltCallback; /* Legacy weak MasterRxCpltCallback */ - hi2c->SlaveTxCpltCallback = HAL_I2C_SlaveTxCpltCallback; /* Legacy weak SlaveTxCpltCallback */ - hi2c->SlaveRxCpltCallback = HAL_I2C_SlaveRxCpltCallback; /* Legacy weak SlaveRxCpltCallback */ - hi2c->ListenCpltCallback = HAL_I2C_ListenCpltCallback; /* Legacy weak ListenCpltCallback */ - hi2c->MemTxCpltCallback = HAL_I2C_MemTxCpltCallback; /* Legacy weak MemTxCpltCallback */ - hi2c->MemRxCpltCallback = HAL_I2C_MemRxCpltCallback; /* Legacy weak MemRxCpltCallback */ - hi2c->ErrorCallback = HAL_I2C_ErrorCallback; /* Legacy weak ErrorCallback */ - hi2c->AbortCpltCallback = HAL_I2C_AbortCpltCallback; /* Legacy weak AbortCpltCallback */ - hi2c->AddrCallback = HAL_I2C_AddrCallback; /* Legacy weak AddrCallback */ - - if (hi2c->MspInitCallback == NULL) - { - hi2c->MspInitCallback = HAL_I2C_MspInit; /* Legacy weak MspInit */ - } - - /* Init the low level hardware : GPIO, CLOCK, CORTEX...etc */ - hi2c->MspInitCallback(hi2c); -#else - /* Init the low level hardware : GPIO, CLOCK, CORTEX...etc */ - HAL_I2C_MspInit(hi2c); -#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ - } - - hi2c->State = HAL_I2C_STATE_BUSY; - - /* Disable the selected I2C peripheral */ - __HAL_I2C_DISABLE(hi2c); - - /*---------------------------- I2Cx TIMINGR Configuration ------------------*/ - /* Configure I2Cx: Frequency range */ - hi2c->Instance->TIMINGR = hi2c->Init.Timing & TIMING_CLEAR_MASK; - - /*---------------------------- I2Cx OAR1 Configuration ---------------------*/ - /* Disable Own Address1 before set the Own Address1 configuration */ - hi2c->Instance->OAR1 &= ~I2C_OAR1_OA1EN; - - /* Configure I2Cx: Own Address1 and ack own address1 mode */ - if (hi2c->Init.AddressingMode == I2C_ADDRESSINGMODE_7BIT) - { - hi2c->Instance->OAR1 = (I2C_OAR1_OA1EN | hi2c->Init.OwnAddress1); - } - else /* I2C_ADDRESSINGMODE_10BIT */ - { - hi2c->Instance->OAR1 = (I2C_OAR1_OA1EN | I2C_OAR1_OA1MODE | hi2c->Init.OwnAddress1); - } - - /*---------------------------- I2Cx CR2 Configuration ----------------------*/ - /* Configure I2Cx: Addressing Master mode */ - if (hi2c->Init.AddressingMode == I2C_ADDRESSINGMODE_10BIT) - { - hi2c->Instance->CR2 = (I2C_CR2_ADD10); - } - /* Enable the AUTOEND by default, and enable NACK (should be disable only during Slave process */ - hi2c->Instance->CR2 |= (I2C_CR2_AUTOEND | I2C_CR2_NACK); - - /*---------------------------- I2Cx OAR2 Configuration ---------------------*/ - /* Disable Own Address2 before set the Own Address2 configuration */ - hi2c->Instance->OAR2 &= ~I2C_DUALADDRESS_ENABLE; - - /* Configure I2Cx: Dual mode and Own Address2 */ - hi2c->Instance->OAR2 = (hi2c->Init.DualAddressMode | hi2c->Init.OwnAddress2 | (hi2c->Init.OwnAddress2Masks << 8)); - - /*---------------------------- I2Cx CR1 Configuration ----------------------*/ - /* Configure I2Cx: Generalcall and NoStretch mode */ - hi2c->Instance->CR1 = (hi2c->Init.GeneralCallMode | hi2c->Init.NoStretchMode); - - /* Enable the selected I2C peripheral */ - __HAL_I2C_ENABLE(hi2c); - - hi2c->ErrorCode = HAL_I2C_ERROR_NONE; - hi2c->State = HAL_I2C_STATE_READY; - hi2c->PreviousState = I2C_STATE_NONE; - hi2c->Mode = HAL_I2C_MODE_NONE; - - return HAL_OK; -} - -/** - * @brief DeInitialize the I2C peripheral. - * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains - * the configuration information for the specified I2C. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_I2C_DeInit(I2C_HandleTypeDef *hi2c) -{ - /* Check the I2C handle allocation */ - if (hi2c == NULL) - { - return HAL_ERROR; - } - - /* Check the parameters */ - assert_param(IS_I2C_ALL_INSTANCE(hi2c->Instance)); - - hi2c->State = HAL_I2C_STATE_BUSY; - - /* Disable the I2C Peripheral Clock */ - __HAL_I2C_DISABLE(hi2c); - -#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) - if (hi2c->MspDeInitCallback == NULL) - { - hi2c->MspDeInitCallback = HAL_I2C_MspDeInit; /* Legacy weak MspDeInit */ - } - - /* DeInit the low level hardware: GPIO, CLOCK, NVIC */ - hi2c->MspDeInitCallback(hi2c); -#else - /* DeInit the low level hardware: GPIO, CLOCK, NVIC */ - HAL_I2C_MspDeInit(hi2c); -#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ - - hi2c->ErrorCode = HAL_I2C_ERROR_NONE; - hi2c->State = HAL_I2C_STATE_RESET; - hi2c->PreviousState = I2C_STATE_NONE; - hi2c->Mode = HAL_I2C_MODE_NONE; - - /* Release Lock */ - __HAL_UNLOCK(hi2c); - - return HAL_OK; -} - -/** - * @brief Initialize the I2C MSP. - * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains - * the configuration information for the specified I2C. - * @retval None - */ -__weak void HAL_I2C_MspInit(I2C_HandleTypeDef *hi2c) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hi2c); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_I2C_MspInit could be implemented in the user file - */ -} - -/** - * @brief DeInitialize the I2C MSP. - * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains - * the configuration information for the specified I2C. - * @retval None - */ -__weak void HAL_I2C_MspDeInit(I2C_HandleTypeDef *hi2c) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hi2c); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_I2C_MspDeInit could be implemented in the user file - */ -} - -#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) -/** - * @brief Register a User I2C Callback - * To be used instead of the weak predefined callback - * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains - * the configuration information for the specified I2C. - * @param CallbackID ID of the callback to be registered - * This parameter can be one of the following values: - * @arg @ref HAL_I2C_MASTER_TX_COMPLETE_CB_ID Master Tx Transfer completed callback ID - * @arg @ref HAL_I2C_MASTER_RX_COMPLETE_CB_ID Master Rx Transfer completed callback ID - * @arg @ref HAL_I2C_SLAVE_TX_COMPLETE_CB_ID Slave Tx Transfer completed callback ID - * @arg @ref HAL_I2C_SLAVE_RX_COMPLETE_CB_ID Slave Rx Transfer completed callback ID - * @arg @ref HAL_I2C_LISTEN_COMPLETE_CB_ID Listen Complete callback ID - * @arg @ref HAL_I2C_MEM_TX_COMPLETE_CB_ID Memory Tx Transfer callback ID - * @arg @ref HAL_I2C_MEM_RX_COMPLETE_CB_ID Memory Rx Transfer completed callback ID - * @arg @ref HAL_I2C_ERROR_CB_ID Error callback ID - * @arg @ref HAL_I2C_ABORT_CB_ID Abort callback ID - * @arg @ref HAL_I2C_MSPINIT_CB_ID MspInit callback ID - * @arg @ref HAL_I2C_MSPDEINIT_CB_ID MspDeInit callback ID - * @param pCallback pointer to the Callback function - * @retval HAL status - */ -HAL_StatusTypeDef HAL_I2C_RegisterCallback(I2C_HandleTypeDef *hi2c, HAL_I2C_CallbackIDTypeDef CallbackID, pI2C_CallbackTypeDef pCallback) -{ - HAL_StatusTypeDef status = HAL_OK; - - if (pCallback == NULL) - { - /* Update the error code */ - hi2c->ErrorCode |= HAL_I2C_ERROR_INVALID_CALLBACK; - - return HAL_ERROR; - } - /* Process locked */ - __HAL_LOCK(hi2c); - - if (HAL_I2C_STATE_READY == hi2c->State) - { - switch (CallbackID) - { - case HAL_I2C_MASTER_TX_COMPLETE_CB_ID : - hi2c->MasterTxCpltCallback = pCallback; - break; - - case HAL_I2C_MASTER_RX_COMPLETE_CB_ID : - hi2c->MasterRxCpltCallback = pCallback; - break; - - case HAL_I2C_SLAVE_TX_COMPLETE_CB_ID : - hi2c->SlaveTxCpltCallback = pCallback; - break; - - case HAL_I2C_SLAVE_RX_COMPLETE_CB_ID : - hi2c->SlaveRxCpltCallback = pCallback; - break; - - case HAL_I2C_LISTEN_COMPLETE_CB_ID : - hi2c->ListenCpltCallback = pCallback; - break; - - case HAL_I2C_MEM_TX_COMPLETE_CB_ID : - hi2c->MemTxCpltCallback = pCallback; - break; - - case HAL_I2C_MEM_RX_COMPLETE_CB_ID : - hi2c->MemRxCpltCallback = pCallback; - break; - - case HAL_I2C_ERROR_CB_ID : - hi2c->ErrorCallback = pCallback; - break; - - case HAL_I2C_ABORT_CB_ID : - hi2c->AbortCpltCallback = pCallback; - break; - - case HAL_I2C_MSPINIT_CB_ID : - hi2c->MspInitCallback = pCallback; - break; - - case HAL_I2C_MSPDEINIT_CB_ID : - hi2c->MspDeInitCallback = pCallback; - break; - - default : - /* Update the error code */ - hi2c->ErrorCode |= HAL_I2C_ERROR_INVALID_CALLBACK; - - /* Return error status */ - status = HAL_ERROR; - break; - } - } - else if (HAL_I2C_STATE_RESET == hi2c->State) - { - switch (CallbackID) - { - case HAL_I2C_MSPINIT_CB_ID : - hi2c->MspInitCallback = pCallback; - break; - - case HAL_I2C_MSPDEINIT_CB_ID : - hi2c->MspDeInitCallback = pCallback; - break; - - default : - /* Update the error code */ - hi2c->ErrorCode |= HAL_I2C_ERROR_INVALID_CALLBACK; - - /* Return error status */ - status = HAL_ERROR; - break; - } - } - else - { - /* Update the error code */ - hi2c->ErrorCode |= HAL_I2C_ERROR_INVALID_CALLBACK; - - /* Return error status */ - status = HAL_ERROR; - } - - /* Release Lock */ - __HAL_UNLOCK(hi2c); - return status; -} - -/** - * @brief Unregister an I2C Callback - * I2C callback is redirected to the weak predefined callback - * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains - * the configuration information for the specified I2C. - * @param CallbackID ID of the callback to be unregistered - * This parameter can be one of the following values: - * This parameter can be one of the following values: - * @arg @ref HAL_I2C_MASTER_TX_COMPLETE_CB_ID Master Tx Transfer completed callback ID - * @arg @ref HAL_I2C_MASTER_RX_COMPLETE_CB_ID Master Rx Transfer completed callback ID - * @arg @ref HAL_I2C_SLAVE_TX_COMPLETE_CB_ID Slave Tx Transfer completed callback ID - * @arg @ref HAL_I2C_SLAVE_RX_COMPLETE_CB_ID Slave Rx Transfer completed callback ID - * @arg @ref HAL_I2C_LISTEN_COMPLETE_CB_ID Listen Complete callback ID - * @arg @ref HAL_I2C_MEM_TX_COMPLETE_CB_ID Memory Tx Transfer callback ID - * @arg @ref HAL_I2C_MEM_RX_COMPLETE_CB_ID Memory Rx Transfer completed callback ID - * @arg @ref HAL_I2C_ERROR_CB_ID Error callback ID - * @arg @ref HAL_I2C_ABORT_CB_ID Abort callback ID - * @arg @ref HAL_I2C_MSPINIT_CB_ID MspInit callback ID - * @arg @ref HAL_I2C_MSPDEINIT_CB_ID MspDeInit callback ID - * @retval HAL status - */ -HAL_StatusTypeDef HAL_I2C_UnRegisterCallback(I2C_HandleTypeDef *hi2c, HAL_I2C_CallbackIDTypeDef CallbackID) -{ - HAL_StatusTypeDef status = HAL_OK; - - /* Process locked */ - __HAL_LOCK(hi2c); - - if (HAL_I2C_STATE_READY == hi2c->State) - { - switch (CallbackID) - { - case HAL_I2C_MASTER_TX_COMPLETE_CB_ID : - hi2c->MasterTxCpltCallback = HAL_I2C_MasterTxCpltCallback; /* Legacy weak MasterTxCpltCallback */ - break; - - case HAL_I2C_MASTER_RX_COMPLETE_CB_ID : - hi2c->MasterRxCpltCallback = HAL_I2C_MasterRxCpltCallback; /* Legacy weak MasterRxCpltCallback */ - break; - - case HAL_I2C_SLAVE_TX_COMPLETE_CB_ID : - hi2c->SlaveTxCpltCallback = HAL_I2C_SlaveTxCpltCallback; /* Legacy weak SlaveTxCpltCallback */ - break; - - case HAL_I2C_SLAVE_RX_COMPLETE_CB_ID : - hi2c->SlaveRxCpltCallback = HAL_I2C_SlaveRxCpltCallback; /* Legacy weak SlaveRxCpltCallback */ - break; - - case HAL_I2C_LISTEN_COMPLETE_CB_ID : - hi2c->ListenCpltCallback = HAL_I2C_ListenCpltCallback; /* Legacy weak ListenCpltCallback */ - break; - - case HAL_I2C_MEM_TX_COMPLETE_CB_ID : - hi2c->MemTxCpltCallback = HAL_I2C_MemTxCpltCallback; /* Legacy weak MemTxCpltCallback */ - break; - - case HAL_I2C_MEM_RX_COMPLETE_CB_ID : - hi2c->MemRxCpltCallback = HAL_I2C_MemRxCpltCallback; /* Legacy weak MemRxCpltCallback */ - break; - - case HAL_I2C_ERROR_CB_ID : - hi2c->ErrorCallback = HAL_I2C_ErrorCallback; /* Legacy weak ErrorCallback */ - break; - - case HAL_I2C_ABORT_CB_ID : - hi2c->AbortCpltCallback = HAL_I2C_AbortCpltCallback; /* Legacy weak AbortCpltCallback */ - break; - - case HAL_I2C_MSPINIT_CB_ID : - hi2c->MspInitCallback = HAL_I2C_MspInit; /* Legacy weak MspInit */ - break; - - case HAL_I2C_MSPDEINIT_CB_ID : - hi2c->MspDeInitCallback = HAL_I2C_MspDeInit; /* Legacy weak MspDeInit */ - break; - - default : - /* Update the error code */ - hi2c->ErrorCode |= HAL_I2C_ERROR_INVALID_CALLBACK; - - /* Return error status */ - status = HAL_ERROR; - break; - } - } - else if (HAL_I2C_STATE_RESET == hi2c->State) - { - switch (CallbackID) - { - case HAL_I2C_MSPINIT_CB_ID : - hi2c->MspInitCallback = HAL_I2C_MspInit; /* Legacy weak MspInit */ - break; - - case HAL_I2C_MSPDEINIT_CB_ID : - hi2c->MspDeInitCallback = HAL_I2C_MspDeInit; /* Legacy weak MspDeInit */ - break; - - default : - /* Update the error code */ - hi2c->ErrorCode |= HAL_I2C_ERROR_INVALID_CALLBACK; - - /* Return error status */ - status = HAL_ERROR; - break; - } - } - else - { - /* Update the error code */ - hi2c->ErrorCode |= HAL_I2C_ERROR_INVALID_CALLBACK; - - /* Return error status */ - status = HAL_ERROR; - } - - /* Release Lock */ - __HAL_UNLOCK(hi2c); - return status; -} - -/** - * @brief Register the Slave Address Match I2C Callback - * To be used instead of the weak HAL_I2C_AddrCallback() predefined callback - * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains - * the configuration information for the specified I2C. - * @param pCallback pointer to the Address Match Callback function - * @retval HAL status - */ -HAL_StatusTypeDef HAL_I2C_RegisterAddrCallback(I2C_HandleTypeDef *hi2c, pI2C_AddrCallbackTypeDef pCallback) -{ - HAL_StatusTypeDef status = HAL_OK; - - if (pCallback == NULL) - { - /* Update the error code */ - hi2c->ErrorCode |= HAL_I2C_ERROR_INVALID_CALLBACK; - - return HAL_ERROR; - } - /* Process locked */ - __HAL_LOCK(hi2c); - - if (HAL_I2C_STATE_READY == hi2c->State) - { - hi2c->AddrCallback = pCallback; - } - else - { - /* Update the error code */ - hi2c->ErrorCode |= HAL_I2C_ERROR_INVALID_CALLBACK; - - /* Return error status */ - status = HAL_ERROR; - } - - /* Release Lock */ - __HAL_UNLOCK(hi2c); - return status; -} - -/** - * @brief UnRegister the Slave Address Match I2C Callback - * Info Ready I2C Callback is redirected to the weak HAL_I2C_AddrCallback() predefined callback - * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains - * the configuration information for the specified I2C. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_I2C_UnRegisterAddrCallback(I2C_HandleTypeDef *hi2c) -{ - HAL_StatusTypeDef status = HAL_OK; - - /* Process locked */ - __HAL_LOCK(hi2c); - - if (HAL_I2C_STATE_READY == hi2c->State) - { - hi2c->AddrCallback = HAL_I2C_AddrCallback; /* Legacy weak AddrCallback */ - } - else - { - /* Update the error code */ - hi2c->ErrorCode |= HAL_I2C_ERROR_INVALID_CALLBACK; - - /* Return error status */ - status = HAL_ERROR; - } - - /* Release Lock */ - __HAL_UNLOCK(hi2c); - return status; -} - -#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ - -/** - * @} - */ - -/** @defgroup I2C_Exported_Functions_Group2 Input and Output operation functions - * @brief Data transfers functions - * -@verbatim - =============================================================================== - ##### IO operation functions ##### - =============================================================================== - [..] - This subsection provides a set of functions allowing to manage the I2C data - transfers. - - (#) There are two modes of transfer: - (++) Blocking mode : The communication is performed in the polling mode. - The status of all data processing is returned by the same function - after finishing transfer. - (++) No-Blocking mode : The communication is performed using Interrupts - or DMA. These functions return the status of the transfer startup. - The end of the data processing will be indicated through the - dedicated I2C IRQ when using Interrupt mode or the DMA IRQ when - using DMA mode. - - (#) Blocking mode functions are : - (++) HAL_I2C_Master_Transmit() - (++) HAL_I2C_Master_Receive() - (++) HAL_I2C_Slave_Transmit() - (++) HAL_I2C_Slave_Receive() - (++) HAL_I2C_Mem_Write() - (++) HAL_I2C_Mem_Read() - (++) HAL_I2C_IsDeviceReady() - - (#) No-Blocking mode functions with Interrupt are : - (++) HAL_I2C_Master_Transmit_IT() - (++) HAL_I2C_Master_Receive_IT() - (++) HAL_I2C_Slave_Transmit_IT() - (++) HAL_I2C_Slave_Receive_IT() - (++) HAL_I2C_Mem_Write_IT() - (++) HAL_I2C_Mem_Read_IT() - (++) HAL_I2C_Master_Seq_Transmit_IT() - (++) HAL_I2C_Master_Seq_Receive_IT() - (++) HAL_I2C_Slave_Seq_Transmit_IT() - (++) HAL_I2C_Slave_Seq_Receive_IT() - (++) HAL_I2C_EnableListen_IT() - (++) HAL_I2C_DisableListen_IT() - (++) HAL_I2C_Master_Abort_IT() - - (#) No-Blocking mode functions with DMA are : - (++) HAL_I2C_Master_Transmit_DMA() - (++) HAL_I2C_Master_Receive_DMA() - (++) HAL_I2C_Slave_Transmit_DMA() - (++) HAL_I2C_Slave_Receive_DMA() - (++) HAL_I2C_Mem_Write_DMA() - (++) HAL_I2C_Mem_Read_DMA() - (++) HAL_I2C_Master_Seq_Transmit_DMA() - (++) HAL_I2C_Master_Seq_Receive_DMA() - (++) HAL_I2C_Slave_Seq_Transmit_DMA() - (++) HAL_I2C_Slave_Seq_Receive_DMA() - - (#) A set of Transfer Complete Callbacks are provided in non Blocking mode: - (++) HAL_I2C_MasterTxCpltCallback() - (++) HAL_I2C_MasterRxCpltCallback() - (++) HAL_I2C_SlaveTxCpltCallback() - (++) HAL_I2C_SlaveRxCpltCallback() - (++) HAL_I2C_MemTxCpltCallback() - (++) HAL_I2C_MemRxCpltCallback() - (++) HAL_I2C_AddrCallback() - (++) HAL_I2C_ListenCpltCallback() - (++) HAL_I2C_ErrorCallback() - (++) HAL_I2C_AbortCpltCallback() - -@endverbatim - * @{ - */ - -/** - * @brief Transmits in master mode an amount of data in blocking mode. - * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains - * the configuration information for the specified I2C. - * @param DevAddress Target device address: The device 7 bits address value - * in datasheet must be shifted to the left before calling the interface - * @param pData Pointer to data buffer - * @param Size Amount of data to be sent - * @param Timeout Timeout duration - * @retval HAL status - */ -HAL_StatusTypeDef HAL_I2C_Master_Transmit(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t Timeout) -{ - uint32_t tickstart; - - if (hi2c->State == HAL_I2C_STATE_READY) - { - /* Process Locked */ - __HAL_LOCK(hi2c); - - /* Init tickstart for timeout management*/ - tickstart = HAL_GetTick(); - - if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BUSY, SET, I2C_TIMEOUT_BUSY, tickstart) != HAL_OK) - { - return HAL_ERROR; - } - - hi2c->State = HAL_I2C_STATE_BUSY_TX; - hi2c->Mode = HAL_I2C_MODE_MASTER; - hi2c->ErrorCode = HAL_I2C_ERROR_NONE; - - /* Prepare transfer parameters */ - hi2c->pBuffPtr = pData; - hi2c->XferCount = Size; - hi2c->XferISR = NULL; - - /* Send Slave Address */ - /* Set NBYTES to write and reload if hi2c->XferCount > MAX_NBYTE_SIZE and generate RESTART */ - if (hi2c->XferCount > MAX_NBYTE_SIZE) - { - hi2c->XferSize = MAX_NBYTE_SIZE; - I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_RELOAD_MODE, I2C_GENERATE_START_WRITE); - } - else - { - hi2c->XferSize = hi2c->XferCount; - I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_AUTOEND_MODE, I2C_GENERATE_START_WRITE); - } - - while (hi2c->XferCount > 0U) - { - /* Wait until TXIS flag is set */ - if (I2C_WaitOnTXISFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK) - { - return HAL_ERROR; - } - /* Write data to TXDR */ - hi2c->Instance->TXDR = *hi2c->pBuffPtr; - - /* Increment Buffer pointer */ - hi2c->pBuffPtr++; - - hi2c->XferCount--; - hi2c->XferSize--; - - if ((hi2c->XferCount != 0U) && (hi2c->XferSize == 0U)) - { - /* Wait until TCR flag is set */ - if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_TCR, RESET, Timeout, tickstart) != HAL_OK) - { - return HAL_ERROR; - } - - if (hi2c->XferCount > MAX_NBYTE_SIZE) - { - hi2c->XferSize = MAX_NBYTE_SIZE; - I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_RELOAD_MODE, I2C_NO_STARTSTOP); - } - else - { - hi2c->XferSize = hi2c->XferCount; - I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_AUTOEND_MODE, I2C_NO_STARTSTOP); - } - } - } - - /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */ - /* Wait until STOPF flag is set */ - if (I2C_WaitOnSTOPFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK) - { - return HAL_ERROR; - } - - /* Clear STOP Flag */ - __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF); - - /* Clear Configuration Register 2 */ - I2C_RESET_CR2(hi2c); - - hi2c->State = HAL_I2C_STATE_READY; - hi2c->Mode = HAL_I2C_MODE_NONE; - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - return HAL_OK; - } - else - { - return HAL_BUSY; - } -} - -/** - * @brief Receives in master mode an amount of data in blocking mode. - * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains - * the configuration information for the specified I2C. - * @param DevAddress Target device address: The device 7 bits address value - * in datasheet must be shifted to the left before calling the interface - * @param pData Pointer to data buffer - * @param Size Amount of data to be sent - * @param Timeout Timeout duration - * @retval HAL status - */ -HAL_StatusTypeDef HAL_I2C_Master_Receive(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t Timeout) -{ - uint32_t tickstart; - - if (hi2c->State == HAL_I2C_STATE_READY) - { - /* Process Locked */ - __HAL_LOCK(hi2c); - - /* Init tickstart for timeout management*/ - tickstart = HAL_GetTick(); - - if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BUSY, SET, I2C_TIMEOUT_BUSY, tickstart) != HAL_OK) - { - return HAL_ERROR; - } - - hi2c->State = HAL_I2C_STATE_BUSY_RX; - hi2c->Mode = HAL_I2C_MODE_MASTER; - hi2c->ErrorCode = HAL_I2C_ERROR_NONE; - - /* Prepare transfer parameters */ - hi2c->pBuffPtr = pData; - hi2c->XferCount = Size; - hi2c->XferISR = NULL; - - /* Send Slave Address */ - /* Set NBYTES to write and reload if hi2c->XferCount > MAX_NBYTE_SIZE and generate RESTART */ - if (hi2c->XferCount > MAX_NBYTE_SIZE) - { - hi2c->XferSize = MAX_NBYTE_SIZE; - I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_RELOAD_MODE, I2C_GENERATE_START_READ); - } - else - { - hi2c->XferSize = hi2c->XferCount; - I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_AUTOEND_MODE, I2C_GENERATE_START_READ); - } - - while (hi2c->XferCount > 0U) - { - /* Wait until RXNE flag is set */ - if (I2C_WaitOnRXNEFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK) - { - return HAL_ERROR; - } - - /* Read data from RXDR */ - *hi2c->pBuffPtr = (uint8_t)hi2c->Instance->RXDR; - - /* Increment Buffer pointer */ - hi2c->pBuffPtr++; - - hi2c->XferSize--; - hi2c->XferCount--; - - if ((hi2c->XferCount != 0U) && (hi2c->XferSize == 0U)) - { - /* Wait until TCR flag is set */ - if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_TCR, RESET, Timeout, tickstart) != HAL_OK) - { - return HAL_ERROR; - } - - if (hi2c->XferCount > MAX_NBYTE_SIZE) - { - hi2c->XferSize = MAX_NBYTE_SIZE; - I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_RELOAD_MODE, I2C_NO_STARTSTOP); - } - else - { - hi2c->XferSize = hi2c->XferCount; - I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_AUTOEND_MODE, I2C_NO_STARTSTOP); - } - } - } - - /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */ - /* Wait until STOPF flag is set */ - if (I2C_WaitOnSTOPFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK) - { - return HAL_ERROR; - } - - /* Clear STOP Flag */ - __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF); - - /* Clear Configuration Register 2 */ - I2C_RESET_CR2(hi2c); - - hi2c->State = HAL_I2C_STATE_READY; - hi2c->Mode = HAL_I2C_MODE_NONE; - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - return HAL_OK; - } - else - { - return HAL_BUSY; - } -} - -/** - * @brief Transmits in slave mode an amount of data in blocking mode. - * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains - * the configuration information for the specified I2C. - * @param pData Pointer to data buffer - * @param Size Amount of data to be sent - * @param Timeout Timeout duration - * @retval HAL status - */ -HAL_StatusTypeDef HAL_I2C_Slave_Transmit(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, uint32_t Timeout) -{ - uint32_t tickstart; - - if (hi2c->State == HAL_I2C_STATE_READY) - { - if ((pData == NULL) || (Size == 0U)) - { - hi2c->ErrorCode = HAL_I2C_ERROR_INVALID_PARAM; - return HAL_ERROR; - } - /* Process Locked */ - __HAL_LOCK(hi2c); - - /* Init tickstart for timeout management*/ - tickstart = HAL_GetTick(); - - hi2c->State = HAL_I2C_STATE_BUSY_TX; - hi2c->Mode = HAL_I2C_MODE_SLAVE; - hi2c->ErrorCode = HAL_I2C_ERROR_NONE; - - /* Prepare transfer parameters */ - hi2c->pBuffPtr = pData; - hi2c->XferCount = Size; - hi2c->XferISR = NULL; - - /* Enable Address Acknowledge */ - hi2c->Instance->CR2 &= ~I2C_CR2_NACK; - - /* Wait until ADDR flag is set */ - if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_ADDR, RESET, Timeout, tickstart) != HAL_OK) - { - /* Disable Address Acknowledge */ - hi2c->Instance->CR2 |= I2C_CR2_NACK; - return HAL_ERROR; - } - - /* Clear ADDR flag */ - __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_ADDR); - - /* If 10bit addressing mode is selected */ - if (hi2c->Init.AddressingMode == I2C_ADDRESSINGMODE_10BIT) - { - /* Wait until ADDR flag is set */ - if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_ADDR, RESET, Timeout, tickstart) != HAL_OK) - { - /* Disable Address Acknowledge */ - hi2c->Instance->CR2 |= I2C_CR2_NACK; - return HAL_ERROR; - } - - /* Clear ADDR flag */ - __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_ADDR); - } - - /* Wait until DIR flag is set Transmitter mode */ - if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_DIR, RESET, Timeout, tickstart) != HAL_OK) - { - /* Disable Address Acknowledge */ - hi2c->Instance->CR2 |= I2C_CR2_NACK; - return HAL_ERROR; - } - - while (hi2c->XferCount > 0U) - { - /* Wait until TXIS flag is set */ - if (I2C_WaitOnTXISFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK) - { - /* Disable Address Acknowledge */ - hi2c->Instance->CR2 |= I2C_CR2_NACK; - return HAL_ERROR; - } - - /* Write data to TXDR */ - hi2c->Instance->TXDR = *hi2c->pBuffPtr; - - /* Increment Buffer pointer */ - hi2c->pBuffPtr++; - - hi2c->XferCount--; - } - - /* Wait until STOP flag is set */ - if (I2C_WaitOnSTOPFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK) - { - /* Disable Address Acknowledge */ - hi2c->Instance->CR2 |= I2C_CR2_NACK; - - if (hi2c->ErrorCode == HAL_I2C_ERROR_AF) - { - /* Normal use case for Transmitter mode */ - /* A NACK is generated to confirm the end of transfer */ - hi2c->ErrorCode = HAL_I2C_ERROR_NONE; - } - else - { - return HAL_ERROR; - } - } - - /* Clear STOP flag */ - __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF); - - /* Wait until BUSY flag is reset */ - if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BUSY, SET, Timeout, tickstart) != HAL_OK) - { - /* Disable Address Acknowledge */ - hi2c->Instance->CR2 |= I2C_CR2_NACK; - return HAL_ERROR; - } - - /* Disable Address Acknowledge */ - hi2c->Instance->CR2 |= I2C_CR2_NACK; - - hi2c->State = HAL_I2C_STATE_READY; - hi2c->Mode = HAL_I2C_MODE_NONE; - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - return HAL_OK; - } - else - { - return HAL_BUSY; - } -} - -/** - * @brief Receive in slave mode an amount of data in blocking mode - * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains - * the configuration information for the specified I2C. - * @param pData Pointer to data buffer - * @param Size Amount of data to be sent - * @param Timeout Timeout duration - * @retval HAL status - */ -HAL_StatusTypeDef HAL_I2C_Slave_Receive(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, uint32_t Timeout) -{ - uint32_t tickstart; - - if (hi2c->State == HAL_I2C_STATE_READY) - { - if ((pData == NULL) || (Size == 0U)) - { - hi2c->ErrorCode = HAL_I2C_ERROR_INVALID_PARAM; - return HAL_ERROR; - } - /* Process Locked */ - __HAL_LOCK(hi2c); - - /* Init tickstart for timeout management*/ - tickstart = HAL_GetTick(); - - hi2c->State = HAL_I2C_STATE_BUSY_RX; - hi2c->Mode = HAL_I2C_MODE_SLAVE; - hi2c->ErrorCode = HAL_I2C_ERROR_NONE; - - /* Prepare transfer parameters */ - hi2c->pBuffPtr = pData; - hi2c->XferCount = Size; - hi2c->XferISR = NULL; - - /* Enable Address Acknowledge */ - hi2c->Instance->CR2 &= ~I2C_CR2_NACK; - - /* Wait until ADDR flag is set */ - if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_ADDR, RESET, Timeout, tickstart) != HAL_OK) - { - /* Disable Address Acknowledge */ - hi2c->Instance->CR2 |= I2C_CR2_NACK; - return HAL_ERROR; - } - - /* Clear ADDR flag */ - __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_ADDR); - - /* Wait until DIR flag is reset Receiver mode */ - if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_DIR, SET, Timeout, tickstart) != HAL_OK) - { - /* Disable Address Acknowledge */ - hi2c->Instance->CR2 |= I2C_CR2_NACK; - return HAL_ERROR; - } - - while (hi2c->XferCount > 0U) - { - /* Wait until RXNE flag is set */ - if (I2C_WaitOnRXNEFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK) - { - /* Disable Address Acknowledge */ - hi2c->Instance->CR2 |= I2C_CR2_NACK; - - /* Store Last receive data if any */ - if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_RXNE) == SET) - { - /* Read data from RXDR */ - *hi2c->pBuffPtr = (uint8_t)hi2c->Instance->RXDR; - - /* Increment Buffer pointer */ - hi2c->pBuffPtr++; - - hi2c->XferCount--; - } - - return HAL_ERROR; - } - - /* Read data from RXDR */ - *hi2c->pBuffPtr = (uint8_t)hi2c->Instance->RXDR; - - /* Increment Buffer pointer */ - hi2c->pBuffPtr++; - - hi2c->XferCount--; - } - - /* Wait until STOP flag is set */ - if (I2C_WaitOnSTOPFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK) - { - /* Disable Address Acknowledge */ - hi2c->Instance->CR2 |= I2C_CR2_NACK; - return HAL_ERROR; - } - - /* Clear STOP flag */ - __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF); - - /* Wait until BUSY flag is reset */ - if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BUSY, SET, Timeout, tickstart) != HAL_OK) - { - /* Disable Address Acknowledge */ - hi2c->Instance->CR2 |= I2C_CR2_NACK; - return HAL_ERROR; - } - - /* Disable Address Acknowledge */ - hi2c->Instance->CR2 |= I2C_CR2_NACK; - - hi2c->State = HAL_I2C_STATE_READY; - hi2c->Mode = HAL_I2C_MODE_NONE; - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - return HAL_OK; - } - else - { - return HAL_BUSY; - } -} - -/** - * @brief Transmit in master mode an amount of data in non-blocking mode with Interrupt - * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains - * the configuration information for the specified I2C. - * @param DevAddress Target device address: The device 7 bits address value - * in datasheet must be shifted to the left before calling the interface - * @param pData Pointer to data buffer - * @param Size Amount of data to be sent - * @retval HAL status - */ -HAL_StatusTypeDef HAL_I2C_Master_Transmit_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size) -{ - uint32_t xfermode; - - if (hi2c->State == HAL_I2C_STATE_READY) - { - if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) == SET) - { - return HAL_BUSY; - } - - /* Process Locked */ - __HAL_LOCK(hi2c); - - hi2c->State = HAL_I2C_STATE_BUSY_TX; - hi2c->Mode = HAL_I2C_MODE_MASTER; - hi2c->ErrorCode = HAL_I2C_ERROR_NONE; - - /* Prepare transfer parameters */ - hi2c->pBuffPtr = pData; - hi2c->XferCount = Size; - hi2c->XferOptions = I2C_NO_OPTION_FRAME; - hi2c->XferISR = I2C_Master_ISR_IT; - - if (hi2c->XferCount > MAX_NBYTE_SIZE) - { - hi2c->XferSize = MAX_NBYTE_SIZE; - xfermode = I2C_RELOAD_MODE; - } - else - { - hi2c->XferSize = hi2c->XferCount; - xfermode = I2C_AUTOEND_MODE; - } - - /* Send Slave Address */ - /* Set NBYTES to write and reload if hi2c->XferCount > MAX_NBYTE_SIZE */ - I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, xfermode, I2C_GENERATE_START_WRITE); - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - /* Note : The I2C interrupts must be enabled after unlocking current process - to avoid the risk of I2C interrupt handle execution before current - process unlock */ - - /* Enable ERR, TC, STOP, NACK, TXI interrupt */ - /* possible to enable all of these */ - /* I2C_IT_ERRI | I2C_IT_TCI| I2C_IT_STOPI| I2C_IT_NACKI | I2C_IT_ADDRI | I2C_IT_RXI | I2C_IT_TXI */ - I2C_Enable_IRQ(hi2c, I2C_XFER_TX_IT); - - return HAL_OK; - } - else - { - return HAL_BUSY; - } -} - -/** - * @brief Receive in master mode an amount of data in non-blocking mode with Interrupt - * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains - * the configuration information for the specified I2C. - * @param DevAddress Target device address: The device 7 bits address value - * in datasheet must be shifted to the left before calling the interface - * @param pData Pointer to data buffer - * @param Size Amount of data to be sent - * @retval HAL status - */ -HAL_StatusTypeDef HAL_I2C_Master_Receive_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size) -{ - uint32_t xfermode; - - if (hi2c->State == HAL_I2C_STATE_READY) - { - if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) == SET) - { - return HAL_BUSY; - } - - /* Process Locked */ - __HAL_LOCK(hi2c); - - hi2c->State = HAL_I2C_STATE_BUSY_RX; - hi2c->Mode = HAL_I2C_MODE_MASTER; - hi2c->ErrorCode = HAL_I2C_ERROR_NONE; - - /* Prepare transfer parameters */ - hi2c->pBuffPtr = pData; - hi2c->XferCount = Size; - hi2c->XferOptions = I2C_NO_OPTION_FRAME; - hi2c->XferISR = I2C_Master_ISR_IT; - - if (hi2c->XferCount > MAX_NBYTE_SIZE) - { - hi2c->XferSize = MAX_NBYTE_SIZE; - xfermode = I2C_RELOAD_MODE; - } - else - { - hi2c->XferSize = hi2c->XferCount; - xfermode = I2C_AUTOEND_MODE; - } - - /* Send Slave Address */ - /* Set NBYTES to write and reload if hi2c->XferCount > MAX_NBYTE_SIZE */ - I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, xfermode, I2C_GENERATE_START_READ); - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - /* Note : The I2C interrupts must be enabled after unlocking current process - to avoid the risk of I2C interrupt handle execution before current - process unlock */ - - /* Enable ERR, TC, STOP, NACK, RXI interrupt */ - /* possible to enable all of these */ - /* I2C_IT_ERRI | I2C_IT_TCI| I2C_IT_STOPI| I2C_IT_NACKI | I2C_IT_ADDRI | I2C_IT_RXI | I2C_IT_TXI */ - I2C_Enable_IRQ(hi2c, I2C_XFER_RX_IT); - - return HAL_OK; - } - else - { - return HAL_BUSY; - } -} - -/** - * @brief Transmit in slave mode an amount of data in non-blocking mode with Interrupt - * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains - * the configuration information for the specified I2C. - * @param pData Pointer to data buffer - * @param Size Amount of data to be sent - * @retval HAL status - */ -HAL_StatusTypeDef HAL_I2C_Slave_Transmit_IT(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size) -{ - if (hi2c->State == HAL_I2C_STATE_READY) - { - /* Process Locked */ - __HAL_LOCK(hi2c); - - hi2c->State = HAL_I2C_STATE_BUSY_TX; - hi2c->Mode = HAL_I2C_MODE_SLAVE; - hi2c->ErrorCode = HAL_I2C_ERROR_NONE; - - /* Enable Address Acknowledge */ - hi2c->Instance->CR2 &= ~I2C_CR2_NACK; - - /* Prepare transfer parameters */ - hi2c->pBuffPtr = pData; - hi2c->XferCount = Size; - hi2c->XferSize = hi2c->XferCount; - hi2c->XferOptions = I2C_NO_OPTION_FRAME; - hi2c->XferISR = I2C_Slave_ISR_IT; - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - /* Note : The I2C interrupts must be enabled after unlocking current process - to avoid the risk of I2C interrupt handle execution before current - process unlock */ - - /* Enable ERR, TC, STOP, NACK, TXI interrupt */ - /* possible to enable all of these */ - /* I2C_IT_ERRI | I2C_IT_TCI| I2C_IT_STOPI| I2C_IT_NACKI | I2C_IT_ADDRI | I2C_IT_RXI | I2C_IT_TXI */ - I2C_Enable_IRQ(hi2c, I2C_XFER_TX_IT | I2C_XFER_LISTEN_IT); - - return HAL_OK; - } - else - { - return HAL_BUSY; - } -} - -/** - * @brief Receive in slave mode an amount of data in non-blocking mode with Interrupt - * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains - * the configuration information for the specified I2C. - * @param pData Pointer to data buffer - * @param Size Amount of data to be sent - * @retval HAL status - */ -HAL_StatusTypeDef HAL_I2C_Slave_Receive_IT(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size) -{ - if (hi2c->State == HAL_I2C_STATE_READY) - { - /* Process Locked */ - __HAL_LOCK(hi2c); - - hi2c->State = HAL_I2C_STATE_BUSY_RX; - hi2c->Mode = HAL_I2C_MODE_SLAVE; - hi2c->ErrorCode = HAL_I2C_ERROR_NONE; - - /* Enable Address Acknowledge */ - hi2c->Instance->CR2 &= ~I2C_CR2_NACK; - - /* Prepare transfer parameters */ - hi2c->pBuffPtr = pData; - hi2c->XferCount = Size; - hi2c->XferSize = hi2c->XferCount; - hi2c->XferOptions = I2C_NO_OPTION_FRAME; - hi2c->XferISR = I2C_Slave_ISR_IT; - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - /* Note : The I2C interrupts must be enabled after unlocking current process - to avoid the risk of I2C interrupt handle execution before current - process unlock */ - - /* Enable ERR, TC, STOP, NACK, RXI interrupt */ - /* possible to enable all of these */ - /* I2C_IT_ERRI | I2C_IT_TCI| I2C_IT_STOPI| I2C_IT_NACKI | I2C_IT_ADDRI | I2C_IT_RXI | I2C_IT_TXI */ - I2C_Enable_IRQ(hi2c, I2C_XFER_RX_IT | I2C_XFER_LISTEN_IT); - - return HAL_OK; - } - else - { - return HAL_BUSY; - } -} - -/** - * @brief Transmit in master mode an amount of data in non-blocking mode with DMA - * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains - * the configuration information for the specified I2C. - * @param DevAddress Target device address: The device 7 bits address value - * in datasheet must be shifted to the left before calling the interface - * @param pData Pointer to data buffer - * @param Size Amount of data to be sent - * @retval HAL status - */ -HAL_StatusTypeDef HAL_I2C_Master_Transmit_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size) -{ - uint32_t xfermode; - HAL_StatusTypeDef dmaxferstatus; - - if (hi2c->State == HAL_I2C_STATE_READY) - { - if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) == SET) - { - return HAL_BUSY; - } - - /* Process Locked */ - __HAL_LOCK(hi2c); - - hi2c->State = HAL_I2C_STATE_BUSY_TX; - hi2c->Mode = HAL_I2C_MODE_MASTER; - hi2c->ErrorCode = HAL_I2C_ERROR_NONE; - - /* Prepare transfer parameters */ - hi2c->pBuffPtr = pData; - hi2c->XferCount = Size; - hi2c->XferOptions = I2C_NO_OPTION_FRAME; - hi2c->XferISR = I2C_Master_ISR_DMA; - - if (hi2c->XferCount > MAX_NBYTE_SIZE) - { - hi2c->XferSize = MAX_NBYTE_SIZE; - xfermode = I2C_RELOAD_MODE; - } - else - { - hi2c->XferSize = hi2c->XferCount; - xfermode = I2C_AUTOEND_MODE; - } - - if (hi2c->XferSize > 0U) - { - if (hi2c->hdmatx != NULL) - { - /* Set the I2C DMA transfer complete callback */ - hi2c->hdmatx->XferCpltCallback = I2C_DMAMasterTransmitCplt; - - /* Set the DMA error callback */ - hi2c->hdmatx->XferErrorCallback = I2C_DMAError; - - /* Set the unused DMA callbacks to NULL */ - hi2c->hdmatx->XferHalfCpltCallback = NULL; - hi2c->hdmatx->XferAbortCallback = NULL; - - /* Enable the DMA channel */ - dmaxferstatus = HAL_DMA_Start_IT(hi2c->hdmatx, (uint32_t)pData, (uint32_t)&hi2c->Instance->TXDR, hi2c->XferSize); - } - else - { - /* Update I2C state */ - hi2c->State = HAL_I2C_STATE_READY; - hi2c->Mode = HAL_I2C_MODE_NONE; - - /* Update I2C error code */ - hi2c->ErrorCode |= HAL_I2C_ERROR_DMA_PARAM; - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - return HAL_ERROR; - } - - if (dmaxferstatus == HAL_OK) - { - /* Send Slave Address */ - /* Set NBYTES to write and reload if hi2c->XferCount > MAX_NBYTE_SIZE and generate RESTART */ - I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, xfermode, I2C_GENERATE_START_WRITE); - - /* Update XferCount value */ - hi2c->XferCount -= hi2c->XferSize; - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - /* Note : The I2C interrupts must be enabled after unlocking current process - to avoid the risk of I2C interrupt handle execution before current - process unlock */ - /* Enable ERR and NACK interrupts */ - I2C_Enable_IRQ(hi2c, I2C_XFER_ERROR_IT); - - /* Enable DMA Request */ - hi2c->Instance->CR1 |= I2C_CR1_TXDMAEN; - } - else - { - /* Update I2C state */ - hi2c->State = HAL_I2C_STATE_READY; - hi2c->Mode = HAL_I2C_MODE_NONE; - - /* Update I2C error code */ - hi2c->ErrorCode |= HAL_I2C_ERROR_DMA; - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - return HAL_ERROR; - } - } - else - { - /* Update Transfer ISR function pointer */ - hi2c->XferISR = I2C_Master_ISR_IT; - - /* Send Slave Address */ - /* Set NBYTES to write and generate START condition */ - I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_AUTOEND_MODE, I2C_GENERATE_START_WRITE); - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - /* Note : The I2C interrupts must be enabled after unlocking current process - to avoid the risk of I2C interrupt handle execution before current - process unlock */ - /* Enable ERR, TC, STOP, NACK, TXI interrupt */ - /* possible to enable all of these */ - /* I2C_IT_ERRI | I2C_IT_TCI| I2C_IT_STOPI| I2C_IT_NACKI | I2C_IT_ADDRI | I2C_IT_RXI | I2C_IT_TXI */ - I2C_Enable_IRQ(hi2c, I2C_XFER_TX_IT); - } - - return HAL_OK; - } - else - { - return HAL_BUSY; - } -} - -/** - * @brief Receive in master mode an amount of data in non-blocking mode with DMA - * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains - * the configuration information for the specified I2C. - * @param DevAddress Target device address: The device 7 bits address value - * in datasheet must be shifted to the left before calling the interface - * @param pData Pointer to data buffer - * @param Size Amount of data to be sent - * @retval HAL status - */ -HAL_StatusTypeDef HAL_I2C_Master_Receive_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size) -{ - uint32_t xfermode; - HAL_StatusTypeDef dmaxferstatus; - - if (hi2c->State == HAL_I2C_STATE_READY) - { - if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) == SET) - { - return HAL_BUSY; - } - - /* Process Locked */ - __HAL_LOCK(hi2c); - - hi2c->State = HAL_I2C_STATE_BUSY_RX; - hi2c->Mode = HAL_I2C_MODE_MASTER; - hi2c->ErrorCode = HAL_I2C_ERROR_NONE; - - /* Prepare transfer parameters */ - hi2c->pBuffPtr = pData; - hi2c->XferCount = Size; - hi2c->XferOptions = I2C_NO_OPTION_FRAME; - hi2c->XferISR = I2C_Master_ISR_DMA; - - if (hi2c->XferCount > MAX_NBYTE_SIZE) - { - hi2c->XferSize = MAX_NBYTE_SIZE; - xfermode = I2C_RELOAD_MODE; - } - else - { - hi2c->XferSize = hi2c->XferCount; - xfermode = I2C_AUTOEND_MODE; - } - - if (hi2c->XferSize > 0U) - { - if (hi2c->hdmarx != NULL) - { - /* Set the I2C DMA transfer complete callback */ - hi2c->hdmarx->XferCpltCallback = I2C_DMAMasterReceiveCplt; - - /* Set the DMA error callback */ - hi2c->hdmarx->XferErrorCallback = I2C_DMAError; - - /* Set the unused DMA callbacks to NULL */ - hi2c->hdmarx->XferHalfCpltCallback = NULL; - hi2c->hdmarx->XferAbortCallback = NULL; - - /* Enable the DMA channel */ - dmaxferstatus = HAL_DMA_Start_IT(hi2c->hdmarx, (uint32_t)&hi2c->Instance->RXDR, (uint32_t)pData, hi2c->XferSize); - } - else - { - /* Update I2C state */ - hi2c->State = HAL_I2C_STATE_READY; - hi2c->Mode = HAL_I2C_MODE_NONE; - - /* Update I2C error code */ - hi2c->ErrorCode |= HAL_I2C_ERROR_DMA_PARAM; - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - return HAL_ERROR; - } - - if (dmaxferstatus == HAL_OK) - { - /* Send Slave Address */ - /* Set NBYTES to read and reload if hi2c->XferCount > MAX_NBYTE_SIZE and generate RESTART */ - I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, xfermode, I2C_GENERATE_START_READ); - - /* Update XferCount value */ - hi2c->XferCount -= hi2c->XferSize; - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - /* Note : The I2C interrupts must be enabled after unlocking current process - to avoid the risk of I2C interrupt handle execution before current - process unlock */ - /* Enable ERR and NACK interrupts */ - I2C_Enable_IRQ(hi2c, I2C_XFER_ERROR_IT); - - /* Enable DMA Request */ - hi2c->Instance->CR1 |= I2C_CR1_RXDMAEN; - } - else - { - /* Update I2C state */ - hi2c->State = HAL_I2C_STATE_READY; - hi2c->Mode = HAL_I2C_MODE_NONE; - - /* Update I2C error code */ - hi2c->ErrorCode |= HAL_I2C_ERROR_DMA; - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - return HAL_ERROR; - } - } - else - { - /* Update Transfer ISR function pointer */ - hi2c->XferISR = I2C_Master_ISR_IT; - - /* Send Slave Address */ - /* Set NBYTES to read and generate START condition */ - I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_AUTOEND_MODE, I2C_GENERATE_START_READ); - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - /* Note : The I2C interrupts must be enabled after unlocking current process - to avoid the risk of I2C interrupt handle execution before current - process unlock */ - /* Enable ERR, TC, STOP, NACK, TXI interrupt */ - /* possible to enable all of these */ - /* I2C_IT_ERRI | I2C_IT_TCI| I2C_IT_STOPI| I2C_IT_NACKI | I2C_IT_ADDRI | I2C_IT_RXI | I2C_IT_TXI */ - I2C_Enable_IRQ(hi2c, I2C_XFER_TX_IT); - } - - return HAL_OK; - } - else - { - return HAL_BUSY; - } -} - -/** - * @brief Transmit in slave mode an amount of data in non-blocking mode with DMA - * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains - * the configuration information for the specified I2C. - * @param pData Pointer to data buffer - * @param Size Amount of data to be sent - * @retval HAL status - */ -HAL_StatusTypeDef HAL_I2C_Slave_Transmit_DMA(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size) -{ - HAL_StatusTypeDef dmaxferstatus; - - if (hi2c->State == HAL_I2C_STATE_READY) - { - if ((pData == NULL) || (Size == 0U)) - { - hi2c->ErrorCode = HAL_I2C_ERROR_INVALID_PARAM; - return HAL_ERROR; - } - /* Process Locked */ - __HAL_LOCK(hi2c); - - hi2c->State = HAL_I2C_STATE_BUSY_TX; - hi2c->Mode = HAL_I2C_MODE_SLAVE; - hi2c->ErrorCode = HAL_I2C_ERROR_NONE; - - /* Prepare transfer parameters */ - hi2c->pBuffPtr = pData; - hi2c->XferCount = Size; - hi2c->XferSize = hi2c->XferCount; - hi2c->XferOptions = I2C_NO_OPTION_FRAME; - hi2c->XferISR = I2C_Slave_ISR_DMA; - - if (hi2c->hdmatx != NULL) - { - /* Set the I2C DMA transfer complete callback */ - hi2c->hdmatx->XferCpltCallback = I2C_DMASlaveTransmitCplt; - - /* Set the DMA error callback */ - hi2c->hdmatx->XferErrorCallback = I2C_DMAError; - - /* Set the unused DMA callbacks to NULL */ - hi2c->hdmatx->XferHalfCpltCallback = NULL; - hi2c->hdmatx->XferAbortCallback = NULL; - - /* Enable the DMA channel */ - dmaxferstatus = HAL_DMA_Start_IT(hi2c->hdmatx, (uint32_t)pData, (uint32_t)&hi2c->Instance->TXDR, hi2c->XferSize); - } - else - { - /* Update I2C state */ - hi2c->State = HAL_I2C_STATE_LISTEN; - hi2c->Mode = HAL_I2C_MODE_NONE; - - /* Update I2C error code */ - hi2c->ErrorCode |= HAL_I2C_ERROR_DMA_PARAM; - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - return HAL_ERROR; - } - - if (dmaxferstatus == HAL_OK) - { - /* Enable Address Acknowledge */ - hi2c->Instance->CR2 &= ~I2C_CR2_NACK; - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - /* Note : The I2C interrupts must be enabled after unlocking current process - to avoid the risk of I2C interrupt handle execution before current - process unlock */ - /* Enable ERR, STOP, NACK, ADDR interrupts */ - I2C_Enable_IRQ(hi2c, I2C_XFER_LISTEN_IT); - - /* Enable DMA Request */ - hi2c->Instance->CR1 |= I2C_CR1_TXDMAEN; - } - else - { - /* Update I2C state */ - hi2c->State = HAL_I2C_STATE_LISTEN; - hi2c->Mode = HAL_I2C_MODE_NONE; - - /* Update I2C error code */ - hi2c->ErrorCode |= HAL_I2C_ERROR_DMA; - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - return HAL_ERROR; - } - - return HAL_OK; - } - else - { - return HAL_BUSY; - } -} - -/** - * @brief Receive in slave mode an amount of data in non-blocking mode with DMA - * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains - * the configuration information for the specified I2C. - * @param pData Pointer to data buffer - * @param Size Amount of data to be sent - * @retval HAL status - */ -HAL_StatusTypeDef HAL_I2C_Slave_Receive_DMA(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size) -{ - HAL_StatusTypeDef dmaxferstatus; - - if (hi2c->State == HAL_I2C_STATE_READY) - { - if ((pData == NULL) || (Size == 0U)) - { - hi2c->ErrorCode = HAL_I2C_ERROR_INVALID_PARAM; - return HAL_ERROR; - } - /* Process Locked */ - __HAL_LOCK(hi2c); - - hi2c->State = HAL_I2C_STATE_BUSY_RX; - hi2c->Mode = HAL_I2C_MODE_SLAVE; - hi2c->ErrorCode = HAL_I2C_ERROR_NONE; - - /* Prepare transfer parameters */ - hi2c->pBuffPtr = pData; - hi2c->XferCount = Size; - hi2c->XferSize = hi2c->XferCount; - hi2c->XferOptions = I2C_NO_OPTION_FRAME; - hi2c->XferISR = I2C_Slave_ISR_DMA; - - if (hi2c->hdmarx != NULL) - { - /* Set the I2C DMA transfer complete callback */ - hi2c->hdmarx->XferCpltCallback = I2C_DMASlaveReceiveCplt; - - /* Set the DMA error callback */ - hi2c->hdmarx->XferErrorCallback = I2C_DMAError; - - /* Set the unused DMA callbacks to NULL */ - hi2c->hdmarx->XferHalfCpltCallback = NULL; - hi2c->hdmarx->XferAbortCallback = NULL; - - /* Enable the DMA channel */ - dmaxferstatus = HAL_DMA_Start_IT(hi2c->hdmarx, (uint32_t)&hi2c->Instance->RXDR, (uint32_t)pData, hi2c->XferSize); - } - else - { - /* Update I2C state */ - hi2c->State = HAL_I2C_STATE_LISTEN; - hi2c->Mode = HAL_I2C_MODE_NONE; - - /* Update I2C error code */ - hi2c->ErrorCode |= HAL_I2C_ERROR_DMA_PARAM; - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - return HAL_ERROR; - } - - if (dmaxferstatus == HAL_OK) - { - /* Enable Address Acknowledge */ - hi2c->Instance->CR2 &= ~I2C_CR2_NACK; - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - /* Note : The I2C interrupts must be enabled after unlocking current process - to avoid the risk of I2C interrupt handle execution before current - process unlock */ - /* Enable ERR, STOP, NACK, ADDR interrupts */ - I2C_Enable_IRQ(hi2c, I2C_XFER_LISTEN_IT); - - /* Enable DMA Request */ - hi2c->Instance->CR1 |= I2C_CR1_RXDMAEN; - } - else - { - /* Update I2C state */ - hi2c->State = HAL_I2C_STATE_LISTEN; - hi2c->Mode = HAL_I2C_MODE_NONE; - - /* Update I2C error code */ - hi2c->ErrorCode |= HAL_I2C_ERROR_DMA; - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - return HAL_ERROR; - } - - return HAL_OK; - } - else - { - return HAL_BUSY; - } -} -/** - * @brief Write an amount of data in blocking mode to a specific memory address - * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains - * the configuration information for the specified I2C. - * @param DevAddress Target device address: The device 7 bits address value - * in datasheet must be shifted to the left before calling the interface - * @param MemAddress Internal memory address - * @param MemAddSize Size of internal memory address - * @param pData Pointer to data buffer - * @param Size Amount of data to be sent - * @param Timeout Timeout duration - * @retval HAL status - */ -HAL_StatusTypeDef HAL_I2C_Mem_Write(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size, uint32_t Timeout) -{ - uint32_t tickstart; - - /* Check the parameters */ - assert_param(IS_I2C_MEMADD_SIZE(MemAddSize)); - - if (hi2c->State == HAL_I2C_STATE_READY) - { - if ((pData == NULL) || (Size == 0U)) - { - hi2c->ErrorCode = HAL_I2C_ERROR_INVALID_PARAM; - return HAL_ERROR; - } - - /* Process Locked */ - __HAL_LOCK(hi2c); - - /* Init tickstart for timeout management*/ - tickstart = HAL_GetTick(); - - if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BUSY, SET, I2C_TIMEOUT_BUSY, tickstart) != HAL_OK) - { - return HAL_ERROR; - } - - hi2c->State = HAL_I2C_STATE_BUSY_TX; - hi2c->Mode = HAL_I2C_MODE_MEM; - hi2c->ErrorCode = HAL_I2C_ERROR_NONE; - - /* Prepare transfer parameters */ - hi2c->pBuffPtr = pData; - hi2c->XferCount = Size; - hi2c->XferISR = NULL; - - /* Send Slave Address and Memory Address */ - if (I2C_RequestMemoryWrite(hi2c, DevAddress, MemAddress, MemAddSize, Timeout, tickstart) != HAL_OK) - { - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - return HAL_ERROR; - } - - /* Set NBYTES to write and reload if hi2c->XferCount > MAX_NBYTE_SIZE */ - if (hi2c->XferCount > MAX_NBYTE_SIZE) - { - hi2c->XferSize = MAX_NBYTE_SIZE; - I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_RELOAD_MODE, I2C_NO_STARTSTOP); - } - else - { - hi2c->XferSize = hi2c->XferCount; - I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_AUTOEND_MODE, I2C_NO_STARTSTOP); - } - - do - { - /* Wait until TXIS flag is set */ - if (I2C_WaitOnTXISFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK) - { - return HAL_ERROR; - } - - /* Write data to TXDR */ - hi2c->Instance->TXDR = *hi2c->pBuffPtr; - - /* Increment Buffer pointer */ - hi2c->pBuffPtr++; - - hi2c->XferCount--; - hi2c->XferSize--; - - if ((hi2c->XferCount != 0U) && (hi2c->XferSize == 0U)) - { - /* Wait until TCR flag is set */ - if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_TCR, RESET, Timeout, tickstart) != HAL_OK) - { - return HAL_ERROR; - } - - if (hi2c->XferCount > MAX_NBYTE_SIZE) - { - hi2c->XferSize = MAX_NBYTE_SIZE; - I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_RELOAD_MODE, I2C_NO_STARTSTOP); - } - else - { - hi2c->XferSize = hi2c->XferCount; - I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_AUTOEND_MODE, I2C_NO_STARTSTOP); - } - } - - } - while (hi2c->XferCount > 0U); - - /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */ - /* Wait until STOPF flag is reset */ - if (I2C_WaitOnSTOPFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK) - { - return HAL_ERROR; - } - - /* Clear STOP Flag */ - __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF); - - /* Clear Configuration Register 2 */ - I2C_RESET_CR2(hi2c); - - hi2c->State = HAL_I2C_STATE_READY; - hi2c->Mode = HAL_I2C_MODE_NONE; - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - return HAL_OK; - } - else - { - return HAL_BUSY; - } -} - -/** - * @brief Read an amount of data in blocking mode from a specific memory address - * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains - * the configuration information for the specified I2C. - * @param DevAddress Target device address: The device 7 bits address value - * in datasheet must be shifted to the left before calling the interface - * @param MemAddress Internal memory address - * @param MemAddSize Size of internal memory address - * @param pData Pointer to data buffer - * @param Size Amount of data to be sent - * @param Timeout Timeout duration - * @retval HAL status - */ -HAL_StatusTypeDef HAL_I2C_Mem_Read(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size, uint32_t Timeout) -{ - uint32_t tickstart; - - /* Check the parameters */ - assert_param(IS_I2C_MEMADD_SIZE(MemAddSize)); - - if (hi2c->State == HAL_I2C_STATE_READY) - { - if ((pData == NULL) || (Size == 0U)) - { - hi2c->ErrorCode = HAL_I2C_ERROR_INVALID_PARAM; - return HAL_ERROR; - } - - /* Process Locked */ - __HAL_LOCK(hi2c); - - /* Init tickstart for timeout management*/ - tickstart = HAL_GetTick(); - - if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BUSY, SET, I2C_TIMEOUT_BUSY, tickstart) != HAL_OK) - { - return HAL_ERROR; - } - - hi2c->State = HAL_I2C_STATE_BUSY_RX; - hi2c->Mode = HAL_I2C_MODE_MEM; - hi2c->ErrorCode = HAL_I2C_ERROR_NONE; - - /* Prepare transfer parameters */ - hi2c->pBuffPtr = pData; - hi2c->XferCount = Size; - hi2c->XferISR = NULL; - - /* Send Slave Address and Memory Address */ - if (I2C_RequestMemoryRead(hi2c, DevAddress, MemAddress, MemAddSize, Timeout, tickstart) != HAL_OK) - { - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - return HAL_ERROR; - } - - /* Send Slave Address */ - /* Set NBYTES to write and reload if hi2c->XferCount > MAX_NBYTE_SIZE and generate RESTART */ - if (hi2c->XferCount > MAX_NBYTE_SIZE) - { - hi2c->XferSize = MAX_NBYTE_SIZE; - I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_RELOAD_MODE, I2C_GENERATE_START_READ); - } - else - { - hi2c->XferSize = hi2c->XferCount; - I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_AUTOEND_MODE, I2C_GENERATE_START_READ); - } - - do - { - /* Wait until RXNE flag is set */ - if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_RXNE, RESET, Timeout, tickstart) != HAL_OK) - { - return HAL_ERROR; - } - - /* Read data from RXDR */ - *hi2c->pBuffPtr = (uint8_t)hi2c->Instance->RXDR; - - /* Increment Buffer pointer */ - hi2c->pBuffPtr++; - - hi2c->XferSize--; - hi2c->XferCount--; - - if ((hi2c->XferCount != 0U) && (hi2c->XferSize == 0U)) - { - /* Wait until TCR flag is set */ - if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_TCR, RESET, Timeout, tickstart) != HAL_OK) - { - return HAL_ERROR; - } - - if (hi2c->XferCount > MAX_NBYTE_SIZE) - { - hi2c->XferSize = MAX_NBYTE_SIZE; - I2C_TransferConfig(hi2c, DevAddress, (uint8_t) hi2c->XferSize, I2C_RELOAD_MODE, I2C_NO_STARTSTOP); - } - else - { - hi2c->XferSize = hi2c->XferCount; - I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_AUTOEND_MODE, I2C_NO_STARTSTOP); - } - } - } - while (hi2c->XferCount > 0U); - - /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */ - /* Wait until STOPF flag is reset */ - if (I2C_WaitOnSTOPFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK) - { - return HAL_ERROR; - } - - /* Clear STOP Flag */ - __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF); - - /* Clear Configuration Register 2 */ - I2C_RESET_CR2(hi2c); - - hi2c->State = HAL_I2C_STATE_READY; - hi2c->Mode = HAL_I2C_MODE_NONE; - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - return HAL_OK; - } - else - { - return HAL_BUSY; - } -} -/** - * @brief Write an amount of data in non-blocking mode with Interrupt to a specific memory address - * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains - * the configuration information for the specified I2C. - * @param DevAddress Target device address: The device 7 bits address value - * in datasheet must be shifted to the left before calling the interface - * @param MemAddress Internal memory address - * @param MemAddSize Size of internal memory address - * @param pData Pointer to data buffer - * @param Size Amount of data to be sent - * @retval HAL status - */ -HAL_StatusTypeDef HAL_I2C_Mem_Write_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size) -{ - uint32_t tickstart; - uint32_t xfermode; - - /* Check the parameters */ - assert_param(IS_I2C_MEMADD_SIZE(MemAddSize)); - - if (hi2c->State == HAL_I2C_STATE_READY) - { - if ((pData == NULL) || (Size == 0U)) - { - hi2c->ErrorCode = HAL_I2C_ERROR_INVALID_PARAM; - return HAL_ERROR; - } - - if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) == SET) - { - return HAL_BUSY; - } - - /* Process Locked */ - __HAL_LOCK(hi2c); - - /* Init tickstart for timeout management*/ - tickstart = HAL_GetTick(); - - hi2c->State = HAL_I2C_STATE_BUSY_TX; - hi2c->Mode = HAL_I2C_MODE_MEM; - hi2c->ErrorCode = HAL_I2C_ERROR_NONE; - - /* Prepare transfer parameters */ - hi2c->pBuffPtr = pData; - hi2c->XferCount = Size; - hi2c->XferOptions = I2C_NO_OPTION_FRAME; - hi2c->XferISR = I2C_Master_ISR_IT; - - if (hi2c->XferCount > MAX_NBYTE_SIZE) - { - hi2c->XferSize = MAX_NBYTE_SIZE; - xfermode = I2C_RELOAD_MODE; - } - else - { - hi2c->XferSize = hi2c->XferCount; - xfermode = I2C_AUTOEND_MODE; - } - - /* Send Slave Address and Memory Address */ - if (I2C_RequestMemoryWrite(hi2c, DevAddress, MemAddress, MemAddSize, I2C_TIMEOUT_FLAG, tickstart) != HAL_OK) - { - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - return HAL_ERROR; - } - - /* Set NBYTES to write and reload if hi2c->XferCount > MAX_NBYTE_SIZE and generate RESTART */ - I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, xfermode, I2C_NO_STARTSTOP); - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - /* Note : The I2C interrupts must be enabled after unlocking current process - to avoid the risk of I2C interrupt handle execution before current - process unlock */ - - /* Enable ERR, TC, STOP, NACK, TXI interrupt */ - /* possible to enable all of these */ - /* I2C_IT_ERRI | I2C_IT_TCI| I2C_IT_STOPI| I2C_IT_NACKI | I2C_IT_ADDRI | I2C_IT_RXI | I2C_IT_TXI */ - I2C_Enable_IRQ(hi2c, I2C_XFER_TX_IT); - - return HAL_OK; - } - else - { - return HAL_BUSY; - } -} - -/** - * @brief Read an amount of data in non-blocking mode with Interrupt from a specific memory address - * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains - * the configuration information for the specified I2C. - * @param DevAddress Target device address: The device 7 bits address value - * in datasheet must be shifted to the left before calling the interface - * @param MemAddress Internal memory address - * @param MemAddSize Size of internal memory address - * @param pData Pointer to data buffer - * @param Size Amount of data to be sent - * @retval HAL status - */ -HAL_StatusTypeDef HAL_I2C_Mem_Read_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size) -{ - uint32_t tickstart; - uint32_t xfermode; - - /* Check the parameters */ - assert_param(IS_I2C_MEMADD_SIZE(MemAddSize)); - - if (hi2c->State == HAL_I2C_STATE_READY) - { - if ((pData == NULL) || (Size == 0U)) - { - hi2c->ErrorCode = HAL_I2C_ERROR_INVALID_PARAM; - return HAL_ERROR; - } - - if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) == SET) - { - return HAL_BUSY; - } - - /* Process Locked */ - __HAL_LOCK(hi2c); - - /* Init tickstart for timeout management*/ - tickstart = HAL_GetTick(); - - hi2c->State = HAL_I2C_STATE_BUSY_RX; - hi2c->Mode = HAL_I2C_MODE_MEM; - hi2c->ErrorCode = HAL_I2C_ERROR_NONE; - - /* Prepare transfer parameters */ - hi2c->pBuffPtr = pData; - hi2c->XferCount = Size; - hi2c->XferOptions = I2C_NO_OPTION_FRAME; - hi2c->XferISR = I2C_Master_ISR_IT; - - if (hi2c->XferCount > MAX_NBYTE_SIZE) - { - hi2c->XferSize = MAX_NBYTE_SIZE; - xfermode = I2C_RELOAD_MODE; - } - else - { - hi2c->XferSize = hi2c->XferCount; - xfermode = I2C_AUTOEND_MODE; - } - - /* Send Slave Address and Memory Address */ - if (I2C_RequestMemoryRead(hi2c, DevAddress, MemAddress, MemAddSize, I2C_TIMEOUT_FLAG, tickstart) != HAL_OK) - { - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - return HAL_ERROR; - } - - /* Set NBYTES to write and reload if hi2c->XferCount > MAX_NBYTE_SIZE and generate RESTART */ - I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, xfermode, I2C_GENERATE_START_READ); - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - /* Note : The I2C interrupts must be enabled after unlocking current process - to avoid the risk of I2C interrupt handle execution before current - process unlock */ - - /* Enable ERR, TC, STOP, NACK, RXI interrupt */ - /* possible to enable all of these */ - /* I2C_IT_ERRI | I2C_IT_TCI| I2C_IT_STOPI| I2C_IT_NACKI | I2C_IT_ADDRI | I2C_IT_RXI | I2C_IT_TXI */ - I2C_Enable_IRQ(hi2c, I2C_XFER_RX_IT); - - return HAL_OK; - } - else - { - return HAL_BUSY; - } -} -/** - * @brief Write an amount of data in non-blocking mode with DMA to a specific memory address - * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains - * the configuration information for the specified I2C. - * @param DevAddress Target device address: The device 7 bits address value - * in datasheet must be shifted to the left before calling the interface - * @param MemAddress Internal memory address - * @param MemAddSize Size of internal memory address - * @param pData Pointer to data buffer - * @param Size Amount of data to be sent - * @retval HAL status - */ -HAL_StatusTypeDef HAL_I2C_Mem_Write_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size) -{ - uint32_t tickstart; - uint32_t xfermode; - HAL_StatusTypeDef dmaxferstatus; - - /* Check the parameters */ - assert_param(IS_I2C_MEMADD_SIZE(MemAddSize)); - - if (hi2c->State == HAL_I2C_STATE_READY) - { - if ((pData == NULL) || (Size == 0U)) - { - hi2c->ErrorCode = HAL_I2C_ERROR_INVALID_PARAM; - return HAL_ERROR; - } - - if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) == SET) - { - return HAL_BUSY; - } - - /* Process Locked */ - __HAL_LOCK(hi2c); - - /* Init tickstart for timeout management*/ - tickstart = HAL_GetTick(); - - hi2c->State = HAL_I2C_STATE_BUSY_TX; - hi2c->Mode = HAL_I2C_MODE_MEM; - hi2c->ErrorCode = HAL_I2C_ERROR_NONE; - - /* Prepare transfer parameters */ - hi2c->pBuffPtr = pData; - hi2c->XferCount = Size; - hi2c->XferOptions = I2C_NO_OPTION_FRAME; - hi2c->XferISR = I2C_Master_ISR_DMA; - - if (hi2c->XferCount > MAX_NBYTE_SIZE) - { - hi2c->XferSize = MAX_NBYTE_SIZE; - xfermode = I2C_RELOAD_MODE; - } - else - { - hi2c->XferSize = hi2c->XferCount; - xfermode = I2C_AUTOEND_MODE; - } - - /* Send Slave Address and Memory Address */ - if (I2C_RequestMemoryWrite(hi2c, DevAddress, MemAddress, MemAddSize, I2C_TIMEOUT_FLAG, tickstart) != HAL_OK) - { - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - return HAL_ERROR; - } - - - if (hi2c->hdmatx != NULL) - { - /* Set the I2C DMA transfer complete callback */ - hi2c->hdmatx->XferCpltCallback = I2C_DMAMasterTransmitCplt; - - /* Set the DMA error callback */ - hi2c->hdmatx->XferErrorCallback = I2C_DMAError; - - /* Set the unused DMA callbacks to NULL */ - hi2c->hdmatx->XferHalfCpltCallback = NULL; - hi2c->hdmatx->XferAbortCallback = NULL; - - /* Enable the DMA channel */ - dmaxferstatus = HAL_DMA_Start_IT(hi2c->hdmatx, (uint32_t)pData, (uint32_t)&hi2c->Instance->TXDR, hi2c->XferSize); - } - else - { - /* Update I2C state */ - hi2c->State = HAL_I2C_STATE_READY; - hi2c->Mode = HAL_I2C_MODE_NONE; - - /* Update I2C error code */ - hi2c->ErrorCode |= HAL_I2C_ERROR_DMA_PARAM; - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - return HAL_ERROR; - } - - if (dmaxferstatus == HAL_OK) - { - /* Send Slave Address */ - /* Set NBYTES to write and reload if hi2c->XferCount > MAX_NBYTE_SIZE and generate RESTART */ - I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, xfermode, I2C_NO_STARTSTOP); - - /* Update XferCount value */ - hi2c->XferCount -= hi2c->XferSize; - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - /* Note : The I2C interrupts must be enabled after unlocking current process - to avoid the risk of I2C interrupt handle execution before current - process unlock */ - /* Enable ERR and NACK interrupts */ - I2C_Enable_IRQ(hi2c, I2C_XFER_ERROR_IT); - - /* Enable DMA Request */ - hi2c->Instance->CR1 |= I2C_CR1_TXDMAEN; - } - else - { - /* Update I2C state */ - hi2c->State = HAL_I2C_STATE_READY; - hi2c->Mode = HAL_I2C_MODE_NONE; - - /* Update I2C error code */ - hi2c->ErrorCode |= HAL_I2C_ERROR_DMA; - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - return HAL_ERROR; - } - - return HAL_OK; - } - else - { - return HAL_BUSY; - } -} - -/** - * @brief Reads an amount of data in non-blocking mode with DMA from a specific memory address. - * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains - * the configuration information for the specified I2C. - * @param DevAddress Target device address: The device 7 bits address value - * in datasheet must be shifted to the left before calling the interface - * @param MemAddress Internal memory address - * @param MemAddSize Size of internal memory address - * @param pData Pointer to data buffer - * @param Size Amount of data to be read - * @retval HAL status - */ -HAL_StatusTypeDef HAL_I2C_Mem_Read_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size) -{ - uint32_t tickstart; - uint32_t xfermode; - HAL_StatusTypeDef dmaxferstatus; - - /* Check the parameters */ - assert_param(IS_I2C_MEMADD_SIZE(MemAddSize)); - - if (hi2c->State == HAL_I2C_STATE_READY) - { - if ((pData == NULL) || (Size == 0U)) - { - hi2c->ErrorCode = HAL_I2C_ERROR_INVALID_PARAM; - return HAL_ERROR; - } - - if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) == SET) - { - return HAL_BUSY; - } - - /* Process Locked */ - __HAL_LOCK(hi2c); - - /* Init tickstart for timeout management*/ - tickstart = HAL_GetTick(); - - hi2c->State = HAL_I2C_STATE_BUSY_RX; - hi2c->Mode = HAL_I2C_MODE_MEM; - hi2c->ErrorCode = HAL_I2C_ERROR_NONE; - - /* Prepare transfer parameters */ - hi2c->pBuffPtr = pData; - hi2c->XferCount = Size; - hi2c->XferOptions = I2C_NO_OPTION_FRAME; - hi2c->XferISR = I2C_Master_ISR_DMA; - - if (hi2c->XferCount > MAX_NBYTE_SIZE) - { - hi2c->XferSize = MAX_NBYTE_SIZE; - xfermode = I2C_RELOAD_MODE; - } - else - { - hi2c->XferSize = hi2c->XferCount; - xfermode = I2C_AUTOEND_MODE; - } - - /* Send Slave Address and Memory Address */ - if (I2C_RequestMemoryRead(hi2c, DevAddress, MemAddress, MemAddSize, I2C_TIMEOUT_FLAG, tickstart) != HAL_OK) - { - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - return HAL_ERROR; - } - - if (hi2c->hdmarx != NULL) - { - /* Set the I2C DMA transfer complete callback */ - hi2c->hdmarx->XferCpltCallback = I2C_DMAMasterReceiveCplt; - - /* Set the DMA error callback */ - hi2c->hdmarx->XferErrorCallback = I2C_DMAError; - - /* Set the unused DMA callbacks to NULL */ - hi2c->hdmarx->XferHalfCpltCallback = NULL; - hi2c->hdmarx->XferAbortCallback = NULL; - - /* Enable the DMA channel */ - dmaxferstatus = HAL_DMA_Start_IT(hi2c->hdmarx, (uint32_t)&hi2c->Instance->RXDR, (uint32_t)pData, hi2c->XferSize); - } - else - { - /* Update I2C state */ - hi2c->State = HAL_I2C_STATE_READY; - hi2c->Mode = HAL_I2C_MODE_NONE; - - /* Update I2C error code */ - hi2c->ErrorCode |= HAL_I2C_ERROR_DMA_PARAM; - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - return HAL_ERROR; - } - - if (dmaxferstatus == HAL_OK) - { - /* Set NBYTES to write and reload if hi2c->XferCount > MAX_NBYTE_SIZE and generate RESTART */ - I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, xfermode, I2C_GENERATE_START_READ); - - /* Update XferCount value */ - hi2c->XferCount -= hi2c->XferSize; - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - /* Note : The I2C interrupts must be enabled after unlocking current process - to avoid the risk of I2C interrupt handle execution before current - process unlock */ - /* Enable ERR and NACK interrupts */ - I2C_Enable_IRQ(hi2c, I2C_XFER_ERROR_IT); - - /* Enable DMA Request */ - hi2c->Instance->CR1 |= I2C_CR1_RXDMAEN; - } - else - { - /* Update I2C state */ - hi2c->State = HAL_I2C_STATE_READY; - hi2c->Mode = HAL_I2C_MODE_NONE; - - /* Update I2C error code */ - hi2c->ErrorCode |= HAL_I2C_ERROR_DMA; - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - return HAL_ERROR; - } - - return HAL_OK; - } - else - { - return HAL_BUSY; - } -} - -/** - * @brief Checks if target device is ready for communication. - * @note This function is used with Memory devices - * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains - * the configuration information for the specified I2C. - * @param DevAddress Target device address: The device 7 bits address value - * in datasheet must be shifted to the left before calling the interface - * @param Trials Number of trials - * @param Timeout Timeout duration - * @retval HAL status - */ -HAL_StatusTypeDef HAL_I2C_IsDeviceReady(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint32_t Trials, uint32_t Timeout) -{ - uint32_t tickstart; - - __IO uint32_t I2C_Trials = 0UL; - - FlagStatus tmp1; - FlagStatus tmp2; - - if (hi2c->State == HAL_I2C_STATE_READY) - { - if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) == SET) - { - return HAL_BUSY; - } - - /* Process Locked */ - __HAL_LOCK(hi2c); - - hi2c->State = HAL_I2C_STATE_BUSY; - hi2c->ErrorCode = HAL_I2C_ERROR_NONE; - - do - { - /* Generate Start */ - hi2c->Instance->CR2 = I2C_GENERATE_START(hi2c->Init.AddressingMode, DevAddress); - - /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */ - /* Wait until STOPF flag is set or a NACK flag is set*/ - tickstart = HAL_GetTick(); - - tmp1 = __HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_STOPF); - tmp2 = __HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_AF); - - while ((tmp1 == RESET) && (tmp2 == RESET)) - { - if (Timeout != HAL_MAX_DELAY) - { - if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U)) - { - /* Update I2C state */ - hi2c->State = HAL_I2C_STATE_READY; - - /* Update I2C error code */ - hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT; - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - return HAL_ERROR; - } - } - - tmp1 = __HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_STOPF); - tmp2 = __HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_AF); - } - - /* Check if the NACKF flag has not been set */ - if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_AF) == RESET) - { - /* Wait until STOPF flag is reset */ - if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_STOPF, RESET, Timeout, tickstart) != HAL_OK) - { - return HAL_ERROR; - } - - /* Clear STOP Flag */ - __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF); - - /* Device is ready */ - hi2c->State = HAL_I2C_STATE_READY; - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - return HAL_OK; - } - else - { - /* Wait until STOPF flag is reset */ - if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_STOPF, RESET, Timeout, tickstart) != HAL_OK) - { - return HAL_ERROR; - } - - /* Clear NACK Flag */ - __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); - - /* Clear STOP Flag, auto generated with autoend*/ - __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF); - } - - /* Check if the maximum allowed number of trials has been reached */ - if (I2C_Trials == Trials) - { - /* Generate Stop */ - hi2c->Instance->CR2 |= I2C_CR2_STOP; - - /* Wait until STOPF flag is reset */ - if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_STOPF, RESET, Timeout, tickstart) != HAL_OK) - { - return HAL_ERROR; - } - - /* Clear STOP Flag */ - __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF); - } - - /* Increment Trials */ - I2C_Trials++; - } - while (I2C_Trials < Trials); - - /* Update I2C state */ - hi2c->State = HAL_I2C_STATE_READY; - - /* Update I2C error code */ - hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT; - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - return HAL_ERROR; - } - else - { - return HAL_BUSY; - } -} - -/** - * @brief Sequential transmit in master I2C mode an amount of data in non-blocking mode with Interrupt. - * @note This interface allow to manage repeated start condition when a direction change during transfer - * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains - * the configuration information for the specified I2C. - * @param DevAddress Target device address: The device 7 bits address value - * in datasheet must be shifted to the left before calling the interface - * @param pData Pointer to data buffer - * @param Size Amount of data to be sent - * @param XferOptions Options of Transfer, value of @ref I2C_XFEROPTIONS - * @retval HAL status - */ -HAL_StatusTypeDef HAL_I2C_Master_Seq_Transmit_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t XferOptions) -{ - uint32_t xfermode; - uint32_t xferrequest = I2C_GENERATE_START_WRITE; - - /* Check the parameters */ - assert_param(IS_I2C_TRANSFER_OPTIONS_REQUEST(XferOptions)); - - if (hi2c->State == HAL_I2C_STATE_READY) - { - /* Process Locked */ - __HAL_LOCK(hi2c); - - hi2c->State = HAL_I2C_STATE_BUSY_TX; - hi2c->Mode = HAL_I2C_MODE_MASTER; - hi2c->ErrorCode = HAL_I2C_ERROR_NONE; - - /* Prepare transfer parameters */ - hi2c->pBuffPtr = pData; - hi2c->XferCount = Size; - hi2c->XferOptions = XferOptions; - hi2c->XferISR = I2C_Master_ISR_IT; - - /* If hi2c->XferCount > MAX_NBYTE_SIZE, use reload mode */ - if (hi2c->XferCount > MAX_NBYTE_SIZE) - { - hi2c->XferSize = MAX_NBYTE_SIZE; - xfermode = I2C_RELOAD_MODE; - } - else - { - hi2c->XferSize = hi2c->XferCount; - xfermode = hi2c->XferOptions; - } - - /* If transfer direction not change and there is no request to start another frame, do not generate Restart Condition */ - /* Mean Previous state is same as current state */ - if ((hi2c->PreviousState == I2C_STATE_MASTER_BUSY_TX) && (IS_I2C_TRANSFER_OTHER_OPTIONS_REQUEST(XferOptions) == 0)) - { - xferrequest = I2C_NO_STARTSTOP; - } - else - { - /* Convert OTHER_xxx XferOptions if any */ - I2C_ConvertOtherXferOptions(hi2c); - - /* Update xfermode accordingly if no reload is necessary */ - if (hi2c->XferCount < MAX_NBYTE_SIZE) - { - xfermode = hi2c->XferOptions; - } - } - - /* Send Slave Address and set NBYTES to write */ - I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, xfermode, xferrequest); - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - /* Note : The I2C interrupts must be enabled after unlocking current process - to avoid the risk of I2C interrupt handle execution before current - process unlock */ - I2C_Enable_IRQ(hi2c, I2C_XFER_TX_IT); - - return HAL_OK; - } - else - { - return HAL_BUSY; - } -} - -/** - * @brief Sequential transmit in master I2C mode an amount of data in non-blocking mode with DMA. - * @note This interface allow to manage repeated start condition when a direction change during transfer - * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains - * the configuration information for the specified I2C. - * @param DevAddress Target device address: The device 7 bits address value - * in datasheet must be shifted to the left before calling the interface - * @param pData Pointer to data buffer - * @param Size Amount of data to be sent - * @param XferOptions Options of Transfer, value of @ref I2C_XFEROPTIONS - * @retval HAL status - */ -HAL_StatusTypeDef HAL_I2C_Master_Seq_Transmit_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t XferOptions) -{ - uint32_t xfermode; - uint32_t xferrequest = I2C_GENERATE_START_WRITE; - HAL_StatusTypeDef dmaxferstatus; - - /* Check the parameters */ - assert_param(IS_I2C_TRANSFER_OPTIONS_REQUEST(XferOptions)); - - if (hi2c->State == HAL_I2C_STATE_READY) - { - /* Process Locked */ - __HAL_LOCK(hi2c); - - hi2c->State = HAL_I2C_STATE_BUSY_TX; - hi2c->Mode = HAL_I2C_MODE_MASTER; - hi2c->ErrorCode = HAL_I2C_ERROR_NONE; - - /* Prepare transfer parameters */ - hi2c->pBuffPtr = pData; - hi2c->XferCount = Size; - hi2c->XferOptions = XferOptions; - hi2c->XferISR = I2C_Master_ISR_DMA; - - /* If hi2c->XferCount > MAX_NBYTE_SIZE, use reload mode */ - if (hi2c->XferCount > MAX_NBYTE_SIZE) - { - hi2c->XferSize = MAX_NBYTE_SIZE; - xfermode = I2C_RELOAD_MODE; - } - else - { - hi2c->XferSize = hi2c->XferCount; - xfermode = hi2c->XferOptions; - } - - /* If transfer direction not change and there is no request to start another frame, do not generate Restart Condition */ - /* Mean Previous state is same as current state */ - if ((hi2c->PreviousState == I2C_STATE_MASTER_BUSY_TX) && (IS_I2C_TRANSFER_OTHER_OPTIONS_REQUEST(XferOptions) == 0)) - { - xferrequest = I2C_NO_STARTSTOP; - } - else - { - /* Convert OTHER_xxx XferOptions if any */ - I2C_ConvertOtherXferOptions(hi2c); - - /* Update xfermode accordingly if no reload is necessary */ - if (hi2c->XferCount < MAX_NBYTE_SIZE) - { - xfermode = hi2c->XferOptions; - } - } - - if (hi2c->XferSize > 0U) - { - if (hi2c->hdmatx != NULL) - { - /* Set the I2C DMA transfer complete callback */ - hi2c->hdmatx->XferCpltCallback = I2C_DMAMasterTransmitCplt; - - /* Set the DMA error callback */ - hi2c->hdmatx->XferErrorCallback = I2C_DMAError; - - /* Set the unused DMA callbacks to NULL */ - hi2c->hdmatx->XferHalfCpltCallback = NULL; - hi2c->hdmatx->XferAbortCallback = NULL; - - /* Enable the DMA channel */ - dmaxferstatus = HAL_DMA_Start_IT(hi2c->hdmatx, (uint32_t)pData, (uint32_t)&hi2c->Instance->TXDR, hi2c->XferSize); - } - else - { - /* Update I2C state */ - hi2c->State = HAL_I2C_STATE_READY; - hi2c->Mode = HAL_I2C_MODE_NONE; - - /* Update I2C error code */ - hi2c->ErrorCode |= HAL_I2C_ERROR_DMA_PARAM; - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - return HAL_ERROR; - } - - if (dmaxferstatus == HAL_OK) - { - /* Send Slave Address and set NBYTES to write */ - I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, xfermode, xferrequest); - - /* Update XferCount value */ - hi2c->XferCount -= hi2c->XferSize; - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - /* Note : The I2C interrupts must be enabled after unlocking current process - to avoid the risk of I2C interrupt handle execution before current - process unlock */ - /* Enable ERR and NACK interrupts */ - I2C_Enable_IRQ(hi2c, I2C_XFER_ERROR_IT); - - /* Enable DMA Request */ - hi2c->Instance->CR1 |= I2C_CR1_TXDMAEN; - } - else - { - /* Update I2C state */ - hi2c->State = HAL_I2C_STATE_READY; - hi2c->Mode = HAL_I2C_MODE_NONE; - - /* Update I2C error code */ - hi2c->ErrorCode |= HAL_I2C_ERROR_DMA; - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - return HAL_ERROR; - } - } - else - { - /* Update Transfer ISR function pointer */ - hi2c->XferISR = I2C_Master_ISR_IT; - - /* Send Slave Address */ - /* Set NBYTES to write and generate START condition */ - I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_AUTOEND_MODE, I2C_GENERATE_START_WRITE); - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - /* Note : The I2C interrupts must be enabled after unlocking current process - to avoid the risk of I2C interrupt handle execution before current - process unlock */ - /* Enable ERR, TC, STOP, NACK, TXI interrupt */ - /* possible to enable all of these */ - /* I2C_IT_ERRI | I2C_IT_TCI| I2C_IT_STOPI| I2C_IT_NACKI | I2C_IT_ADDRI | I2C_IT_RXI | I2C_IT_TXI */ - I2C_Enable_IRQ(hi2c, I2C_XFER_TX_IT); - } - - return HAL_OK; - } - else - { - return HAL_BUSY; - } -} - -/** - * @brief Sequential receive in master I2C mode an amount of data in non-blocking mode with Interrupt - * @note This interface allow to manage repeated start condition when a direction change during transfer - * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains - * the configuration information for the specified I2C. - * @param DevAddress Target device address: The device 7 bits address value - * in datasheet must be shifted to the left before calling the interface - * @param pData Pointer to data buffer - * @param Size Amount of data to be sent - * @param XferOptions Options of Transfer, value of @ref I2C_XFEROPTIONS - * @retval HAL status - */ -HAL_StatusTypeDef HAL_I2C_Master_Seq_Receive_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t XferOptions) -{ - uint32_t xfermode; - uint32_t xferrequest = I2C_GENERATE_START_READ; - - /* Check the parameters */ - assert_param(IS_I2C_TRANSFER_OPTIONS_REQUEST(XferOptions)); - - if (hi2c->State == HAL_I2C_STATE_READY) - { - /* Process Locked */ - __HAL_LOCK(hi2c); - - hi2c->State = HAL_I2C_STATE_BUSY_RX; - hi2c->Mode = HAL_I2C_MODE_MASTER; - hi2c->ErrorCode = HAL_I2C_ERROR_NONE; - - /* Prepare transfer parameters */ - hi2c->pBuffPtr = pData; - hi2c->XferCount = Size; - hi2c->XferOptions = XferOptions; - hi2c->XferISR = I2C_Master_ISR_IT; - - /* If hi2c->XferCount > MAX_NBYTE_SIZE, use reload mode */ - if (hi2c->XferCount > MAX_NBYTE_SIZE) - { - hi2c->XferSize = MAX_NBYTE_SIZE; - xfermode = I2C_RELOAD_MODE; - } - else - { - hi2c->XferSize = hi2c->XferCount; - xfermode = hi2c->XferOptions; - } - - /* If transfer direction not change and there is no request to start another frame, do not generate Restart Condition */ - /* Mean Previous state is same as current state */ - if ((hi2c->PreviousState == I2C_STATE_MASTER_BUSY_RX) && (IS_I2C_TRANSFER_OTHER_OPTIONS_REQUEST(XferOptions) == 0)) - { - xferrequest = I2C_NO_STARTSTOP; - } - else - { - /* Convert OTHER_xxx XferOptions if any */ - I2C_ConvertOtherXferOptions(hi2c); - - /* Update xfermode accordingly if no reload is necessary */ - if (hi2c->XferCount < MAX_NBYTE_SIZE) - { - xfermode = hi2c->XferOptions; - } - } - - /* Send Slave Address and set NBYTES to read */ - I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, xfermode, xferrequest); - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - /* Note : The I2C interrupts must be enabled after unlocking current process - to avoid the risk of I2C interrupt handle execution before current - process unlock */ - I2C_Enable_IRQ(hi2c, I2C_XFER_RX_IT); - - return HAL_OK; - } - else - { - return HAL_BUSY; - } -} - -/** - * @brief Sequential receive in master I2C mode an amount of data in non-blocking mode with DMA - * @note This interface allow to manage repeated start condition when a direction change during transfer - * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains - * the configuration information for the specified I2C. - * @param DevAddress Target device address: The device 7 bits address value - * in datasheet must be shifted to the left before calling the interface - * @param pData Pointer to data buffer - * @param Size Amount of data to be sent - * @param XferOptions Options of Transfer, value of @ref I2C_XFEROPTIONS - * @retval HAL status - */ -HAL_StatusTypeDef HAL_I2C_Master_Seq_Receive_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t XferOptions) -{ - uint32_t xfermode; - uint32_t xferrequest = I2C_GENERATE_START_READ; - HAL_StatusTypeDef dmaxferstatus; - - /* Check the parameters */ - assert_param(IS_I2C_TRANSFER_OPTIONS_REQUEST(XferOptions)); - - if (hi2c->State == HAL_I2C_STATE_READY) - { - /* Process Locked */ - __HAL_LOCK(hi2c); - - hi2c->State = HAL_I2C_STATE_BUSY_RX; - hi2c->Mode = HAL_I2C_MODE_MASTER; - hi2c->ErrorCode = HAL_I2C_ERROR_NONE; - - /* Prepare transfer parameters */ - hi2c->pBuffPtr = pData; - hi2c->XferCount = Size; - hi2c->XferOptions = XferOptions; - hi2c->XferISR = I2C_Master_ISR_DMA; - - /* If hi2c->XferCount > MAX_NBYTE_SIZE, use reload mode */ - if (hi2c->XferCount > MAX_NBYTE_SIZE) - { - hi2c->XferSize = MAX_NBYTE_SIZE; - xfermode = I2C_RELOAD_MODE; - } - else - { - hi2c->XferSize = hi2c->XferCount; - xfermode = hi2c->XferOptions; - } - - /* If transfer direction not change and there is no request to start another frame, do not generate Restart Condition */ - /* Mean Previous state is same as current state */ - if ((hi2c->PreviousState == I2C_STATE_MASTER_BUSY_RX) && (IS_I2C_TRANSFER_OTHER_OPTIONS_REQUEST(XferOptions) == 0)) - { - xferrequest = I2C_NO_STARTSTOP; - } - else - { - /* Convert OTHER_xxx XferOptions if any */ - I2C_ConvertOtherXferOptions(hi2c); - - /* Update xfermode accordingly if no reload is necessary */ - if (hi2c->XferCount < MAX_NBYTE_SIZE) - { - xfermode = hi2c->XferOptions; - } - } - - if (hi2c->XferSize > 0U) - { - if (hi2c->hdmarx != NULL) - { - /* Set the I2C DMA transfer complete callback */ - hi2c->hdmarx->XferCpltCallback = I2C_DMAMasterReceiveCplt; - - /* Set the DMA error callback */ - hi2c->hdmarx->XferErrorCallback = I2C_DMAError; - - /* Set the unused DMA callbacks to NULL */ - hi2c->hdmarx->XferHalfCpltCallback = NULL; - hi2c->hdmarx->XferAbortCallback = NULL; - - /* Enable the DMA channel */ - dmaxferstatus = HAL_DMA_Start_IT(hi2c->hdmarx, (uint32_t)&hi2c->Instance->RXDR, (uint32_t)pData, hi2c->XferSize); - } - else - { - /* Update I2C state */ - hi2c->State = HAL_I2C_STATE_READY; - hi2c->Mode = HAL_I2C_MODE_NONE; - - /* Update I2C error code */ - hi2c->ErrorCode |= HAL_I2C_ERROR_DMA_PARAM; - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - return HAL_ERROR; - } - - if (dmaxferstatus == HAL_OK) - { - /* Send Slave Address and set NBYTES to read */ - I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, xfermode, xferrequest); - - /* Update XferCount value */ - hi2c->XferCount -= hi2c->XferSize; - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - /* Note : The I2C interrupts must be enabled after unlocking current process - to avoid the risk of I2C interrupt handle execution before current - process unlock */ - /* Enable ERR and NACK interrupts */ - I2C_Enable_IRQ(hi2c, I2C_XFER_ERROR_IT); - - /* Enable DMA Request */ - hi2c->Instance->CR1 |= I2C_CR1_RXDMAEN; - } - else - { - /* Update I2C state */ - hi2c->State = HAL_I2C_STATE_READY; - hi2c->Mode = HAL_I2C_MODE_NONE; - - /* Update I2C error code */ - hi2c->ErrorCode |= HAL_I2C_ERROR_DMA; - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - return HAL_ERROR; - } - } - else - { - /* Update Transfer ISR function pointer */ - hi2c->XferISR = I2C_Master_ISR_IT; - - /* Send Slave Address */ - /* Set NBYTES to read and generate START condition */ - I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_AUTOEND_MODE, I2C_GENERATE_START_READ); - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - /* Note : The I2C interrupts must be enabled after unlocking current process - to avoid the risk of I2C interrupt handle execution before current - process unlock */ - /* Enable ERR, TC, STOP, NACK, TXI interrupt */ - /* possible to enable all of these */ - /* I2C_IT_ERRI | I2C_IT_TCI| I2C_IT_STOPI| I2C_IT_NACKI | I2C_IT_ADDRI | I2C_IT_RXI | I2C_IT_TXI */ - I2C_Enable_IRQ(hi2c, I2C_XFER_TX_IT); - } - - return HAL_OK; - } - else - { - return HAL_BUSY; - } -} - -/** - * @brief Sequential transmit in slave/device I2C mode an amount of data in non-blocking mode with Interrupt - * @note This interface allow to manage repeated start condition when a direction change during transfer - * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains - * the configuration information for the specified I2C. - * @param pData Pointer to data buffer - * @param Size Amount of data to be sent - * @param XferOptions Options of Transfer, value of @ref I2C_XFEROPTIONS - * @retval HAL status - */ -HAL_StatusTypeDef HAL_I2C_Slave_Seq_Transmit_IT(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, uint32_t XferOptions) -{ - /* Check the parameters */ - assert_param(IS_I2C_TRANSFER_OPTIONS_REQUEST(XferOptions)); - - if (((uint32_t)hi2c->State & (uint32_t)HAL_I2C_STATE_LISTEN) == (uint32_t)HAL_I2C_STATE_LISTEN) - { - if ((pData == NULL) || (Size == 0U)) - { - hi2c->ErrorCode = HAL_I2C_ERROR_INVALID_PARAM; - return HAL_ERROR; - } - - /* Disable Interrupts, to prevent preemption during treatment in case of multicall */ - I2C_Disable_IRQ(hi2c, I2C_XFER_LISTEN_IT | I2C_XFER_TX_IT); - - /* Process Locked */ - __HAL_LOCK(hi2c); - - /* I2C cannot manage full duplex exchange so disable previous IT enabled if any */ - /* and then toggle the HAL slave RX state to TX state */ - if (hi2c->State == HAL_I2C_STATE_BUSY_RX_LISTEN) - { - /* Disable associated Interrupts */ - I2C_Disable_IRQ(hi2c, I2C_XFER_RX_IT); - - /* Abort DMA Xfer if any */ - if ((hi2c->Instance->CR1 & I2C_CR1_RXDMAEN) == I2C_CR1_RXDMAEN) - { - hi2c->Instance->CR1 &= ~I2C_CR1_RXDMAEN; - - if (hi2c->hdmarx != NULL) - { - /* Set the I2C DMA Abort callback : - will lead to call HAL_I2C_ErrorCallback() at end of DMA abort procedure */ - hi2c->hdmarx->XferAbortCallback = I2C_DMAAbort; - - /* Abort DMA RX */ - if (HAL_DMA_Abort_IT(hi2c->hdmarx) != HAL_OK) - { - /* Call Directly XferAbortCallback function in case of error */ - hi2c->hdmarx->XferAbortCallback(hi2c->hdmarx); - } - } - } - } - - hi2c->State = HAL_I2C_STATE_BUSY_TX_LISTEN; - hi2c->Mode = HAL_I2C_MODE_SLAVE; - hi2c->ErrorCode = HAL_I2C_ERROR_NONE; - - /* Enable Address Acknowledge */ - hi2c->Instance->CR2 &= ~I2C_CR2_NACK; - - /* Prepare transfer parameters */ - hi2c->pBuffPtr = pData; - hi2c->XferCount = Size; - hi2c->XferSize = hi2c->XferCount; - hi2c->XferOptions = XferOptions; - hi2c->XferISR = I2C_Slave_ISR_IT; - - if (I2C_GET_DIR(hi2c) == I2C_DIRECTION_RECEIVE) - { - /* Clear ADDR flag after prepare the transfer parameters */ - /* This action will generate an acknowledge to the Master */ - __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_ADDR); - } - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - /* Note : The I2C interrupts must be enabled after unlocking current process - to avoid the risk of I2C interrupt handle execution before current - process unlock */ - /* REnable ADDR interrupt */ - I2C_Enable_IRQ(hi2c, I2C_XFER_TX_IT | I2C_XFER_LISTEN_IT); - - return HAL_OK; - } - else - { - return HAL_ERROR; - } -} - -/** - * @brief Sequential transmit in slave/device I2C mode an amount of data in non-blocking mode with DMA - * @note This interface allow to manage repeated start condition when a direction change during transfer - * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains - * the configuration information for the specified I2C. - * @param pData Pointer to data buffer - * @param Size Amount of data to be sent - * @param XferOptions Options of Transfer, value of @ref I2C_XFEROPTIONS - * @retval HAL status - */ -HAL_StatusTypeDef HAL_I2C_Slave_Seq_Transmit_DMA(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, uint32_t XferOptions) -{ - HAL_StatusTypeDef dmaxferstatus; - - /* Check the parameters */ - assert_param(IS_I2C_TRANSFER_OPTIONS_REQUEST(XferOptions)); - - if (((uint32_t)hi2c->State & (uint32_t)HAL_I2C_STATE_LISTEN) == (uint32_t)HAL_I2C_STATE_LISTEN) - { - if ((pData == NULL) || (Size == 0U)) - { - hi2c->ErrorCode = HAL_I2C_ERROR_INVALID_PARAM; - return HAL_ERROR; - } - - /* Process Locked */ - __HAL_LOCK(hi2c); - - /* Disable Interrupts, to prevent preemption during treatment in case of multicall */ - I2C_Disable_IRQ(hi2c, I2C_XFER_LISTEN_IT | I2C_XFER_TX_IT); - - /* I2C cannot manage full duplex exchange so disable previous IT enabled if any */ - /* and then toggle the HAL slave RX state to TX state */ - if (hi2c->State == HAL_I2C_STATE_BUSY_RX_LISTEN) - { - /* Disable associated Interrupts */ - I2C_Disable_IRQ(hi2c, I2C_XFER_RX_IT); - - if ((hi2c->Instance->CR1 & I2C_CR1_RXDMAEN) == I2C_CR1_RXDMAEN) - { - /* Abort DMA Xfer if any */ - if (hi2c->hdmarx != NULL) - { - hi2c->Instance->CR1 &= ~I2C_CR1_RXDMAEN; - - /* Set the I2C DMA Abort callback : - will lead to call HAL_I2C_ErrorCallback() at end of DMA abort procedure */ - hi2c->hdmarx->XferAbortCallback = I2C_DMAAbort; - - /* Abort DMA RX */ - if (HAL_DMA_Abort_IT(hi2c->hdmarx) != HAL_OK) - { - /* Call Directly XferAbortCallback function in case of error */ - hi2c->hdmarx->XferAbortCallback(hi2c->hdmarx); - } - } - } - } - else if (hi2c->State == HAL_I2C_STATE_BUSY_TX_LISTEN) - { - if ((hi2c->Instance->CR1 & I2C_CR1_TXDMAEN) == I2C_CR1_TXDMAEN) - { - hi2c->Instance->CR1 &= ~I2C_CR1_TXDMAEN; - - /* Abort DMA Xfer if any */ - if (hi2c->hdmatx != NULL) - { - /* Set the I2C DMA Abort callback : - will lead to call HAL_I2C_ErrorCallback() at end of DMA abort procedure */ - hi2c->hdmatx->XferAbortCallback = I2C_DMAAbort; - - /* Abort DMA TX */ - if (HAL_DMA_Abort_IT(hi2c->hdmatx) != HAL_OK) - { - /* Call Directly XferAbortCallback function in case of error */ - hi2c->hdmatx->XferAbortCallback(hi2c->hdmatx); - } - } - } - } - else - { - /* Nothing to do */ - } - - hi2c->State = HAL_I2C_STATE_BUSY_TX_LISTEN; - hi2c->Mode = HAL_I2C_MODE_SLAVE; - hi2c->ErrorCode = HAL_I2C_ERROR_NONE; - - /* Enable Address Acknowledge */ - hi2c->Instance->CR2 &= ~I2C_CR2_NACK; - - /* Prepare transfer parameters */ - hi2c->pBuffPtr = pData; - hi2c->XferCount = Size; - hi2c->XferSize = hi2c->XferCount; - hi2c->XferOptions = XferOptions; - hi2c->XferISR = I2C_Slave_ISR_DMA; - - if (hi2c->hdmatx != NULL) - { - /* Set the I2C DMA transfer complete callback */ - hi2c->hdmatx->XferCpltCallback = I2C_DMASlaveTransmitCplt; - - /* Set the DMA error callback */ - hi2c->hdmatx->XferErrorCallback = I2C_DMAError; - - /* Set the unused DMA callbacks to NULL */ - hi2c->hdmatx->XferHalfCpltCallback = NULL; - hi2c->hdmatx->XferAbortCallback = NULL; - - /* Enable the DMA channel */ - dmaxferstatus = HAL_DMA_Start_IT(hi2c->hdmatx, (uint32_t)pData, (uint32_t)&hi2c->Instance->TXDR, hi2c->XferSize); - } - else - { - /* Update I2C state */ - hi2c->State = HAL_I2C_STATE_LISTEN; - hi2c->Mode = HAL_I2C_MODE_NONE; - - /* Update I2C error code */ - hi2c->ErrorCode |= HAL_I2C_ERROR_DMA_PARAM; - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - return HAL_ERROR; - } - - if (dmaxferstatus == HAL_OK) - { - /* Update XferCount value */ - hi2c->XferCount -= hi2c->XferSize; - - /* Reset XferSize */ - hi2c->XferSize = 0; - } - else - { - /* Update I2C state */ - hi2c->State = HAL_I2C_STATE_LISTEN; - hi2c->Mode = HAL_I2C_MODE_NONE; - - /* Update I2C error code */ - hi2c->ErrorCode |= HAL_I2C_ERROR_DMA; - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - return HAL_ERROR; - } - - if (I2C_GET_DIR(hi2c) == I2C_DIRECTION_RECEIVE) - { - /* Clear ADDR flag after prepare the transfer parameters */ - /* This action will generate an acknowledge to the Master */ - __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_ADDR); - } - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - /* Note : The I2C interrupts must be enabled after unlocking current process - to avoid the risk of I2C interrupt handle execution before current - process unlock */ - /* Enable ERR, STOP, NACK, ADDR interrupts */ - I2C_Enable_IRQ(hi2c, I2C_XFER_LISTEN_IT); - - /* Enable DMA Request */ - hi2c->Instance->CR1 |= I2C_CR1_TXDMAEN; - - return HAL_OK; - } - else - { - return HAL_ERROR; - } -} - -/** - * @brief Sequential receive in slave/device I2C mode an amount of data in non-blocking mode with Interrupt - * @note This interface allow to manage repeated start condition when a direction change during transfer - * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains - * the configuration information for the specified I2C. - * @param pData Pointer to data buffer - * @param Size Amount of data to be sent - * @param XferOptions Options of Transfer, value of @ref I2C_XFEROPTIONS - * @retval HAL status - */ -HAL_StatusTypeDef HAL_I2C_Slave_Seq_Receive_IT(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, uint32_t XferOptions) -{ - /* Check the parameters */ - assert_param(IS_I2C_TRANSFER_OPTIONS_REQUEST(XferOptions)); - - if (((uint32_t)hi2c->State & (uint32_t)HAL_I2C_STATE_LISTEN) == (uint32_t)HAL_I2C_STATE_LISTEN) - { - if ((pData == NULL) || (Size == 0U)) - { - hi2c->ErrorCode = HAL_I2C_ERROR_INVALID_PARAM; - return HAL_ERROR; - } - - /* Disable Interrupts, to prevent preemption during treatment in case of multicall */ - I2C_Disable_IRQ(hi2c, I2C_XFER_LISTEN_IT | I2C_XFER_RX_IT); - - /* Process Locked */ - __HAL_LOCK(hi2c); - - /* I2C cannot manage full duplex exchange so disable previous IT enabled if any */ - /* and then toggle the HAL slave TX state to RX state */ - if (hi2c->State == HAL_I2C_STATE_BUSY_TX_LISTEN) - { - /* Disable associated Interrupts */ - I2C_Disable_IRQ(hi2c, I2C_XFER_TX_IT); - - if ((hi2c->Instance->CR1 & I2C_CR1_TXDMAEN) == I2C_CR1_TXDMAEN) - { - hi2c->Instance->CR1 &= ~I2C_CR1_TXDMAEN; - - /* Abort DMA Xfer if any */ - if (hi2c->hdmatx != NULL) - { - /* Set the I2C DMA Abort callback : - will lead to call HAL_I2C_ErrorCallback() at end of DMA abort procedure */ - hi2c->hdmatx->XferAbortCallback = I2C_DMAAbort; - - /* Abort DMA TX */ - if (HAL_DMA_Abort_IT(hi2c->hdmatx) != HAL_OK) - { - /* Call Directly XferAbortCallback function in case of error */ - hi2c->hdmatx->XferAbortCallback(hi2c->hdmatx); - } - } - } - } - - hi2c->State = HAL_I2C_STATE_BUSY_RX_LISTEN; - hi2c->Mode = HAL_I2C_MODE_SLAVE; - hi2c->ErrorCode = HAL_I2C_ERROR_NONE; - - /* Enable Address Acknowledge */ - hi2c->Instance->CR2 &= ~I2C_CR2_NACK; - - /* Prepare transfer parameters */ - hi2c->pBuffPtr = pData; - hi2c->XferCount = Size; - hi2c->XferSize = hi2c->XferCount; - hi2c->XferOptions = XferOptions; - hi2c->XferISR = I2C_Slave_ISR_IT; - - if (I2C_GET_DIR(hi2c) == I2C_DIRECTION_TRANSMIT) - { - /* Clear ADDR flag after prepare the transfer parameters */ - /* This action will generate an acknowledge to the Master */ - __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_ADDR); - } - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - /* Note : The I2C interrupts must be enabled after unlocking current process - to avoid the risk of I2C interrupt handle execution before current - process unlock */ - /* REnable ADDR interrupt */ - I2C_Enable_IRQ(hi2c, I2C_XFER_RX_IT | I2C_XFER_LISTEN_IT); - - return HAL_OK; - } - else - { - return HAL_ERROR; - } -} - -/** - * @brief Sequential receive in slave/device I2C mode an amount of data in non-blocking mode with DMA - * @note This interface allow to manage repeated start condition when a direction change during transfer - * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains - * the configuration information for the specified I2C. - * @param pData Pointer to data buffer - * @param Size Amount of data to be sent - * @param XferOptions Options of Transfer, value of @ref I2C_XFEROPTIONS - * @retval HAL status - */ -HAL_StatusTypeDef HAL_I2C_Slave_Seq_Receive_DMA(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, uint32_t XferOptions) -{ - HAL_StatusTypeDef dmaxferstatus; - - /* Check the parameters */ - assert_param(IS_I2C_TRANSFER_OPTIONS_REQUEST(XferOptions)); - - if (((uint32_t)hi2c->State & (uint32_t)HAL_I2C_STATE_LISTEN) == (uint32_t)HAL_I2C_STATE_LISTEN) - { - if ((pData == NULL) || (Size == 0U)) - { - hi2c->ErrorCode = HAL_I2C_ERROR_INVALID_PARAM; - return HAL_ERROR; - } - - /* Disable Interrupts, to prevent preemption during treatment in case of multicall */ - I2C_Disable_IRQ(hi2c, I2C_XFER_LISTEN_IT | I2C_XFER_RX_IT); - - /* Process Locked */ - __HAL_LOCK(hi2c); - - /* I2C cannot manage full duplex exchange so disable previous IT enabled if any */ - /* and then toggle the HAL slave TX state to RX state */ - if (hi2c->State == HAL_I2C_STATE_BUSY_TX_LISTEN) - { - /* Disable associated Interrupts */ - I2C_Disable_IRQ(hi2c, I2C_XFER_TX_IT); - - if ((hi2c->Instance->CR1 & I2C_CR1_TXDMAEN) == I2C_CR1_TXDMAEN) - { - /* Abort DMA Xfer if any */ - if (hi2c->hdmatx != NULL) - { - hi2c->Instance->CR1 &= ~I2C_CR1_TXDMAEN; - - /* Set the I2C DMA Abort callback : - will lead to call HAL_I2C_ErrorCallback() at end of DMA abort procedure */ - hi2c->hdmatx->XferAbortCallback = I2C_DMAAbort; - - /* Abort DMA TX */ - if (HAL_DMA_Abort_IT(hi2c->hdmatx) != HAL_OK) - { - /* Call Directly XferAbortCallback function in case of error */ - hi2c->hdmatx->XferAbortCallback(hi2c->hdmatx); - } - } - } - } - else if (hi2c->State == HAL_I2C_STATE_BUSY_RX_LISTEN) - { - if ((hi2c->Instance->CR1 & I2C_CR1_RXDMAEN) == I2C_CR1_RXDMAEN) - { - hi2c->Instance->CR1 &= ~I2C_CR1_RXDMAEN; - - /* Abort DMA Xfer if any */ - if (hi2c->hdmarx != NULL) - { - /* Set the I2C DMA Abort callback : - will lead to call HAL_I2C_ErrorCallback() at end of DMA abort procedure */ - hi2c->hdmarx->XferAbortCallback = I2C_DMAAbort; - - /* Abort DMA RX */ - if (HAL_DMA_Abort_IT(hi2c->hdmarx) != HAL_OK) - { - /* Call Directly XferAbortCallback function in case of error */ - hi2c->hdmarx->XferAbortCallback(hi2c->hdmarx); - } - } - } - } - else - { - /* Nothing to do */ - } - - hi2c->State = HAL_I2C_STATE_BUSY_RX_LISTEN; - hi2c->Mode = HAL_I2C_MODE_SLAVE; - hi2c->ErrorCode = HAL_I2C_ERROR_NONE; - - /* Enable Address Acknowledge */ - hi2c->Instance->CR2 &= ~I2C_CR2_NACK; - - /* Prepare transfer parameters */ - hi2c->pBuffPtr = pData; - hi2c->XferCount = Size; - hi2c->XferSize = hi2c->XferCount; - hi2c->XferOptions = XferOptions; - hi2c->XferISR = I2C_Slave_ISR_DMA; - - if (hi2c->hdmarx != NULL) - { - /* Set the I2C DMA transfer complete callback */ - hi2c->hdmarx->XferCpltCallback = I2C_DMASlaveReceiveCplt; - - /* Set the DMA error callback */ - hi2c->hdmarx->XferErrorCallback = I2C_DMAError; - - /* Set the unused DMA callbacks to NULL */ - hi2c->hdmarx->XferHalfCpltCallback = NULL; - hi2c->hdmarx->XferAbortCallback = NULL; - - /* Enable the DMA channel */ - dmaxferstatus = HAL_DMA_Start_IT(hi2c->hdmarx, (uint32_t)&hi2c->Instance->RXDR, (uint32_t)pData, hi2c->XferSize); - } - else - { - /* Update I2C state */ - hi2c->State = HAL_I2C_STATE_LISTEN; - hi2c->Mode = HAL_I2C_MODE_NONE; - - /* Update I2C error code */ - hi2c->ErrorCode |= HAL_I2C_ERROR_DMA_PARAM; - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - return HAL_ERROR; - } - - if (dmaxferstatus == HAL_OK) - { - /* Update XferCount value */ - hi2c->XferCount -= hi2c->XferSize; - - /* Reset XferSize */ - hi2c->XferSize = 0; - } - else - { - /* Update I2C state */ - hi2c->State = HAL_I2C_STATE_LISTEN; - hi2c->Mode = HAL_I2C_MODE_NONE; - - /* Update I2C error code */ - hi2c->ErrorCode |= HAL_I2C_ERROR_DMA; - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - return HAL_ERROR; - } - - if (I2C_GET_DIR(hi2c) == I2C_DIRECTION_TRANSMIT) - { - /* Clear ADDR flag after prepare the transfer parameters */ - /* This action will generate an acknowledge to the Master */ - __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_ADDR); - } - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - /* Note : The I2C interrupts must be enabled after unlocking current process - to avoid the risk of I2C interrupt handle execution before current - process unlock */ - /* REnable ADDR interrupt */ - I2C_Enable_IRQ(hi2c, I2C_XFER_RX_IT | I2C_XFER_LISTEN_IT); - - /* Enable DMA Request */ - hi2c->Instance->CR1 |= I2C_CR1_RXDMAEN; - - return HAL_OK; - } - else - { - return HAL_ERROR; - } -} - -/** - * @brief Enable the Address listen mode with Interrupt. - * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains - * the configuration information for the specified I2C. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_I2C_EnableListen_IT(I2C_HandleTypeDef *hi2c) -{ - if (hi2c->State == HAL_I2C_STATE_READY) - { - hi2c->State = HAL_I2C_STATE_LISTEN; - hi2c->XferISR = I2C_Slave_ISR_IT; - - /* Enable the Address Match interrupt */ - I2C_Enable_IRQ(hi2c, I2C_XFER_LISTEN_IT); - - return HAL_OK; - } - else - { - return HAL_BUSY; - } -} - -/** - * @brief Disable the Address listen mode with Interrupt. - * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains - * the configuration information for the specified I2C - * @retval HAL status - */ -HAL_StatusTypeDef HAL_I2C_DisableListen_IT(I2C_HandleTypeDef *hi2c) -{ - /* Declaration of tmp to prevent undefined behavior of volatile usage */ - uint32_t tmp; - - /* Disable Address listen mode only if a transfer is not ongoing */ - if (hi2c->State == HAL_I2C_STATE_LISTEN) - { - tmp = (uint32_t)(hi2c->State) & I2C_STATE_MSK; - hi2c->PreviousState = tmp | (uint32_t)(hi2c->Mode); - hi2c->State = HAL_I2C_STATE_READY; - hi2c->Mode = HAL_I2C_MODE_NONE; - hi2c->XferISR = NULL; - - /* Disable the Address Match interrupt */ - I2C_Disable_IRQ(hi2c, I2C_XFER_LISTEN_IT); - - return HAL_OK; - } - else - { - return HAL_BUSY; - } -} - -/** - * @brief Abort a master I2C IT or DMA process communication with Interrupt. - * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains - * the configuration information for the specified I2C. - * @param DevAddress Target device address: The device 7 bits address value - * in datasheet must be shifted to the left before calling the interface - * @retval HAL status - */ -HAL_StatusTypeDef HAL_I2C_Master_Abort_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress) -{ - if (hi2c->Mode == HAL_I2C_MODE_MASTER) - { - /* Process Locked */ - __HAL_LOCK(hi2c); - - /* Disable Interrupts */ - I2C_Disable_IRQ(hi2c, I2C_XFER_RX_IT); - I2C_Disable_IRQ(hi2c, I2C_XFER_TX_IT); - - /* Set State at HAL_I2C_STATE_ABORT */ - hi2c->State = HAL_I2C_STATE_ABORT; - - /* Set NBYTES to 1 to generate a dummy read on I2C peripheral */ - /* Set AUTOEND mode, this will generate a NACK then STOP condition to abort the current transfer */ - I2C_TransferConfig(hi2c, DevAddress, 1, I2C_AUTOEND_MODE, I2C_GENERATE_STOP); - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - /* Note : The I2C interrupts must be enabled after unlocking current process - to avoid the risk of I2C interrupt handle execution before current - process unlock */ - I2C_Enable_IRQ(hi2c, I2C_XFER_CPLT_IT); - - return HAL_OK; - } - else - { - /* Wrong usage of abort function */ - /* This function should be used only in case of abort monitored by master device */ - return HAL_ERROR; - } -} - -/** - * @} - */ - -/** @defgroup I2C_IRQ_Handler_and_Callbacks IRQ Handler and Callbacks - * @{ - */ - -/** - * @brief This function handles I2C event interrupt request. - * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains - * the configuration information for the specified I2C. - * @retval None - */ -void HAL_I2C_EV_IRQHandler(I2C_HandleTypeDef *hi2c) -{ - /* Get current IT Flags and IT sources value */ - uint32_t itflags = READ_REG(hi2c->Instance->ISR); - uint32_t itsources = READ_REG(hi2c->Instance->CR1); - - /* I2C events treatment -------------------------------------*/ - if (hi2c->XferISR != NULL) - { - hi2c->XferISR(hi2c, itflags, itsources); - } -} - -/** - * @brief This function handles I2C error interrupt request. - * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains - * the configuration information for the specified I2C. - * @retval None - */ -void HAL_I2C_ER_IRQHandler(I2C_HandleTypeDef *hi2c) -{ - uint32_t itflags = READ_REG(hi2c->Instance->ISR); - uint32_t itsources = READ_REG(hi2c->Instance->CR1); - uint32_t tmperror; - - /* I2C Bus error interrupt occurred ------------------------------------*/ - if ((I2C_CHECK_FLAG(itflags, I2C_FLAG_BERR) != RESET) && (I2C_CHECK_IT_SOURCE(itsources, I2C_IT_ERRI) != RESET)) - { - hi2c->ErrorCode |= HAL_I2C_ERROR_BERR; - - /* Clear BERR flag */ - __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_BERR); - } - - /* I2C Over-Run/Under-Run interrupt occurred ----------------------------------------*/ - if ((I2C_CHECK_FLAG(itflags, I2C_FLAG_OVR) != RESET) && (I2C_CHECK_IT_SOURCE(itsources, I2C_IT_ERRI) != RESET)) - { - hi2c->ErrorCode |= HAL_I2C_ERROR_OVR; - - /* Clear OVR flag */ - __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_OVR); - } - - /* I2C Arbitration Loss error interrupt occurred -------------------------------------*/ - if ((I2C_CHECK_FLAG(itflags, I2C_FLAG_ARLO) != RESET) && (I2C_CHECK_IT_SOURCE(itsources, I2C_IT_ERRI) != RESET)) - { - hi2c->ErrorCode |= HAL_I2C_ERROR_ARLO; - - /* Clear ARLO flag */ - __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_ARLO); - } - - /* Store current volatile hi2c->ErrorCode, misra rule */ - tmperror = hi2c->ErrorCode; - - /* Call the Error Callback in case of Error detected */ - if ((tmperror & (HAL_I2C_ERROR_BERR | HAL_I2C_ERROR_OVR | HAL_I2C_ERROR_ARLO)) != HAL_I2C_ERROR_NONE) - { - I2C_ITError(hi2c, tmperror); - } -} - -/** - * @brief Master Tx Transfer completed callback. - * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains - * the configuration information for the specified I2C. - * @retval None - */ -__weak void HAL_I2C_MasterTxCpltCallback(I2C_HandleTypeDef *hi2c) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hi2c); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_I2C_MasterTxCpltCallback could be implemented in the user file - */ -} - -/** - * @brief Master Rx Transfer completed callback. - * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains - * the configuration information for the specified I2C. - * @retval None - */ -__weak void HAL_I2C_MasterRxCpltCallback(I2C_HandleTypeDef *hi2c) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hi2c); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_I2C_MasterRxCpltCallback could be implemented in the user file - */ -} - -/** @brief Slave Tx Transfer completed callback. - * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains - * the configuration information for the specified I2C. - * @retval None - */ -__weak void HAL_I2C_SlaveTxCpltCallback(I2C_HandleTypeDef *hi2c) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hi2c); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_I2C_SlaveTxCpltCallback could be implemented in the user file - */ -} - -/** - * @brief Slave Rx Transfer completed callback. - * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains - * the configuration information for the specified I2C. - * @retval None - */ -__weak void HAL_I2C_SlaveRxCpltCallback(I2C_HandleTypeDef *hi2c) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hi2c); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_I2C_SlaveRxCpltCallback could be implemented in the user file - */ -} - -/** - * @brief Slave Address Match callback. - * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains - * the configuration information for the specified I2C. - * @param TransferDirection Master request Transfer Direction (Write/Read), value of @ref I2C_XFERDIRECTION - * @param AddrMatchCode Address Match Code - * @retval None - */ -__weak void HAL_I2C_AddrCallback(I2C_HandleTypeDef *hi2c, uint8_t TransferDirection, uint16_t AddrMatchCode) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hi2c); - UNUSED(TransferDirection); - UNUSED(AddrMatchCode); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_I2C_AddrCallback() could be implemented in the user file - */ -} - -/** - * @brief Listen Complete callback. - * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains - * the configuration information for the specified I2C. - * @retval None - */ -__weak void HAL_I2C_ListenCpltCallback(I2C_HandleTypeDef *hi2c) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hi2c); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_I2C_ListenCpltCallback() could be implemented in the user file - */ -} - -/** - * @brief Memory Tx Transfer completed callback. - * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains - * the configuration information for the specified I2C. - * @retval None - */ -__weak void HAL_I2C_MemTxCpltCallback(I2C_HandleTypeDef *hi2c) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hi2c); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_I2C_MemTxCpltCallback could be implemented in the user file - */ -} - -/** - * @brief Memory Rx Transfer completed callback. - * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains - * the configuration information for the specified I2C. - * @retval None - */ -__weak void HAL_I2C_MemRxCpltCallback(I2C_HandleTypeDef *hi2c) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hi2c); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_I2C_MemRxCpltCallback could be implemented in the user file - */ -} - -/** - * @brief I2C error callback. - * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains - * the configuration information for the specified I2C. - * @retval None - */ -__weak void HAL_I2C_ErrorCallback(I2C_HandleTypeDef *hi2c) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hi2c); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_I2C_ErrorCallback could be implemented in the user file - */ -} - -/** - * @brief I2C abort callback. - * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains - * the configuration information for the specified I2C. - * @retval None - */ -__weak void HAL_I2C_AbortCpltCallback(I2C_HandleTypeDef *hi2c) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hi2c); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_I2C_AbortCpltCallback could be implemented in the user file - */ -} - -/** - * @} - */ - -/** @defgroup I2C_Exported_Functions_Group3 Peripheral State, Mode and Error functions - * @brief Peripheral State, Mode and Error functions - * -@verbatim - =============================================================================== - ##### Peripheral State, Mode and Error functions ##### - =============================================================================== - [..] - This subsection permit to get in run-time the status of the peripheral - and the data flow. - -@endverbatim - * @{ - */ - -/** - * @brief Return the I2C handle state. - * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains - * the configuration information for the specified I2C. - * @retval HAL state - */ -HAL_I2C_StateTypeDef HAL_I2C_GetState(I2C_HandleTypeDef *hi2c) -{ - /* Return I2C handle state */ - return hi2c->State; -} - -/** - * @brief Returns the I2C Master, Slave, Memory or no mode. - * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains - * the configuration information for I2C module - * @retval HAL mode - */ -HAL_I2C_ModeTypeDef HAL_I2C_GetMode(I2C_HandleTypeDef *hi2c) -{ - return hi2c->Mode; -} - -/** -* @brief Return the I2C error code. - * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains - * the configuration information for the specified I2C. -* @retval I2C Error Code -*/ -uint32_t HAL_I2C_GetError(I2C_HandleTypeDef *hi2c) -{ - return hi2c->ErrorCode; -} - -/** - * @} - */ - -/** - * @} - */ - -/** @addtogroup I2C_Private_Functions - * @{ - */ - -/** - * @brief Interrupt Sub-Routine which handle the Interrupt Flags Master Mode with Interrupt. - * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains - * the configuration information for the specified I2C. - * @param ITFlags Interrupt flags to handle. - * @param ITSources Interrupt sources enabled. - * @retval HAL status - */ -static HAL_StatusTypeDef I2C_Master_ISR_IT(struct __I2C_HandleTypeDef *hi2c, uint32_t ITFlags, uint32_t ITSources) -{ - uint16_t devaddress; - uint32_t tmpITFlags = ITFlags; - - /* Process Locked */ - __HAL_LOCK(hi2c); - - if ((I2C_CHECK_FLAG(tmpITFlags, I2C_FLAG_AF) != RESET) && (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_NACKI) != RESET)) - { - /* Clear NACK Flag */ - __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); - - /* Set corresponding Error Code */ - /* No need to generate STOP, it is automatically done */ - /* Error callback will be send during stop flag treatment */ - hi2c->ErrorCode |= HAL_I2C_ERROR_AF; - - /* Flush TX register */ - I2C_Flush_TXDR(hi2c); - } - else if ((I2C_CHECK_FLAG(tmpITFlags, I2C_FLAG_RXNE) != RESET) && (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_RXI) != RESET)) - { - /* Remove RXNE flag on temporary variable as read done */ - tmpITFlags &= ~I2C_FLAG_RXNE; - - /* Read data from RXDR */ - *hi2c->pBuffPtr = (uint8_t)hi2c->Instance->RXDR; - - /* Increment Buffer pointer */ - hi2c->pBuffPtr++; - - hi2c->XferSize--; - hi2c->XferCount--; - } - else if ((I2C_CHECK_FLAG(tmpITFlags, I2C_FLAG_TXIS) != RESET) && (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_TXI) != RESET)) - { - /* Write data to TXDR */ - hi2c->Instance->TXDR = *hi2c->pBuffPtr; - - /* Increment Buffer pointer */ - hi2c->pBuffPtr++; - - hi2c->XferSize--; - hi2c->XferCount--; - } - else if ((I2C_CHECK_FLAG(tmpITFlags, I2C_FLAG_TCR) != RESET) && (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_TCI) != RESET)) - { - if ((hi2c->XferCount != 0U) && (hi2c->XferSize == 0U)) - { - devaddress = (uint16_t)(hi2c->Instance->CR2 & I2C_CR2_SADD); - - if (hi2c->XferCount > MAX_NBYTE_SIZE) - { - hi2c->XferSize = MAX_NBYTE_SIZE; - I2C_TransferConfig(hi2c, devaddress, (uint8_t)hi2c->XferSize, I2C_RELOAD_MODE, I2C_NO_STARTSTOP); - } - else - { - hi2c->XferSize = hi2c->XferCount; - if (hi2c->XferOptions != I2C_NO_OPTION_FRAME) - { - I2C_TransferConfig(hi2c, devaddress, (uint8_t)hi2c->XferSize, hi2c->XferOptions, I2C_NO_STARTSTOP); - } - else - { - I2C_TransferConfig(hi2c, devaddress, (uint8_t)hi2c->XferSize, I2C_AUTOEND_MODE, I2C_NO_STARTSTOP); - } - } - } - else - { - /* Call TxCpltCallback() if no stop mode is set */ - if (I2C_GET_STOP_MODE(hi2c) != I2C_AUTOEND_MODE) - { - /* Call I2C Master Sequential complete process */ - I2C_ITMasterSeqCplt(hi2c); - } - else - { - /* Wrong size Status regarding TCR flag event */ - /* Call the corresponding callback to inform upper layer of End of Transfer */ - I2C_ITError(hi2c, HAL_I2C_ERROR_SIZE); - } - } - } - else if ((I2C_CHECK_FLAG(tmpITFlags, I2C_FLAG_TC) != RESET) && (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_TCI) != RESET)) - { - if (hi2c->XferCount == 0U) - { - if (I2C_GET_STOP_MODE(hi2c) != I2C_AUTOEND_MODE) - { - /* Generate a stop condition in case of no transfer option */ - if (hi2c->XferOptions == I2C_NO_OPTION_FRAME) - { - /* Generate Stop */ - hi2c->Instance->CR2 |= I2C_CR2_STOP; - } - else - { - /* Call I2C Master Sequential complete process */ - I2C_ITMasterSeqCplt(hi2c); - } - } - } - else - { - /* Wrong size Status regarding TC flag event */ - /* Call the corresponding callback to inform upper layer of End of Transfer */ - I2C_ITError(hi2c, HAL_I2C_ERROR_SIZE); - } - } - else - { - /* Nothing to do */ - } - - if ((I2C_CHECK_FLAG(tmpITFlags, I2C_FLAG_STOPF) != RESET) && (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_STOPI) != RESET)) - { - /* Call I2C Master complete process */ - I2C_ITMasterCplt(hi2c, tmpITFlags); - } - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - return HAL_OK; -} - -/** - * @brief Interrupt Sub-Routine which handle the Interrupt Flags Slave Mode with Interrupt. - * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains - * the configuration information for the specified I2C. - * @param ITFlags Interrupt flags to handle. - * @param ITSources Interrupt sources enabled. - * @retval HAL status - */ -static HAL_StatusTypeDef I2C_Slave_ISR_IT(struct __I2C_HandleTypeDef *hi2c, uint32_t ITFlags, uint32_t ITSources) -{ - uint32_t tmpoptions = hi2c->XferOptions; - uint32_t tmpITFlags = ITFlags; - - /* Process locked */ - __HAL_LOCK(hi2c); - - /* Check if STOPF is set */ - if ((I2C_CHECK_FLAG(tmpITFlags, I2C_FLAG_STOPF) != RESET) && (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_STOPI) != RESET)) - { - /* Call I2C Slave complete process */ - I2C_ITSlaveCplt(hi2c, tmpITFlags); - } - - if ((I2C_CHECK_FLAG(tmpITFlags, I2C_FLAG_AF) != RESET) && (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_NACKI) != RESET)) - { - /* Check that I2C transfer finished */ - /* if yes, normal use case, a NACK is sent by the MASTER when Transfer is finished */ - /* Mean XferCount == 0*/ - /* So clear Flag NACKF only */ - if (hi2c->XferCount == 0U) - { - if ((hi2c->State == HAL_I2C_STATE_LISTEN) && (tmpoptions == I2C_FIRST_AND_LAST_FRAME)) /* Same action must be done for (tmpoptions == I2C_LAST_FRAME) which removed for Warning[Pa134]: left and right operands are identical */ - { - /* Call I2C Listen complete process */ - I2C_ITListenCplt(hi2c, tmpITFlags); - } - else if ((hi2c->State == HAL_I2C_STATE_BUSY_TX_LISTEN) && (tmpoptions != I2C_NO_OPTION_FRAME)) - { - /* Clear NACK Flag */ - __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); - - /* Flush TX register */ - I2C_Flush_TXDR(hi2c); - - /* Last Byte is Transmitted */ - /* Call I2C Slave Sequential complete process */ - I2C_ITSlaveSeqCplt(hi2c); - } - else - { - /* Clear NACK Flag */ - __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); - } - } - else - { - /* if no, error use case, a Non-Acknowledge of last Data is generated by the MASTER*/ - /* Clear NACK Flag */ - __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); - - /* Set ErrorCode corresponding to a Non-Acknowledge */ - hi2c->ErrorCode |= HAL_I2C_ERROR_AF; - - if ((tmpoptions == I2C_FIRST_FRAME) || (tmpoptions == I2C_NEXT_FRAME)) - { - /* Call the corresponding callback to inform upper layer of End of Transfer */ - I2C_ITError(hi2c, hi2c->ErrorCode); - } - } - } - else if ((I2C_CHECK_FLAG(tmpITFlags, I2C_FLAG_RXNE) != RESET) && (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_RXI) != RESET)) - { - if (hi2c->XferCount > 0U) - { - /* Read data from RXDR */ - *hi2c->pBuffPtr = (uint8_t)hi2c->Instance->RXDR; - - /* Increment Buffer pointer */ - hi2c->pBuffPtr++; - - hi2c->XferSize--; - hi2c->XferCount--; - } - - if ((hi2c->XferCount == 0U) && \ - (tmpoptions != I2C_NO_OPTION_FRAME)) - { - /* Call I2C Slave Sequential complete process */ - I2C_ITSlaveSeqCplt(hi2c); - } - } - else if ((I2C_CHECK_FLAG(tmpITFlags, I2C_FLAG_ADDR) != RESET) && (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_ADDRI) != RESET)) - { - I2C_ITAddrCplt(hi2c, tmpITFlags); - } - else if ((I2C_CHECK_FLAG(tmpITFlags, I2C_FLAG_TXIS) != RESET) && (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_TXI) != RESET)) - { - /* Write data to TXDR only if XferCount not reach "0" */ - /* A TXIS flag can be set, during STOP treatment */ - /* Check if all Datas have already been sent */ - /* If it is the case, this last write in TXDR is not sent, correspond to a dummy TXIS event */ - if (hi2c->XferCount > 0U) - { - /* Write data to TXDR */ - hi2c->Instance->TXDR = *hi2c->pBuffPtr; - - /* Increment Buffer pointer */ - hi2c->pBuffPtr++; - - hi2c->XferCount--; - hi2c->XferSize--; - } - else - { - if ((tmpoptions == I2C_NEXT_FRAME) || (tmpoptions == I2C_FIRST_FRAME)) - { - /* Last Byte is Transmitted */ - /* Call I2C Slave Sequential complete process */ - I2C_ITSlaveSeqCplt(hi2c); - } - } - } - else - { - /* Nothing to do */ - } - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - return HAL_OK; -} - -/** - * @brief Interrupt Sub-Routine which handle the Interrupt Flags Master Mode with DMA. - * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains - * the configuration information for the specified I2C. - * @param ITFlags Interrupt flags to handle. - * @param ITSources Interrupt sources enabled. - * @retval HAL status - */ -static HAL_StatusTypeDef I2C_Master_ISR_DMA(struct __I2C_HandleTypeDef *hi2c, uint32_t ITFlags, uint32_t ITSources) -{ - uint16_t devaddress; - uint32_t xfermode; - - /* Process Locked */ - __HAL_LOCK(hi2c); - - if ((I2C_CHECK_FLAG(ITFlags, I2C_FLAG_AF) != RESET) && (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_NACKI) != RESET)) - { - /* Clear NACK Flag */ - __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); - - /* Set corresponding Error Code */ - hi2c->ErrorCode |= HAL_I2C_ERROR_AF; - - /* No need to generate STOP, it is automatically done */ - /* But enable STOP interrupt, to treat it */ - /* Error callback will be send during stop flag treatment */ - I2C_Enable_IRQ(hi2c, I2C_XFER_CPLT_IT); - - /* Flush TX register */ - I2C_Flush_TXDR(hi2c); - } - else if ((I2C_CHECK_FLAG(ITFlags, I2C_FLAG_TCR) != RESET) && (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_TCI) != RESET)) - { - /* Disable TC interrupt */ - __HAL_I2C_DISABLE_IT(hi2c, I2C_IT_TCI); - - if (hi2c->XferCount != 0U) - { - /* Recover Slave address */ - devaddress = (uint16_t)(hi2c->Instance->CR2 & I2C_CR2_SADD); - - /* Prepare the new XferSize to transfer */ - if (hi2c->XferCount > MAX_NBYTE_SIZE) - { - hi2c->XferSize = MAX_NBYTE_SIZE; - xfermode = I2C_RELOAD_MODE; - } - else - { - hi2c->XferSize = hi2c->XferCount; - if (hi2c->XferOptions != I2C_NO_OPTION_FRAME) - { - xfermode = hi2c->XferOptions; - } - else - { - xfermode = I2C_AUTOEND_MODE; - } - } - - /* Set the new XferSize in Nbytes register */ - I2C_TransferConfig(hi2c, devaddress, (uint8_t)hi2c->XferSize, xfermode, I2C_NO_STARTSTOP); - - /* Update XferCount value */ - hi2c->XferCount -= hi2c->XferSize; - - /* Enable DMA Request */ - if (hi2c->State == HAL_I2C_STATE_BUSY_RX) - { - hi2c->Instance->CR1 |= I2C_CR1_RXDMAEN; - } - else - { - hi2c->Instance->CR1 |= I2C_CR1_TXDMAEN; - } - } - else - { - /* Call TxCpltCallback() if no stop mode is set */ - if (I2C_GET_STOP_MODE(hi2c) != I2C_AUTOEND_MODE) - { - /* Call I2C Master Sequential complete process */ - I2C_ITMasterSeqCplt(hi2c); - } - else - { - /* Wrong size Status regarding TCR flag event */ - /* Call the corresponding callback to inform upper layer of End of Transfer */ - I2C_ITError(hi2c, HAL_I2C_ERROR_SIZE); - } - } - } - else if ((I2C_CHECK_FLAG(ITFlags, I2C_FLAG_TC) != RESET) && (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_TCI) != RESET)) - { - if (hi2c->XferCount == 0U) - { - if (I2C_GET_STOP_MODE(hi2c) != I2C_AUTOEND_MODE) - { - /* Generate a stop condition in case of no transfer option */ - if (hi2c->XferOptions == I2C_NO_OPTION_FRAME) - { - /* Generate Stop */ - hi2c->Instance->CR2 |= I2C_CR2_STOP; - } - else - { - /* Call I2C Master Sequential complete process */ - I2C_ITMasterSeqCplt(hi2c); - } - } - } - else - { - /* Wrong size Status regarding TC flag event */ - /* Call the corresponding callback to inform upper layer of End of Transfer */ - I2C_ITError(hi2c, HAL_I2C_ERROR_SIZE); - } - } - else if ((I2C_CHECK_FLAG(ITFlags, I2C_FLAG_STOPF) != RESET) && (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_STOPI) != RESET)) - { - /* Call I2C Master complete process */ - I2C_ITMasterCplt(hi2c, ITFlags); - } - else - { - /* Nothing to do */ - } - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - return HAL_OK; -} - -/** - * @brief Interrupt Sub-Routine which handle the Interrupt Flags Slave Mode with DMA. - * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains - * the configuration information for the specified I2C. - * @param ITFlags Interrupt flags to handle. - * @param ITSources Interrupt sources enabled. - * @retval HAL status - */ -static HAL_StatusTypeDef I2C_Slave_ISR_DMA(struct __I2C_HandleTypeDef *hi2c, uint32_t ITFlags, uint32_t ITSources) -{ - uint32_t tmpoptions = hi2c->XferOptions; - uint32_t treatdmanack = 0U; - - /* Process locked */ - __HAL_LOCK(hi2c); - - /* Check if STOPF is set */ - if ((I2C_CHECK_FLAG(ITFlags, I2C_FLAG_STOPF) != RESET) && (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_STOPI) != RESET)) - { - /* Call I2C Slave complete process */ - I2C_ITSlaveCplt(hi2c, ITFlags); - } - - if ((I2C_CHECK_FLAG(ITFlags, I2C_FLAG_AF) != RESET) && (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_NACKI) != RESET)) - { - /* Check that I2C transfer finished */ - /* if yes, normal use case, a NACK is sent by the MASTER when Transfer is finished */ - /* Mean XferCount == 0 */ - /* So clear Flag NACKF only */ - if ((I2C_CHECK_IT_SOURCE(ITSources, I2C_CR1_TXDMAEN) != RESET) || - (I2C_CHECK_IT_SOURCE(ITSources, I2C_CR1_RXDMAEN) != RESET)) - { - /* Split check of hdmarx, for MISRA compliance */ - if (hi2c->hdmarx != NULL) - { - if (I2C_CHECK_IT_SOURCE(ITSources, I2C_CR1_RXDMAEN) != RESET) - { - if (__HAL_DMA_GET_COUNTER(hi2c->hdmarx) == 0U) - { - treatdmanack = 1U; - } - } - } - - /* Split check of hdmatx, for MISRA compliance */ - if (hi2c->hdmatx != NULL) - { - if (I2C_CHECK_IT_SOURCE(ITSources, I2C_CR1_TXDMAEN) != RESET) - { - if (__HAL_DMA_GET_COUNTER(hi2c->hdmatx) == 0U) - { - treatdmanack = 1U; - } - } - } - - if (treatdmanack == 1U) - { - if ((hi2c->State == HAL_I2C_STATE_LISTEN) && (tmpoptions == I2C_FIRST_AND_LAST_FRAME)) /* Same action must be done for (tmpoptions == I2C_LAST_FRAME) which removed for Warning[Pa134]: left and right operands are identical */ - { - /* Call I2C Listen complete process */ - I2C_ITListenCplt(hi2c, ITFlags); - } - else if ((hi2c->State == HAL_I2C_STATE_BUSY_TX_LISTEN) && (tmpoptions != I2C_NO_OPTION_FRAME)) - { - /* Clear NACK Flag */ - __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); - - /* Flush TX register */ - I2C_Flush_TXDR(hi2c); - - /* Last Byte is Transmitted */ - /* Call I2C Slave Sequential complete process */ - I2C_ITSlaveSeqCplt(hi2c); - } - else - { - /* Clear NACK Flag */ - __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); - } - } - else - { - /* if no, error use case, a Non-Acknowledge of last Data is generated by the MASTER*/ - /* Clear NACK Flag */ - __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); - - /* Set ErrorCode corresponding to a Non-Acknowledge */ - hi2c->ErrorCode |= HAL_I2C_ERROR_AF; - - if ((tmpoptions == I2C_FIRST_FRAME) || (tmpoptions == I2C_NEXT_FRAME)) - { - /* Call the corresponding callback to inform upper layer of End of Transfer */ - I2C_ITError(hi2c, hi2c->ErrorCode); - } - } - } - else - { - /* Only Clear NACK Flag, no DMA treatment is pending */ - __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); - } - } - else if ((I2C_CHECK_FLAG(ITFlags, I2C_FLAG_ADDR) != RESET) && (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_ADDRI) != RESET)) - { - I2C_ITAddrCplt(hi2c, ITFlags); - } - else - { - /* Nothing to do */ - } - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - return HAL_OK; -} - -/** - * @brief Master sends target device address followed by internal memory address for write request. - * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains - * the configuration information for the specified I2C. - * @param DevAddress Target device address: The device 7 bits address value - * in datasheet must be shifted to the left before calling the interface - * @param MemAddress Internal memory address - * @param MemAddSize Size of internal memory address - * @param Timeout Timeout duration - * @param Tickstart Tick start value - * @retval HAL status - */ -static HAL_StatusTypeDef I2C_RequestMemoryWrite(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint32_t Timeout, uint32_t Tickstart) -{ - I2C_TransferConfig(hi2c, DevAddress, (uint8_t)MemAddSize, I2C_RELOAD_MODE, I2C_GENERATE_START_WRITE); - - /* Wait until TXIS flag is set */ - if (I2C_WaitOnTXISFlagUntilTimeout(hi2c, Timeout, Tickstart) != HAL_OK) - { - return HAL_ERROR; - } - - /* If Memory address size is 8Bit */ - if (MemAddSize == I2C_MEMADD_SIZE_8BIT) - { - /* Send Memory Address */ - hi2c->Instance->TXDR = I2C_MEM_ADD_LSB(MemAddress); - } - /* If Memory address size is 16Bit */ - else - { - /* Send MSB of Memory Address */ - hi2c->Instance->TXDR = I2C_MEM_ADD_MSB(MemAddress); - - /* Wait until TXIS flag is set */ - if (I2C_WaitOnTXISFlagUntilTimeout(hi2c, Timeout, Tickstart) != HAL_OK) - { - return HAL_ERROR; - } - - /* Send LSB of Memory Address */ - hi2c->Instance->TXDR = I2C_MEM_ADD_LSB(MemAddress); - } - - /* Wait until TCR flag is set */ - if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_TCR, RESET, Timeout, Tickstart) != HAL_OK) - { - return HAL_ERROR; - } - - return HAL_OK; -} - -/** - * @brief Master sends target device address followed by internal memory address for read request. - * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains - * the configuration information for the specified I2C. - * @param DevAddress Target device address: The device 7 bits address value - * in datasheet must be shifted to the left before calling the interface - * @param MemAddress Internal memory address - * @param MemAddSize Size of internal memory address - * @param Timeout Timeout duration - * @param Tickstart Tick start value - * @retval HAL status - */ -static HAL_StatusTypeDef I2C_RequestMemoryRead(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint32_t Timeout, uint32_t Tickstart) -{ - I2C_TransferConfig(hi2c, DevAddress, (uint8_t)MemAddSize, I2C_SOFTEND_MODE, I2C_GENERATE_START_WRITE); - - /* Wait until TXIS flag is set */ - if (I2C_WaitOnTXISFlagUntilTimeout(hi2c, Timeout, Tickstart) != HAL_OK) - { - return HAL_ERROR; - } - - /* If Memory address size is 8Bit */ - if (MemAddSize == I2C_MEMADD_SIZE_8BIT) - { - /* Send Memory Address */ - hi2c->Instance->TXDR = I2C_MEM_ADD_LSB(MemAddress); - } - /* If Memory address size is 16Bit */ - else - { - /* Send MSB of Memory Address */ - hi2c->Instance->TXDR = I2C_MEM_ADD_MSB(MemAddress); - - /* Wait until TXIS flag is set */ - if (I2C_WaitOnTXISFlagUntilTimeout(hi2c, Timeout, Tickstart) != HAL_OK) - { - return HAL_ERROR; - } - - /* Send LSB of Memory Address */ - hi2c->Instance->TXDR = I2C_MEM_ADD_LSB(MemAddress); - } - - /* Wait until TC flag is set */ - if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_TC, RESET, Timeout, Tickstart) != HAL_OK) - { - return HAL_ERROR; - } - - return HAL_OK; -} - -/** - * @brief I2C Address complete process callback. - * @param hi2c I2C handle. - * @param ITFlags Interrupt flags to handle. - * @retval None - */ -static void I2C_ITAddrCplt(I2C_HandleTypeDef *hi2c, uint32_t ITFlags) -{ - uint8_t transferdirection; - uint16_t slaveaddrcode; - uint16_t ownadd1code; - uint16_t ownadd2code; - - /* Prevent unused argument(s) compilation warning */ - UNUSED(ITFlags); - - /* In case of Listen state, need to inform upper layer of address match code event */ - if (((uint32_t)hi2c->State & (uint32_t)HAL_I2C_STATE_LISTEN) == (uint32_t)HAL_I2C_STATE_LISTEN) - { - transferdirection = I2C_GET_DIR(hi2c); - slaveaddrcode = I2C_GET_ADDR_MATCH(hi2c); - ownadd1code = I2C_GET_OWN_ADDRESS1(hi2c); - ownadd2code = I2C_GET_OWN_ADDRESS2(hi2c); - - /* If 10bits addressing mode is selected */ - if (hi2c->Init.AddressingMode == I2C_ADDRESSINGMODE_10BIT) - { - if ((slaveaddrcode & SlaveAddr_MSK) == ((ownadd1code >> SlaveAddr_SHIFT) & SlaveAddr_MSK)) - { - slaveaddrcode = ownadd1code; - hi2c->AddrEventCount++; - if (hi2c->AddrEventCount == 2U) - { - /* Reset Address Event counter */ - hi2c->AddrEventCount = 0U; - - /* Clear ADDR flag */ - __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_ADDR); - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - /* Call Slave Addr callback */ -#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) - hi2c->AddrCallback(hi2c, transferdirection, slaveaddrcode); -#else - HAL_I2C_AddrCallback(hi2c, transferdirection, slaveaddrcode); -#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ - } - } - else - { - slaveaddrcode = ownadd2code; - - /* Disable ADDR Interrupts */ - I2C_Disable_IRQ(hi2c, I2C_XFER_LISTEN_IT); - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - /* Call Slave Addr callback */ -#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) - hi2c->AddrCallback(hi2c, transferdirection, slaveaddrcode); -#else - HAL_I2C_AddrCallback(hi2c, transferdirection, slaveaddrcode); -#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ - } - } - /* else 7 bits addressing mode is selected */ - else - { - /* Disable ADDR Interrupts */ - I2C_Disable_IRQ(hi2c, I2C_XFER_LISTEN_IT); - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - /* Call Slave Addr callback */ -#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) - hi2c->AddrCallback(hi2c, transferdirection, slaveaddrcode); -#else - HAL_I2C_AddrCallback(hi2c, transferdirection, slaveaddrcode); -#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ - } - } - /* Else clear address flag only */ - else - { - /* Clear ADDR flag */ - __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_ADDR); - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - } -} - -/** - * @brief I2C Master sequential complete process. - * @param hi2c I2C handle. - * @retval None - */ -static void I2C_ITMasterSeqCplt(I2C_HandleTypeDef *hi2c) -{ - /* Reset I2C handle mode */ - hi2c->Mode = HAL_I2C_MODE_NONE; - - /* No Generate Stop, to permit restart mode */ - /* The stop will be done at the end of transfer, when I2C_AUTOEND_MODE enable */ - if (hi2c->State == HAL_I2C_STATE_BUSY_TX) - { - hi2c->State = HAL_I2C_STATE_READY; - hi2c->PreviousState = I2C_STATE_MASTER_BUSY_TX; - hi2c->XferISR = NULL; - - /* Disable Interrupts */ - I2C_Disable_IRQ(hi2c, I2C_XFER_TX_IT); - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - /* Call the corresponding callback to inform upper layer of End of Transfer */ -#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) - hi2c->MasterTxCpltCallback(hi2c); -#else - HAL_I2C_MasterTxCpltCallback(hi2c); -#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ - } - /* hi2c->State == HAL_I2C_STATE_BUSY_RX */ - else - { - hi2c->State = HAL_I2C_STATE_READY; - hi2c->PreviousState = I2C_STATE_MASTER_BUSY_RX; - hi2c->XferISR = NULL; - - /* Disable Interrupts */ - I2C_Disable_IRQ(hi2c, I2C_XFER_RX_IT); - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - /* Call the corresponding callback to inform upper layer of End of Transfer */ -#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) - hi2c->MasterRxCpltCallback(hi2c); -#else - HAL_I2C_MasterRxCpltCallback(hi2c); -#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ - } -} - -/** - * @brief I2C Slave sequential complete process. - * @param hi2c I2C handle. - * @retval None - */ -static void I2C_ITSlaveSeqCplt(I2C_HandleTypeDef *hi2c) -{ - /* Reset I2C handle mode */ - hi2c->Mode = HAL_I2C_MODE_NONE; - - if (hi2c->State == HAL_I2C_STATE_BUSY_TX_LISTEN) - { - /* Remove HAL_I2C_STATE_SLAVE_BUSY_TX, keep only HAL_I2C_STATE_LISTEN */ - hi2c->State = HAL_I2C_STATE_LISTEN; - hi2c->PreviousState = I2C_STATE_SLAVE_BUSY_TX; - - /* Disable Interrupts */ - I2C_Disable_IRQ(hi2c, I2C_XFER_TX_IT); - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - /* Call the corresponding callback to inform upper layer of End of Transfer */ -#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) - hi2c->SlaveTxCpltCallback(hi2c); -#else - HAL_I2C_SlaveTxCpltCallback(hi2c); -#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ - } - - else if (hi2c->State == HAL_I2C_STATE_BUSY_RX_LISTEN) - { - /* Remove HAL_I2C_STATE_SLAVE_BUSY_RX, keep only HAL_I2C_STATE_LISTEN */ - hi2c->State = HAL_I2C_STATE_LISTEN; - hi2c->PreviousState = I2C_STATE_SLAVE_BUSY_RX; - - /* Disable Interrupts */ - I2C_Disable_IRQ(hi2c, I2C_XFER_RX_IT); - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - /* Call the corresponding callback to inform upper layer of End of Transfer */ -#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) - hi2c->SlaveRxCpltCallback(hi2c); -#else - HAL_I2C_SlaveRxCpltCallback(hi2c); -#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ - } - else - { - /* Nothing to do */ - } -} - -/** - * @brief I2C Master complete process. - * @param hi2c I2C handle. - * @param ITFlags Interrupt flags to handle. - * @retval None - */ -static void I2C_ITMasterCplt(I2C_HandleTypeDef *hi2c, uint32_t ITFlags) -{ - uint32_t tmperror; - - /* Clear STOP Flag */ - __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF); - - /* Clear Configuration Register 2 */ - I2C_RESET_CR2(hi2c); - - /* Reset handle parameters */ - hi2c->PreviousState = I2C_STATE_NONE; - hi2c->XferISR = NULL; - hi2c->XferOptions = I2C_NO_OPTION_FRAME; - - if (I2C_CHECK_FLAG(ITFlags, I2C_FLAG_AF) != RESET) - { - /* Clear NACK Flag */ - __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); - - /* Set acknowledge error code */ - hi2c->ErrorCode |= HAL_I2C_ERROR_AF; - } - - /* Flush TX register */ - I2C_Flush_TXDR(hi2c); - - /* Disable Interrupts */ - I2C_Disable_IRQ(hi2c, I2C_XFER_TX_IT | I2C_XFER_RX_IT); - - /* Store current volatile hi2c->ErrorCode, misra rule */ - tmperror = hi2c->ErrorCode; - - /* Call the corresponding callback to inform upper layer of End of Transfer */ - if ((hi2c->State == HAL_I2C_STATE_ABORT) || (tmperror != HAL_I2C_ERROR_NONE)) - { - /* Call the corresponding callback to inform upper layer of End of Transfer */ - I2C_ITError(hi2c, hi2c->ErrorCode); - } - /* hi2c->State == HAL_I2C_STATE_BUSY_TX */ - else if (hi2c->State == HAL_I2C_STATE_BUSY_TX) - { - hi2c->State = HAL_I2C_STATE_READY; - - if (hi2c->Mode == HAL_I2C_MODE_MEM) - { - hi2c->Mode = HAL_I2C_MODE_NONE; - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - /* Call the corresponding callback to inform upper layer of End of Transfer */ -#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) - hi2c->MemTxCpltCallback(hi2c); -#else - HAL_I2C_MemTxCpltCallback(hi2c); -#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ - } - else - { - hi2c->Mode = HAL_I2C_MODE_NONE; - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - /* Call the corresponding callback to inform upper layer of End of Transfer */ -#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) - hi2c->MasterTxCpltCallback(hi2c); -#else - HAL_I2C_MasterTxCpltCallback(hi2c); -#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ - } - } - /* hi2c->State == HAL_I2C_STATE_BUSY_RX */ - else if (hi2c->State == HAL_I2C_STATE_BUSY_RX) - { - hi2c->State = HAL_I2C_STATE_READY; - - if (hi2c->Mode == HAL_I2C_MODE_MEM) - { - hi2c->Mode = HAL_I2C_MODE_NONE; - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - /* Call the corresponding callback to inform upper layer of End of Transfer */ -#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) - hi2c->MemRxCpltCallback(hi2c); -#else - HAL_I2C_MemRxCpltCallback(hi2c); -#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ - } - else - { - hi2c->Mode = HAL_I2C_MODE_NONE; - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - /* Call the corresponding callback to inform upper layer of End of Transfer */ -#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) - hi2c->MasterRxCpltCallback(hi2c); -#else - HAL_I2C_MasterRxCpltCallback(hi2c); -#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ - } - } - else - { - /* Nothing to do */ - } -} - -/** - * @brief I2C Slave complete process. - * @param hi2c I2C handle. - * @param ITFlags Interrupt flags to handle. - * @retval None - */ -static void I2C_ITSlaveCplt(I2C_HandleTypeDef *hi2c, uint32_t ITFlags) -{ - uint32_t tmpcr1value = READ_REG(hi2c->Instance->CR1); - uint32_t tmpITFlags = ITFlags; - - /* Clear STOP Flag */ - __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF); - - /* Disable all interrupts */ - I2C_Disable_IRQ(hi2c, I2C_XFER_LISTEN_IT | I2C_XFER_TX_IT | I2C_XFER_RX_IT); - - /* Disable Address Acknowledge */ - hi2c->Instance->CR2 |= I2C_CR2_NACK; - - /* Clear Configuration Register 2 */ - I2C_RESET_CR2(hi2c); - - /* Flush TX register */ - I2C_Flush_TXDR(hi2c); - - /* If a DMA is ongoing, Update handle size context */ - if (I2C_CHECK_IT_SOURCE(tmpcr1value, I2C_CR1_TXDMAEN) != RESET) - { - if (hi2c->hdmatx != NULL) - { - hi2c->XferCount = (uint16_t)__HAL_DMA_GET_COUNTER(hi2c->hdmatx); - } - } - else if (I2C_CHECK_IT_SOURCE(tmpcr1value, I2C_CR1_RXDMAEN) != RESET) - { - if (hi2c->hdmarx != NULL) - { - hi2c->XferCount = (uint16_t)__HAL_DMA_GET_COUNTER(hi2c->hdmarx); - } - } - else - { - /* Do nothing */ - } - - /* Store Last receive data if any */ - if (I2C_CHECK_FLAG(tmpITFlags, I2C_FLAG_RXNE) != RESET) - { - /* Remove RXNE flag on temporary variable as read done */ - tmpITFlags &= ~I2C_FLAG_RXNE; - - /* Read data from RXDR */ - *hi2c->pBuffPtr = (uint8_t)hi2c->Instance->RXDR; - - /* Increment Buffer pointer */ - hi2c->pBuffPtr++; - - if ((hi2c->XferSize > 0U)) - { - hi2c->XferSize--; - hi2c->XferCount--; - } - } - - /* All data are not transferred, so set error code accordingly */ - if (hi2c->XferCount != 0U) - { - /* Set ErrorCode corresponding to a Non-Acknowledge */ - hi2c->ErrorCode |= HAL_I2C_ERROR_AF; - } - - hi2c->PreviousState = I2C_STATE_NONE; - hi2c->Mode = HAL_I2C_MODE_NONE; - hi2c->XferISR = NULL; - - if (hi2c->ErrorCode != HAL_I2C_ERROR_NONE) - { - /* Call the corresponding callback to inform upper layer of End of Transfer */ - I2C_ITError(hi2c, hi2c->ErrorCode); - - /* Call the Listen Complete callback, to inform upper layer of the end of Listen usecase */ - if (hi2c->State == HAL_I2C_STATE_LISTEN) - { - /* Call I2C Listen complete process */ - I2C_ITListenCplt(hi2c, tmpITFlags); - } - } - else if (hi2c->XferOptions != I2C_NO_OPTION_FRAME) - { - /* Call the Sequential Complete callback, to inform upper layer of the end of Tranfer */ - I2C_ITSlaveSeqCplt(hi2c); - - hi2c->XferOptions = I2C_NO_OPTION_FRAME; - hi2c->State = HAL_I2C_STATE_READY; - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - /* Call the Listen Complete callback, to inform upper layer of the end of Listen usecase */ -#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) - hi2c->ListenCpltCallback(hi2c); -#else - HAL_I2C_ListenCpltCallback(hi2c); -#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ - } - /* Call the corresponding callback to inform upper layer of End of Transfer */ - else if (hi2c->State == HAL_I2C_STATE_BUSY_RX) - { - hi2c->State = HAL_I2C_STATE_READY; - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - /* Call the corresponding callback to inform upper layer of End of Transfer */ -#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) - hi2c->SlaveRxCpltCallback(hi2c); -#else - HAL_I2C_SlaveRxCpltCallback(hi2c); -#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ - } - else - { - hi2c->State = HAL_I2C_STATE_READY; - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - /* Call the corresponding callback to inform upper layer of End of Transfer */ -#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) - hi2c->SlaveTxCpltCallback(hi2c); -#else - HAL_I2C_SlaveTxCpltCallback(hi2c); -#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ - } -} - -/** - * @brief I2C Listen complete process. - * @param hi2c I2C handle. - * @param ITFlags Interrupt flags to handle. - * @retval None - */ -static void I2C_ITListenCplt(I2C_HandleTypeDef *hi2c, uint32_t ITFlags) -{ - /* Reset handle parameters */ - hi2c->XferOptions = I2C_NO_OPTION_FRAME; - hi2c->PreviousState = I2C_STATE_NONE; - hi2c->State = HAL_I2C_STATE_READY; - hi2c->Mode = HAL_I2C_MODE_NONE; - hi2c->XferISR = NULL; - - /* Store Last receive data if any */ - if (I2C_CHECK_FLAG(ITFlags, I2C_FLAG_RXNE) != RESET) - { - /* Read data from RXDR */ - *hi2c->pBuffPtr = (uint8_t)hi2c->Instance->RXDR; - - /* Increment Buffer pointer */ - hi2c->pBuffPtr++; - - if ((hi2c->XferSize > 0U)) - { - hi2c->XferSize--; - hi2c->XferCount--; - - /* Set ErrorCode corresponding to a Non-Acknowledge */ - hi2c->ErrorCode |= HAL_I2C_ERROR_AF; - } - } - - /* Disable all Interrupts*/ - I2C_Disable_IRQ(hi2c, I2C_XFER_LISTEN_IT | I2C_XFER_RX_IT | I2C_XFER_TX_IT); - - /* Clear NACK Flag */ - __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - /* Call the Listen Complete callback, to inform upper layer of the end of Listen usecase */ -#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) - hi2c->ListenCpltCallback(hi2c); -#else - HAL_I2C_ListenCpltCallback(hi2c); -#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ -} - -/** - * @brief I2C interrupts error process. - * @param hi2c I2C handle. - * @param ErrorCode Error code to handle. - * @retval None - */ -static void I2C_ITError(I2C_HandleTypeDef *hi2c, uint32_t ErrorCode) -{ - HAL_I2C_StateTypeDef tmpstate = hi2c->State; - - /* Reset handle parameters */ - hi2c->Mode = HAL_I2C_MODE_NONE; - hi2c->XferOptions = I2C_NO_OPTION_FRAME; - hi2c->XferCount = 0U; - - /* Set new error code */ - hi2c->ErrorCode |= ErrorCode; - - /* Disable Interrupts */ - if ((tmpstate == HAL_I2C_STATE_LISTEN) || - (tmpstate == HAL_I2C_STATE_BUSY_TX_LISTEN) || - (tmpstate == HAL_I2C_STATE_BUSY_RX_LISTEN)) - { - /* Disable all interrupts, except interrupts related to LISTEN state */ - I2C_Disable_IRQ(hi2c, I2C_XFER_RX_IT | I2C_XFER_TX_IT); - - /* keep HAL_I2C_STATE_LISTEN if set */ - hi2c->State = HAL_I2C_STATE_LISTEN; - hi2c->PreviousState = I2C_STATE_NONE; - hi2c->XferISR = I2C_Slave_ISR_IT; - } - else - { - /* Disable all interrupts */ - I2C_Disable_IRQ(hi2c, I2C_XFER_LISTEN_IT | I2C_XFER_RX_IT | I2C_XFER_TX_IT); - - /* If state is an abort treatment on goind, don't change state */ - /* This change will be do later */ - if (hi2c->State != HAL_I2C_STATE_ABORT) - { - /* Set HAL_I2C_STATE_READY */ - hi2c->State = HAL_I2C_STATE_READY; - } - hi2c->PreviousState = I2C_STATE_NONE; - hi2c->XferISR = NULL; - } - - /* Abort DMA TX transfer if any */ - if ((hi2c->Instance->CR1 & I2C_CR1_TXDMAEN) == I2C_CR1_TXDMAEN) - { - hi2c->Instance->CR1 &= ~I2C_CR1_TXDMAEN; - - if (hi2c->hdmatx != NULL) - { - /* Set the I2C DMA Abort callback : - will lead to call HAL_I2C_ErrorCallback() at end of DMA abort procedure */ - hi2c->hdmatx->XferAbortCallback = I2C_DMAAbort; - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - /* Abort DMA TX */ - if (HAL_DMA_Abort_IT(hi2c->hdmatx) != HAL_OK) - { - /* Call Directly XferAbortCallback function in case of error */ - hi2c->hdmatx->XferAbortCallback(hi2c->hdmatx); - } - } - } - /* Abort DMA RX transfer if any */ - else if ((hi2c->Instance->CR1 & I2C_CR1_RXDMAEN) == I2C_CR1_RXDMAEN) - { - hi2c->Instance->CR1 &= ~I2C_CR1_RXDMAEN; - - if (hi2c->hdmarx != NULL) - { - /* Set the I2C DMA Abort callback : - will lead to call HAL_I2C_ErrorCallback() at end of DMA abort procedure */ - hi2c->hdmarx->XferAbortCallback = I2C_DMAAbort; - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - /* Abort DMA RX */ - if (HAL_DMA_Abort_IT(hi2c->hdmarx) != HAL_OK) - { - /* Call Directly hi2c->hdmarx->XferAbortCallback function in case of error */ - hi2c->hdmarx->XferAbortCallback(hi2c->hdmarx); - } - } - } - else if (hi2c->State == HAL_I2C_STATE_ABORT) - { - hi2c->State = HAL_I2C_STATE_READY; - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - /* Call the corresponding callback to inform upper layer of End of Transfer */ -#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) - hi2c->AbortCpltCallback(hi2c); -#else - HAL_I2C_AbortCpltCallback(hi2c); -#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ - } - else - { - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - /* Call the corresponding callback to inform upper layer of End of Transfer */ -#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) - hi2c->ErrorCallback(hi2c); -#else - HAL_I2C_ErrorCallback(hi2c); -#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ - } -} - -/** - * @brief I2C Tx data register flush process. - * @param hi2c I2C handle. - * @retval None - */ -static void I2C_Flush_TXDR(I2C_HandleTypeDef *hi2c) -{ - /* If a pending TXIS flag is set */ - /* Write a dummy data in TXDR to clear it */ - if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_TXIS) != RESET) - { - hi2c->Instance->TXDR = 0x00U; - } - - /* Flush TX register if not empty */ - if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_TXE) == RESET) - { - __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_TXE); - } -} - -/** - * @brief DMA I2C master transmit process complete callback. - * @param hdma DMA handle - * @retval None - */ -static void I2C_DMAMasterTransmitCplt(DMA_HandleTypeDef *hdma) -{ - I2C_HandleTypeDef *hi2c = (I2C_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent); /* Derogation MISRAC2012-Rule-11.5 */ - - /* Disable DMA Request */ - hi2c->Instance->CR1 &= ~I2C_CR1_TXDMAEN; - - /* If last transfer, enable STOP interrupt */ - if (hi2c->XferCount == 0U) - { - /* Enable STOP interrupt */ - I2C_Enable_IRQ(hi2c, I2C_XFER_CPLT_IT); - } - /* else prepare a new DMA transfer and enable TCReload interrupt */ - else - { - /* Update Buffer pointer */ - hi2c->pBuffPtr += hi2c->XferSize; - - /* Set the XferSize to transfer */ - if (hi2c->XferCount > MAX_NBYTE_SIZE) - { - hi2c->XferSize = MAX_NBYTE_SIZE; - } - else - { - hi2c->XferSize = hi2c->XferCount; - } - - /* Enable the DMA channel */ - if (HAL_DMA_Start_IT(hi2c->hdmatx, (uint32_t)hi2c->pBuffPtr, (uint32_t)&hi2c->Instance->TXDR, hi2c->XferSize) != HAL_OK) - { - /* Call the corresponding callback to inform upper layer of End of Transfer */ - I2C_ITError(hi2c, HAL_I2C_ERROR_DMA); - } - else - { - /* Enable TC interrupts */ - I2C_Enable_IRQ(hi2c, I2C_XFER_RELOAD_IT); - } - } -} - -/** - * @brief DMA I2C slave transmit process complete callback. - * @param hdma DMA handle - * @retval None - */ -static void I2C_DMASlaveTransmitCplt(DMA_HandleTypeDef *hdma) -{ - I2C_HandleTypeDef *hi2c = (I2C_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent); /* Derogation MISRAC2012-Rule-11.5 */ - uint32_t tmpoptions = hi2c->XferOptions; - - if ((tmpoptions == I2C_NEXT_FRAME) || (tmpoptions == I2C_FIRST_FRAME)) - { - /* Disable DMA Request */ - hi2c->Instance->CR1 &= ~I2C_CR1_TXDMAEN; - - /* Last Byte is Transmitted */ - /* Call I2C Slave Sequential complete process */ - I2C_ITSlaveSeqCplt(hi2c); - } - else - { - /* No specific action, Master fully manage the generation of STOP condition */ - /* Mean that this generation can arrive at any time, at the end or during DMA process */ - /* So STOP condition should be manage through Interrupt treatment */ - } -} - -/** - * @brief DMA I2C master receive process complete callback. - * @param hdma DMA handle - * @retval None - */ -static void I2C_DMAMasterReceiveCplt(DMA_HandleTypeDef *hdma) -{ - I2C_HandleTypeDef *hi2c = (I2C_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent); /* Derogation MISRAC2012-Rule-11.5 */ - - /* Disable DMA Request */ - hi2c->Instance->CR1 &= ~I2C_CR1_RXDMAEN; - - /* If last transfer, enable STOP interrupt */ - if (hi2c->XferCount == 0U) - { - /* Enable STOP interrupt */ - I2C_Enable_IRQ(hi2c, I2C_XFER_CPLT_IT); - } - /* else prepare a new DMA transfer and enable TCReload interrupt */ - else - { - /* Update Buffer pointer */ - hi2c->pBuffPtr += hi2c->XferSize; - - /* Set the XferSize to transfer */ - if (hi2c->XferCount > MAX_NBYTE_SIZE) - { - hi2c->XferSize = MAX_NBYTE_SIZE; - } - else - { - hi2c->XferSize = hi2c->XferCount; - } - - /* Enable the DMA channel */ - if (HAL_DMA_Start_IT(hi2c->hdmarx, (uint32_t)&hi2c->Instance->RXDR, (uint32_t)hi2c->pBuffPtr, hi2c->XferSize) != HAL_OK) - { - /* Call the corresponding callback to inform upper layer of End of Transfer */ - I2C_ITError(hi2c, HAL_I2C_ERROR_DMA); - } - else - { - /* Enable TC interrupts */ - I2C_Enable_IRQ(hi2c, I2C_XFER_RELOAD_IT); - } - } -} - -/** - * @brief DMA I2C slave receive process complete callback. - * @param hdma DMA handle - * @retval None - */ -static void I2C_DMASlaveReceiveCplt(DMA_HandleTypeDef *hdma) -{ - I2C_HandleTypeDef *hi2c = (I2C_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent); /* Derogation MISRAC2012-Rule-11.5 */ - uint32_t tmpoptions = hi2c->XferOptions; - - if ((__HAL_DMA_GET_COUNTER(hi2c->hdmarx) == 0U) && \ - (tmpoptions != I2C_NO_OPTION_FRAME)) - { - /* Disable DMA Request */ - hi2c->Instance->CR1 &= ~I2C_CR1_RXDMAEN; - - /* Call I2C Slave Sequential complete process */ - I2C_ITSlaveSeqCplt(hi2c); - } - else - { - /* No specific action, Master fully manage the generation of STOP condition */ - /* Mean that this generation can arrive at any time, at the end or during DMA process */ - /* So STOP condition should be manage through Interrupt treatment */ - } -} - -/** - * @brief DMA I2C communication error callback. - * @param hdma DMA handle - * @retval None - */ -static void I2C_DMAError(DMA_HandleTypeDef *hdma) -{ - I2C_HandleTypeDef *hi2c = (I2C_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent); /* Derogation MISRAC2012-Rule-11.5 */ - - /* Disable Acknowledge */ - hi2c->Instance->CR2 |= I2C_CR2_NACK; - - /* Call the corresponding callback to inform upper layer of End of Transfer */ - I2C_ITError(hi2c, HAL_I2C_ERROR_DMA); -} - -/** - * @brief DMA I2C communication abort callback - * (To be called at end of DMA Abort procedure). - * @param hdma DMA handle. - * @retval None - */ -static void I2C_DMAAbort(DMA_HandleTypeDef *hdma) -{ - I2C_HandleTypeDef *hi2c = (I2C_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent); /* Derogation MISRAC2012-Rule-11.5 */ - - /* Reset AbortCpltCallback */ - hi2c->hdmatx->XferAbortCallback = NULL; - hi2c->hdmarx->XferAbortCallback = NULL; - - /* Check if come from abort from user */ - if (hi2c->State == HAL_I2C_STATE_ABORT) - { - hi2c->State = HAL_I2C_STATE_READY; - - /* Call the corresponding callback to inform upper layer of End of Transfer */ -#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) - hi2c->AbortCpltCallback(hi2c); -#else - HAL_I2C_AbortCpltCallback(hi2c); -#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ - } - else - { - /* Call the corresponding callback to inform upper layer of End of Transfer */ -#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) - hi2c->ErrorCallback(hi2c); -#else - HAL_I2C_ErrorCallback(hi2c); -#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ - } -} - -/** - * @brief This function handles I2C Communication Timeout. - * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains - * the configuration information for the specified I2C. - * @param Flag Specifies the I2C flag to check. - * @param Status The new Flag status (SET or RESET). - * @param Timeout Timeout duration - * @param Tickstart Tick start value - * @retval HAL status - */ -static HAL_StatusTypeDef I2C_WaitOnFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Flag, FlagStatus Status, uint32_t Timeout, uint32_t Tickstart) -{ - while (__HAL_I2C_GET_FLAG(hi2c, Flag) == Status) - { - /* Check for the Timeout */ - if (Timeout != HAL_MAX_DELAY) - { - if (((HAL_GetTick() - Tickstart) > Timeout) || (Timeout == 0U)) - { - hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT; - hi2c->State = HAL_I2C_STATE_READY; - hi2c->Mode = HAL_I2C_MODE_NONE; - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - return HAL_ERROR; - } - } - } - return HAL_OK; -} - -/** - * @brief This function handles I2C Communication Timeout for specific usage of TXIS flag. - * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains - * the configuration information for the specified I2C. - * @param Timeout Timeout duration - * @param Tickstart Tick start value - * @retval HAL status - */ -static HAL_StatusTypeDef I2C_WaitOnTXISFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Timeout, uint32_t Tickstart) -{ - while (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_TXIS) == RESET) - { - /* Check if a NACK is detected */ - if (I2C_IsAcknowledgeFailed(hi2c, Timeout, Tickstart) != HAL_OK) - { - return HAL_ERROR; - } - - /* Check for the Timeout */ - if (Timeout != HAL_MAX_DELAY) - { - if (((HAL_GetTick() - Tickstart) > Timeout) || (Timeout == 0U)) - { - hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT; - hi2c->State = HAL_I2C_STATE_READY; - hi2c->Mode = HAL_I2C_MODE_NONE; - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - return HAL_ERROR; - } - } - } - return HAL_OK; -} - -/** - * @brief This function handles I2C Communication Timeout for specific usage of STOP flag. - * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains - * the configuration information for the specified I2C. - * @param Timeout Timeout duration - * @param Tickstart Tick start value - * @retval HAL status - */ -static HAL_StatusTypeDef I2C_WaitOnSTOPFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Timeout, uint32_t Tickstart) -{ - while (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_STOPF) == RESET) - { - /* Check if a NACK is detected */ - if (I2C_IsAcknowledgeFailed(hi2c, Timeout, Tickstart) != HAL_OK) - { - return HAL_ERROR; - } - - /* Check for the Timeout */ - if (((HAL_GetTick() - Tickstart) > Timeout) || (Timeout == 0U)) - { - hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT; - hi2c->State = HAL_I2C_STATE_READY; - hi2c->Mode = HAL_I2C_MODE_NONE; - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - return HAL_ERROR; - } - } - return HAL_OK; -} - -/** - * @brief This function handles I2C Communication Timeout for specific usage of RXNE flag. - * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains - * the configuration information for the specified I2C. - * @param Timeout Timeout duration - * @param Tickstart Tick start value - * @retval HAL status - */ -static HAL_StatusTypeDef I2C_WaitOnRXNEFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Timeout, uint32_t Tickstart) -{ - while (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_RXNE) == RESET) - { - /* Check if a NACK is detected */ - if (I2C_IsAcknowledgeFailed(hi2c, Timeout, Tickstart) != HAL_OK) - { - return HAL_ERROR; - } - - /* Check if a STOPF is detected */ - if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_STOPF) == SET) - { - /* Check if an RXNE is pending */ - /* Store Last receive data if any */ - if ((__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_RXNE) == SET) && (hi2c->XferSize > 0U)) - { - /* Return HAL_OK */ - /* The Reading of data from RXDR will be done in caller function */ - return HAL_OK; - } - else - { - /* Clear STOP Flag */ - __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF); - - /* Clear Configuration Register 2 */ - I2C_RESET_CR2(hi2c); - - hi2c->ErrorCode = HAL_I2C_ERROR_NONE; - hi2c->State = HAL_I2C_STATE_READY; - hi2c->Mode = HAL_I2C_MODE_NONE; - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - return HAL_ERROR; - } - } - - /* Check for the Timeout */ - if (((HAL_GetTick() - Tickstart) > Timeout) || (Timeout == 0U)) - { - hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT; - hi2c->State = HAL_I2C_STATE_READY; - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - return HAL_ERROR; - } - } - return HAL_OK; -} - -/** - * @brief This function handles Acknowledge failed detection during an I2C Communication. - * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains - * the configuration information for the specified I2C. - * @param Timeout Timeout duration - * @param Tickstart Tick start value - * @retval HAL status - */ -static HAL_StatusTypeDef I2C_IsAcknowledgeFailed(I2C_HandleTypeDef *hi2c, uint32_t Timeout, uint32_t Tickstart) -{ - if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_AF) == SET) - { - /* Wait until STOP Flag is reset */ - /* AutoEnd should be initiate after AF */ - while (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_STOPF) == RESET) - { - /* Check for the Timeout */ - if (Timeout != HAL_MAX_DELAY) - { - if (((HAL_GetTick() - Tickstart) > Timeout) || (Timeout == 0U)) - { - hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT; - hi2c->State = HAL_I2C_STATE_READY; - hi2c->Mode = HAL_I2C_MODE_NONE; - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - return HAL_ERROR; - } - } - } - - /* Clear NACKF Flag */ - __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); - - /* Clear STOP Flag */ - __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF); - - /* Flush TX register */ - I2C_Flush_TXDR(hi2c); - - /* Clear Configuration Register 2 */ - I2C_RESET_CR2(hi2c); - - hi2c->ErrorCode |= HAL_I2C_ERROR_AF; - hi2c->State = HAL_I2C_STATE_READY; - hi2c->Mode = HAL_I2C_MODE_NONE; - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - return HAL_ERROR; - } - return HAL_OK; -} - -/** - * @brief Handles I2Cx communication when starting transfer or during transfer (TC or TCR flag are set). - * @param hi2c I2C handle. - * @param DevAddress Specifies the slave address to be programmed. - * @param Size Specifies the number of bytes to be programmed. - * This parameter must be a value between 0 and 255. - * @param Mode New state of the I2C START condition generation. - * This parameter can be one of the following values: - * @arg @ref I2C_RELOAD_MODE Enable Reload mode . - * @arg @ref I2C_AUTOEND_MODE Enable Automatic end mode. - * @arg @ref I2C_SOFTEND_MODE Enable Software end mode. - * @param Request New state of the I2C START condition generation. - * This parameter can be one of the following values: - * @arg @ref I2C_NO_STARTSTOP Don't Generate stop and start condition. - * @arg @ref I2C_GENERATE_STOP Generate stop condition (Size should be set to 0). - * @arg @ref I2C_GENERATE_START_READ Generate Restart for read request. - * @arg @ref I2C_GENERATE_START_WRITE Generate Restart for write request. - * @retval None - */ -static void I2C_TransferConfig(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t Size, uint32_t Mode, uint32_t Request) -{ - /* Check the parameters */ - assert_param(IS_I2C_ALL_INSTANCE(hi2c->Instance)); - assert_param(IS_TRANSFER_MODE(Mode)); - assert_param(IS_TRANSFER_REQUEST(Request)); - - /* update CR2 register */ - MODIFY_REG(hi2c->Instance->CR2, ((I2C_CR2_SADD | I2C_CR2_NBYTES | I2C_CR2_RELOAD | I2C_CR2_AUTOEND | (I2C_CR2_RD_WRN & (uint32_t)(Request >> (31U - I2C_CR2_RD_WRN_Pos))) | I2C_CR2_START | I2C_CR2_STOP)), \ - (uint32_t)(((uint32_t)DevAddress & I2C_CR2_SADD) | (((uint32_t)Size << I2C_CR2_NBYTES_Pos) & I2C_CR2_NBYTES) | (uint32_t)Mode | (uint32_t)Request)); -} - -/** - * @brief Manage the enabling of Interrupts. - * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains - * the configuration information for the specified I2C. - * @param InterruptRequest Value of @ref I2C_Interrupt_configuration_definition. - * @retval None - */ -static void I2C_Enable_IRQ(I2C_HandleTypeDef *hi2c, uint16_t InterruptRequest) -{ - uint32_t tmpisr = 0U; - - if ((hi2c->XferISR == I2C_Master_ISR_DMA) || \ - (hi2c->XferISR == I2C_Slave_ISR_DMA)) - { - if ((InterruptRequest & I2C_XFER_LISTEN_IT) == I2C_XFER_LISTEN_IT) - { - /* Enable ERR, STOP, NACK and ADDR interrupts */ - tmpisr |= I2C_IT_ADDRI | I2C_IT_STOPI | I2C_IT_NACKI | I2C_IT_ERRI; - } - - if ((InterruptRequest & I2C_XFER_ERROR_IT) == I2C_XFER_ERROR_IT) - { - /* Enable ERR and NACK interrupts */ - tmpisr |= I2C_IT_ERRI | I2C_IT_NACKI; - } - - if ((InterruptRequest & I2C_XFER_CPLT_IT) == I2C_XFER_CPLT_IT) - { - /* Enable STOP interrupts */ - tmpisr |= I2C_IT_STOPI; - } - - if ((InterruptRequest & I2C_XFER_RELOAD_IT) == I2C_XFER_RELOAD_IT) - { - /* Enable TC interrupts */ - tmpisr |= I2C_IT_TCI; - } - } - else - { - if ((InterruptRequest & I2C_XFER_LISTEN_IT) == I2C_XFER_LISTEN_IT) - { - /* Enable ERR, STOP, NACK, and ADDR interrupts */ - tmpisr |= I2C_IT_ADDRI | I2C_IT_STOPI | I2C_IT_NACKI | I2C_IT_ERRI; - } - - if ((InterruptRequest & I2C_XFER_TX_IT) == I2C_XFER_TX_IT) - { - /* Enable ERR, TC, STOP, NACK and RXI interrupts */ - tmpisr |= I2C_IT_ERRI | I2C_IT_TCI | I2C_IT_STOPI | I2C_IT_NACKI | I2C_IT_TXI; - } - - if ((InterruptRequest & I2C_XFER_RX_IT) == I2C_XFER_RX_IT) - { - /* Enable ERR, TC, STOP, NACK and TXI interrupts */ - tmpisr |= I2C_IT_ERRI | I2C_IT_TCI | I2C_IT_STOPI | I2C_IT_NACKI | I2C_IT_RXI; - } - - else if ((InterruptRequest & I2C_XFER_CPLT_IT) == I2C_XFER_CPLT_IT) - { - /* Enable STOP interrupts */ - tmpisr |= I2C_IT_STOPI; - } - } - - /* Enable interrupts only at the end */ - /* to avoid the risk of I2C interrupt handle execution before */ - /* all interrupts requested done */ - __HAL_I2C_ENABLE_IT(hi2c, tmpisr); -} - -/** - * @brief Manage the disabling of Interrupts. - * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains - * the configuration information for the specified I2C. - * @param InterruptRequest Value of @ref I2C_Interrupt_configuration_definition. - * @retval None - */ -static void I2C_Disable_IRQ(I2C_HandleTypeDef *hi2c, uint16_t InterruptRequest) -{ - uint32_t tmpisr = 0U; - - if ((InterruptRequest & I2C_XFER_TX_IT) == I2C_XFER_TX_IT) - { - /* Disable TC and TXI interrupts */ - tmpisr |= I2C_IT_TCI | I2C_IT_TXI; - - if (((uint32_t)hi2c->State & (uint32_t)HAL_I2C_STATE_LISTEN) != (uint32_t)HAL_I2C_STATE_LISTEN) - { - /* Disable NACK and STOP interrupts */ - tmpisr |= I2C_IT_STOPI | I2C_IT_NACKI | I2C_IT_ERRI; - } - } - - if ((InterruptRequest & I2C_XFER_RX_IT) == I2C_XFER_RX_IT) - { - /* Disable TC and RXI interrupts */ - tmpisr |= I2C_IT_TCI | I2C_IT_RXI; - - if (((uint32_t)hi2c->State & (uint32_t)HAL_I2C_STATE_LISTEN) != (uint32_t)HAL_I2C_STATE_LISTEN) - { - /* Disable NACK and STOP interrupts */ - tmpisr |= I2C_IT_STOPI | I2C_IT_NACKI | I2C_IT_ERRI; - } - } - - if ((InterruptRequest & I2C_XFER_LISTEN_IT) == I2C_XFER_LISTEN_IT) - { - /* Disable ADDR, NACK and STOP interrupts */ - tmpisr |= I2C_IT_ADDRI | I2C_IT_STOPI | I2C_IT_NACKI | I2C_IT_ERRI; - } - - if ((InterruptRequest & I2C_XFER_ERROR_IT) == I2C_XFER_ERROR_IT) - { - /* Enable ERR and NACK interrupts */ - tmpisr |= I2C_IT_ERRI | I2C_IT_NACKI; - } - - if ((InterruptRequest & I2C_XFER_CPLT_IT) == I2C_XFER_CPLT_IT) - { - /* Enable STOP interrupts */ - tmpisr |= I2C_IT_STOPI; - } - - if ((InterruptRequest & I2C_XFER_RELOAD_IT) == I2C_XFER_RELOAD_IT) - { - /* Enable TC interrupts */ - tmpisr |= I2C_IT_TCI; - } - - /* Disable interrupts only at the end */ - /* to avoid a breaking situation like at "t" time */ - /* all disable interrupts request are not done */ - __HAL_I2C_DISABLE_IT(hi2c, tmpisr); -} - -/** - * @brief Convert I2Cx OTHER_xxx XferOptions to functionnal XferOptions. - * @param hi2c I2C handle. - * @retval None - */ -static void I2C_ConvertOtherXferOptions(I2C_HandleTypeDef *hi2c) -{ - /* if user set XferOptions to I2C_OTHER_FRAME */ - /* it request implicitly to generate a restart condition */ - /* set XferOptions to I2C_FIRST_FRAME */ - if (hi2c->XferOptions == I2C_OTHER_FRAME) - { - hi2c->XferOptions = I2C_FIRST_FRAME; - } - /* else if user set XferOptions to I2C_OTHER_AND_LAST_FRAME */ - /* it request implicitly to generate a restart condition */ - /* then generate a stop condition at the end of transfer */ - /* set XferOptions to I2C_FIRST_AND_LAST_FRAME */ - else if (hi2c->XferOptions == I2C_OTHER_AND_LAST_FRAME) - { - hi2c->XferOptions = I2C_FIRST_AND_LAST_FRAME; - } - else - { - /* Nothing to do */ - } -} - -/** - * @} - */ - -#endif /* HAL_I2C_MODULE_ENABLED */ -/** - * @} - */ - -/** - * @} - */ - -/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_i2c_ex.c b/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_i2c_ex.c deleted file mode 100644 index 9dd3af2..0000000 --- a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_i2c_ex.c +++ /dev/null @@ -1,333 +0,0 @@ -/** - ****************************************************************************** - * @file stm32f0xx_hal_i2c_ex.c - * @author MCD Application Team - * @brief I2C Extended HAL module driver. - * This file provides firmware functions to manage the following - * functionalities of I2C Extended peripheral: - * + Extended features functions - * - @verbatim - ============================================================================== - ##### I2C peripheral Extended features ##### - ============================================================================== - - [..] Comparing to other previous devices, the I2C interface for STM32F0xx - devices contains the following additional features - - (+) Possibility to disable or enable Analog Noise Filter - (+) Use of a configured Digital Noise Filter - (+) Disable or enable wakeup from Stop mode(s) - (+) Disable or enable Fast Mode Plus - - ##### How to use this driver ##### - ============================================================================== - [..] This driver provides functions to configure Noise Filter and Wake Up Feature - (#) Configure I2C Analog noise filter using the function HAL_I2CEx_ConfigAnalogFilter() - (#) Configure I2C Digital noise filter using the function HAL_I2CEx_ConfigDigitalFilter() - (#) Configure the enable or disable of I2C Wake Up Mode using the functions : - (++) HAL_I2CEx_EnableWakeUp() - (++) HAL_I2CEx_DisableWakeUp() - (#) Configure the enable or disable of fast mode plus driving capability using the functions : - (++) HAL_I2CEx_EnableFastModePlus() - (++) HAL_I2CEx_DisableFastModePlus() - @endverbatim - ****************************************************************************** - * @attention - * - *

© Copyright (c) 2016 STMicroelectronics. - * All rights reserved.

- * - * This software component is licensed by ST under BSD 3-Clause license, - * the "License"; You may not use this file except in compliance with the - * License. You may obtain a copy of the License at: - * opensource.org/licenses/BSD-3-Clause - * - ****************************************************************************** - */ - -/* Includes ------------------------------------------------------------------*/ -#include "stm32f0xx_hal.h" - -/** @addtogroup STM32F0xx_HAL_Driver - * @{ - */ - -/** @defgroup I2CEx I2CEx - * @brief I2C Extended HAL module driver - * @{ - */ - -#ifdef HAL_I2C_MODULE_ENABLED - -/* Private typedef -----------------------------------------------------------*/ -/* Private define ------------------------------------------------------------*/ -/* Private macro -------------------------------------------------------------*/ -/* Private variables ---------------------------------------------------------*/ -/* Private function prototypes -----------------------------------------------*/ -/* Private functions ---------------------------------------------------------*/ - -/** @defgroup I2CEx_Exported_Functions I2C Extended Exported Functions - * @{ - */ - -/** @defgroup I2CEx_Exported_Functions_Group1 Extended features functions - * @brief Extended features functions - * -@verbatim - =============================================================================== - ##### Extended features functions ##### - =============================================================================== - [..] This section provides functions allowing to: - (+) Configure Noise Filters - (+) Configure Wake Up Feature - (+) Configure Fast Mode Plus - -@endverbatim - * @{ - */ - -/** - * @brief Configure I2C Analog noise filter. - * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains - * the configuration information for the specified I2Cx peripheral. - * @param AnalogFilter New state of the Analog filter. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_I2CEx_ConfigAnalogFilter(I2C_HandleTypeDef *hi2c, uint32_t AnalogFilter) -{ - /* Check the parameters */ - assert_param(IS_I2C_ALL_INSTANCE(hi2c->Instance)); - assert_param(IS_I2C_ANALOG_FILTER(AnalogFilter)); - - if (hi2c->State == HAL_I2C_STATE_READY) - { - /* Process Locked */ - __HAL_LOCK(hi2c); - - hi2c->State = HAL_I2C_STATE_BUSY; - - /* Disable the selected I2C peripheral */ - __HAL_I2C_DISABLE(hi2c); - - /* Reset I2Cx ANOFF bit */ - hi2c->Instance->CR1 &= ~(I2C_CR1_ANFOFF); - - /* Set analog filter bit*/ - hi2c->Instance->CR1 |= AnalogFilter; - - __HAL_I2C_ENABLE(hi2c); - - hi2c->State = HAL_I2C_STATE_READY; - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - return HAL_OK; - } - else - { - return HAL_BUSY; - } -} - -/** - * @brief Configure I2C Digital noise filter. - * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains - * the configuration information for the specified I2Cx peripheral. - * @param DigitalFilter Coefficient of digital noise filter between Min_Data=0x00 and Max_Data=0x0F. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_I2CEx_ConfigDigitalFilter(I2C_HandleTypeDef *hi2c, uint32_t DigitalFilter) -{ - uint32_t tmpreg; - - /* Check the parameters */ - assert_param(IS_I2C_ALL_INSTANCE(hi2c->Instance)); - assert_param(IS_I2C_DIGITAL_FILTER(DigitalFilter)); - - if (hi2c->State == HAL_I2C_STATE_READY) - { - /* Process Locked */ - __HAL_LOCK(hi2c); - - hi2c->State = HAL_I2C_STATE_BUSY; - - /* Disable the selected I2C peripheral */ - __HAL_I2C_DISABLE(hi2c); - - /* Get the old register value */ - tmpreg = hi2c->Instance->CR1; - - /* Reset I2Cx DNF bits [11:8] */ - tmpreg &= ~(I2C_CR1_DNF); - - /* Set I2Cx DNF coefficient */ - tmpreg |= DigitalFilter << 8U; - - /* Store the new register value */ - hi2c->Instance->CR1 = tmpreg; - - __HAL_I2C_ENABLE(hi2c); - - hi2c->State = HAL_I2C_STATE_READY; - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - return HAL_OK; - } - else - { - return HAL_BUSY; - } -} -#if defined(I2C_CR1_WUPEN) - -/** - * @brief Enable I2C wakeup from Stop mode(s). - * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains - * the configuration information for the specified I2Cx peripheral. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_I2CEx_EnableWakeUp(I2C_HandleTypeDef *hi2c) -{ - /* Check the parameters */ - assert_param(IS_I2C_WAKEUP_FROMSTOP_INSTANCE(hi2c->Instance)); - - if (hi2c->State == HAL_I2C_STATE_READY) - { - /* Process Locked */ - __HAL_LOCK(hi2c); - - hi2c->State = HAL_I2C_STATE_BUSY; - - /* Disable the selected I2C peripheral */ - __HAL_I2C_DISABLE(hi2c); - - /* Enable wakeup from stop mode */ - hi2c->Instance->CR1 |= I2C_CR1_WUPEN; - - __HAL_I2C_ENABLE(hi2c); - - hi2c->State = HAL_I2C_STATE_READY; - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - return HAL_OK; - } - else - { - return HAL_BUSY; - } -} - -/** - * @brief Disable I2C wakeup from Stop mode(s). - * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains - * the configuration information for the specified I2Cx peripheral. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_I2CEx_DisableWakeUp(I2C_HandleTypeDef *hi2c) -{ - /* Check the parameters */ - assert_param(IS_I2C_WAKEUP_FROMSTOP_INSTANCE(hi2c->Instance)); - - if (hi2c->State == HAL_I2C_STATE_READY) - { - /* Process Locked */ - __HAL_LOCK(hi2c); - - hi2c->State = HAL_I2C_STATE_BUSY; - - /* Disable the selected I2C peripheral */ - __HAL_I2C_DISABLE(hi2c); - - /* Enable wakeup from stop mode */ - hi2c->Instance->CR1 &= ~(I2C_CR1_WUPEN); - - __HAL_I2C_ENABLE(hi2c); - - hi2c->State = HAL_I2C_STATE_READY; - - /* Process Unlocked */ - __HAL_UNLOCK(hi2c); - - return HAL_OK; - } - else - { - return HAL_BUSY; - } -} -#endif - -/** - * @brief Enable the I2C fast mode plus driving capability. - * @param ConfigFastModePlus Selects the pin. - * This parameter can be one of the @ref I2CEx_FastModePlus values - * @note For I2C1, fast mode plus driving capability can be enabled on all selected - * I2C1 pins using I2C_FASTMODEPLUS_I2C1 parameter or independently - * on each one of the following pins PB6, PB7, PB8 and PB9. - * @note For remaining I2C1 pins (PA14, PA15...) fast mode plus driving capability - * can be enabled only by using I2C_FASTMODEPLUS_I2C1 parameter. - * @note For all I2C2 pins fast mode plus driving capability can be enabled - * only by using I2C_FASTMODEPLUS_I2C2 parameter. - * @retval None - */ -void HAL_I2CEx_EnableFastModePlus(uint32_t ConfigFastModePlus) -{ - /* Check the parameter */ - assert_param(IS_I2C_FASTMODEPLUS(ConfigFastModePlus)); - - /* Enable SYSCFG clock */ - __HAL_RCC_SYSCFG_CLK_ENABLE(); - - /* Enable fast mode plus driving capability for selected pin */ - SET_BIT(SYSCFG->CFGR1, (uint32_t)ConfigFastModePlus); -} - -/** - * @brief Disable the I2C fast mode plus driving capability. - * @param ConfigFastModePlus Selects the pin. - * This parameter can be one of the @ref I2CEx_FastModePlus values - * @note For I2C1, fast mode plus driving capability can be disabled on all selected - * I2C1 pins using I2C_FASTMODEPLUS_I2C1 parameter or independently - * on each one of the following pins PB6, PB7, PB8 and PB9. - * @note For remaining I2C1 pins (PA14, PA15...) fast mode plus driving capability - * can be disabled only by using I2C_FASTMODEPLUS_I2C1 parameter. - * @note For all I2C2 pins fast mode plus driving capability can be disabled - * only by using I2C_FASTMODEPLUS_I2C2 parameter. - * @retval None - */ -void HAL_I2CEx_DisableFastModePlus(uint32_t ConfigFastModePlus) -{ - /* Check the parameter */ - assert_param(IS_I2C_FASTMODEPLUS(ConfigFastModePlus)); - - /* Enable SYSCFG clock */ - __HAL_RCC_SYSCFG_CLK_ENABLE(); - - /* Disable fast mode plus driving capability for selected pin */ - CLEAR_BIT(SYSCFG->CFGR1, (uint32_t)ConfigFastModePlus); -} - -/** - * @} - */ - -/** - * @} - */ - -#endif /* HAL_I2C_MODULE_ENABLED */ -/** - * @} - */ - -/** - * @} - */ - -/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_i2s.c b/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_i2s.c deleted file mode 100644 index 55aff5e..0000000 --- a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_i2s.c +++ /dev/null @@ -1,1800 +0,0 @@ -/** - ****************************************************************************** - * @file stm32f0xx_hal_i2s.c - * @author MCD Application Team - * @brief I2S HAL module driver. - * This file provides firmware functions to manage the following - * functionalities of the Integrated Interchip Sound (I2S) peripheral: - * + Initialization and de-initialization functions - * + IO operation functions - * + Peripheral State and Errors functions - @verbatim - =============================================================================== - ##### How to use this driver ##### - =============================================================================== - [..] - The I2S HAL driver can be used as follow: - - (#) Declare a I2S_HandleTypeDef handle structure. - (#) Initialize the I2S low level resources by implement the HAL_I2S_MspInit() API: - (##) Enable the SPIx interface clock. - (##) I2S pins configuration: - (+++) Enable the clock for the I2S GPIOs. - (+++) Configure these I2S pins as alternate function pull-up. - (##) NVIC configuration if you need to use interrupt process (HAL_I2S_Transmit_IT() - and HAL_I2S_Receive_IT() APIs). - (+++) Configure the I2Sx interrupt priority. - (+++) Enable the NVIC I2S IRQ handle. - (##) DMA Configuration if you need to use DMA process (HAL_I2S_Transmit_DMA() - and HAL_I2S_Receive_DMA() APIs: - (+++) Declare a DMA handle structure for the Tx/Rx Stream/Channel. - (+++) Enable the DMAx interface clock. - (+++) Configure the declared DMA handle structure with the required Tx/Rx parameters. - (+++) Configure the DMA Tx/Rx Stream/Channel. - (+++) Associate the initialized DMA handle to the I2S DMA Tx/Rx handle. - (+++) Configure the priority and enable the NVIC for the transfer complete interrupt on the - DMA Tx/Rx Stream/Channel. - - (#) Program the Mode, Standard, Data Format, MCLK Output, Audio frequency and Polarity - using HAL_I2S_Init() function. - - -@- The specific I2S interrupts (Transmission complete interrupt, - RXNE interrupt and Error Interrupts) will be managed using the macros - __HAL_I2S_ENABLE_IT() and __HAL_I2S_DISABLE_IT() inside the transmit and receive process. - -@- Make sure that either: - (+@) External clock source is configured after setting correctly - the define constant EXTERNAL_CLOCK_VALUE in the stm32f0xx_hal_conf.h file. - - (#) Three mode of operations are available within this driver : - - *** Polling mode IO operation *** - ================================= - [..] - (+) Send an amount of data in blocking mode using HAL_I2S_Transmit() - (+) Receive an amount of data in blocking mode using HAL_I2S_Receive() - - *** Interrupt mode IO operation *** - =================================== - [..] - (+) Send an amount of data in non blocking mode using HAL_I2S_Transmit_IT() - (+) At transmission end of half transfer HAL_I2S_TxHalfCpltCallback is executed and user can - add his own code by customization of function pointer HAL_I2S_TxHalfCpltCallback - (+) At transmission end of transfer HAL_I2S_TxCpltCallback is executed and user can - add his own code by customization of function pointer HAL_I2S_TxCpltCallback - (+) Receive an amount of data in non blocking mode using HAL_I2S_Receive_IT() - (+) At reception end of half transfer HAL_I2S_RxHalfCpltCallback is executed and user can - add his own code by customization of function pointer HAL_I2S_RxHalfCpltCallback - (+) At reception end of transfer HAL_I2S_RxCpltCallback is executed and user can - add his own code by customization of function pointer HAL_I2S_RxCpltCallback - (+) In case of transfer Error, HAL_I2S_ErrorCallback() function is executed and user can - add his own code by customization of function pointer HAL_I2S_ErrorCallback - - *** DMA mode IO operation *** - ============================== - [..] - (+) Send an amount of data in non blocking mode (DMA) using HAL_I2S_Transmit_DMA() - (+) At transmission end of half transfer HAL_I2S_TxHalfCpltCallback is executed and user can - add his own code by customization of function pointer HAL_I2S_TxHalfCpltCallback - (+) At transmission end of transfer HAL_I2S_TxCpltCallback is executed and user can - add his own code by customization of function pointer HAL_I2S_TxCpltCallback - (+) Receive an amount of data in non blocking mode (DMA) using HAL_I2S_Receive_DMA() - (+) At reception end of half transfer HAL_I2S_RxHalfCpltCallback is executed and user can - add his own code by customization of function pointer HAL_I2S_RxHalfCpltCallback - (+) At reception end of transfer HAL_I2S_RxCpltCallback is executed and user can - add his own code by customization of function pointer HAL_I2S_RxCpltCallback - (+) In case of transfer Error, HAL_I2S_ErrorCallback() function is executed and user can - add his own code by customization of function pointer HAL_I2S_ErrorCallback - (+) Pause the DMA Transfer using HAL_I2S_DMAPause() - (+) Resume the DMA Transfer using HAL_I2S_DMAResume() - (+) Stop the DMA Transfer using HAL_I2S_DMAStop() - - *** I2S HAL driver macros list *** - =================================== - [..] - Below the list of most used macros in I2S HAL driver. - - (+) __HAL_I2S_ENABLE: Enable the specified SPI peripheral (in I2S mode) - (+) __HAL_I2S_DISABLE: Disable the specified SPI peripheral (in I2S mode) - (+) __HAL_I2S_ENABLE_IT : Enable the specified I2S interrupts - (+) __HAL_I2S_DISABLE_IT : Disable the specified I2S interrupts - (+) __HAL_I2S_GET_FLAG: Check whether the specified I2S flag is set or not - - [..] - (@) You can refer to the I2S HAL driver header file for more useful macros - - *** I2S HAL driver macros list *** - =================================== - [..] - Callback registration: - - (#) The compilation flag USE_HAL_I2S_REGISTER_CALLBACKS when set to 1U - allows the user to configure dynamically the driver callbacks. - Use Functions HAL_I2S_RegisterCallback() to register an interrupt callback. - - Function HAL_I2S_RegisterCallback() allows to register following callbacks: - (++) TxCpltCallback : I2S Tx Completed callback - (++) RxCpltCallback : I2S Rx Completed callback - (++) TxHalfCpltCallback : I2S Tx Half Completed callback - (++) RxHalfCpltCallback : I2S Rx Half Completed callback - (++) ErrorCallback : I2S Error callback - (++) MspInitCallback : I2S Msp Init callback - (++) MspDeInitCallback : I2S Msp DeInit callback - This function takes as parameters the HAL peripheral handle, the Callback ID - and a pointer to the user callback function. - - - (#) Use function HAL_I2S_UnRegisterCallback to reset a callback to the default - weak function. - HAL_I2S_UnRegisterCallback takes as parameters the HAL peripheral handle, - and the Callback ID. - This function allows to reset following callbacks: - (++) TxCpltCallback : I2S Tx Completed callback - (++) RxCpltCallback : I2S Rx Completed callback - (++) TxHalfCpltCallback : I2S Tx Half Completed callback - (++) RxHalfCpltCallback : I2S Rx Half Completed callback - (++) ErrorCallback : I2S Error callback - (++) MspInitCallback : I2S Msp Init callback - (++) MspDeInitCallback : I2S Msp DeInit callback - - [..] - By default, after the HAL_I2S_Init() and when the state is HAL_I2S_STATE_RESET - all callbacks are set to the corresponding weak functions: - examples HAL_I2S_MasterTxCpltCallback(), HAL_I2S_MasterRxCpltCallback(). - Exception done for MspInit and MspDeInit functions that are - reset to the legacy weak functions in the HAL_I2S_Init()/ HAL_I2S_DeInit() only when - these callbacks are null (not registered beforehand). - If MspInit or MspDeInit are not null, the HAL_I2S_Init()/ HAL_I2S_DeInit() - keep and use the user MspInit/MspDeInit callbacks (registered beforehand) whatever the state. - - [..] - Callbacks can be registered/unregistered in HAL_I2S_STATE_READY state only. - Exception done MspInit/MspDeInit functions that can be registered/unregistered - in HAL_I2S_STATE_READY or HAL_I2S_STATE_RESET state, - thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit. - Then, the user first registers the MspInit/MspDeInit user callbacks - using HAL_I2S_RegisterCallback() before calling HAL_I2S_DeInit() - or HAL_I2S_Init() function. - - [..] - When the compilation define USE_HAL_I2S_REGISTER_CALLBACKS is set to 0 or - not defined, the callback registering feature is not available - and weak (surcharged) callbacks are used. - - @endverbatim - ****************************************************************************** - * @attention - * - *

© Copyright (c) 2016 STMicroelectronics. - * All rights reserved.

- * - * This software component is licensed by ST under BSD 3-Clause license, - * the "License"; You may not use this file except in compliance with the - * License. You may obtain a copy of the License at: - * opensource.org/licenses/BSD-3-Clause - * - ****************************************************************************** - */ - -/* Includes ------------------------------------------------------------------*/ -#include "stm32f0xx_hal.h" - -#ifdef HAL_I2S_MODULE_ENABLED - -#if defined(SPI_I2S_SUPPORT) -/** @addtogroup STM32F0xx_HAL_Driver - * @{ - */ - -/** @defgroup I2S I2S - * @brief I2S HAL module driver - * @{ - */ - -/* Private typedef -----------------------------------------------------------*/ -/* Private define ------------------------------------------------------------*/ -/* Private macro -------------------------------------------------------------*/ -/* Private variables ---------------------------------------------------------*/ -/* Private function prototypes -----------------------------------------------*/ -/** @defgroup I2S_Private_Functions I2S Private Functions - * @{ - */ -static void I2S_DMATxCplt(DMA_HandleTypeDef *hdma); -static void I2S_DMATxHalfCplt(DMA_HandleTypeDef *hdma); -static void I2S_DMARxCplt(DMA_HandleTypeDef *hdma); -static void I2S_DMARxHalfCplt(DMA_HandleTypeDef *hdma); -static void I2S_DMAError(DMA_HandleTypeDef *hdma); -static void I2S_Transmit_IT(I2S_HandleTypeDef *hi2s); -static void I2S_Receive_IT(I2S_HandleTypeDef *hi2s); -static HAL_StatusTypeDef I2S_WaitFlagStateUntilTimeout(I2S_HandleTypeDef *hi2s, uint32_t Flag, FlagStatus State, - uint32_t Timeout); -/** - * @} - */ - -/* Exported functions ---------------------------------------------------------*/ - -/** @defgroup I2S_Exported_Functions I2S Exported Functions - * @{ - */ - -/** @defgroup I2S_Exported_Functions_Group1 Initialization and de-initialization functions - * @brief Initialization and Configuration functions - * -@verbatim - =============================================================================== - ##### Initialization and de-initialization functions ##### - =============================================================================== - [..] This subsection provides a set of functions allowing to initialize and - de-initialize the I2Sx peripheral in simplex mode: - - (+) User must Implement HAL_I2S_MspInit() function in which he configures - all related peripherals resources (CLOCK, GPIO, DMA, IT and NVIC ). - - (+) Call the function HAL_I2S_Init() to configure the selected device with - the selected configuration: - (++) Mode - (++) Standard - (++) Data Format - (++) MCLK Output - (++) Audio frequency - (++) Polarity - - (+) Call the function HAL_I2S_DeInit() to restore the default configuration - of the selected I2Sx peripheral. - @endverbatim - * @{ - */ - -/** - * @brief Initializes the I2S according to the specified parameters - * in the I2S_InitTypeDef and create the associated handle. - * @param hi2s pointer to a I2S_HandleTypeDef structure that contains - * the configuration information for I2S module - * @retval HAL status - */ -HAL_StatusTypeDef HAL_I2S_Init(I2S_HandleTypeDef *hi2s) -{ - uint32_t i2sdiv; - uint32_t i2sodd; - uint32_t packetlength; - uint32_t tmp; - uint32_t i2sclk; - - /* Check the I2S handle allocation */ - if (hi2s == NULL) - { - return HAL_ERROR; - } - - /* Check the I2S parameters */ - assert_param(IS_I2S_ALL_INSTANCE(hi2s->Instance)); - assert_param(IS_I2S_MODE(hi2s->Init.Mode)); - assert_param(IS_I2S_STANDARD(hi2s->Init.Standard)); - assert_param(IS_I2S_DATA_FORMAT(hi2s->Init.DataFormat)); - assert_param(IS_I2S_MCLK_OUTPUT(hi2s->Init.MCLKOutput)); - assert_param(IS_I2S_AUDIO_FREQ(hi2s->Init.AudioFreq)); - assert_param(IS_I2S_CPOL(hi2s->Init.CPOL)); - - if (hi2s->State == HAL_I2S_STATE_RESET) - { - /* Allocate lock resource and initialize it */ - hi2s->Lock = HAL_UNLOCKED; - -#if (USE_HAL_I2S_REGISTER_CALLBACKS == 1U) - /* Init the I2S Callback settings */ - hi2s->TxCpltCallback = HAL_I2S_TxCpltCallback; /* Legacy weak TxCpltCallback */ - hi2s->RxCpltCallback = HAL_I2S_RxCpltCallback; /* Legacy weak RxCpltCallback */ - hi2s->TxHalfCpltCallback = HAL_I2S_TxHalfCpltCallback; /* Legacy weak TxHalfCpltCallback */ - hi2s->RxHalfCpltCallback = HAL_I2S_RxHalfCpltCallback; /* Legacy weak RxHalfCpltCallback */ - hi2s->ErrorCallback = HAL_I2S_ErrorCallback; /* Legacy weak ErrorCallback */ - - if (hi2s->MspInitCallback == NULL) - { - hi2s->MspInitCallback = HAL_I2S_MspInit; /* Legacy weak MspInit */ - } - - /* Init the low level hardware : GPIO, CLOCK, NVIC... */ - hi2s->MspInitCallback(hi2s); -#else - /* Init the low level hardware : GPIO, CLOCK, CORTEX...etc */ - HAL_I2S_MspInit(hi2s); -#endif /* USE_HAL_I2S_REGISTER_CALLBACKS */ - } - - hi2s->State = HAL_I2S_STATE_BUSY; - - /*----------------------- SPIx I2SCFGR & I2SPR Configuration ----------------*/ - /* Clear I2SMOD, I2SE, I2SCFG, PCMSYNC, I2SSTD, CKPOL, DATLEN and CHLEN bits */ - CLEAR_BIT(hi2s->Instance->I2SCFGR, (SPI_I2SCFGR_CHLEN | SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CKPOL | \ - SPI_I2SCFGR_I2SSTD | SPI_I2SCFGR_PCMSYNC | SPI_I2SCFGR_I2SCFG | \ - SPI_I2SCFGR_I2SE | SPI_I2SCFGR_I2SMOD)); - hi2s->Instance->I2SPR = 0x0002U; - - /*----------------------- I2SPR: I2SDIV and ODD Calculation -----------------*/ - /* If the requested audio frequency is not the default, compute the prescaler */ - if (hi2s->Init.AudioFreq != I2S_AUDIOFREQ_DEFAULT) - { - /* Check the frame length (For the Prescaler computing) ********************/ - if (hi2s->Init.DataFormat == I2S_DATAFORMAT_16B) - { - /* Packet length is 16 bits */ - packetlength = 16U; - } - else - { - /* Packet length is 32 bits */ - packetlength = 32U; - } - - /* I2S standard */ - if (hi2s->Init.Standard <= I2S_STANDARD_LSB) - { - /* In I2S standard packet lenght is multiplied by 2 */ - packetlength = packetlength * 2U; - } - - /* Get the source clock value: based on System Clock value */ - i2sclk = HAL_RCC_GetSysClockFreq(); - - /* Compute the Real divider depending on the MCLK output state, with a floating point */ - if (hi2s->Init.MCLKOutput == I2S_MCLKOUTPUT_ENABLE) - { - /* MCLK output is enabled */ - if (hi2s->Init.DataFormat != I2S_DATAFORMAT_16B) - { - tmp = (uint32_t)(((((i2sclk / (packetlength * 4U)) * 10U) / hi2s->Init.AudioFreq)) + 5U); - } - else - { - tmp = (uint32_t)(((((i2sclk / (packetlength * 8U)) * 10U) / hi2s->Init.AudioFreq)) + 5U); - } - } - else - { - /* MCLK output is disabled */ - tmp = (uint32_t)(((((i2sclk / packetlength) * 10U) / hi2s->Init.AudioFreq)) + 5U); - } - - /* Remove the flatting point */ - tmp = tmp / 10U; - - /* Check the parity of the divider */ - i2sodd = (uint32_t)(tmp & (uint32_t)1U); - - /* Compute the i2sdiv prescaler */ - i2sdiv = (uint32_t)((tmp - i2sodd) / 2U); - - /* Get the Mask for the Odd bit (SPI_I2SPR[8]) register */ - i2sodd = (uint32_t)(i2sodd << 8U); - } - else - { - /* Set the default values */ - i2sdiv = 2U; - i2sodd = 0U; - } - - /* Test if the divider is 1 or 0 or greater than 0xFF */ - if ((i2sdiv < 2U) || (i2sdiv > 0xFFU)) - { - /* Set the error code and execute error callback*/ - SET_BIT(hi2s->ErrorCode, HAL_I2S_ERROR_PRESCALER); - return HAL_ERROR; - } - - /*----------------------- SPIx I2SCFGR & I2SPR Configuration ----------------*/ - - /* Write to SPIx I2SPR register the computed value */ - hi2s->Instance->I2SPR = (uint32_t)((uint32_t)i2sdiv | (uint32_t)(i2sodd | (uint32_t)hi2s->Init.MCLKOutput)); - - /* Clear I2SMOD, I2SE, I2SCFG, PCMSYNC, I2SSTD, CKPOL, DATLEN and CHLEN bits */ - /* And configure the I2S with the I2S_InitStruct values */ - MODIFY_REG(hi2s->Instance->I2SCFGR, (SPI_I2SCFGR_CHLEN | SPI_I2SCFGR_DATLEN | \ - SPI_I2SCFGR_CKPOL | SPI_I2SCFGR_I2SSTD | \ - SPI_I2SCFGR_PCMSYNC | SPI_I2SCFGR_I2SCFG | \ - SPI_I2SCFGR_I2SE | SPI_I2SCFGR_I2SMOD), \ - (SPI_I2SCFGR_I2SMOD | hi2s->Init.Mode | \ - hi2s->Init.Standard | hi2s->Init.DataFormat | \ - hi2s->Init.CPOL)); - -#if defined(SPI_I2SCFGR_ASTRTEN) - if ((hi2s->Init.Standard == I2S_STANDARD_PCM_SHORT) || ((hi2s->Init.Standard == I2S_STANDARD_PCM_LONG))) - { - /* Write to SPIx I2SCFGR */ - SET_BIT(hi2s->Instance->I2SCFGR, SPI_I2SCFGR_ASTRTEN); - } -#endif /* SPI_I2SCFGR_ASTRTEN */ - - hi2s->ErrorCode = HAL_I2S_ERROR_NONE; - hi2s->State = HAL_I2S_STATE_READY; - - return HAL_OK; -} - -/** - * @brief DeInitializes the I2S peripheral - * @param hi2s pointer to a I2S_HandleTypeDef structure that contains - * the configuration information for I2S module - * @retval HAL status - */ -HAL_StatusTypeDef HAL_I2S_DeInit(I2S_HandleTypeDef *hi2s) -{ - /* Check the I2S handle allocation */ - if (hi2s == NULL) - { - return HAL_ERROR; - } - - /* Check the parameters */ - assert_param(IS_I2S_ALL_INSTANCE(hi2s->Instance)); - - hi2s->State = HAL_I2S_STATE_BUSY; - - /* Disable the I2S Peripheral Clock */ - __HAL_I2S_DISABLE(hi2s); - -#if (USE_HAL_I2S_REGISTER_CALLBACKS == 1U) - if (hi2s->MspDeInitCallback == NULL) - { - hi2s->MspDeInitCallback = HAL_I2S_MspDeInit; /* Legacy weak MspDeInit */ - } - - /* DeInit the low level hardware: GPIO, CLOCK, NVIC... */ - hi2s->MspDeInitCallback(hi2s); -#else - /* DeInit the low level hardware: GPIO, CLOCK, NVIC... */ - HAL_I2S_MspDeInit(hi2s); -#endif /* USE_HAL_I2S_REGISTER_CALLBACKS */ - - hi2s->ErrorCode = HAL_I2S_ERROR_NONE; - hi2s->State = HAL_I2S_STATE_RESET; - - /* Release Lock */ - __HAL_UNLOCK(hi2s); - - return HAL_OK; -} - -/** - * @brief I2S MSP Init - * @param hi2s pointer to a I2S_HandleTypeDef structure that contains - * the configuration information for I2S module - * @retval None - */ -__weak void HAL_I2S_MspInit(I2S_HandleTypeDef *hi2s) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hi2s); - - /* NOTE : This function Should not be modified, when the callback is needed, - the HAL_I2S_MspInit could be implemented in the user file - */ -} - -/** - * @brief I2S MSP DeInit - * @param hi2s pointer to a I2S_HandleTypeDef structure that contains - * the configuration information for I2S module - * @retval None - */ -__weak void HAL_I2S_MspDeInit(I2S_HandleTypeDef *hi2s) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hi2s); - - /* NOTE : This function Should not be modified, when the callback is needed, - the HAL_I2S_MspDeInit could be implemented in the user file - */ -} - -#if (USE_HAL_I2S_REGISTER_CALLBACKS == 1U) -/** - * @brief Register a User I2S Callback - * To be used instead of the weak predefined callback - * @param hi2s Pointer to a I2S_HandleTypeDef structure that contains - * the configuration information for the specified I2S. - * @param CallbackID ID of the callback to be registered - * @param pCallback pointer to the Callback function - * @retval HAL status - */ -HAL_StatusTypeDef HAL_I2S_RegisterCallback(I2S_HandleTypeDef *hi2s, HAL_I2S_CallbackIDTypeDef CallbackID, - pI2S_CallbackTypeDef pCallback) -{ - HAL_StatusTypeDef status = HAL_OK; - - if (pCallback == NULL) - { - /* Update the error code */ - hi2s->ErrorCode |= HAL_I2S_ERROR_INVALID_CALLBACK; - - return HAL_ERROR; - } - /* Process locked */ - __HAL_LOCK(hi2s); - - if (HAL_I2S_STATE_READY == hi2s->State) - { - switch (CallbackID) - { - case HAL_I2S_TX_COMPLETE_CB_ID : - hi2s->TxCpltCallback = pCallback; - break; - - case HAL_I2S_RX_COMPLETE_CB_ID : - hi2s->RxCpltCallback = pCallback; - break; - - case HAL_I2S_TX_HALF_COMPLETE_CB_ID : - hi2s->TxHalfCpltCallback = pCallback; - break; - - case HAL_I2S_RX_HALF_COMPLETE_CB_ID : - hi2s->RxHalfCpltCallback = pCallback; - break; - - case HAL_I2S_ERROR_CB_ID : - hi2s->ErrorCallback = pCallback; - break; - - case HAL_I2S_MSPINIT_CB_ID : - hi2s->MspInitCallback = pCallback; - break; - - case HAL_I2S_MSPDEINIT_CB_ID : - hi2s->MspDeInitCallback = pCallback; - break; - - default : - /* Update the error code */ - SET_BIT(hi2s->ErrorCode, HAL_I2S_ERROR_INVALID_CALLBACK); - - /* Return error status */ - status = HAL_ERROR; - break; - } - } - else if (HAL_I2S_STATE_RESET == hi2s->State) - { - switch (CallbackID) - { - case HAL_I2S_MSPINIT_CB_ID : - hi2s->MspInitCallback = pCallback; - break; - - case HAL_I2S_MSPDEINIT_CB_ID : - hi2s->MspDeInitCallback = pCallback; - break; - - default : - /* Update the error code */ - SET_BIT(hi2s->ErrorCode, HAL_I2S_ERROR_INVALID_CALLBACK); - - /* Return error status */ - status = HAL_ERROR; - break; - } - } - else - { - /* Update the error code */ - SET_BIT(hi2s->ErrorCode, HAL_I2S_ERROR_INVALID_CALLBACK); - - /* Return error status */ - status = HAL_ERROR; - } - - /* Release Lock */ - __HAL_UNLOCK(hi2s); - return status; -} - -/** - * @brief Unregister an I2S Callback - * I2S callback is redirected to the weak predefined callback - * @param hi2s Pointer to a I2S_HandleTypeDef structure that contains - * the configuration information for the specified I2S. - * @param CallbackID ID of the callback to be unregistered - * @retval HAL status - */ -HAL_StatusTypeDef HAL_I2S_UnRegisterCallback(I2S_HandleTypeDef *hi2s, HAL_I2S_CallbackIDTypeDef CallbackID) -{ - HAL_StatusTypeDef status = HAL_OK; - - /* Process locked */ - __HAL_LOCK(hi2s); - - if (HAL_I2S_STATE_READY == hi2s->State) - { - switch (CallbackID) - { - case HAL_I2S_TX_COMPLETE_CB_ID : - hi2s->TxCpltCallback = HAL_I2S_TxCpltCallback; /* Legacy weak TxCpltCallback */ - break; - - case HAL_I2S_RX_COMPLETE_CB_ID : - hi2s->RxCpltCallback = HAL_I2S_RxCpltCallback; /* Legacy weak RxCpltCallback */ - break; - - case HAL_I2S_TX_HALF_COMPLETE_CB_ID : - hi2s->TxHalfCpltCallback = HAL_I2S_TxHalfCpltCallback; /* Legacy weak TxHalfCpltCallback */ - break; - - case HAL_I2S_RX_HALF_COMPLETE_CB_ID : - hi2s->RxHalfCpltCallback = HAL_I2S_RxHalfCpltCallback; /* Legacy weak RxHalfCpltCallback */ - break; - - case HAL_I2S_ERROR_CB_ID : - hi2s->ErrorCallback = HAL_I2S_ErrorCallback; /* Legacy weak ErrorCallback */ - break; - - case HAL_I2S_MSPINIT_CB_ID : - hi2s->MspInitCallback = HAL_I2S_MspInit; /* Legacy weak MspInit */ - break; - - case HAL_I2S_MSPDEINIT_CB_ID : - hi2s->MspDeInitCallback = HAL_I2S_MspDeInit; /* Legacy weak MspDeInit */ - break; - - default : - /* Update the error code */ - SET_BIT(hi2s->ErrorCode, HAL_I2S_ERROR_INVALID_CALLBACK); - - /* Return error status */ - status = HAL_ERROR; - break; - } - } - else if (HAL_I2S_STATE_RESET == hi2s->State) - { - switch (CallbackID) - { - case HAL_I2S_MSPINIT_CB_ID : - hi2s->MspInitCallback = HAL_I2S_MspInit; /* Legacy weak MspInit */ - break; - - case HAL_I2S_MSPDEINIT_CB_ID : - hi2s->MspDeInitCallback = HAL_I2S_MspDeInit; /* Legacy weak MspDeInit */ - break; - - default : - /* Update the error code */ - SET_BIT(hi2s->ErrorCode, HAL_I2S_ERROR_INVALID_CALLBACK); - - /* Return error status */ - status = HAL_ERROR; - break; - } - } - else - { - /* Update the error code */ - SET_BIT(hi2s->ErrorCode, HAL_I2S_ERROR_INVALID_CALLBACK); - - /* Return error status */ - status = HAL_ERROR; - } - - /* Release Lock */ - __HAL_UNLOCK(hi2s); - return status; -} -#endif /* USE_HAL_I2S_REGISTER_CALLBACKS */ -/** - * @} - */ - -/** @defgroup I2S_Exported_Functions_Group2 IO operation functions - * @brief Data transfers functions - * -@verbatim - =============================================================================== - ##### IO operation functions ##### - =============================================================================== - [..] - This subsection provides a set of functions allowing to manage the I2S data - transfers. - - (#) There are two modes of transfer: - (++) Blocking mode : The communication is performed in the polling mode. - The status of all data processing is returned by the same function - after finishing transfer. - (++) No-Blocking mode : The communication is performed using Interrupts - or DMA. These functions return the status of the transfer startup. - The end of the data processing will be indicated through the - dedicated I2S IRQ when using Interrupt mode or the DMA IRQ when - using DMA mode. - - (#) Blocking mode functions are : - (++) HAL_I2S_Transmit() - (++) HAL_I2S_Receive() - - (#) No-Blocking mode functions with Interrupt are : - (++) HAL_I2S_Transmit_IT() - (++) HAL_I2S_Receive_IT() - - (#) No-Blocking mode functions with DMA are : - (++) HAL_I2S_Transmit_DMA() - (++) HAL_I2S_Receive_DMA() - - (#) A set of Transfer Complete Callbacks are provided in non Blocking mode: - (++) HAL_I2S_TxCpltCallback() - (++) HAL_I2S_RxCpltCallback() - (++) HAL_I2S_ErrorCallback() - -@endverbatim - * @{ - */ - -/** - * @brief Transmit an amount of data in blocking mode - * @param hi2s pointer to a I2S_HandleTypeDef structure that contains - * the configuration information for I2S module - * @param pData a 16-bit pointer to data buffer. - * @param Size number of data sample to be sent: - * @note When a 16-bit data frame or a 16-bit data frame extended is selected during the I2S - * configuration phase, the Size parameter means the number of 16-bit data length - * in the transaction and when a 24-bit data frame or a 32-bit data frame is selected - * the Size parameter means the number of 16-bit data length. - * @param Timeout Timeout duration - * @note The I2S is kept enabled at the end of transaction to avoid the clock de-synchronization - * between Master and Slave(example: audio streaming). - * @retval HAL status - */ -HAL_StatusTypeDef HAL_I2S_Transmit(I2S_HandleTypeDef *hi2s, uint16_t *pData, uint16_t Size, uint32_t Timeout) -{ - uint32_t tmpreg_cfgr; - - if ((pData == NULL) || (Size == 0U)) - { - return HAL_ERROR; - } - - /* Process Locked */ - __HAL_LOCK(hi2s); - - if (hi2s->State != HAL_I2S_STATE_READY) - { - __HAL_UNLOCK(hi2s); - return HAL_BUSY; - } - - /* Set state and reset error code */ - hi2s->State = HAL_I2S_STATE_BUSY_TX; - hi2s->ErrorCode = HAL_I2S_ERROR_NONE; - hi2s->pTxBuffPtr = pData; - - tmpreg_cfgr = hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN); - - if ((tmpreg_cfgr == I2S_DATAFORMAT_24B) || (tmpreg_cfgr == I2S_DATAFORMAT_32B)) - { - hi2s->TxXferSize = (Size << 1U); - hi2s->TxXferCount = (Size << 1U); - } - else - { - hi2s->TxXferSize = Size; - hi2s->TxXferCount = Size; - } - - tmpreg_cfgr = hi2s->Instance->I2SCFGR; - - /* Check if the I2S is already enabled */ - if ((hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SE) != SPI_I2SCFGR_I2SE) - { - /* Enable I2S peripheral */ - __HAL_I2S_ENABLE(hi2s); - } - - /* Wait until TXE flag is set */ - if (I2S_WaitFlagStateUntilTimeout(hi2s, I2S_FLAG_TXE, SET, Timeout) != HAL_OK) - { - /* Set the error code */ - SET_BIT(hi2s->ErrorCode, HAL_I2S_ERROR_TIMEOUT); - hi2s->State = HAL_I2S_STATE_READY; - __HAL_UNLOCK(hi2s); - return HAL_ERROR; - } - - while (hi2s->TxXferCount > 0U) - { - hi2s->Instance->DR = (*hi2s->pTxBuffPtr); - hi2s->pTxBuffPtr++; - hi2s->TxXferCount--; - - /* Wait until TXE flag is set */ - if (I2S_WaitFlagStateUntilTimeout(hi2s, I2S_FLAG_TXE, SET, Timeout) != HAL_OK) - { - /* Set the error code */ - SET_BIT(hi2s->ErrorCode, HAL_I2S_ERROR_TIMEOUT); - hi2s->State = HAL_I2S_STATE_READY; - __HAL_UNLOCK(hi2s); - return HAL_ERROR; - } - - /* Check if an underrun occurs */ - if (__HAL_I2S_GET_FLAG(hi2s, I2S_FLAG_UDR) == SET) - { - /* Clear underrun flag */ - __HAL_I2S_CLEAR_UDRFLAG(hi2s); - - /* Set the error code */ - SET_BIT(hi2s->ErrorCode, HAL_I2S_ERROR_UDR); - } - } - - /* Check if Slave mode is selected */ - if (((tmpreg_cfgr & SPI_I2SCFGR_I2SCFG) == I2S_MODE_SLAVE_TX) - || ((tmpreg_cfgr & SPI_I2SCFGR_I2SCFG) == I2S_MODE_SLAVE_RX)) - { - /* Wait until Busy flag is reset */ - if (I2S_WaitFlagStateUntilTimeout(hi2s, I2S_FLAG_BSY, RESET, Timeout) != HAL_OK) - { - /* Set the error code */ - SET_BIT(hi2s->ErrorCode, HAL_I2S_ERROR_TIMEOUT); - hi2s->State = HAL_I2S_STATE_READY; - __HAL_UNLOCK(hi2s); - return HAL_ERROR; - } - } - - hi2s->State = HAL_I2S_STATE_READY; - __HAL_UNLOCK(hi2s); - return HAL_OK; -} - -/** - * @brief Receive an amount of data in blocking mode - * @param hi2s pointer to a I2S_HandleTypeDef structure that contains - * the configuration information for I2S module - * @param pData a 16-bit pointer to data buffer. - * @param Size number of data sample to be sent: - * @note When a 16-bit data frame or a 16-bit data frame extended is selected during the I2S - * configuration phase, the Size parameter means the number of 16-bit data length - * in the transaction and when a 24-bit data frame or a 32-bit data frame is selected - * the Size parameter means the number of 16-bit data length. - * @param Timeout Timeout duration - * @note The I2S is kept enabled at the end of transaction to avoid the clock de-synchronization - * between Master and Slave(example: audio streaming). - * @note In I2S Master Receiver mode, just after enabling the peripheral the clock will be generate - * in continuous way and as the I2S is not disabled at the end of the I2S transaction. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_I2S_Receive(I2S_HandleTypeDef *hi2s, uint16_t *pData, uint16_t Size, uint32_t Timeout) -{ - uint32_t tmpreg_cfgr; - - if ((pData == NULL) || (Size == 0U)) - { - return HAL_ERROR; - } - - /* Process Locked */ - __HAL_LOCK(hi2s); - - if (hi2s->State != HAL_I2S_STATE_READY) - { - __HAL_UNLOCK(hi2s); - return HAL_BUSY; - } - - /* Set state and reset error code */ - hi2s->State = HAL_I2S_STATE_BUSY_RX; - hi2s->ErrorCode = HAL_I2S_ERROR_NONE; - hi2s->pRxBuffPtr = pData; - - tmpreg_cfgr = hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN); - - if ((tmpreg_cfgr == I2S_DATAFORMAT_24B) || (tmpreg_cfgr == I2S_DATAFORMAT_32B)) - { - hi2s->RxXferSize = (Size << 1U); - hi2s->RxXferCount = (Size << 1U); - } - else - { - hi2s->RxXferSize = Size; - hi2s->RxXferCount = Size; - } - - /* Check if the I2S is already enabled */ - if ((hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SE) != SPI_I2SCFGR_I2SE) - { - /* Enable I2S peripheral */ - __HAL_I2S_ENABLE(hi2s); - } - - /* Check if Master Receiver mode is selected */ - if ((hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG) == I2S_MODE_MASTER_RX) - { - /* Clear the Overrun Flag by a read operation on the SPI_DR register followed by a read - access to the SPI_SR register. */ - __HAL_I2S_CLEAR_OVRFLAG(hi2s); - } - - /* Receive data */ - while (hi2s->RxXferCount > 0U) - { - /* Wait until RXNE flag is set */ - if (I2S_WaitFlagStateUntilTimeout(hi2s, I2S_FLAG_RXNE, SET, Timeout) != HAL_OK) - { - /* Set the error code */ - SET_BIT(hi2s->ErrorCode, HAL_I2S_ERROR_TIMEOUT); - hi2s->State = HAL_I2S_STATE_READY; - __HAL_UNLOCK(hi2s); - return HAL_ERROR; - } - - (*hi2s->pRxBuffPtr) = (uint16_t)hi2s->Instance->DR; - hi2s->pRxBuffPtr++; - hi2s->RxXferCount--; - - /* Check if an overrun occurs */ - if (__HAL_I2S_GET_FLAG(hi2s, I2S_FLAG_OVR) == SET) - { - /* Clear overrun flag */ - __HAL_I2S_CLEAR_OVRFLAG(hi2s); - - /* Set the error code */ - SET_BIT(hi2s->ErrorCode, HAL_I2S_ERROR_OVR); - } - } - - hi2s->State = HAL_I2S_STATE_READY; - __HAL_UNLOCK(hi2s); - return HAL_OK; -} - -/** - * @brief Transmit an amount of data in non-blocking mode with Interrupt - * @param hi2s pointer to a I2S_HandleTypeDef structure that contains - * the configuration information for I2S module - * @param pData a 16-bit pointer to data buffer. - * @param Size number of data sample to be sent: - * @note When a 16-bit data frame or a 16-bit data frame extended is selected during the I2S - * configuration phase, the Size parameter means the number of 16-bit data length - * in the transaction and when a 24-bit data frame or a 32-bit data frame is selected - * the Size parameter means the number of 16-bit data length. - * @note The I2S is kept enabled at the end of transaction to avoid the clock de-synchronization - * between Master and Slave(example: audio streaming). - * @retval HAL status - */ -HAL_StatusTypeDef HAL_I2S_Transmit_IT(I2S_HandleTypeDef *hi2s, uint16_t *pData, uint16_t Size) -{ - uint32_t tmpreg_cfgr; - - if ((pData == NULL) || (Size == 0U)) - { - return HAL_ERROR; - } - - /* Process Locked */ - __HAL_LOCK(hi2s); - - if (hi2s->State != HAL_I2S_STATE_READY) - { - __HAL_UNLOCK(hi2s); - return HAL_BUSY; - } - - /* Set state and reset error code */ - hi2s->State = HAL_I2S_STATE_BUSY_TX; - hi2s->ErrorCode = HAL_I2S_ERROR_NONE; - hi2s->pTxBuffPtr = pData; - - tmpreg_cfgr = hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN); - - if ((tmpreg_cfgr == I2S_DATAFORMAT_24B) || (tmpreg_cfgr == I2S_DATAFORMAT_32B)) - { - hi2s->TxXferSize = (Size << 1U); - hi2s->TxXferCount = (Size << 1U); - } - else - { - hi2s->TxXferSize = Size; - hi2s->TxXferCount = Size; - } - - /* Enable TXE and ERR interrupt */ - __HAL_I2S_ENABLE_IT(hi2s, (I2S_IT_TXE | I2S_IT_ERR)); - - /* Check if the I2S is already enabled */ - if ((hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SE) != SPI_I2SCFGR_I2SE) - { - /* Enable I2S peripheral */ - __HAL_I2S_ENABLE(hi2s); - } - - __HAL_UNLOCK(hi2s); - return HAL_OK; -} - -/** - * @brief Receive an amount of data in non-blocking mode with Interrupt - * @param hi2s pointer to a I2S_HandleTypeDef structure that contains - * the configuration information for I2S module - * @param pData a 16-bit pointer to the Receive data buffer. - * @param Size number of data sample to be sent: - * @note When a 16-bit data frame or a 16-bit data frame extended is selected during the I2S - * configuration phase, the Size parameter means the number of 16-bit data length - * in the transaction and when a 24-bit data frame or a 32-bit data frame is selected - * the Size parameter means the number of 16-bit data length. - * @note The I2S is kept enabled at the end of transaction to avoid the clock de-synchronization - * between Master and Slave(example: audio streaming). - * @note It is recommended to use DMA for the I2S receiver to avoid de-synchronization - * between Master and Slave otherwise the I2S interrupt should be optimized. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_I2S_Receive_IT(I2S_HandleTypeDef *hi2s, uint16_t *pData, uint16_t Size) -{ - uint32_t tmpreg_cfgr; - - if ((pData == NULL) || (Size == 0U)) - { - return HAL_ERROR; - } - - /* Process Locked */ - __HAL_LOCK(hi2s); - - if (hi2s->State != HAL_I2S_STATE_READY) - { - __HAL_UNLOCK(hi2s); - return HAL_BUSY; - } - - /* Set state and reset error code */ - hi2s->State = HAL_I2S_STATE_BUSY_RX; - hi2s->ErrorCode = HAL_I2S_ERROR_NONE; - hi2s->pRxBuffPtr = pData; - - tmpreg_cfgr = hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN); - - if ((tmpreg_cfgr == I2S_DATAFORMAT_24B) || (tmpreg_cfgr == I2S_DATAFORMAT_32B)) - { - hi2s->RxXferSize = (Size << 1U); - hi2s->RxXferCount = (Size << 1U); - } - else - { - hi2s->RxXferSize = Size; - hi2s->RxXferCount = Size; - } - - /* Enable RXNE and ERR interrupt */ - __HAL_I2S_ENABLE_IT(hi2s, (I2S_IT_RXNE | I2S_IT_ERR)); - - /* Check if the I2S is already enabled */ - if ((hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SE) != SPI_I2SCFGR_I2SE) - { - /* Enable I2S peripheral */ - __HAL_I2S_ENABLE(hi2s); - } - - __HAL_UNLOCK(hi2s); - return HAL_OK; -} - -/** - * @brief Transmit an amount of data in non-blocking mode with DMA - * @param hi2s pointer to a I2S_HandleTypeDef structure that contains - * the configuration information for I2S module - * @param pData a 16-bit pointer to the Transmit data buffer. - * @param Size number of data sample to be sent: - * @note When a 16-bit data frame or a 16-bit data frame extended is selected during the I2S - * configuration phase, the Size parameter means the number of 16-bit data length - * in the transaction and when a 24-bit data frame or a 32-bit data frame is selected - * the Size parameter means the number of 16-bit data length. - * @note The I2S is kept enabled at the end of transaction to avoid the clock de-synchronization - * between Master and Slave(example: audio streaming). - * @retval HAL status - */ -HAL_StatusTypeDef HAL_I2S_Transmit_DMA(I2S_HandleTypeDef *hi2s, uint16_t *pData, uint16_t Size) -{ - uint32_t tmpreg_cfgr; - - if ((pData == NULL) || (Size == 0U)) - { - return HAL_ERROR; - } - - /* Process Locked */ - __HAL_LOCK(hi2s); - - if (hi2s->State != HAL_I2S_STATE_READY) - { - __HAL_UNLOCK(hi2s); - return HAL_BUSY; - } - - /* Set state and reset error code */ - hi2s->State = HAL_I2S_STATE_BUSY_TX; - hi2s->ErrorCode = HAL_I2S_ERROR_NONE; - hi2s->pTxBuffPtr = pData; - - tmpreg_cfgr = hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN); - - if ((tmpreg_cfgr == I2S_DATAFORMAT_24B) || (tmpreg_cfgr == I2S_DATAFORMAT_32B)) - { - hi2s->TxXferSize = (Size << 1U); - hi2s->TxXferCount = (Size << 1U); - } - else - { - hi2s->TxXferSize = Size; - hi2s->TxXferCount = Size; - } - - /* Set the I2S Tx DMA Half transfer complete callback */ - hi2s->hdmatx->XferHalfCpltCallback = I2S_DMATxHalfCplt; - - /* Set the I2S Tx DMA transfer complete callback */ - hi2s->hdmatx->XferCpltCallback = I2S_DMATxCplt; - - /* Set the DMA error callback */ - hi2s->hdmatx->XferErrorCallback = I2S_DMAError; - - /* Enable the Tx DMA Stream/Channel */ - if (HAL_OK != HAL_DMA_Start_IT(hi2s->hdmatx, - (uint32_t)hi2s->pTxBuffPtr, - (uint32_t)&hi2s->Instance->DR, - hi2s->TxXferSize)) - { - /* Update SPI error code */ - SET_BIT(hi2s->ErrorCode, HAL_I2S_ERROR_DMA); - hi2s->State = HAL_I2S_STATE_READY; - - __HAL_UNLOCK(hi2s); - return HAL_ERROR; - } - - /* Check if the I2S is already enabled */ - if (HAL_IS_BIT_CLR(hi2s->Instance->I2SCFGR, SPI_I2SCFGR_I2SE)) - { - /* Enable I2S peripheral */ - __HAL_I2S_ENABLE(hi2s); - } - - /* Check if the I2S Tx request is already enabled */ - if (HAL_IS_BIT_CLR(hi2s->Instance->CR2, SPI_CR2_TXDMAEN)) - { - /* Enable Tx DMA Request */ - SET_BIT(hi2s->Instance->CR2, SPI_CR2_TXDMAEN); - } - - __HAL_UNLOCK(hi2s); - return HAL_OK; -} - -/** - * @brief Receive an amount of data in non-blocking mode with DMA - * @param hi2s pointer to a I2S_HandleTypeDef structure that contains - * the configuration information for I2S module - * @param pData a 16-bit pointer to the Receive data buffer. - * @param Size number of data sample to be sent: - * @note When a 16-bit data frame or a 16-bit data frame extended is selected during the I2S - * configuration phase, the Size parameter means the number of 16-bit data length - * in the transaction and when a 24-bit data frame or a 32-bit data frame is selected - * the Size parameter means the number of 16-bit data length. - * @note The I2S is kept enabled at the end of transaction to avoid the clock de-synchronization - * between Master and Slave(example: audio streaming). - * @retval HAL status - */ -HAL_StatusTypeDef HAL_I2S_Receive_DMA(I2S_HandleTypeDef *hi2s, uint16_t *pData, uint16_t Size) -{ - uint32_t tmpreg_cfgr; - - if ((pData == NULL) || (Size == 0U)) - { - return HAL_ERROR; - } - - /* Process Locked */ - __HAL_LOCK(hi2s); - - if (hi2s->State != HAL_I2S_STATE_READY) - { - __HAL_UNLOCK(hi2s); - return HAL_BUSY; - } - - /* Set state and reset error code */ - hi2s->State = HAL_I2S_STATE_BUSY_RX; - hi2s->ErrorCode = HAL_I2S_ERROR_NONE; - hi2s->pRxBuffPtr = pData; - - tmpreg_cfgr = hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN); - - if ((tmpreg_cfgr == I2S_DATAFORMAT_24B) || (tmpreg_cfgr == I2S_DATAFORMAT_32B)) - { - hi2s->RxXferSize = (Size << 1U); - hi2s->RxXferCount = (Size << 1U); - } - else - { - hi2s->RxXferSize = Size; - hi2s->RxXferCount = Size; - } - - /* Set the I2S Rx DMA Half transfer complete callback */ - hi2s->hdmarx->XferHalfCpltCallback = I2S_DMARxHalfCplt; - - /* Set the I2S Rx DMA transfer complete callback */ - hi2s->hdmarx->XferCpltCallback = I2S_DMARxCplt; - - /* Set the DMA error callback */ - hi2s->hdmarx->XferErrorCallback = I2S_DMAError; - - /* Check if Master Receiver mode is selected */ - if ((hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG) == I2S_MODE_MASTER_RX) - { - /* Clear the Overrun Flag by a read operation to the SPI_DR register followed by a read - access to the SPI_SR register. */ - __HAL_I2S_CLEAR_OVRFLAG(hi2s); - } - - /* Enable the Rx DMA Stream/Channel */ - if (HAL_OK != HAL_DMA_Start_IT(hi2s->hdmarx, (uint32_t)&hi2s->Instance->DR, (uint32_t)hi2s->pRxBuffPtr, - hi2s->RxXferSize)) - { - /* Update SPI error code */ - SET_BIT(hi2s->ErrorCode, HAL_I2S_ERROR_DMA); - hi2s->State = HAL_I2S_STATE_READY; - - __HAL_UNLOCK(hi2s); - return HAL_ERROR; - } - - /* Check if the I2S is already enabled */ - if (HAL_IS_BIT_CLR(hi2s->Instance->I2SCFGR, SPI_I2SCFGR_I2SE)) - { - /* Enable I2S peripheral */ - __HAL_I2S_ENABLE(hi2s); - } - - /* Check if the I2S Rx request is already enabled */ - if (HAL_IS_BIT_CLR(hi2s->Instance->CR2, SPI_CR2_RXDMAEN)) - { - /* Enable Rx DMA Request */ - SET_BIT(hi2s->Instance->CR2, SPI_CR2_RXDMAEN); - } - - __HAL_UNLOCK(hi2s); - return HAL_OK; -} - -/** - * @brief Pauses the audio DMA Stream/Channel playing from the Media. - * @param hi2s pointer to a I2S_HandleTypeDef structure that contains - * the configuration information for I2S module - * @retval HAL status - */ -HAL_StatusTypeDef HAL_I2S_DMAPause(I2S_HandleTypeDef *hi2s) -{ - /* Process Locked */ - __HAL_LOCK(hi2s); - - if (hi2s->State == HAL_I2S_STATE_BUSY_TX) - { - /* Disable the I2S DMA Tx request */ - CLEAR_BIT(hi2s->Instance->CR2, SPI_CR2_TXDMAEN); - } - else if (hi2s->State == HAL_I2S_STATE_BUSY_RX) - { - /* Disable the I2S DMA Rx request */ - CLEAR_BIT(hi2s->Instance->CR2, SPI_CR2_RXDMAEN); - } - else - { - /* nothing to do */ - } - - /* Process Unlocked */ - __HAL_UNLOCK(hi2s); - - return HAL_OK; -} - -/** - * @brief Resumes the audio DMA Stream/Channel playing from the Media. - * @param hi2s pointer to a I2S_HandleTypeDef structure that contains - * the configuration information for I2S module - * @retval HAL status - */ -HAL_StatusTypeDef HAL_I2S_DMAResume(I2S_HandleTypeDef *hi2s) -{ - /* Process Locked */ - __HAL_LOCK(hi2s); - - if (hi2s->State == HAL_I2S_STATE_BUSY_TX) - { - /* Enable the I2S DMA Tx request */ - SET_BIT(hi2s->Instance->CR2, SPI_CR2_TXDMAEN); - } - else if (hi2s->State == HAL_I2S_STATE_BUSY_RX) - { - /* Enable the I2S DMA Rx request */ - SET_BIT(hi2s->Instance->CR2, SPI_CR2_RXDMAEN); - } - else - { - /* nothing to do */ - } - - /* If the I2S peripheral is still not enabled, enable it */ - if (HAL_IS_BIT_CLR(hi2s->Instance->I2SCFGR, SPI_I2SCFGR_I2SE)) - { - /* Enable I2S peripheral */ - __HAL_I2S_ENABLE(hi2s); - } - - /* Process Unlocked */ - __HAL_UNLOCK(hi2s); - - return HAL_OK; -} - -/** - * @brief Stops the audio DMA Stream/Channel playing from the Media. - * @param hi2s pointer to a I2S_HandleTypeDef structure that contains - * the configuration information for I2S module - * @retval HAL status - */ -HAL_StatusTypeDef HAL_I2S_DMAStop(I2S_HandleTypeDef *hi2s) -{ - HAL_StatusTypeDef errorcode = HAL_OK; - /* The Lock is not implemented on this API to allow the user application - to call the HAL SPI API under callbacks HAL_I2S_TxCpltCallback() or HAL_I2S_RxCpltCallback() - when calling HAL_DMA_Abort() API the DMA TX or RX Transfer complete interrupt is generated - and the correspond call back is executed HAL_I2S_TxCpltCallback() or HAL_I2S_RxCpltCallback() - */ - - /* Disable the I2S Tx/Rx DMA requests */ - CLEAR_BIT(hi2s->Instance->CR2, SPI_CR2_TXDMAEN); - CLEAR_BIT(hi2s->Instance->CR2, SPI_CR2_RXDMAEN); - - /* Abort the I2S DMA tx Stream/Channel */ - if (hi2s->hdmatx != NULL) - { - /* Disable the I2S DMA tx Stream/Channel */ - if (HAL_OK != HAL_DMA_Abort(hi2s->hdmatx)) - { - SET_BIT(hi2s->ErrorCode, HAL_I2S_ERROR_DMA); - errorcode = HAL_ERROR; - } - } - - /* Abort the I2S DMA rx Stream/Channel */ - if (hi2s->hdmarx != NULL) - { - /* Disable the I2S DMA rx Stream/Channel */ - if (HAL_OK != HAL_DMA_Abort(hi2s->hdmarx)) - { - SET_BIT(hi2s->ErrorCode, HAL_I2S_ERROR_DMA); - errorcode = HAL_ERROR; - } - } - - /* Disable I2S peripheral */ - __HAL_I2S_DISABLE(hi2s); - - hi2s->State = HAL_I2S_STATE_READY; - - return errorcode; -} - -/** - * @brief This function handles I2S interrupt request. - * @param hi2s pointer to a I2S_HandleTypeDef structure that contains - * the configuration information for I2S module - * @retval None - */ -void HAL_I2S_IRQHandler(I2S_HandleTypeDef *hi2s) -{ - uint32_t itsource = hi2s->Instance->CR2; - uint32_t itflag = hi2s->Instance->SR; - - /* I2S in mode Receiver ------------------------------------------------*/ - if ((I2S_CHECK_FLAG(itflag, I2S_FLAG_OVR) == RESET) && - (I2S_CHECK_FLAG(itflag, I2S_FLAG_RXNE) != RESET) && (I2S_CHECK_IT_SOURCE(itsource, I2S_IT_RXNE) != RESET)) - { - I2S_Receive_IT(hi2s); - return; - } - - /* I2S in mode Tramitter -----------------------------------------------*/ - if ((I2S_CHECK_FLAG(itflag, I2S_FLAG_TXE) != RESET) && (I2S_CHECK_IT_SOURCE(itsource, I2S_IT_TXE) != RESET)) - { - I2S_Transmit_IT(hi2s); - return; - } - - /* I2S interrupt error -------------------------------------------------*/ - if (I2S_CHECK_IT_SOURCE(itsource, I2S_IT_ERR) != RESET) - { - /* I2S Overrun error interrupt occurred ---------------------------------*/ - if (I2S_CHECK_FLAG(itflag, I2S_FLAG_OVR) != RESET) - { - /* Disable RXNE and ERR interrupt */ - __HAL_I2S_DISABLE_IT(hi2s, (I2S_IT_RXNE | I2S_IT_ERR)); - - /* Set the error code and execute error callback*/ - SET_BIT(hi2s->ErrorCode, HAL_I2S_ERROR_OVR); - } - - /* I2S Underrun error interrupt occurred --------------------------------*/ - if (I2S_CHECK_FLAG(itflag, I2S_FLAG_UDR) != RESET) - { - /* Disable TXE and ERR interrupt */ - __HAL_I2S_DISABLE_IT(hi2s, (I2S_IT_TXE | I2S_IT_ERR)); - - /* Set the error code and execute error callback*/ - SET_BIT(hi2s->ErrorCode, HAL_I2S_ERROR_UDR); - } - - /* Set the I2S State ready */ - hi2s->State = HAL_I2S_STATE_READY; - - /* Call user error callback */ -#if (USE_HAL_I2S_REGISTER_CALLBACKS == 1U) - hi2s->ErrorCallback(hi2s); -#else - HAL_I2S_ErrorCallback(hi2s); -#endif /* USE_HAL_I2S_REGISTER_CALLBACKS */ - } -} - -/** - * @brief Tx Transfer Half completed callbacks - * @param hi2s pointer to a I2S_HandleTypeDef structure that contains - * the configuration information for I2S module - * @retval None - */ -__weak void HAL_I2S_TxHalfCpltCallback(I2S_HandleTypeDef *hi2s) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hi2s); - - /* NOTE : This function Should not be modified, when the callback is needed, - the HAL_I2S_TxHalfCpltCallback could be implemented in the user file - */ -} - -/** - * @brief Tx Transfer completed callbacks - * @param hi2s pointer to a I2S_HandleTypeDef structure that contains - * the configuration information for I2S module - * @retval None - */ -__weak void HAL_I2S_TxCpltCallback(I2S_HandleTypeDef *hi2s) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hi2s); - - /* NOTE : This function Should not be modified, when the callback is needed, - the HAL_I2S_TxCpltCallback could be implemented in the user file - */ -} - -/** - * @brief Rx Transfer half completed callbacks - * @param hi2s pointer to a I2S_HandleTypeDef structure that contains - * the configuration information for I2S module - * @retval None - */ -__weak void HAL_I2S_RxHalfCpltCallback(I2S_HandleTypeDef *hi2s) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hi2s); - - /* NOTE : This function Should not be modified, when the callback is needed, - the HAL_I2S_RxHalfCpltCallback could be implemented in the user file - */ -} - -/** - * @brief Rx Transfer completed callbacks - * @param hi2s pointer to a I2S_HandleTypeDef structure that contains - * the configuration information for I2S module - * @retval None - */ -__weak void HAL_I2S_RxCpltCallback(I2S_HandleTypeDef *hi2s) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hi2s); - - /* NOTE : This function Should not be modified, when the callback is needed, - the HAL_I2S_RxCpltCallback could be implemented in the user file - */ -} - -/** - * @brief I2S error callbacks - * @param hi2s pointer to a I2S_HandleTypeDef structure that contains - * the configuration information for I2S module - * @retval None - */ -__weak void HAL_I2S_ErrorCallback(I2S_HandleTypeDef *hi2s) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hi2s); - - /* NOTE : This function Should not be modified, when the callback is needed, - the HAL_I2S_ErrorCallback could be implemented in the user file - */ -} - -/** - * @} - */ - -/** @defgroup I2S_Exported_Functions_Group3 Peripheral State and Errors functions - * @brief Peripheral State functions - * -@verbatim - =============================================================================== - ##### Peripheral State and Errors functions ##### - =============================================================================== - [..] - This subsection permits to get in run-time the status of the peripheral - and the data flow. - -@endverbatim - * @{ - */ - -/** - * @brief Return the I2S state - * @param hi2s pointer to a I2S_HandleTypeDef structure that contains - * the configuration information for I2S module - * @retval HAL state - */ -HAL_I2S_StateTypeDef HAL_I2S_GetState(I2S_HandleTypeDef *hi2s) -{ - return hi2s->State; -} - -/** - * @brief Return the I2S error code - * @param hi2s pointer to a I2S_HandleTypeDef structure that contains - * the configuration information for I2S module - * @retval I2S Error Code - */ -uint32_t HAL_I2S_GetError(I2S_HandleTypeDef *hi2s) -{ - return hi2s->ErrorCode; -} -/** - * @} - */ - -/** - * @} - */ - -/** @addtogroup I2S_Private_Functions I2S Private Functions - * @{ - */ -/** - * @brief DMA I2S transmit process complete callback - * @param hdma pointer to a DMA_HandleTypeDef structure that contains - * the configuration information for the specified DMA module. - * @retval None - */ -static void I2S_DMATxCplt(DMA_HandleTypeDef *hdma) -{ - I2S_HandleTypeDef *hi2s = (I2S_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; /* Derogation MISRAC2012-Rule-11.5 */ - - /* if DMA is configured in DMA_NORMAL Mode */ - if (hdma->Init.Mode == DMA_NORMAL) - { - /* Disable Tx DMA Request */ - CLEAR_BIT(hi2s->Instance->CR2, SPI_CR2_TXDMAEN); - - hi2s->TxXferCount = 0U; - hi2s->State = HAL_I2S_STATE_READY; - } - /* Call user Tx complete callback */ -#if (USE_HAL_I2S_REGISTER_CALLBACKS == 1U) - hi2s->TxCpltCallback(hi2s); -#else - HAL_I2S_TxCpltCallback(hi2s); -#endif /* USE_HAL_I2S_REGISTER_CALLBACKS */ -} - -/** - * @brief DMA I2S transmit process half complete callback - * @param hdma pointer to a DMA_HandleTypeDef structure that contains - * the configuration information for the specified DMA module. - * @retval None - */ -static void I2S_DMATxHalfCplt(DMA_HandleTypeDef *hdma) -{ - I2S_HandleTypeDef *hi2s = (I2S_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; /* Derogation MISRAC2012-Rule-11.5 */ - - /* Call user Tx half complete callback */ -#if (USE_HAL_I2S_REGISTER_CALLBACKS == 1U) - hi2s->TxHalfCpltCallback(hi2s); -#else - HAL_I2S_TxHalfCpltCallback(hi2s); -#endif /* USE_HAL_I2S_REGISTER_CALLBACKS */ -} - -/** - * @brief DMA I2S receive process complete callback - * @param hdma pointer to a DMA_HandleTypeDef structure that contains - * the configuration information for the specified DMA module. - * @retval None - */ -static void I2S_DMARxCplt(DMA_HandleTypeDef *hdma) -{ - I2S_HandleTypeDef *hi2s = (I2S_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; /* Derogation MISRAC2012-Rule-11.5 */ - - /* if DMA is configured in DMA_NORMAL Mode */ - if (hdma->Init.Mode == DMA_NORMAL) - { - /* Disable Rx DMA Request */ - CLEAR_BIT(hi2s->Instance->CR2, SPI_CR2_RXDMAEN); - hi2s->RxXferCount = 0U; - hi2s->State = HAL_I2S_STATE_READY; - } - /* Call user Rx complete callback */ -#if (USE_HAL_I2S_REGISTER_CALLBACKS == 1U) - hi2s->RxCpltCallback(hi2s); -#else - HAL_I2S_RxCpltCallback(hi2s); -#endif /* USE_HAL_I2S_REGISTER_CALLBACKS */ -} - -/** - * @brief DMA I2S receive process half complete callback - * @param hdma pointer to a DMA_HandleTypeDef structure that contains - * the configuration information for the specified DMA module. - * @retval None - */ -static void I2S_DMARxHalfCplt(DMA_HandleTypeDef *hdma) -{ - I2S_HandleTypeDef *hi2s = (I2S_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; /* Derogation MISRAC2012-Rule-11.5 */ - - /* Call user Rx half complete callback */ -#if (USE_HAL_I2S_REGISTER_CALLBACKS == 1U) - hi2s->RxHalfCpltCallback(hi2s); -#else - HAL_I2S_RxHalfCpltCallback(hi2s); -#endif /* USE_HAL_I2S_REGISTER_CALLBACKS */ -} - -/** - * @brief DMA I2S communication error callback - * @param hdma pointer to a DMA_HandleTypeDef structure that contains - * the configuration information for the specified DMA module. - * @retval None - */ -static void I2S_DMAError(DMA_HandleTypeDef *hdma) -{ - I2S_HandleTypeDef *hi2s = (I2S_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; /* Derogation MISRAC2012-Rule-11.5 */ - - /* Disable Rx and Tx DMA Request */ - CLEAR_BIT(hi2s->Instance->CR2, (SPI_CR2_RXDMAEN | SPI_CR2_TXDMAEN)); - hi2s->TxXferCount = 0U; - hi2s->RxXferCount = 0U; - - hi2s->State = HAL_I2S_STATE_READY; - - /* Set the error code and execute error callback*/ - SET_BIT(hi2s->ErrorCode, HAL_I2S_ERROR_DMA); - /* Call user error callback */ -#if (USE_HAL_I2S_REGISTER_CALLBACKS == 1U) - hi2s->ErrorCallback(hi2s); -#else - HAL_I2S_ErrorCallback(hi2s); -#endif /* USE_HAL_I2S_REGISTER_CALLBACKS */ -} - -/** - * @brief Transmit an amount of data in non-blocking mode with Interrupt - * @param hi2s pointer to a I2S_HandleTypeDef structure that contains - * the configuration information for I2S module - * @retval None - */ -static void I2S_Transmit_IT(I2S_HandleTypeDef *hi2s) -{ - /* Transmit data */ - hi2s->Instance->DR = (*hi2s->pTxBuffPtr); - hi2s->pTxBuffPtr++; - hi2s->TxXferCount--; - - if (hi2s->TxXferCount == 0U) - { - /* Disable TXE and ERR interrupt */ - __HAL_I2S_DISABLE_IT(hi2s, (I2S_IT_TXE | I2S_IT_ERR)); - - hi2s->State = HAL_I2S_STATE_READY; - /* Call user Tx complete callback */ -#if (USE_HAL_I2S_REGISTER_CALLBACKS == 1U) - hi2s->TxCpltCallback(hi2s); -#else - HAL_I2S_TxCpltCallback(hi2s); -#endif /* USE_HAL_I2S_REGISTER_CALLBACKS */ - } -} - -/** - * @brief Receive an amount of data in non-blocking mode with Interrupt - * @param hi2s pointer to a I2S_HandleTypeDef structure that contains - * the configuration information for I2S module - * @retval None - */ -static void I2S_Receive_IT(I2S_HandleTypeDef *hi2s) -{ - /* Receive data */ - (*hi2s->pRxBuffPtr) = (uint16_t)hi2s->Instance->DR; - hi2s->pRxBuffPtr++; - hi2s->RxXferCount--; - - if (hi2s->RxXferCount == 0U) - { - /* Disable RXNE and ERR interrupt */ - __HAL_I2S_DISABLE_IT(hi2s, (I2S_IT_RXNE | I2S_IT_ERR)); - - hi2s->State = HAL_I2S_STATE_READY; - /* Call user Rx complete callback */ -#if (USE_HAL_I2S_REGISTER_CALLBACKS == 1U) - hi2s->RxCpltCallback(hi2s); -#else - HAL_I2S_RxCpltCallback(hi2s); -#endif /* USE_HAL_I2S_REGISTER_CALLBACKS */ - } -} - -/** - * @brief This function handles I2S Communication Timeout. - * @param hi2s pointer to a I2S_HandleTypeDef structure that contains - * the configuration information for I2S module - * @param Flag Flag checked - * @param State Value of the flag expected - * @param Timeout Duration of the timeout - * @retval HAL status - */ -static HAL_StatusTypeDef I2S_WaitFlagStateUntilTimeout(I2S_HandleTypeDef *hi2s, uint32_t Flag, FlagStatus State, - uint32_t Timeout) -{ - uint32_t tickstart; - - /* Get tick */ - tickstart = HAL_GetTick(); - - /* Wait until flag is set to status*/ - while (((__HAL_I2S_GET_FLAG(hi2s, Flag)) ? SET : RESET) != State) - { - if (Timeout != HAL_MAX_DELAY) - { - if (((HAL_GetTick() - tickstart) >= Timeout) || (Timeout == 0U)) - { - /* Set the I2S State ready */ - hi2s->State = HAL_I2S_STATE_READY; - - /* Process Unlocked */ - __HAL_UNLOCK(hi2s); - - return HAL_TIMEOUT; - } - } - } - return HAL_OK; -} - -/** - * @} - */ - -/** - * @} - */ - -/** - * @} - */ -#endif /* SPI_I2S_SUPPORT */ - -#endif /* HAL_I2S_MODULE_ENABLED */ - -/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_irda.c b/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_irda.c deleted file mode 100644 index 2f1f23f..0000000 --- a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_irda.c +++ /dev/null @@ -1,2991 +0,0 @@ -/** - ****************************************************************************** - * @file stm32f0xx_hal_irda.c - * @author MCD Application Team - * @brief IRDA HAL module driver. - * This file provides firmware functions to manage the following - * functionalities of the IrDA (Infrared Data Association) Peripheral - * (IRDA) - * + Initialization and de-initialization functions - * + IO operation functions - * + Peripheral State and Errors functions - * + Peripheral Control functions - * - @verbatim - ============================================================================== - ##### How to use this driver ##### - ============================================================================== - [..] - The IRDA HAL driver can be used as follows: - - (#) Declare a IRDA_HandleTypeDef handle structure (eg. IRDA_HandleTypeDef hirda). - (#) Initialize the IRDA low level resources by implementing the HAL_IRDA_MspInit() API - in setting the associated USART or UART in IRDA mode: - (++) Enable the USARTx/UARTx interface clock. - (++) USARTx/UARTx pins configuration: - (+++) Enable the clock for the USARTx/UARTx GPIOs. - (+++) Configure these USARTx/UARTx pins (TX as alternate function pull-up, RX as alternate function Input). - (++) NVIC configuration if you need to use interrupt process (HAL_IRDA_Transmit_IT() - and HAL_IRDA_Receive_IT() APIs): - (+++) Configure the USARTx/UARTx interrupt priority. - (+++) Enable the NVIC USARTx/UARTx IRQ handle. - (+++) The specific IRDA interrupts (Transmission complete interrupt, - RXNE interrupt and Error Interrupts) will be managed using the macros - __HAL_IRDA_ENABLE_IT() and __HAL_IRDA_DISABLE_IT() inside the transmit and receive process. - - (++) DMA Configuration if you need to use DMA process (HAL_IRDA_Transmit_DMA() - and HAL_IRDA_Receive_DMA() APIs): - (+++) Declare a DMA handle structure for the Tx/Rx channel. - (+++) Enable the DMAx interface clock. - (+++) Configure the declared DMA handle structure with the required Tx/Rx parameters. - (+++) Configure the DMA Tx/Rx channel. - (+++) Associate the initialized DMA handle to the IRDA DMA Tx/Rx handle. - (+++) Configure the priority and enable the NVIC for the transfer complete interrupt on the DMA Tx/Rx channel. - - (#) Program the Baud Rate, Word Length and Parity and Mode(Receiver/Transmitter), - the normal or low power mode and the clock prescaler in the hirda handle Init structure. - - (#) Initialize the IRDA registers by calling the HAL_IRDA_Init() API: - (++) This API configures also the low level Hardware GPIO, CLOCK, CORTEX...etc) - by calling the customized HAL_IRDA_MspInit() API. - - -@@- The specific IRDA interrupts (Transmission complete interrupt, - RXNE interrupt and Error Interrupts) will be managed using the macros - __HAL_IRDA_ENABLE_IT() and __HAL_IRDA_DISABLE_IT() inside the transmit and receive process. - - (#) Three operation modes are available within this driver : - - *** Polling mode IO operation *** - ================================= - [..] - (+) Send an amount of data in blocking mode using HAL_IRDA_Transmit() - (+) Receive an amount of data in blocking mode using HAL_IRDA_Receive() - - *** Interrupt mode IO operation *** - =================================== - [..] - (+) Send an amount of data in non-blocking mode using HAL_IRDA_Transmit_IT() - (+) At transmission end of transfer HAL_IRDA_TxCpltCallback() is executed and user can - add his own code by customization of function pointer HAL_IRDA_TxCpltCallback() - (+) Receive an amount of data in non-blocking mode using HAL_IRDA_Receive_IT() - (+) At reception end of transfer HAL_IRDA_RxCpltCallback() is executed and user can - add his own code by customization of function pointer HAL_IRDA_RxCpltCallback() - (+) In case of transfer Error, HAL_IRDA_ErrorCallback() function is executed and user can - add his own code by customization of function pointer HAL_IRDA_ErrorCallback() - - *** DMA mode IO operation *** - ============================== - [..] - (+) Send an amount of data in non-blocking mode (DMA) using HAL_IRDA_Transmit_DMA() - (+) At transmission half of transfer HAL_IRDA_TxHalfCpltCallback() is executed and user can - add his own code by customization of function pointer HAL_IRDA_TxHalfCpltCallback() - (+) At transmission end of transfer HAL_IRDA_TxCpltCallback() is executed and user can - add his own code by customization of function pointer HAL_IRDA_TxCpltCallback() - (+) Receive an amount of data in non-blocking mode (DMA) using HAL_IRDA_Receive_DMA() - (+) At reception half of transfer HAL_IRDA_RxHalfCpltCallback() is executed and user can - add his own code by customization of function pointer HAL_IRDA_RxHalfCpltCallback() - (+) At reception end of transfer HAL_IRDA_RxCpltCallback() is executed and user can - add his own code by customization of function pointer HAL_IRDA_RxCpltCallback() - (+) In case of transfer Error, HAL_IRDA_ErrorCallback() function is executed and user can - add his own code by customization of function pointer HAL_IRDA_ErrorCallback() - - *** IRDA HAL driver macros list *** - ==================================== - [..] - Below the list of most used macros in IRDA HAL driver. - - (+) __HAL_IRDA_ENABLE: Enable the IRDA peripheral - (+) __HAL_IRDA_DISABLE: Disable the IRDA peripheral - (+) __HAL_IRDA_GET_FLAG : Check whether the specified IRDA flag is set or not - (+) __HAL_IRDA_CLEAR_FLAG : Clear the specified IRDA pending flag - (+) __HAL_IRDA_ENABLE_IT: Enable the specified IRDA interrupt - (+) __HAL_IRDA_DISABLE_IT: Disable the specified IRDA interrupt - (+) __HAL_IRDA_GET_IT_SOURCE: Check whether or not the specified IRDA interrupt is enabled - - [..] - (@) You can refer to the IRDA HAL driver header file for more useful macros - - ##### Callback registration ##### - ================================== - - [..] - The compilation define USE_HAL_IRDA_REGISTER_CALLBACKS when set to 1 - allows the user to configure dynamically the driver callbacks. - - [..] - Use Function @ref HAL_IRDA_RegisterCallback() to register a user callback. - Function @ref HAL_IRDA_RegisterCallback() allows to register following callbacks: - (+) TxHalfCpltCallback : Tx Half Complete Callback. - (+) TxCpltCallback : Tx Complete Callback. - (+) RxHalfCpltCallback : Rx Half Complete Callback. - (+) RxCpltCallback : Rx Complete Callback. - (+) ErrorCallback : Error Callback. - (+) AbortCpltCallback : Abort Complete Callback. - (+) AbortTransmitCpltCallback : Abort Transmit Complete Callback. - (+) AbortReceiveCpltCallback : Abort Receive Complete Callback. - (+) MspInitCallback : IRDA MspInit. - (+) MspDeInitCallback : IRDA MspDeInit. - This function takes as parameters the HAL peripheral handle, the Callback ID - and a pointer to the user callback function. - - [..] - Use function @ref HAL_IRDA_UnRegisterCallback() to reset a callback to the default - weak (surcharged) function. - @ref HAL_IRDA_UnRegisterCallback() takes as parameters the HAL peripheral handle, - and the Callback ID. - This function allows to reset following callbacks: - (+) TxHalfCpltCallback : Tx Half Complete Callback. - (+) TxCpltCallback : Tx Complete Callback. - (+) RxHalfCpltCallback : Rx Half Complete Callback. - (+) RxCpltCallback : Rx Complete Callback. - (+) ErrorCallback : Error Callback. - (+) AbortCpltCallback : Abort Complete Callback. - (+) AbortTransmitCpltCallback : Abort Transmit Complete Callback. - (+) AbortReceiveCpltCallback : Abort Receive Complete Callback. - (+) MspInitCallback : IRDA MspInit. - (+) MspDeInitCallback : IRDA MspDeInit. - - [..] - By default, after the @ref HAL_IRDA_Init() and when the state is HAL_IRDA_STATE_RESET - all callbacks are set to the corresponding weak (surcharged) functions: - examples @ref HAL_IRDA_TxCpltCallback(), @ref HAL_IRDA_RxHalfCpltCallback(). - Exception done for MspInit and MspDeInit functions that are respectively - reset to the legacy weak (surcharged) functions in the @ref HAL_IRDA_Init() - and @ref HAL_IRDA_DeInit() only when these callbacks are null (not registered beforehand). - If not, MspInit or MspDeInit are not null, the @ref HAL_IRDA_Init() and @ref HAL_IRDA_DeInit() - keep and use the user MspInit/MspDeInit callbacks (registered beforehand). - - [..] - Callbacks can be registered/unregistered in HAL_IRDA_STATE_READY state only. - Exception done MspInit/MspDeInit that can be registered/unregistered - in HAL_IRDA_STATE_READY or HAL_IRDA_STATE_RESET state, thus registered (user) - MspInit/DeInit callbacks can be used during the Init/DeInit. - In that case first register the MspInit/MspDeInit user callbacks - using @ref HAL_IRDA_RegisterCallback() before calling @ref HAL_IRDA_DeInit() - or @ref HAL_IRDA_Init() function. - - [..] - When The compilation define USE_HAL_IRDA_REGISTER_CALLBACKS is set to 0 or - not defined, the callback registration feature is not available - and weak (surcharged) callbacks are used. - - @endverbatim - ****************************************************************************** - * @attention - * - *

© Copyright (c) 2016 STMicroelectronics. - * All rights reserved.

- * - * This software component is licensed by ST under BSD 3-Clause license, - * the "License"; You may not use this file except in compliance with the - * License. You may obtain a copy of the License at: - * opensource.org/licenses/BSD-3-Clause - * - ****************************************************************************** - */ - -/* Includes ------------------------------------------------------------------*/ -#include "stm32f0xx_hal.h" - -#if defined(USART_IRDA_SUPPORT) -/** @addtogroup STM32F0xx_HAL_Driver - * @{ - */ - -/** @defgroup IRDA IRDA - * @brief HAL IRDA module driver - * @{ - */ - -#ifdef HAL_IRDA_MODULE_ENABLED - -/* Private typedef -----------------------------------------------------------*/ -/* Private define ------------------------------------------------------------*/ -/** @defgroup IRDA_Private_Constants IRDA Private Constants - * @{ - */ -#define IRDA_TEACK_REACK_TIMEOUT 1000U /*!< IRDA TX or RX enable acknowledge time-out value */ - -#define IRDA_CR1_FIELDS ((uint32_t)(USART_CR1_M | USART_CR1_PCE \ - | USART_CR1_PS | USART_CR1_TE | USART_CR1_RE)) /*!< UART or USART CR1 fields of parameters set by IRDA_SetConfig API */ - -#define USART_BRR_MIN 0x10U /*!< USART BRR minimum authorized value */ - -#define USART_BRR_MAX 0x0000FFFFU /*!< USART BRR maximum authorized value */ -/** - * @} - */ - -/* Private macros ------------------------------------------------------------*/ -/** @defgroup IRDA_Private_Macros IRDA Private Macros - * @{ - */ -/** @brief BRR division operation to set BRR register in 16-bit oversampling mode. - * @param __PCLK__ IRDA clock source. - * @param __BAUD__ Baud rate set by the user. - * @retval Division result - */ -#define IRDA_DIV_SAMPLING16(__PCLK__, __BAUD__) (((__PCLK__) + ((__BAUD__)/2U)) / (__BAUD__)) -/** - * @} - */ - -/* Private variables ---------------------------------------------------------*/ -/* Private function prototypes -----------------------------------------------*/ -/** @addtogroup IRDA_Private_Functions - * @{ - */ -#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1) -void IRDA_InitCallbacksToDefault(IRDA_HandleTypeDef *hirda); -#endif /* USE_HAL_IRDA_REGISTER_CALLBACKS */ -static HAL_StatusTypeDef IRDA_SetConfig(IRDA_HandleTypeDef *hirda); -static HAL_StatusTypeDef IRDA_CheckIdleState(IRDA_HandleTypeDef *hirda); -static HAL_StatusTypeDef IRDA_WaitOnFlagUntilTimeout(IRDA_HandleTypeDef *hirda, uint32_t Flag, FlagStatus Status, - uint32_t Tickstart, uint32_t Timeout); -static void IRDA_EndTxTransfer(IRDA_HandleTypeDef *hirda); -static void IRDA_EndRxTransfer(IRDA_HandleTypeDef *hirda); -static void IRDA_DMATransmitCplt(DMA_HandleTypeDef *hdma); -static void IRDA_DMATransmitHalfCplt(DMA_HandleTypeDef *hdma); -static void IRDA_DMAReceiveCplt(DMA_HandleTypeDef *hdma); -static void IRDA_DMAReceiveHalfCplt(DMA_HandleTypeDef *hdma); -static void IRDA_DMAError(DMA_HandleTypeDef *hdma); -static void IRDA_DMAAbortOnError(DMA_HandleTypeDef *hdma); -static void IRDA_DMATxAbortCallback(DMA_HandleTypeDef *hdma); -static void IRDA_DMARxAbortCallback(DMA_HandleTypeDef *hdma); -static void IRDA_DMATxOnlyAbortCallback(DMA_HandleTypeDef *hdma); -static void IRDA_DMARxOnlyAbortCallback(DMA_HandleTypeDef *hdma); -static void IRDA_Transmit_IT(IRDA_HandleTypeDef *hirda); -static void IRDA_EndTransmit_IT(IRDA_HandleTypeDef *hirda); -static void IRDA_Receive_IT(IRDA_HandleTypeDef *hirda); -/** - * @} - */ - -/* Exported functions --------------------------------------------------------*/ - -/** @defgroup IRDA_Exported_Functions IRDA Exported Functions - * @{ - */ - -/** @defgroup IRDA_Exported_Functions_Group1 Initialization and de-initialization functions - * @brief Initialization and Configuration functions - * -@verbatim - ============================================================================== - ##### Initialization and Configuration functions ##### - ============================================================================== - [..] - This subsection provides a set of functions allowing to initialize the USARTx - in asynchronous IRDA mode. - (+) For the asynchronous mode only these parameters can be configured: - (++) Baud Rate - (++) Word Length - (++) Parity: If the parity is enabled, then the MSB bit of the data written - in the data register is transmitted but is changed by the parity bit. - (++) Power mode - (++) Prescaler setting - (++) Receiver/transmitter modes - - [..] - The HAL_IRDA_Init() API follows the USART asynchronous configuration procedures - (details for the procedures are available in reference manual). - -@endverbatim - - Depending on the frame length defined either by the M bit (8-bits or 9-bits) - or by the M1 and M0 bits (7-bit, 8-bit or 9-bit), the possible IRDA frame - formats are listed in the following table. - - Table 1. IRDA frame format. - +-----------------------------------------------------------------------+ - | M bit | PCE bit | IRDA frame | - |-------------------|-----------|---------------------------------------| - | 0 | 0 | | SB | 8-bit data | STB | | - |-------------------|-----------|---------------------------------------| - | 0 | 1 | | SB | 7-bit data | PB | STB | | - |-------------------|-----------|---------------------------------------| - | 1 | 0 | | SB | 9-bit data | STB | | - |-------------------|-----------|---------------------------------------| - | 1 | 1 | | SB | 8-bit data | PB | STB | | - +-----------------------------------------------------------------------+ - | M1 bit | M0 bit | PCE bit | IRDA frame | - |---------|---------|-----------|---------------------------------------| - | 0 | 0 | 0 | | SB | 8 bit data | STB | | - |---------|---------|-----------|---------------------------------------| - | 0 | 0 | 1 | | SB | 7 bit data | PB | STB | | - |---------|---------|-----------|---------------------------------------| - | 0 | 1 | 0 | | SB | 9 bit data | STB | | - |---------|---------|-----------|---------------------------------------| - | 0 | 1 | 1 | | SB | 8 bit data | PB | STB | | - |---------|---------|-----------|---------------------------------------| - | 1 | 0 | 0 | | SB | 7 bit data | STB | | - |---------|---------|-----------|---------------------------------------| - | 1 | 0 | 1 | | SB | 6 bit data | PB | STB | | - +-----------------------------------------------------------------------+ - - * @{ - */ - -/** - * @brief Initialize the IRDA mode according to the specified - * parameters in the IRDA_InitTypeDef and initialize the associated handle. - * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains - * the configuration information for the specified IRDA module. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_IRDA_Init(IRDA_HandleTypeDef *hirda) -{ - /* Check the IRDA handle allocation */ - if (hirda == NULL) - { - return HAL_ERROR; - } - - /* Check the USART/UART associated to the IRDA handle */ - assert_param(IS_IRDA_INSTANCE(hirda->Instance)); - - if (hirda->gState == HAL_IRDA_STATE_RESET) - { - /* Allocate lock resource and initialize it */ - hirda->Lock = HAL_UNLOCKED; - -#if USE_HAL_IRDA_REGISTER_CALLBACKS == 1 - IRDA_InitCallbacksToDefault(hirda); - - if (hirda->MspInitCallback == NULL) - { - hirda->MspInitCallback = HAL_IRDA_MspInit; - } - - /* Init the low level hardware */ - hirda->MspInitCallback(hirda); -#else - /* Init the low level hardware : GPIO, CLOCK */ - HAL_IRDA_MspInit(hirda); -#endif /* USE_HAL_IRDA_REGISTER_CALLBACKS */ - } - - hirda->gState = HAL_IRDA_STATE_BUSY; - - /* Disable the Peripheral to update the configuration registers */ - __HAL_IRDA_DISABLE(hirda); - - /* Set the IRDA Communication parameters */ - if (IRDA_SetConfig(hirda) == HAL_ERROR) - { - return HAL_ERROR; - } - - /* In IRDA mode, the following bits must be kept cleared: - - LINEN, STOP and CLKEN bits in the USART_CR2 register, - - SCEN and HDSEL bits in the USART_CR3 register.*/ - CLEAR_BIT(hirda->Instance->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN | USART_CR2_STOP)); - CLEAR_BIT(hirda->Instance->CR3, (USART_CR3_SCEN | USART_CR3_HDSEL)); - - /* set the UART/USART in IRDA mode */ - hirda->Instance->CR3 |= USART_CR3_IREN; - - /* Enable the Peripheral */ - __HAL_IRDA_ENABLE(hirda); - - /* TEACK and/or REACK to check before moving hirda->gState and hirda->RxState to Ready */ - return (IRDA_CheckIdleState(hirda)); -} - -/** - * @brief DeInitialize the IRDA peripheral. - * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains - * the configuration information for the specified IRDA module. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_IRDA_DeInit(IRDA_HandleTypeDef *hirda) -{ - /* Check the IRDA handle allocation */ - if (hirda == NULL) - { - return HAL_ERROR; - } - - /* Check the USART/UART associated to the IRDA handle */ - assert_param(IS_IRDA_INSTANCE(hirda->Instance)); - - hirda->gState = HAL_IRDA_STATE_BUSY; - - /* DeInit the low level hardware */ -#if USE_HAL_IRDA_REGISTER_CALLBACKS == 1 - if (hirda->MspDeInitCallback == NULL) - { - hirda->MspDeInitCallback = HAL_IRDA_MspDeInit; - } - /* DeInit the low level hardware */ - hirda->MspDeInitCallback(hirda); -#else - HAL_IRDA_MspDeInit(hirda); -#endif /* USE_HAL_IRDA_REGISTER_CALLBACKS */ - /* Disable the Peripheral */ - __HAL_IRDA_DISABLE(hirda); - - hirda->ErrorCode = HAL_IRDA_ERROR_NONE; - hirda->gState = HAL_IRDA_STATE_RESET; - hirda->RxState = HAL_IRDA_STATE_RESET; - - /* Process Unlock */ - __HAL_UNLOCK(hirda); - - return HAL_OK; -} - -/** - * @brief Initialize the IRDA MSP. - * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains - * the configuration information for the specified IRDA module. - * @retval None - */ -__weak void HAL_IRDA_MspInit(IRDA_HandleTypeDef *hirda) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hirda); - - /* NOTE: This function should not be modified, when the callback is needed, - the HAL_IRDA_MspInit can be implemented in the user file - */ -} - -/** - * @brief DeInitialize the IRDA MSP. - * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains - * the configuration information for the specified IRDA module. - * @retval None - */ -__weak void HAL_IRDA_MspDeInit(IRDA_HandleTypeDef *hirda) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hirda); - - /* NOTE: This function should not be modified, when the callback is needed, - the HAL_IRDA_MspDeInit can be implemented in the user file - */ -} - -#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1) -/** - * @brief Register a User IRDA Callback - * To be used instead of the weak predefined callback - * @param hirda irda handle - * @param CallbackID ID of the callback to be registered - * This parameter can be one of the following values: - * @arg @ref HAL_IRDA_TX_HALFCOMPLETE_CB_ID Tx Half Complete Callback ID - * @arg @ref HAL_IRDA_TX_COMPLETE_CB_ID Tx Complete Callback ID - * @arg @ref HAL_IRDA_RX_HALFCOMPLETE_CB_ID Rx Half Complete Callback ID - * @arg @ref HAL_IRDA_RX_COMPLETE_CB_ID Rx Complete Callback ID - * @arg @ref HAL_IRDA_ERROR_CB_ID Error Callback ID - * @arg @ref HAL_IRDA_ABORT_COMPLETE_CB_ID Abort Complete Callback ID - * @arg @ref HAL_IRDA_ABORT_TRANSMIT_COMPLETE_CB_ID Abort Transmit Complete Callback ID - * @arg @ref HAL_IRDA_ABORT_RECEIVE_COMPLETE_CB_ID Abort Receive Complete Callback ID - * @arg @ref HAL_IRDA_MSPINIT_CB_ID MspInit Callback ID - * @arg @ref HAL_IRDA_MSPDEINIT_CB_ID MspDeInit Callback ID - * @param pCallback pointer to the Callback function - * @retval HAL status - */ -HAL_StatusTypeDef HAL_IRDA_RegisterCallback(IRDA_HandleTypeDef *hirda, HAL_IRDA_CallbackIDTypeDef CallbackID, - pIRDA_CallbackTypeDef pCallback) -{ - HAL_StatusTypeDef status = HAL_OK; - - if (pCallback == NULL) - { - /* Update the error code */ - hirda->ErrorCode |= HAL_IRDA_ERROR_INVALID_CALLBACK; - - return HAL_ERROR; - } - /* Process locked */ - __HAL_LOCK(hirda); - - if (hirda->gState == HAL_IRDA_STATE_READY) - { - switch (CallbackID) - { - case HAL_IRDA_TX_HALFCOMPLETE_CB_ID : - hirda->TxHalfCpltCallback = pCallback; - break; - - case HAL_IRDA_TX_COMPLETE_CB_ID : - hirda->TxCpltCallback = pCallback; - break; - - case HAL_IRDA_RX_HALFCOMPLETE_CB_ID : - hirda->RxHalfCpltCallback = pCallback; - break; - - case HAL_IRDA_RX_COMPLETE_CB_ID : - hirda->RxCpltCallback = pCallback; - break; - - case HAL_IRDA_ERROR_CB_ID : - hirda->ErrorCallback = pCallback; - break; - - case HAL_IRDA_ABORT_COMPLETE_CB_ID : - hirda->AbortCpltCallback = pCallback; - break; - - case HAL_IRDA_ABORT_TRANSMIT_COMPLETE_CB_ID : - hirda->AbortTransmitCpltCallback = pCallback; - break; - - case HAL_IRDA_ABORT_RECEIVE_COMPLETE_CB_ID : - hirda->AbortReceiveCpltCallback = pCallback; - break; - - case HAL_IRDA_MSPINIT_CB_ID : - hirda->MspInitCallback = pCallback; - break; - - case HAL_IRDA_MSPDEINIT_CB_ID : - hirda->MspDeInitCallback = pCallback; - break; - - default : - /* Update the error code */ - hirda->ErrorCode |= HAL_IRDA_ERROR_INVALID_CALLBACK; - - /* Return error status */ - status = HAL_ERROR; - break; - } - } - else if (hirda->gState == HAL_IRDA_STATE_RESET) - { - switch (CallbackID) - { - case HAL_IRDA_MSPINIT_CB_ID : - hirda->MspInitCallback = pCallback; - break; - - case HAL_IRDA_MSPDEINIT_CB_ID : - hirda->MspDeInitCallback = pCallback; - break; - - default : - /* Update the error code */ - hirda->ErrorCode |= HAL_IRDA_ERROR_INVALID_CALLBACK; - - /* Return error status */ - status = HAL_ERROR; - break; - } - } - else - { - /* Update the error code */ - hirda->ErrorCode |= HAL_IRDA_ERROR_INVALID_CALLBACK; - - /* Return error status */ - status = HAL_ERROR; - } - - /* Release Lock */ - __HAL_UNLOCK(hirda); - - return status; -} - -/** - * @brief Unregister an IRDA callback - * IRDA callback is redirected to the weak predefined callback - * @param hirda irda handle - * @param CallbackID ID of the callback to be unregistered - * This parameter can be one of the following values: - * @arg @ref HAL_IRDA_TX_HALFCOMPLETE_CB_ID Tx Half Complete Callback ID - * @arg @ref HAL_IRDA_TX_COMPLETE_CB_ID Tx Complete Callback ID - * @arg @ref HAL_IRDA_RX_HALFCOMPLETE_CB_ID Rx Half Complete Callback ID - * @arg @ref HAL_IRDA_RX_COMPLETE_CB_ID Rx Complete Callback ID - * @arg @ref HAL_IRDA_ERROR_CB_ID Error Callback ID - * @arg @ref HAL_IRDA_ABORT_COMPLETE_CB_ID Abort Complete Callback ID - * @arg @ref HAL_IRDA_ABORT_TRANSMIT_COMPLETE_CB_ID Abort Transmit Complete Callback ID - * @arg @ref HAL_IRDA_ABORT_RECEIVE_COMPLETE_CB_ID Abort Receive Complete Callback ID - * @arg @ref HAL_IRDA_MSPINIT_CB_ID MspInit Callback ID - * @arg @ref HAL_IRDA_MSPDEINIT_CB_ID MspDeInit Callback ID - * @retval HAL status - */ -HAL_StatusTypeDef HAL_IRDA_UnRegisterCallback(IRDA_HandleTypeDef *hirda, HAL_IRDA_CallbackIDTypeDef CallbackID) -{ - HAL_StatusTypeDef status = HAL_OK; - - /* Process locked */ - __HAL_LOCK(hirda); - - if (HAL_IRDA_STATE_READY == hirda->gState) - { - switch (CallbackID) - { - case HAL_IRDA_TX_HALFCOMPLETE_CB_ID : - hirda->TxHalfCpltCallback = HAL_IRDA_TxHalfCpltCallback; /* Legacy weak TxHalfCpltCallback */ - break; - - case HAL_IRDA_TX_COMPLETE_CB_ID : - hirda->TxCpltCallback = HAL_IRDA_TxCpltCallback; /* Legacy weak TxCpltCallback */ - break; - - case HAL_IRDA_RX_HALFCOMPLETE_CB_ID : - hirda->RxHalfCpltCallback = HAL_IRDA_RxHalfCpltCallback; /* Legacy weak RxHalfCpltCallback */ - break; - - case HAL_IRDA_RX_COMPLETE_CB_ID : - hirda->RxCpltCallback = HAL_IRDA_RxCpltCallback; /* Legacy weak RxCpltCallback */ - break; - - case HAL_IRDA_ERROR_CB_ID : - hirda->ErrorCallback = HAL_IRDA_ErrorCallback; /* Legacy weak ErrorCallback */ - break; - - case HAL_IRDA_ABORT_COMPLETE_CB_ID : - hirda->AbortCpltCallback = HAL_IRDA_AbortCpltCallback; /* Legacy weak AbortCpltCallback */ - break; - - case HAL_IRDA_ABORT_TRANSMIT_COMPLETE_CB_ID : - hirda->AbortTransmitCpltCallback = HAL_IRDA_AbortTransmitCpltCallback; /* Legacy weak AbortTransmitCpltCallback */ - break; - - case HAL_IRDA_ABORT_RECEIVE_COMPLETE_CB_ID : - hirda->AbortReceiveCpltCallback = HAL_IRDA_AbortReceiveCpltCallback; /* Legacy weak AbortReceiveCpltCallback */ - break; - - case HAL_IRDA_MSPINIT_CB_ID : - hirda->MspInitCallback = HAL_IRDA_MspInit; /* Legacy weak MspInitCallback */ - break; - - case HAL_IRDA_MSPDEINIT_CB_ID : - hirda->MspDeInitCallback = HAL_IRDA_MspDeInit; /* Legacy weak MspDeInitCallback */ - break; - - default : - /* Update the error code */ - hirda->ErrorCode |= HAL_IRDA_ERROR_INVALID_CALLBACK; - - /* Return error status */ - status = HAL_ERROR; - break; - } - } - else if (HAL_IRDA_STATE_RESET == hirda->gState) - { - switch (CallbackID) - { - case HAL_IRDA_MSPINIT_CB_ID : - hirda->MspInitCallback = HAL_IRDA_MspInit; - break; - - case HAL_IRDA_MSPDEINIT_CB_ID : - hirda->MspDeInitCallback = HAL_IRDA_MspDeInit; - break; - - default : - /* Update the error code */ - hirda->ErrorCode |= HAL_IRDA_ERROR_INVALID_CALLBACK; - - /* Return error status */ - status = HAL_ERROR; - break; - } - } - else - { - /* Update the error code */ - hirda->ErrorCode |= HAL_IRDA_ERROR_INVALID_CALLBACK; - - /* Return error status */ - status = HAL_ERROR; - } - - /* Release Lock */ - __HAL_UNLOCK(hirda); - - return status; -} -#endif /* USE_HAL_IRDA_REGISTER_CALLBACKS */ - -/** - * @} - */ - -/** @defgroup IRDA_Exported_Functions_Group2 IO operation functions - * @brief IRDA Transmit and Receive functions - * -@verbatim - =============================================================================== - ##### IO operation functions ##### - =============================================================================== - [..] - This subsection provides a set of functions allowing to manage the IRDA data transfers. - - [..] - IrDA is a half duplex communication protocol. If the Transmitter is busy, any data - on the IrDA receive line will be ignored by the IrDA decoder and if the Receiver - is busy, data on the TX from the USART to IrDA will not be encoded by IrDA. - While receiving data, transmission should be avoided as the data to be transmitted - could be corrupted. - - [..] - (#) There are two modes of transfer: - (++) Blocking mode: the communication is performed in polling mode. - The HAL status of all data processing is returned by the same function - after finishing transfer. - (++) Non-Blocking mode: the communication is performed using Interrupts - or DMA, these API's return the HAL status. - The end of the data processing will be indicated through the - dedicated IRDA IRQ when using Interrupt mode or the DMA IRQ when - using DMA mode. - The HAL_IRDA_TxCpltCallback(), HAL_IRDA_RxCpltCallback() user callbacks - will be executed respectively at the end of the Transmit or Receive process - The HAL_IRDA_ErrorCallback() user callback will be executed when a communication error is detected - - (#) Blocking mode APIs are : - (++) HAL_IRDA_Transmit() - (++) HAL_IRDA_Receive() - - (#) Non Blocking mode APIs with Interrupt are : - (++) HAL_IRDA_Transmit_IT() - (++) HAL_IRDA_Receive_IT() - (++) HAL_IRDA_IRQHandler() - - (#) Non Blocking mode functions with DMA are : - (++) HAL_IRDA_Transmit_DMA() - (++) HAL_IRDA_Receive_DMA() - (++) HAL_IRDA_DMAPause() - (++) HAL_IRDA_DMAResume() - (++) HAL_IRDA_DMAStop() - - (#) A set of Transfer Complete Callbacks are provided in Non Blocking mode: - (++) HAL_IRDA_TxHalfCpltCallback() - (++) HAL_IRDA_TxCpltCallback() - (++) HAL_IRDA_RxHalfCpltCallback() - (++) HAL_IRDA_RxCpltCallback() - (++) HAL_IRDA_ErrorCallback() - - (#) Non-Blocking mode transfers could be aborted using Abort API's : - (++) HAL_IRDA_Abort() - (++) HAL_IRDA_AbortTransmit() - (++) HAL_IRDA_AbortReceive() - (++) HAL_IRDA_Abort_IT() - (++) HAL_IRDA_AbortTransmit_IT() - (++) HAL_IRDA_AbortReceive_IT() - - (#) For Abort services based on interrupts (HAL_IRDA_Abortxxx_IT), a set of Abort Complete Callbacks are provided: - (++) HAL_IRDA_AbortCpltCallback() - (++) HAL_IRDA_AbortTransmitCpltCallback() - (++) HAL_IRDA_AbortReceiveCpltCallback() - - (#) In Non-Blocking mode transfers, possible errors are split into 2 categories. - Errors are handled as follows : - (++) Error is considered as Recoverable and non blocking : Transfer could go till end, but error severity is - to be evaluated by user : this concerns Frame Error, Parity Error or Noise Error in Interrupt mode reception . - Received character is then retrieved and stored in Rx buffer, Error code is set to allow user to identify error type, - and HAL_IRDA_ErrorCallback() user callback is executed. Transfer is kept ongoing on IRDA side. - If user wants to abort it, Abort services should be called by user. - (++) Error is considered as Blocking : Transfer could not be completed properly and is aborted. - This concerns Overrun Error In Interrupt mode reception and all errors in DMA mode. - Error code is set to allow user to identify error type, and HAL_IRDA_ErrorCallback() user callback is executed. - -@endverbatim - * @{ - */ - -/** - * @brief Send an amount of data in blocking mode. - * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), - * the sent data is handled as a set of u16. In this case, Size must reflect the number - * of u16 available through pData. - * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains - * the configuration information for the specified IRDA module. - * @param pData Pointer to data buffer (u8 or u16 data elements). - * @param Size Amount of data elements (u8 or u16) to be sent. - * @param Timeout Specify timeout value. - * @retval HAL status - */ -/** - * @note When IRDA parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), - * address of user data buffer containing data to be sent, should be aligned on a half word frontier (16 bits) - * (as sent data will be handled using u16 pointer cast). Depending on compilation chain, - * use of specific alignment compilation directives or pragmas might be required to ensure proper alignment for pData. - */ -HAL_StatusTypeDef HAL_IRDA_Transmit(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size, uint32_t Timeout) -{ - uint8_t *pdata8bits; - uint16_t *pdata16bits; - uint32_t tickstart; - - /* Check that a Tx process is not already ongoing */ - if (hirda->gState == HAL_IRDA_STATE_READY) - { - if ((pData == NULL) || (Size == 0U)) - { - return HAL_ERROR; - } - - /* In case of 9bits/No Parity transfer, pData buffer provided as input paramter - should be aligned on a u16 frontier, as data to be filled into TDR will be - handled through a u16 cast. */ - if ((hirda->Init.WordLength == IRDA_WORDLENGTH_9B) && (hirda->Init.Parity == IRDA_PARITY_NONE)) - { - if ((((uint32_t)pData) & 1U) != 0U) - { - return HAL_ERROR; - } - } - - /* Process Locked */ - __HAL_LOCK(hirda); - - hirda->ErrorCode = HAL_IRDA_ERROR_NONE; - hirda->gState = HAL_IRDA_STATE_BUSY_TX; - - /* Init tickstart for timeout managment*/ - tickstart = HAL_GetTick(); - - hirda->TxXferSize = Size; - hirda->TxXferCount = Size; - - /* In case of 9bits/No Parity transfer, pData needs to be handled as a uint16_t pointer */ - if ((hirda->Init.WordLength == IRDA_WORDLENGTH_9B) && (hirda->Init.Parity == IRDA_PARITY_NONE)) - { - pdata8bits = NULL; - pdata16bits = (uint16_t *) pData; /* Derogation R.11.3 */ - } - else - { - pdata8bits = pData; - pdata16bits = NULL; - } - - while (hirda->TxXferCount > 0U) - { - hirda->TxXferCount--; - - if (IRDA_WaitOnFlagUntilTimeout(hirda, IRDA_FLAG_TXE, RESET, tickstart, Timeout) != HAL_OK) - { - return HAL_TIMEOUT; - } - if (pdata8bits == NULL) - { - hirda->Instance->TDR = (uint16_t)(*pdata16bits & 0x01FFU); - pdata16bits++; - } - else - { - hirda->Instance->TDR = (uint8_t)(*pdata8bits & 0xFFU); - pdata8bits++; - } - } - - if (IRDA_WaitOnFlagUntilTimeout(hirda, IRDA_FLAG_TC, RESET, tickstart, Timeout) != HAL_OK) - { - return HAL_TIMEOUT; - } - - /* At end of Tx process, restore hirda->gState to Ready */ - hirda->gState = HAL_IRDA_STATE_READY; - - /* Process Unlocked */ - __HAL_UNLOCK(hirda); - - return HAL_OK; - } - else - { - return HAL_BUSY; - } -} - -/** - * @brief Receive an amount of data in blocking mode. - * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), - * the received data is handled as a set of u16. In this case, Size must reflect the number - * of u16 available through pData. - * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains - * the configuration information for the specified IRDA module. - * @param pData Pointer to data buffer (u8 or u16 data elements). - * @param Size Amount of data elements (u8 or u16) to be received. - * @param Timeout Specify timeout value. - * @retval HAL status - */ -/** - * @note When IRDA parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), - * address of user data buffer for storing data to be received, should be aligned on a half word frontier (16 bits) - * (as received data will be handled using u16 pointer cast). Depending on compilation chain, - * use of specific alignment compilation directives or pragmas might be required to ensure proper alignment for pData. - */ -HAL_StatusTypeDef HAL_IRDA_Receive(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size, uint32_t Timeout) -{ - uint8_t *pdata8bits; - uint16_t *pdata16bits; - uint16_t uhMask; - uint32_t tickstart; - - /* Check that a Rx process is not already ongoing */ - if (hirda->RxState == HAL_IRDA_STATE_READY) - { - if ((pData == NULL) || (Size == 0U)) - { - return HAL_ERROR; - } - - /* In case of 9bits/No Parity transfer, pData buffer provided as input paramter - should be aligned on a u16 frontier, as data to be received from RDR will be - handled through a u16 cast. */ - if ((hirda->Init.WordLength == IRDA_WORDLENGTH_9B) && (hirda->Init.Parity == IRDA_PARITY_NONE)) - { - if ((((uint32_t)pData) & 1U) != 0U) - { - return HAL_ERROR; - } - } - - /* Process Locked */ - __HAL_LOCK(hirda); - - hirda->ErrorCode = HAL_IRDA_ERROR_NONE; - hirda->RxState = HAL_IRDA_STATE_BUSY_RX; - - /* Init tickstart for timeout managment*/ - tickstart = HAL_GetTick(); - - hirda->RxXferSize = Size; - hirda->RxXferCount = Size; - - /* Computation of the mask to apply to RDR register - of the UART associated to the IRDA */ - IRDA_MASK_COMPUTATION(hirda); - uhMask = hirda->Mask; - - /* In case of 9bits/No Parity transfer, pRxData needs to be handled as a uint16_t pointer */ - if ((hirda->Init.WordLength == IRDA_WORDLENGTH_9B) && (hirda->Init.Parity == IRDA_PARITY_NONE)) - { - pdata8bits = NULL; - pdata16bits = (uint16_t *) pData; /* Derogation R.11.3 */ - } - else - { - pdata8bits = pData; - pdata16bits = NULL; - } - - /* Check data remaining to be received */ - while (hirda->RxXferCount > 0U) - { - hirda->RxXferCount--; - - if (IRDA_WaitOnFlagUntilTimeout(hirda, IRDA_FLAG_RXNE, RESET, tickstart, Timeout) != HAL_OK) - { - return HAL_TIMEOUT; - } - if (pdata8bits == NULL) - { - *pdata16bits = (uint16_t)(hirda->Instance->RDR & uhMask); - pdata16bits++; - } - else - { - *pdata8bits = (uint8_t)(hirda->Instance->RDR & (uint8_t)uhMask); - pdata8bits++; - } - } - - /* At end of Rx process, restore hirda->RxState to Ready */ - hirda->RxState = HAL_IRDA_STATE_READY; - - /* Process Unlocked */ - __HAL_UNLOCK(hirda); - - return HAL_OK; - } - else - { - return HAL_BUSY; - } -} - -/** - * @brief Send an amount of data in interrupt mode. - * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), - * the sent data is handled as a set of u16. In this case, Size must reflect the number - * of u16 available through pData. - * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains - * the configuration information for the specified IRDA module. - * @param pData Pointer to data buffer (u8 or u16 data elements). - * @param Size Amount of data elements (u8 or u16) to be sent. - * @retval HAL status - */ -/** - * @note When IRDA parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), - * address of user data buffer containing data to be sent, should be aligned on a half word frontier (16 bits) - * (as sent data will be handled using u16 pointer cast). Depending on compilation chain, - * use of specific alignment compilation directives or pragmas might be required to ensure proper alignment for pData. - */ -HAL_StatusTypeDef HAL_IRDA_Transmit_IT(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size) -{ - /* Check that a Tx process is not already ongoing */ - if (hirda->gState == HAL_IRDA_STATE_READY) - { - if ((pData == NULL) || (Size == 0U)) - { - return HAL_ERROR; - } - - /* In case of 9bits/No Parity transfer, pData buffer provided as input paramter - should be aligned on a u16 frontier, as data to be filled into TDR will be - handled through a u16 cast. */ - if ((hirda->Init.WordLength == IRDA_WORDLENGTH_9B) && (hirda->Init.Parity == IRDA_PARITY_NONE)) - { - if ((((uint32_t)pData) & 1U) != 0U) - { - return HAL_ERROR; - } - } - - /* Process Locked */ - __HAL_LOCK(hirda); - - hirda->pTxBuffPtr = pData; - hirda->TxXferSize = Size; - hirda->TxXferCount = Size; - - hirda->ErrorCode = HAL_IRDA_ERROR_NONE; - hirda->gState = HAL_IRDA_STATE_BUSY_TX; - - /* Process Unlocked */ - __HAL_UNLOCK(hirda); - - /* Enable the IRDA Transmit Data Register Empty Interrupt */ - SET_BIT(hirda->Instance->CR1, USART_CR1_TXEIE); - - return HAL_OK; - } - else - { - return HAL_BUSY; - } -} - -/** - * @brief Receive an amount of data in interrupt mode. - * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), - * the received data is handled as a set of u16. In this case, Size must reflect the number - * of u16 available through pData. - * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains - * the configuration information for the specified IRDA module. - * @param pData Pointer to data buffer (u8 or u16 data elements). - * @param Size Amount of data elements (u8 or u16) to be received. - * @retval HAL status - */ -/** - * @note When IRDA parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), - * address of user data buffer for storing data to be received, should be aligned on a half word frontier (16 bits) - * (as received data will be handled using u16 pointer cast). Depending on compilation chain, - * use of specific alignment compilation directives or pragmas might be required to ensure proper alignment for pData. - */ -HAL_StatusTypeDef HAL_IRDA_Receive_IT(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size) -{ - /* Check that a Rx process is not already ongoing */ - if (hirda->RxState == HAL_IRDA_STATE_READY) - { - if ((pData == NULL) || (Size == 0U)) - { - return HAL_ERROR; - } - - /* In case of 9bits/No Parity transfer, pData buffer provided as input paramter - should be aligned on a u16 frontier, as data to be received from RDR will be - handled through a u16 cast. */ - if ((hirda->Init.WordLength == IRDA_WORDLENGTH_9B) && (hirda->Init.Parity == IRDA_PARITY_NONE)) - { - if ((((uint32_t)pData) & 1U) != 0U) - { - return HAL_ERROR; - } - } - - /* Process Locked */ - __HAL_LOCK(hirda); - - hirda->pRxBuffPtr = pData; - hirda->RxXferSize = Size; - hirda->RxXferCount = Size; - - /* Computation of the mask to apply to the RDR register - of the UART associated to the IRDA */ - IRDA_MASK_COMPUTATION(hirda); - - hirda->ErrorCode = HAL_IRDA_ERROR_NONE; - hirda->RxState = HAL_IRDA_STATE_BUSY_RX; - - /* Process Unlocked */ - __HAL_UNLOCK(hirda); - - /* Enable the IRDA Parity Error and Data Register not empty Interrupts */ - SET_BIT(hirda->Instance->CR1, USART_CR1_PEIE | USART_CR1_RXNEIE); - - /* Enable the IRDA Error Interrupt: (Frame error, noise error, overrun error) */ - SET_BIT(hirda->Instance->CR3, USART_CR3_EIE); - - return HAL_OK; - } - else - { - return HAL_BUSY; - } -} - -/** - * @brief Send an amount of data in DMA mode. - * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), - * the sent data is handled as a set of u16. In this case, Size must reflect the number - * of u16 available through pData. - * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains - * the configuration information for the specified IRDA module. - * @param pData pointer to data buffer (u8 or u16 data elements). - * @param Size Amount of data elements (u8 or u16) to be sent. - * @retval HAL status - */ -/** - * @note When IRDA parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), - * address of user data buffer containing data to be sent, should be aligned on a half word frontier (16 bits) - * (as sent data will be handled by DMA from halfword frontier). Depending on compilation chain, - * use of specific alignment compilation directives or pragmas might be required to ensure proper alignment for pData. - */ -HAL_StatusTypeDef HAL_IRDA_Transmit_DMA(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size) -{ - /* Check that a Tx process is not already ongoing */ - if (hirda->gState == HAL_IRDA_STATE_READY) - { - if ((pData == NULL) || (Size == 0U)) - { - return HAL_ERROR; - } - - /* In case of 9bits/No Parity transfer, pData buffer provided as input paramter - should be aligned on a u16 frontier, as data copy into TDR will be - handled by DMA from a u16 frontier. */ - if ((hirda->Init.WordLength == IRDA_WORDLENGTH_9B) && (hirda->Init.Parity == IRDA_PARITY_NONE)) - { - if ((((uint32_t)pData) & 1U) != 0U) - { - return HAL_ERROR; - } - } - - /* Process Locked */ - __HAL_LOCK(hirda); - - hirda->pTxBuffPtr = pData; - hirda->TxXferSize = Size; - hirda->TxXferCount = Size; - - hirda->ErrorCode = HAL_IRDA_ERROR_NONE; - hirda->gState = HAL_IRDA_STATE_BUSY_TX; - - /* Set the IRDA DMA transfer complete callback */ - hirda->hdmatx->XferCpltCallback = IRDA_DMATransmitCplt; - - /* Set the IRDA DMA half transfer complete callback */ - hirda->hdmatx->XferHalfCpltCallback = IRDA_DMATransmitHalfCplt; - - /* Set the DMA error callback */ - hirda->hdmatx->XferErrorCallback = IRDA_DMAError; - - /* Set the DMA abort callback */ - hirda->hdmatx->XferAbortCallback = NULL; - - /* Enable the IRDA transmit DMA channel */ - if (HAL_DMA_Start_IT(hirda->hdmatx, (uint32_t)hirda->pTxBuffPtr, (uint32_t)&hirda->Instance->TDR, Size) == HAL_OK) - { - /* Clear the TC flag in the ICR register */ - __HAL_IRDA_CLEAR_FLAG(hirda, IRDA_CLEAR_TCF); - - /* Process Unlocked */ - __HAL_UNLOCK(hirda); - - /* Enable the DMA transfer for transmit request by setting the DMAT bit - in the USART CR3 register */ - SET_BIT(hirda->Instance->CR3, USART_CR3_DMAT); - - return HAL_OK; - } - else - { - /* Set error code to DMA */ - hirda->ErrorCode = HAL_IRDA_ERROR_DMA; - - /* Process Unlocked */ - __HAL_UNLOCK(hirda); - - /* Restore hirda->gState to ready */ - hirda->gState = HAL_IRDA_STATE_READY; - - return HAL_ERROR; - } - } - else - { - return HAL_BUSY; - } -} - -/** - * @brief Receive an amount of data in DMA mode. - * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), - * the received data is handled as a set of u16. In this case, Size must reflect the number - * of u16 available through pData. - * @note When the IRDA parity is enabled (PCE = 1), the received data contains - * the parity bit (MSB position). - * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains - * the configuration information for the specified IRDA module. - * @param pData Pointer to data buffer (u8 or u16 data elements). - * @param Size Amount of data elements (u8 or u16) to be received. - * @retval HAL status - */ -/** - * @note When IRDA parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), - * address of user data buffer for storing data to be received, should be aligned on a half word frontier (16 bits) - * (as received data will be handled by DMA from halfword frontier). Depending on compilation chain, - * use of specific alignment compilation directives or pragmas might be required to ensure proper alignment for pData. - */ -HAL_StatusTypeDef HAL_IRDA_Receive_DMA(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size) -{ - /* Check that a Rx process is not already ongoing */ - if (hirda->RxState == HAL_IRDA_STATE_READY) - { - if ((pData == NULL) || (Size == 0U)) - { - return HAL_ERROR; - } - - /* In case of 9bits/No Parity transfer, pData buffer provided as input paramter - should be aligned on a u16 frontier, as data copy from RDR will be - handled by DMA from a u16 frontier. */ - if ((hirda->Init.WordLength == IRDA_WORDLENGTH_9B) && (hirda->Init.Parity == IRDA_PARITY_NONE)) - { - if ((((uint32_t)pData) & 1U) != 0U) - { - return HAL_ERROR; - } - } - - /* Process Locked */ - __HAL_LOCK(hirda); - - hirda->pRxBuffPtr = pData; - hirda->RxXferSize = Size; - - hirda->ErrorCode = HAL_IRDA_ERROR_NONE; - hirda->RxState = HAL_IRDA_STATE_BUSY_RX; - - /* Set the IRDA DMA transfer complete callback */ - hirda->hdmarx->XferCpltCallback = IRDA_DMAReceiveCplt; - - /* Set the IRDA DMA half transfer complete callback */ - hirda->hdmarx->XferHalfCpltCallback = IRDA_DMAReceiveHalfCplt; - - /* Set the DMA error callback */ - hirda->hdmarx->XferErrorCallback = IRDA_DMAError; - - /* Set the DMA abort callback */ - hirda->hdmarx->XferAbortCallback = NULL; - - /* Enable the DMA channel */ - if (HAL_DMA_Start_IT(hirda->hdmarx, (uint32_t)&hirda->Instance->RDR, (uint32_t)hirda->pRxBuffPtr, Size) == HAL_OK) - { - /* Process Unlocked */ - __HAL_UNLOCK(hirda); - - /* Enable the UART Parity Error Interrupt */ - SET_BIT(hirda->Instance->CR1, USART_CR1_PEIE); - - /* Enable the UART Error Interrupt: (Frame error, noise error, overrun error) */ - SET_BIT(hirda->Instance->CR3, USART_CR3_EIE); - - /* Enable the DMA transfer for the receiver request by setting the DMAR bit - in the USART CR3 register */ - SET_BIT(hirda->Instance->CR3, USART_CR3_DMAR); - - return HAL_OK; - } - else - { - /* Set error code to DMA */ - hirda->ErrorCode = HAL_IRDA_ERROR_DMA; - - /* Process Unlocked */ - __HAL_UNLOCK(hirda); - - /* Restore hirda->RxState to ready */ - hirda->RxState = HAL_IRDA_STATE_READY; - - return HAL_ERROR; - } - } - else - { - return HAL_BUSY; - } -} - - -/** - * @brief Pause the DMA Transfer. - * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains - * the configuration information for the specified IRDA module. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_IRDA_DMAPause(IRDA_HandleTypeDef *hirda) -{ - /* Process Locked */ - __HAL_LOCK(hirda); - - if (hirda->gState == HAL_IRDA_STATE_BUSY_TX) - { - if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAT)) - { - /* Disable the IRDA DMA Tx request */ - CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAT); - } - } - if (hirda->RxState == HAL_IRDA_STATE_BUSY_RX) - { - if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR)) - { - /* Disable PE and ERR (Frame error, noise error, overrun error) interrupts */ - CLEAR_BIT(hirda->Instance->CR1, USART_CR1_PEIE); - CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE); - - /* Disable the IRDA DMA Rx request */ - CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAR); - } - } - - /* Process Unlocked */ - __HAL_UNLOCK(hirda); - - return HAL_OK; -} - -/** - * @brief Resume the DMA Transfer. - * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains - * the configuration information for the specified UART module. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_IRDA_DMAResume(IRDA_HandleTypeDef *hirda) -{ - /* Process Locked */ - __HAL_LOCK(hirda); - - if (hirda->gState == HAL_IRDA_STATE_BUSY_TX) - { - /* Enable the IRDA DMA Tx request */ - SET_BIT(hirda->Instance->CR3, USART_CR3_DMAT); - } - if (hirda->RxState == HAL_IRDA_STATE_BUSY_RX) - { - /* Clear the Overrun flag before resuming the Rx transfer*/ - __HAL_IRDA_CLEAR_OREFLAG(hirda); - - /* Reenable PE and ERR (Frame error, noise error, overrun error) interrupts */ - SET_BIT(hirda->Instance->CR1, USART_CR1_PEIE); - SET_BIT(hirda->Instance->CR3, USART_CR3_EIE); - - /* Enable the IRDA DMA Rx request */ - SET_BIT(hirda->Instance->CR3, USART_CR3_DMAR); - } - - /* Process Unlocked */ - __HAL_UNLOCK(hirda); - - return HAL_OK; -} - -/** - * @brief Stop the DMA Transfer. - * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains - * the configuration information for the specified UART module. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_IRDA_DMAStop(IRDA_HandleTypeDef *hirda) -{ - /* The Lock is not implemented on this API to allow the user application - to call the HAL IRDA API under callbacks HAL_IRDA_TxCpltCallback() / HAL_IRDA_RxCpltCallback() / - HAL_IRDA_TxHalfCpltCallback / HAL_IRDA_RxHalfCpltCallback: - indeed, when HAL_DMA_Abort() API is called, the DMA TX/RX Transfer or Half Transfer complete - interrupt is generated if the DMA transfer interruption occurs at the middle or at the end of - the stream and the corresponding call back is executed. */ - - /* Stop IRDA DMA Tx request if ongoing */ - if (hirda->gState == HAL_IRDA_STATE_BUSY_TX) - { - if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAT)) - { - CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAT); - - /* Abort the IRDA DMA Tx channel */ - if (hirda->hdmatx != NULL) - { - if (HAL_DMA_Abort(hirda->hdmatx) != HAL_OK) - { - if (HAL_DMA_GetError(hirda->hdmatx) == HAL_DMA_ERROR_TIMEOUT) - { - /* Set error code to DMA */ - hirda->ErrorCode = HAL_IRDA_ERROR_DMA; - - return HAL_TIMEOUT; - } - } - } - - IRDA_EndTxTransfer(hirda); - } - } - - /* Stop IRDA DMA Rx request if ongoing */ - if (hirda->RxState == HAL_IRDA_STATE_BUSY_RX) - { - if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR)) - { - CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAR); - - /* Abort the IRDA DMA Rx channel */ - if (hirda->hdmarx != NULL) - { - if (HAL_DMA_Abort(hirda->hdmarx) != HAL_OK) - { - if (HAL_DMA_GetError(hirda->hdmarx) == HAL_DMA_ERROR_TIMEOUT) - { - /* Set error code to DMA */ - hirda->ErrorCode = HAL_IRDA_ERROR_DMA; - - return HAL_TIMEOUT; - } - } - } - - IRDA_EndRxTransfer(hirda); - } - } - - return HAL_OK; -} - -/** - * @brief Abort ongoing transfers (blocking mode). - * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains - * the configuration information for the specified UART module. - * @note This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode. - * This procedure performs following operations : - * - Disable IRDA Interrupts (Tx and Rx) - * - Disable the DMA transfer in the peripheral register (if enabled) - * - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode) - * - Set handle State to READY - * @note This procedure is executed in blocking mode : when exiting function, Abort is considered as completed. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_IRDA_Abort(IRDA_HandleTypeDef *hirda) -{ - /* Disable TXEIE, TCIE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */ - CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE | USART_CR1_TXEIE | USART_CR1_TCIE)); - CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE); - - /* Disable the IRDA DMA Tx request if enabled */ - if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAT)) - { - CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAT); - - /* Abort the IRDA DMA Tx channel : use blocking DMA Abort API (no callback) */ - if (hirda->hdmatx != NULL) - { - /* Set the IRDA DMA Abort callback to Null. - No call back execution at end of DMA abort procedure */ - hirda->hdmatx->XferAbortCallback = NULL; - - if (HAL_DMA_Abort(hirda->hdmatx) != HAL_OK) - { - if (HAL_DMA_GetError(hirda->hdmatx) == HAL_DMA_ERROR_TIMEOUT) - { - /* Set error code to DMA */ - hirda->ErrorCode = HAL_IRDA_ERROR_DMA; - - return HAL_TIMEOUT; - } - } - } - } - - /* Disable the IRDA DMA Rx request if enabled */ - if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR)) - { - CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAR); - - /* Abort the IRDA DMA Rx channel : use blocking DMA Abort API (no callback) */ - if (hirda->hdmarx != NULL) - { - /* Set the IRDA DMA Abort callback to Null. - No call back execution at end of DMA abort procedure */ - hirda->hdmarx->XferAbortCallback = NULL; - - if (HAL_DMA_Abort(hirda->hdmarx) != HAL_OK) - { - if (HAL_DMA_GetError(hirda->hdmarx) == HAL_DMA_ERROR_TIMEOUT) - { - /* Set error code to DMA */ - hirda->ErrorCode = HAL_IRDA_ERROR_DMA; - - return HAL_TIMEOUT; - } - } - } - } - - /* Reset Tx and Rx transfer counters */ - hirda->TxXferCount = 0U; - hirda->RxXferCount = 0U; - - /* Clear the Error flags in the ICR register */ - __HAL_IRDA_CLEAR_FLAG(hirda, IRDA_CLEAR_OREF | IRDA_CLEAR_NEF | IRDA_CLEAR_PEF | IRDA_CLEAR_FEF); - - /* Restore hirda->gState and hirda->RxState to Ready */ - hirda->gState = HAL_IRDA_STATE_READY; - hirda->RxState = HAL_IRDA_STATE_READY; - - /* Reset Handle ErrorCode to No Error */ - hirda->ErrorCode = HAL_IRDA_ERROR_NONE; - - return HAL_OK; -} - -/** - * @brief Abort ongoing Transmit transfer (blocking mode). - * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains - * the configuration information for the specified UART module. - * @note This procedure could be used for aborting any ongoing Tx transfer started in Interrupt or DMA mode. - * This procedure performs following operations : - * - Disable IRDA Interrupts (Tx) - * - Disable the DMA transfer in the peripheral register (if enabled) - * - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode) - * - Set handle State to READY - * @note This procedure is executed in blocking mode : when exiting function, Abort is considered as completed. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_IRDA_AbortTransmit(IRDA_HandleTypeDef *hirda) -{ - /* Disable TXEIE and TCIE interrupts */ - CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_TXEIE | USART_CR1_TCIE)); - - /* Disable the IRDA DMA Tx request if enabled */ - if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAT)) - { - CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAT); - - /* Abort the IRDA DMA Tx channel : use blocking DMA Abort API (no callback) */ - if (hirda->hdmatx != NULL) - { - /* Set the IRDA DMA Abort callback to Null. - No call back execution at end of DMA abort procedure */ - hirda->hdmatx->XferAbortCallback = NULL; - - if (HAL_DMA_Abort(hirda->hdmatx) != HAL_OK) - { - if (HAL_DMA_GetError(hirda->hdmatx) == HAL_DMA_ERROR_TIMEOUT) - { - /* Set error code to DMA */ - hirda->ErrorCode = HAL_IRDA_ERROR_DMA; - - return HAL_TIMEOUT; - } - } - } - } - - /* Reset Tx transfer counter */ - hirda->TxXferCount = 0U; - - /* Restore hirda->gState to Ready */ - hirda->gState = HAL_IRDA_STATE_READY; - - return HAL_OK; -} - -/** - * @brief Abort ongoing Receive transfer (blocking mode). - * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains - * the configuration information for the specified UART module. - * @note This procedure could be used for aborting any ongoing Rx transfer started in Interrupt or DMA mode. - * This procedure performs following operations : - * - Disable IRDA Interrupts (Rx) - * - Disable the DMA transfer in the peripheral register (if enabled) - * - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode) - * - Set handle State to READY - * @note This procedure is executed in blocking mode : when exiting function, Abort is considered as completed. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_IRDA_AbortReceive(IRDA_HandleTypeDef *hirda) -{ - /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */ - CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE)); - CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE); - - /* Disable the IRDA DMA Rx request if enabled */ - if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR)) - { - CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAR); - - /* Abort the IRDA DMA Rx channel : use blocking DMA Abort API (no callback) */ - if (hirda->hdmarx != NULL) - { - /* Set the IRDA DMA Abort callback to Null. - No call back execution at end of DMA abort procedure */ - hirda->hdmarx->XferAbortCallback = NULL; - - if (HAL_DMA_Abort(hirda->hdmarx) != HAL_OK) - { - if (HAL_DMA_GetError(hirda->hdmarx) == HAL_DMA_ERROR_TIMEOUT) - { - /* Set error code to DMA */ - hirda->ErrorCode = HAL_IRDA_ERROR_DMA; - - return HAL_TIMEOUT; - } - } - } - } - - /* Reset Rx transfer counter */ - hirda->RxXferCount = 0U; - - /* Clear the Error flags in the ICR register */ - __HAL_IRDA_CLEAR_FLAG(hirda, IRDA_CLEAR_OREF | IRDA_CLEAR_NEF | IRDA_CLEAR_PEF | IRDA_CLEAR_FEF); - - /* Restore hirda->RxState to Ready */ - hirda->RxState = HAL_IRDA_STATE_READY; - - return HAL_OK; -} - -/** - * @brief Abort ongoing transfers (Interrupt mode). - * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains - * the configuration information for the specified UART module. - * @note This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode. - * This procedure performs following operations : - * - Disable IRDA Interrupts (Tx and Rx) - * - Disable the DMA transfer in the peripheral register (if enabled) - * - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode) - * - Set handle State to READY - * - At abort completion, call user abort complete callback - * @note This procedure is executed in Interrupt mode, meaning that abort procedure could be - * considered as completed only when user abort complete callback is executed (not when exiting function). - * @retval HAL status - */ -HAL_StatusTypeDef HAL_IRDA_Abort_IT(IRDA_HandleTypeDef *hirda) -{ - uint32_t abortcplt = 1U; - - /* Disable TXEIE, TCIE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */ - CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE | USART_CR1_TXEIE | USART_CR1_TCIE)); - CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE); - - /* If DMA Tx and/or DMA Rx Handles are associated to IRDA Handle, DMA Abort complete callbacks should be initialised - before any call to DMA Abort functions */ - /* DMA Tx Handle is valid */ - if (hirda->hdmatx != NULL) - { - /* Set DMA Abort Complete callback if IRDA DMA Tx request if enabled. - Otherwise, set it to NULL */ - if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAT)) - { - hirda->hdmatx->XferAbortCallback = IRDA_DMATxAbortCallback; - } - else - { - hirda->hdmatx->XferAbortCallback = NULL; - } - } - /* DMA Rx Handle is valid */ - if (hirda->hdmarx != NULL) - { - /* Set DMA Abort Complete callback if IRDA DMA Rx request if enabled. - Otherwise, set it to NULL */ - if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR)) - { - hirda->hdmarx->XferAbortCallback = IRDA_DMARxAbortCallback; - } - else - { - hirda->hdmarx->XferAbortCallback = NULL; - } - } - - /* Disable the IRDA DMA Tx request if enabled */ - if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAT)) - { - /* Disable DMA Tx at UART level */ - CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAT); - - /* Abort the IRDA DMA Tx channel : use non blocking DMA Abort API (callback) */ - if (hirda->hdmatx != NULL) - { - /* IRDA Tx DMA Abort callback has already been initialised : - will lead to call HAL_IRDA_AbortCpltCallback() at end of DMA abort procedure */ - - /* Abort DMA TX */ - if (HAL_DMA_Abort_IT(hirda->hdmatx) != HAL_OK) - { - hirda->hdmatx->XferAbortCallback = NULL; - } - else - { - abortcplt = 0U; - } - } - } - - /* Disable the IRDA DMA Rx request if enabled */ - if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR)) - { - CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAR); - - /* Abort the IRDA DMA Rx channel : use non blocking DMA Abort API (callback) */ - if (hirda->hdmarx != NULL) - { - /* IRDA Rx DMA Abort callback has already been initialised : - will lead to call HAL_IRDA_AbortCpltCallback() at end of DMA abort procedure */ - - /* Abort DMA RX */ - if (HAL_DMA_Abort_IT(hirda->hdmarx) != HAL_OK) - { - hirda->hdmarx->XferAbortCallback = NULL; - abortcplt = 1U; - } - else - { - abortcplt = 0U; - } - } - } - - /* if no DMA abort complete callback execution is required => call user Abort Complete callback */ - if (abortcplt == 1U) - { - /* Reset Tx and Rx transfer counters */ - hirda->TxXferCount = 0U; - hirda->RxXferCount = 0U; - - /* Reset errorCode */ - hirda->ErrorCode = HAL_IRDA_ERROR_NONE; - - /* Clear the Error flags in the ICR register */ - __HAL_IRDA_CLEAR_FLAG(hirda, IRDA_CLEAR_OREF | IRDA_CLEAR_NEF | IRDA_CLEAR_PEF | IRDA_CLEAR_FEF); - - /* Restore hirda->gState and hirda->RxState to Ready */ - hirda->gState = HAL_IRDA_STATE_READY; - hirda->RxState = HAL_IRDA_STATE_READY; - - /* As no DMA to be aborted, call directly user Abort complete callback */ -#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1) - /* Call registered Abort complete callback */ - hirda->AbortCpltCallback(hirda); -#else - /* Call legacy weak Abort complete callback */ - HAL_IRDA_AbortCpltCallback(hirda); -#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */ - } - - return HAL_OK; -} - -/** - * @brief Abort ongoing Transmit transfer (Interrupt mode). - * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains - * the configuration information for the specified UART module. - * @note This procedure could be used for aborting any ongoing Tx transfer started in Interrupt or DMA mode. - * This procedure performs following operations : - * - Disable IRDA Interrupts (Tx) - * - Disable the DMA transfer in the peripheral register (if enabled) - * - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode) - * - Set handle State to READY - * - At abort completion, call user abort complete callback - * @note This procedure is executed in Interrupt mode, meaning that abort procedure could be - * considered as completed only when user abort complete callback is executed (not when exiting function). - * @retval HAL status - */ -HAL_StatusTypeDef HAL_IRDA_AbortTransmit_IT(IRDA_HandleTypeDef *hirda) -{ - /* Disable TXEIE and TCIE interrupts */ - CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_TXEIE | USART_CR1_TCIE)); - - /* Disable the IRDA DMA Tx request if enabled */ - if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAT)) - { - CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAT); - - /* Abort the IRDA DMA Tx channel : use non blocking DMA Abort API (callback) */ - if (hirda->hdmatx != NULL) - { - /* Set the IRDA DMA Abort callback : - will lead to call HAL_IRDA_AbortCpltCallback() at end of DMA abort procedure */ - hirda->hdmatx->XferAbortCallback = IRDA_DMATxOnlyAbortCallback; - - /* Abort DMA TX */ - if (HAL_DMA_Abort_IT(hirda->hdmatx) != HAL_OK) - { - /* Call Directly hirda->hdmatx->XferAbortCallback function in case of error */ - hirda->hdmatx->XferAbortCallback(hirda->hdmatx); - } - } - else - { - /* Reset Tx transfer counter */ - hirda->TxXferCount = 0U; - - /* Restore hirda->gState to Ready */ - hirda->gState = HAL_IRDA_STATE_READY; - - /* As no DMA to be aborted, call directly user Abort complete callback */ -#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1) - /* Call registered Abort Transmit Complete Callback */ - hirda->AbortTransmitCpltCallback(hirda); -#else - /* Call legacy weak Abort Transmit Complete Callback */ - HAL_IRDA_AbortTransmitCpltCallback(hirda); -#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */ - } - } - else - { - /* Reset Tx transfer counter */ - hirda->TxXferCount = 0U; - - /* Restore hirda->gState to Ready */ - hirda->gState = HAL_IRDA_STATE_READY; - - /* As no DMA to be aborted, call directly user Abort complete callback */ -#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1) - /* Call registered Abort Transmit Complete Callback */ - hirda->AbortTransmitCpltCallback(hirda); -#else - /* Call legacy weak Abort Transmit Complete Callback */ - HAL_IRDA_AbortTransmitCpltCallback(hirda); -#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */ - } - - return HAL_OK; -} - -/** - * @brief Abort ongoing Receive transfer (Interrupt mode). - * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains - * the configuration information for the specified UART module. - * @note This procedure could be used for aborting any ongoing Rx transfer started in Interrupt or DMA mode. - * This procedure performs following operations : - * - Disable IRDA Interrupts (Rx) - * - Disable the DMA transfer in the peripheral register (if enabled) - * - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode) - * - Set handle State to READY - * - At abort completion, call user abort complete callback - * @note This procedure is executed in Interrupt mode, meaning that abort procedure could be - * considered as completed only when user abort complete callback is executed (not when exiting function). - * @retval HAL status - */ -HAL_StatusTypeDef HAL_IRDA_AbortReceive_IT(IRDA_HandleTypeDef *hirda) -{ - /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */ - CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE)); - CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE); - - /* Disable the IRDA DMA Rx request if enabled */ - if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR)) - { - CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAR); - - /* Abort the IRDA DMA Rx channel : use non blocking DMA Abort API (callback) */ - if (hirda->hdmarx != NULL) - { - /* Set the IRDA DMA Abort callback : - will lead to call HAL_IRDA_AbortCpltCallback() at end of DMA abort procedure */ - hirda->hdmarx->XferAbortCallback = IRDA_DMARxOnlyAbortCallback; - - /* Abort DMA RX */ - if (HAL_DMA_Abort_IT(hirda->hdmarx) != HAL_OK) - { - /* Call Directly hirda->hdmarx->XferAbortCallback function in case of error */ - hirda->hdmarx->XferAbortCallback(hirda->hdmarx); - } - } - else - { - /* Reset Rx transfer counter */ - hirda->RxXferCount = 0U; - - /* Clear the Error flags in the ICR register */ - __HAL_IRDA_CLEAR_FLAG(hirda, IRDA_CLEAR_OREF | IRDA_CLEAR_NEF | IRDA_CLEAR_PEF | IRDA_CLEAR_FEF); - - /* Restore hirda->RxState to Ready */ - hirda->RxState = HAL_IRDA_STATE_READY; - - /* As no DMA to be aborted, call directly user Abort complete callback */ -#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1) - /* Call registered Abort Receive Complete Callback */ - hirda->AbortReceiveCpltCallback(hirda); -#else - /* Call legacy weak Abort Receive Complete Callback */ - HAL_IRDA_AbortReceiveCpltCallback(hirda); -#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */ - } - } - else - { - /* Reset Rx transfer counter */ - hirda->RxXferCount = 0U; - - /* Clear the Error flags in the ICR register */ - __HAL_IRDA_CLEAR_FLAG(hirda, IRDA_CLEAR_OREF | IRDA_CLEAR_NEF | IRDA_CLEAR_PEF | IRDA_CLEAR_FEF); - - /* Restore hirda->RxState to Ready */ - hirda->RxState = HAL_IRDA_STATE_READY; - - /* As no DMA to be aborted, call directly user Abort complete callback */ -#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1) - /* Call registered Abort Receive Complete Callback */ - hirda->AbortReceiveCpltCallback(hirda); -#else - /* Call legacy weak Abort Receive Complete Callback */ - HAL_IRDA_AbortReceiveCpltCallback(hirda); -#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */ - } - - return HAL_OK; -} - -/** - * @brief Handle IRDA interrupt request. - * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains - * the configuration information for the specified IRDA module. - * @retval None - */ -void HAL_IRDA_IRQHandler(IRDA_HandleTypeDef *hirda) -{ - uint32_t isrflags = READ_REG(hirda->Instance->ISR); - uint32_t cr1its = READ_REG(hirda->Instance->CR1); - uint32_t cr3its; - uint32_t errorflags; - uint32_t errorcode; - - /* If no error occurs */ - errorflags = (isrflags & (uint32_t)(USART_ISR_PE | USART_ISR_FE | USART_ISR_ORE | USART_ISR_NE)); - if (errorflags == 0U) - { - /* IRDA in mode Receiver ---------------------------------------------------*/ - if (((isrflags & USART_ISR_RXNE) != 0U) && ((cr1its & USART_CR1_RXNEIE) != 0U)) - { - IRDA_Receive_IT(hirda); - return; - } - } - - /* If some errors occur */ - cr3its = READ_REG(hirda->Instance->CR3); - if ((errorflags != 0U) - && (((cr3its & USART_CR3_EIE) != 0U) - || ((cr1its & (USART_CR1_RXNEIE | USART_CR1_PEIE)) != 0U))) - { - /* IRDA parity error interrupt occurred -------------------------------------*/ - if (((isrflags & USART_ISR_PE) != 0U) && ((cr1its & USART_CR1_PEIE) != 0U)) - { - __HAL_IRDA_CLEAR_IT(hirda, IRDA_CLEAR_PEF); - - hirda->ErrorCode |= HAL_IRDA_ERROR_PE; - } - - /* IRDA frame error interrupt occurred --------------------------------------*/ - if (((isrflags & USART_ISR_FE) != 0U) && ((cr3its & USART_CR3_EIE) != 0U)) - { - __HAL_IRDA_CLEAR_IT(hirda, IRDA_CLEAR_FEF); - - hirda->ErrorCode |= HAL_IRDA_ERROR_FE; - } - - /* IRDA noise error interrupt occurred --------------------------------------*/ - if (((isrflags & USART_ISR_NE) != 0U) && ((cr3its & USART_CR3_EIE) != 0U)) - { - __HAL_IRDA_CLEAR_IT(hirda, IRDA_CLEAR_NEF); - - hirda->ErrorCode |= HAL_IRDA_ERROR_NE; - } - - /* IRDA Over-Run interrupt occurred -----------------------------------------*/ - if (((isrflags & USART_ISR_ORE) != 0U) && - (((cr1its & USART_CR1_RXNEIE) != 0U) || ((cr3its & USART_CR3_EIE) != 0U))) - { - __HAL_IRDA_CLEAR_IT(hirda, IRDA_CLEAR_OREF); - - hirda->ErrorCode |= HAL_IRDA_ERROR_ORE; - } - - /* Call IRDA Error Call back function if need be --------------------------*/ - if (hirda->ErrorCode != HAL_IRDA_ERROR_NONE) - { - /* IRDA in mode Receiver ---------------------------------------------------*/ - if (((isrflags & USART_ISR_RXNE) != 0U) && ((cr1its & USART_CR1_RXNEIE) != 0U)) - { - IRDA_Receive_IT(hirda); - } - - /* If Overrun error occurs, or if any error occurs in DMA mode reception, - consider error as blocking */ - errorcode = hirda->ErrorCode; - if ((HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR)) || - ((errorcode & HAL_IRDA_ERROR_ORE) != 0U)) - { - /* Blocking error : transfer is aborted - Set the IRDA state ready to be able to start again the process, - Disable Rx Interrupts, and disable Rx DMA request, if ongoing */ - IRDA_EndRxTransfer(hirda); - - /* Disable the IRDA DMA Rx request if enabled */ - if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR)) - { - CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAR); - - /* Abort the IRDA DMA Rx channel */ - if (hirda->hdmarx != NULL) - { - /* Set the IRDA DMA Abort callback : - will lead to call HAL_IRDA_ErrorCallback() at end of DMA abort procedure */ - hirda->hdmarx->XferAbortCallback = IRDA_DMAAbortOnError; - - /* Abort DMA RX */ - if (HAL_DMA_Abort_IT(hirda->hdmarx) != HAL_OK) - { - /* Call Directly hirda->hdmarx->XferAbortCallback function in case of error */ - hirda->hdmarx->XferAbortCallback(hirda->hdmarx); - } - } - else - { -#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1) - /* Call registered user error callback */ - hirda->ErrorCallback(hirda); -#else - /* Call legacy weak user error callback */ - HAL_IRDA_ErrorCallback(hirda); -#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */ - } - } - else - { -#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1) - /* Call registered user error callback */ - hirda->ErrorCallback(hirda); -#else - /* Call legacy weak user error callback */ - HAL_IRDA_ErrorCallback(hirda); -#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */ - } - } - else - { - /* Non Blocking error : transfer could go on. - Error is notified to user through user error callback */ -#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1) - /* Call registered user error callback */ - hirda->ErrorCallback(hirda); -#else - /* Call legacy weak user error callback */ - HAL_IRDA_ErrorCallback(hirda); -#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */ - hirda->ErrorCode = HAL_IRDA_ERROR_NONE; - } - } - return; - - } /* End if some error occurs */ - - /* IRDA in mode Transmitter ------------------------------------------------*/ - if (((isrflags & USART_ISR_TXE) != 0U) && ((cr1its & USART_CR1_TXEIE) != 0U)) - { - IRDA_Transmit_IT(hirda); - return; - } - - /* IRDA in mode Transmitter (transmission end) -----------------------------*/ - if (((isrflags & USART_ISR_TC) != 0U) && ((cr1its & USART_CR1_TCIE) != 0U)) - { - IRDA_EndTransmit_IT(hirda); - return; - } - -} - -/** - * @brief Tx Transfer completed callback. - * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains - * the configuration information for the specified IRDA module. - * @retval None - */ -__weak void HAL_IRDA_TxCpltCallback(IRDA_HandleTypeDef *hirda) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hirda); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_IRDA_TxCpltCallback can be implemented in the user file. - */ -} - -/** - * @brief Tx Half Transfer completed callback. - * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains - * the configuration information for the specified USART module. - * @retval None - */ -__weak void HAL_IRDA_TxHalfCpltCallback(IRDA_HandleTypeDef *hirda) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hirda); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_IRDA_TxHalfCpltCallback can be implemented in the user file. - */ -} - -/** - * @brief Rx Transfer completed callback. - * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains - * the configuration information for the specified IRDA module. - * @retval None - */ -__weak void HAL_IRDA_RxCpltCallback(IRDA_HandleTypeDef *hirda) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hirda); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_IRDA_RxCpltCallback can be implemented in the user file. - */ -} - -/** - * @brief Rx Half Transfer complete callback. - * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains - * the configuration information for the specified IRDA module. - * @retval None - */ -__weak void HAL_IRDA_RxHalfCpltCallback(IRDA_HandleTypeDef *hirda) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hirda); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_IRDA_RxHalfCpltCallback can be implemented in the user file. - */ -} - -/** - * @brief IRDA error callback. - * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains - * the configuration information for the specified IRDA module. - * @retval None - */ -__weak void HAL_IRDA_ErrorCallback(IRDA_HandleTypeDef *hirda) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hirda); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_IRDA_ErrorCallback can be implemented in the user file. - */ -} - -/** - * @brief IRDA Abort Complete callback. - * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains - * the configuration information for the specified IRDA module. - * @retval None - */ -__weak void HAL_IRDA_AbortCpltCallback(IRDA_HandleTypeDef *hirda) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hirda); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_IRDA_AbortCpltCallback can be implemented in the user file. - */ -} - -/** - * @brief IRDA Abort Complete callback. - * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains - * the configuration information for the specified IRDA module. - * @retval None - */ -__weak void HAL_IRDA_AbortTransmitCpltCallback(IRDA_HandleTypeDef *hirda) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hirda); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_IRDA_AbortTransmitCpltCallback can be implemented in the user file. - */ -} - -/** - * @brief IRDA Abort Receive Complete callback. - * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains - * the configuration information for the specified IRDA module. - * @retval None - */ -__weak void HAL_IRDA_AbortReceiveCpltCallback(IRDA_HandleTypeDef *hirda) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hirda); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_IRDA_AbortReceiveCpltCallback can be implemented in the user file. - */ -} - -/** - * @} - */ - -/** @defgroup IRDA_Exported_Functions_Group4 Peripheral State and Error functions - * @brief IRDA State and Errors functions - * -@verbatim - ============================================================================== - ##### Peripheral State and Error functions ##### - ============================================================================== - [..] - This subsection provides a set of functions allowing to return the State of IrDA - communication process and also return Peripheral Errors occurred during communication process - (+) HAL_IRDA_GetState() API can be helpful to check in run-time the state - of the IRDA peripheral handle. - (+) HAL_IRDA_GetError() checks in run-time errors that could occur during - communication. - -@endverbatim - * @{ - */ - -/** - * @brief Return the IRDA handle state. - * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains - * the configuration information for the specified IRDA module. - * @retval HAL state - */ -HAL_IRDA_StateTypeDef HAL_IRDA_GetState(IRDA_HandleTypeDef *hirda) -{ - /* Return IRDA handle state */ - uint32_t temp1; - uint32_t temp2; - temp1 = (uint32_t)hirda->gState; - temp2 = (uint32_t)hirda->RxState; - - return (HAL_IRDA_StateTypeDef)(temp1 | temp2); -} - -/** - * @brief Return the IRDA handle error code. - * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains - * the configuration information for the specified IRDA module. - * @retval IRDA Error Code - */ -uint32_t HAL_IRDA_GetError(IRDA_HandleTypeDef *hirda) -{ - return hirda->ErrorCode; -} - -/** - * @} - */ - -/** - * @} - */ - -/** @defgroup IRDA_Private_Functions IRDA Private Functions - * @{ - */ - -#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1) -/** - * @brief Initialize the callbacks to their default values. - * @param hirda IRDA handle. - * @retval none - */ -void IRDA_InitCallbacksToDefault(IRDA_HandleTypeDef *hirda) -{ - /* Init the IRDA Callback settings */ - hirda->TxHalfCpltCallback = HAL_IRDA_TxHalfCpltCallback; /* Legacy weak TxHalfCpltCallback */ - hirda->TxCpltCallback = HAL_IRDA_TxCpltCallback; /* Legacy weak TxCpltCallback */ - hirda->RxHalfCpltCallback = HAL_IRDA_RxHalfCpltCallback; /* Legacy weak RxHalfCpltCallback */ - hirda->RxCpltCallback = HAL_IRDA_RxCpltCallback; /* Legacy weak RxCpltCallback */ - hirda->ErrorCallback = HAL_IRDA_ErrorCallback; /* Legacy weak ErrorCallback */ - hirda->AbortCpltCallback = HAL_IRDA_AbortCpltCallback; /* Legacy weak AbortCpltCallback */ - hirda->AbortTransmitCpltCallback = HAL_IRDA_AbortTransmitCpltCallback; /* Legacy weak AbortTransmitCpltCallback */ - hirda->AbortReceiveCpltCallback = HAL_IRDA_AbortReceiveCpltCallback; /* Legacy weak AbortReceiveCpltCallback */ - -} -#endif /* USE_HAL_IRDA_REGISTER_CALLBACKS */ - -/** - * @brief Configure the IRDA peripheral. - * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains - * the configuration information for the specified IRDA module. - * @retval HAL status - */ -static HAL_StatusTypeDef IRDA_SetConfig(IRDA_HandleTypeDef *hirda) -{ - uint32_t tmpreg; - IRDA_ClockSourceTypeDef clocksource; - HAL_StatusTypeDef ret = HAL_OK; - uint32_t pclk; - - /* Check the communication parameters */ - assert_param(IS_IRDA_BAUDRATE(hirda->Init.BaudRate)); - assert_param(IS_IRDA_WORD_LENGTH(hirda->Init.WordLength)); - assert_param(IS_IRDA_PARITY(hirda->Init.Parity)); - assert_param(IS_IRDA_TX_RX_MODE(hirda->Init.Mode)); - assert_param(IS_IRDA_PRESCALER(hirda->Init.Prescaler)); - assert_param(IS_IRDA_POWERMODE(hirda->Init.PowerMode)); - - /*-------------------------- USART CR1 Configuration -----------------------*/ - /* Configure the IRDA Word Length, Parity and transfer Mode: - Set the M bits according to hirda->Init.WordLength value - Set PCE and PS bits according to hirda->Init.Parity value - Set TE and RE bits according to hirda->Init.Mode value */ - tmpreg = (uint32_t)hirda->Init.WordLength | hirda->Init.Parity | hirda->Init.Mode ; - - MODIFY_REG(hirda->Instance->CR1, IRDA_CR1_FIELDS, tmpreg); - - /*-------------------------- USART CR3 Configuration -----------------------*/ - MODIFY_REG(hirda->Instance->CR3, USART_CR3_IRLP, hirda->Init.PowerMode); - - - /*-------------------------- USART GTPR Configuration ----------------------*/ - MODIFY_REG(hirda->Instance->GTPR, (uint16_t)USART_GTPR_PSC, (uint16_t)hirda->Init.Prescaler); - - /*-------------------------- USART BRR Configuration -----------------------*/ - IRDA_GETCLOCKSOURCE(hirda, clocksource); - tmpreg = 0U; - switch (clocksource) - { - case IRDA_CLOCKSOURCE_PCLK1: - pclk = HAL_RCC_GetPCLK1Freq(); - tmpreg = (uint16_t)(IRDA_DIV_SAMPLING16(pclk, hirda->Init.BaudRate)); - break; - case IRDA_CLOCKSOURCE_HSI: - tmpreg = (uint16_t)(IRDA_DIV_SAMPLING16(HSI_VALUE, hirda->Init.BaudRate)); - break; - case IRDA_CLOCKSOURCE_SYSCLK: - pclk = HAL_RCC_GetSysClockFreq(); - tmpreg = (uint16_t)(IRDA_DIV_SAMPLING16(pclk, hirda->Init.BaudRate)); - break; - case IRDA_CLOCKSOURCE_LSE: - tmpreg = (uint16_t)(IRDA_DIV_SAMPLING16((uint32_t)LSE_VALUE, hirda->Init.BaudRate)); - break; - default: - ret = HAL_ERROR; - break; - } - - /* USARTDIV must be greater than or equal to 0d16 */ - if ((tmpreg >= USART_BRR_MIN) && (tmpreg <= USART_BRR_MAX)) - { - hirda->Instance->BRR = tmpreg; - } - else - { - ret = HAL_ERROR; - } - - return ret; -} - -/** - * @brief Check the IRDA Idle State. - * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains - * the configuration information for the specified IRDA module. - * @retval HAL status - */ -static HAL_StatusTypeDef IRDA_CheckIdleState(IRDA_HandleTypeDef *hirda) -{ - uint32_t tickstart; - - /* Initialize the IRDA ErrorCode */ - hirda->ErrorCode = HAL_IRDA_ERROR_NONE; - - /* Init tickstart for timeout managment*/ - tickstart = HAL_GetTick(); - - /* Check if the Transmitter is enabled */ - if ((hirda->Instance->CR1 & USART_CR1_TE) == USART_CR1_TE) - { - /* Wait until TEACK flag is set */ - if (IRDA_WaitOnFlagUntilTimeout(hirda, USART_ISR_TEACK, RESET, tickstart, IRDA_TEACK_REACK_TIMEOUT) != HAL_OK) - { - /* Timeout occurred */ - return HAL_TIMEOUT; - } - } - /* Check if the Receiver is enabled */ - if ((hirda->Instance->CR1 & USART_CR1_RE) == USART_CR1_RE) - { - /* Wait until REACK flag is set */ - if (IRDA_WaitOnFlagUntilTimeout(hirda, USART_ISR_REACK, RESET, tickstart, IRDA_TEACK_REACK_TIMEOUT) != HAL_OK) - { - /* Timeout occurred */ - return HAL_TIMEOUT; - } - } - - /* Initialize the IRDA state*/ - hirda->gState = HAL_IRDA_STATE_READY; - hirda->RxState = HAL_IRDA_STATE_READY; - - /* Process Unlocked */ - __HAL_UNLOCK(hirda); - - return HAL_OK; -} - -/** - * @brief Handle IRDA Communication Timeout. - * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains - * the configuration information for the specified IRDA module. - * @param Flag Specifies the IRDA flag to check. - * @param Status Flag status (SET or RESET) - * @param Tickstart Tick start value - * @param Timeout Timeout duration - * @retval HAL status - */ -static HAL_StatusTypeDef IRDA_WaitOnFlagUntilTimeout(IRDA_HandleTypeDef *hirda, uint32_t Flag, FlagStatus Status, - uint32_t Tickstart, uint32_t Timeout) -{ - /* Wait until flag is set */ - while ((__HAL_IRDA_GET_FLAG(hirda, Flag) ? SET : RESET) == Status) - { - /* Check for the Timeout */ - if (Timeout != HAL_MAX_DELAY) - { - if (((HAL_GetTick() - Tickstart) > Timeout) || (Timeout == 0U)) - { - /* Disable TXE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts for the interrupt process */ - CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE | USART_CR1_TXEIE)); - CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE); - - hirda->gState = HAL_IRDA_STATE_READY; - hirda->RxState = HAL_IRDA_STATE_READY; - - /* Process Unlocked */ - __HAL_UNLOCK(hirda); - return HAL_TIMEOUT; - } - } - } - return HAL_OK; -} - - -/** - * @brief End ongoing Tx transfer on IRDA peripheral (following error detection or Transmit completion). - * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains - * the configuration information for the specified IRDA module. - * @retval None - */ -static void IRDA_EndTxTransfer(IRDA_HandleTypeDef *hirda) -{ - /* Disable TXEIE and TCIE interrupts */ - CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_TXEIE | USART_CR1_TCIE)); - - /* At end of Tx process, restore hirda->gState to Ready */ - hirda->gState = HAL_IRDA_STATE_READY; -} - - -/** - * @brief End ongoing Rx transfer on UART peripheral (following error detection or Reception completion). - * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains - * the configuration information for the specified IRDA module. - * @retval None - */ -static void IRDA_EndRxTransfer(IRDA_HandleTypeDef *hirda) -{ - /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */ - CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE)); - CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE); - - /* At end of Rx process, restore hirda->RxState to Ready */ - hirda->RxState = HAL_IRDA_STATE_READY; -} - - -/** - * @brief DMA IRDA transmit process complete callback. - * @param hdma Pointer to a DMA_HandleTypeDef structure that contains - * the configuration information for the specified DMA module. - * @retval None - */ -static void IRDA_DMATransmitCplt(DMA_HandleTypeDef *hdma) -{ - IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)(hdma->Parent); - - /* DMA Normal mode */ - if (HAL_IS_BIT_CLR(hdma->Instance->CCR, DMA_CCR_CIRC)) - { - hirda->TxXferCount = 0U; - - /* Disable the DMA transfer for transmit request by resetting the DMAT bit - in the IRDA CR3 register */ - CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAT); - - /* Enable the IRDA Transmit Complete Interrupt */ - SET_BIT(hirda->Instance->CR1, USART_CR1_TCIE); - } - /* DMA Circular mode */ - else - { -#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1) - /* Call registered Tx complete callback */ - hirda->TxCpltCallback(hirda); -#else - /* Call legacy weak Tx complete callback */ - HAL_IRDA_TxCpltCallback(hirda); -#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */ - } - -} - -/** - * @brief DMA IRDA transmit process half complete callback. - * @param hdma Pointer to a DMA_HandleTypeDef structure that contains - * the configuration information for the specified DMA module. - * @retval None - */ -static void IRDA_DMATransmitHalfCplt(DMA_HandleTypeDef *hdma) -{ - IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)(hdma->Parent); - -#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1) - /* Call registered Tx Half complete callback */ - hirda->TxHalfCpltCallback(hirda); -#else - /* Call legacy weak Tx complete callback */ - HAL_IRDA_TxHalfCpltCallback(hirda); -#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */ -} - -/** - * @brief DMA IRDA receive process complete callback. - * @param hdma Pointer to a DMA_HandleTypeDef structure that contains - * the configuration information for the specified DMA module. - * @retval None - */ -static void IRDA_DMAReceiveCplt(DMA_HandleTypeDef *hdma) -{ - IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)(hdma->Parent); - - /* DMA Normal mode */ - if (HAL_IS_BIT_CLR(hdma->Instance->CCR, DMA_CCR_CIRC)) - { - hirda->RxXferCount = 0U; - - /* Disable PE and ERR (Frame error, noise error, overrun error) interrupts */ - CLEAR_BIT(hirda->Instance->CR1, USART_CR1_PEIE); - CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE); - - /* Disable the DMA transfer for the receiver request by resetting the DMAR bit - in the IRDA CR3 register */ - CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAR); - - /* At end of Rx process, restore hirda->RxState to Ready */ - hirda->RxState = HAL_IRDA_STATE_READY; - } - -#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1) - /* Call registered Rx complete callback */ - hirda->RxCpltCallback(hirda); -#else - /* Call legacy weak Rx complete callback */ - HAL_IRDA_RxCpltCallback(hirda); -#endif /* USE_HAL_IRDA_REGISTER_CALLBACKS */ -} - -/** - * @brief DMA IRDA receive process half complete callback. - * @param hdma Pointer to a DMA_HandleTypeDef structure that contains - * the configuration information for the specified DMA module. - * @retval None - */ -static void IRDA_DMAReceiveHalfCplt(DMA_HandleTypeDef *hdma) -{ - IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)(hdma->Parent); - -#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1) - /*Call registered Rx Half complete callback*/ - hirda->RxHalfCpltCallback(hirda); -#else - /* Call legacy weak Rx Half complete callback */ - HAL_IRDA_RxHalfCpltCallback(hirda); -#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */ -} - -/** - * @brief DMA IRDA communication error callback. - * @param hdma Pointer to a DMA_HandleTypeDef structure that contains - * the configuration information for the specified DMA module. - * @retval None - */ -static void IRDA_DMAError(DMA_HandleTypeDef *hdma) -{ - IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)(hdma->Parent); - - /* Stop IRDA DMA Tx request if ongoing */ - if (hirda->gState == HAL_IRDA_STATE_BUSY_TX) - { - if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAT)) - { - hirda->TxXferCount = 0U; - IRDA_EndTxTransfer(hirda); - } - } - - /* Stop IRDA DMA Rx request if ongoing */ - if (hirda->RxState == HAL_IRDA_STATE_BUSY_RX) - { - if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR)) - { - hirda->RxXferCount = 0U; - IRDA_EndRxTransfer(hirda); - } - } - - hirda->ErrorCode |= HAL_IRDA_ERROR_DMA; -#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1) - /* Call registered user error callback */ - hirda->ErrorCallback(hirda); -#else - /* Call legacy weak user error callback */ - HAL_IRDA_ErrorCallback(hirda); -#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */ -} - -/** - * @brief DMA IRDA communication abort callback, when initiated by HAL services on Error - * (To be called at end of DMA Abort procedure following error occurrence). - * @param hdma DMA handle. - * @retval None - */ -static void IRDA_DMAAbortOnError(DMA_HandleTypeDef *hdma) -{ - IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)(hdma->Parent); - hirda->RxXferCount = 0U; - hirda->TxXferCount = 0U; - -#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1) - /* Call registered user error callback */ - hirda->ErrorCallback(hirda); -#else - /* Call legacy weak user error callback */ - HAL_IRDA_ErrorCallback(hirda); -#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */ -} - -/** - * @brief DMA IRDA Tx communication abort callback, when initiated by user - * (To be called at end of DMA Tx Abort procedure following user abort request). - * @note When this callback is executed, User Abort complete call back is called only if no - * Abort still ongoing for Rx DMA Handle. - * @param hdma DMA handle. - * @retval None - */ -static void IRDA_DMATxAbortCallback(DMA_HandleTypeDef *hdma) -{ - IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)(hdma->Parent); - - hirda->hdmatx->XferAbortCallback = NULL; - - /* Check if an Abort process is still ongoing */ - if (hirda->hdmarx != NULL) - { - if (hirda->hdmarx->XferAbortCallback != NULL) - { - return; - } - } - - /* No Abort process still ongoing : All DMA channels are aborted, call user Abort Complete callback */ - hirda->TxXferCount = 0U; - hirda->RxXferCount = 0U; - - /* Reset errorCode */ - hirda->ErrorCode = HAL_IRDA_ERROR_NONE; - - /* Clear the Error flags in the ICR register */ - __HAL_IRDA_CLEAR_FLAG(hirda, IRDA_CLEAR_OREF | IRDA_CLEAR_NEF | IRDA_CLEAR_PEF | IRDA_CLEAR_FEF); - - /* Restore hirda->gState and hirda->RxState to Ready */ - hirda->gState = HAL_IRDA_STATE_READY; - hirda->RxState = HAL_IRDA_STATE_READY; - - /* Call user Abort complete callback */ -#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1) - /* Call registered Abort complete callback */ - hirda->AbortCpltCallback(hirda); -#else - /* Call legacy weak Abort complete callback */ - HAL_IRDA_AbortCpltCallback(hirda); -#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */ -} - - -/** - * @brief DMA IRDA Rx communication abort callback, when initiated by user - * (To be called at end of DMA Rx Abort procedure following user abort request). - * @note When this callback is executed, User Abort complete call back is called only if no - * Abort still ongoing for Tx DMA Handle. - * @param hdma DMA handle. - * @retval None - */ -static void IRDA_DMARxAbortCallback(DMA_HandleTypeDef *hdma) -{ - IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)(hdma->Parent); - - hirda->hdmarx->XferAbortCallback = NULL; - - /* Check if an Abort process is still ongoing */ - if (hirda->hdmatx != NULL) - { - if (hirda->hdmatx->XferAbortCallback != NULL) - { - return; - } - } - - /* No Abort process still ongoing : All DMA channels are aborted, call user Abort Complete callback */ - hirda->TxXferCount = 0U; - hirda->RxXferCount = 0U; - - /* Reset errorCode */ - hirda->ErrorCode = HAL_IRDA_ERROR_NONE; - - /* Clear the Error flags in the ICR register */ - __HAL_IRDA_CLEAR_FLAG(hirda, IRDA_CLEAR_OREF | IRDA_CLEAR_NEF | IRDA_CLEAR_PEF | IRDA_CLEAR_FEF); - - /* Restore hirda->gState and hirda->RxState to Ready */ - hirda->gState = HAL_IRDA_STATE_READY; - hirda->RxState = HAL_IRDA_STATE_READY; - - /* Call user Abort complete callback */ -#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1) - /* Call registered Abort complete callback */ - hirda->AbortCpltCallback(hirda); -#else - /* Call legacy weak Abort complete callback */ - HAL_IRDA_AbortCpltCallback(hirda); -#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */ -} - - -/** - * @brief DMA IRDA Tx communication abort callback, when initiated by user by a call to - * HAL_IRDA_AbortTransmit_IT API (Abort only Tx transfer) - * (This callback is executed at end of DMA Tx Abort procedure following user abort request, - * and leads to user Tx Abort Complete callback execution). - * @param hdma DMA handle. - * @retval None - */ -static void IRDA_DMATxOnlyAbortCallback(DMA_HandleTypeDef *hdma) -{ - IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)(hdma->Parent); - - hirda->TxXferCount = 0U; - - /* Restore hirda->gState to Ready */ - hirda->gState = HAL_IRDA_STATE_READY; - - /* Call user Abort complete callback */ -#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1) - /* Call registered Abort Transmit Complete Callback */ - hirda->AbortTransmitCpltCallback(hirda); -#else - /* Call legacy weak Abort Transmit Complete Callback */ - HAL_IRDA_AbortTransmitCpltCallback(hirda); -#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */ -} - -/** - * @brief DMA IRDA Rx communication abort callback, when initiated by user by a call to - * HAL_IRDA_AbortReceive_IT API (Abort only Rx transfer) - * (This callback is executed at end of DMA Rx Abort procedure following user abort request, - * and leads to user Rx Abort Complete callback execution). - * @param hdma DMA handle. - * @retval None - */ -static void IRDA_DMARxOnlyAbortCallback(DMA_HandleTypeDef *hdma) -{ - IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; - - hirda->RxXferCount = 0U; - - /* Clear the Error flags in the ICR register */ - __HAL_IRDA_CLEAR_FLAG(hirda, IRDA_CLEAR_OREF | IRDA_CLEAR_NEF | IRDA_CLEAR_PEF | IRDA_CLEAR_FEF); - - /* Restore hirda->RxState to Ready */ - hirda->RxState = HAL_IRDA_STATE_READY; - - /* Call user Abort complete callback */ -#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1) - /* Call registered Abort Receive Complete Callback */ - hirda->AbortReceiveCpltCallback(hirda); -#else - /* Call legacy weak Abort Receive Complete Callback */ - HAL_IRDA_AbortReceiveCpltCallback(hirda); -#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */ -} - -/** - * @brief Send an amount of data in interrupt mode. - * @note Function is called under interruption only, once - * interruptions have been enabled by HAL_IRDA_Transmit_IT(). - * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains - * the configuration information for the specified IRDA module. - * @retval None - */ -static void IRDA_Transmit_IT(IRDA_HandleTypeDef *hirda) -{ - uint16_t *tmp; - - /* Check that a Tx process is ongoing */ - if (hirda->gState == HAL_IRDA_STATE_BUSY_TX) - { - if (hirda->TxXferCount == 0U) - { - /* Disable the IRDA Transmit Data Register Empty Interrupt */ - CLEAR_BIT(hirda->Instance->CR1, USART_CR1_TXEIE); - - /* Enable the IRDA Transmit Complete Interrupt */ - SET_BIT(hirda->Instance->CR1, USART_CR1_TCIE); - } - else - { - if ((hirda->Init.WordLength == IRDA_WORDLENGTH_9B) && (hirda->Init.Parity == IRDA_PARITY_NONE)) - { - tmp = (uint16_t *) hirda->pTxBuffPtr; /* Derogation R.11.3 */ - hirda->Instance->TDR = (uint16_t)(*tmp & 0x01FFU); - hirda->pTxBuffPtr += 2U; - } - else - { - hirda->Instance->TDR = (uint8_t)(*hirda->pTxBuffPtr & 0xFFU); - hirda->pTxBuffPtr++; - } - hirda->TxXferCount--; - } - } -} - -/** - * @brief Wrap up transmission in non-blocking mode. - * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains - * the configuration information for the specified IRDA module. - * @retval None - */ -static void IRDA_EndTransmit_IT(IRDA_HandleTypeDef *hirda) -{ - /* Disable the IRDA Transmit Complete Interrupt */ - CLEAR_BIT(hirda->Instance->CR1, USART_CR1_TCIE); - - /* Tx process is ended, restore hirda->gState to Ready */ - hirda->gState = HAL_IRDA_STATE_READY; - -#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1) - /* Call registered Tx complete callback */ - hirda->TxCpltCallback(hirda); -#else - /* Call legacy weak Tx complete callback */ - HAL_IRDA_TxCpltCallback(hirda); -#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */ -} - -/** - * @brief Receive an amount of data in interrupt mode. - * @note Function is called under interruption only, once - * interruptions have been enabled by HAL_IRDA_Receive_IT() - * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains - * the configuration information for the specified IRDA module. - * @retval None - */ -static void IRDA_Receive_IT(IRDA_HandleTypeDef *hirda) -{ - uint16_t *tmp; - uint16_t uhMask = hirda->Mask; - uint16_t uhdata; - - /* Check that a Rx process is ongoing */ - if (hirda->RxState == HAL_IRDA_STATE_BUSY_RX) - { - uhdata = (uint16_t) READ_REG(hirda->Instance->RDR); - if ((hirda->Init.WordLength == IRDA_WORDLENGTH_9B) && (hirda->Init.Parity == IRDA_PARITY_NONE)) - { - tmp = (uint16_t *) hirda->pRxBuffPtr; /* Derogation R.11.3 */ - *tmp = (uint16_t)(uhdata & uhMask); - hirda->pRxBuffPtr += 2U; - } - else - { - *hirda->pRxBuffPtr = (uint8_t)(uhdata & (uint8_t)uhMask); - hirda->pRxBuffPtr++; - } - - hirda->RxXferCount--; - if (hirda->RxXferCount == 0U) - { - /* Disable the IRDA Parity Error Interrupt and RXNE interrupt */ - CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE)); - - /* Disable the IRDA Error Interrupt: (Frame error, noise error, overrun error) */ - CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE); - - /* Rx process is completed, restore hirda->RxState to Ready */ - hirda->RxState = HAL_IRDA_STATE_READY; - -#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1) - /* Call registered Rx complete callback */ - hirda->RxCpltCallback(hirda); -#else - /* Call legacy weak Rx complete callback */ - HAL_IRDA_RxCpltCallback(hirda); -#endif /* USE_HAL_IRDA_REGISTER_CALLBACKS */ - } - } - else - { - /* Clear RXNE interrupt flag */ - __HAL_IRDA_SEND_REQ(hirda, IRDA_RXDATA_FLUSH_REQUEST); - } -} - -/** - * @} - */ - -#endif /* HAL_IRDA_MODULE_ENABLED */ -/** - * @} - */ - -/** - * @} - */ -#endif /* USART_IRDA_SUPPORT */ - -/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_iwdg.c b/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_iwdg.c deleted file mode 100644 index 18edcd2..0000000 --- a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_iwdg.c +++ /dev/null @@ -1,264 +0,0 @@ -/** - ****************************************************************************** - * @file stm32f0xx_hal_iwdg.c - * @author MCD Application Team - * @brief IWDG HAL module driver. - * This file provides firmware functions to manage the following - * functionalities of the Independent Watchdog (IWDG) peripheral: - * + Initialization and Start functions - * + IO operation functions - * - @verbatim - ============================================================================== - ##### IWDG Generic features ##### - ============================================================================== - [..] - (+) The IWDG can be started by either software or hardware (configurable - through option byte). - - (+) The IWDG is clocked by Low-Speed clock (LSI) and thus stays active even - if the main clock fails. - - (+) Once the IWDG is started, the LSI is forced ON and both can not be - disabled. The counter starts counting down from the reset value (0xFFF). - When it reaches the end of count value (0x000) a reset signal is - generated (IWDG reset). - - (+) Whenever the key value 0x0000 AAAA is written in the IWDG_KR register, - the IWDG_RLR value is reloaded in the counter and the watchdog reset is - prevented. - - (+) The IWDG is implemented in the VDD voltage domain that is still functional - in STOP and STANDBY mode (IWDG reset can wake-up from STANDBY). - IWDGRST flag in RCC_CSR register can be used to inform when an IWDG - reset occurs. - - (+) Debug mode : When the microcontroller enters debug mode (core halted), - the IWDG counter either continues to work normally or stops, depending - on DBG_IWDG_STOP configuration bit in DBG module, accessible through - __HAL_DBGMCU_FREEZE_IWDG() and __HAL_DBGMCU_UNFREEZE_IWDG() macros. - - [..] Min-max timeout value @32KHz (LSI): ~125us / ~32.7s - The IWDG timeout may vary due to LSI frequency dispersion. STM32F0xx - devices provide the capability to measure the LSI frequency (LSI clock - connected internally to TIM16 CH1 input capture). The measured value - can be used to have an IWDG timeout with an acceptable accuracy. - - ##### How to use this driver ##### - ============================================================================== - [..] - (#) Use IWDG using HAL_IWDG_Init() function to : - (++) Enable instance by writing Start keyword in IWDG_KEY register. LSI - clock is forced ON and IWDG counter starts counting down. - (++) Enable write access to configuration registers: - IWDG_PR, IWDG_RLR and IWDG_WINR. - (++) Configure the IWDG prescaler and counter reload value. This reload - value will be loaded in the IWDG counter each time the watchdog is - reloaded, then the IWDG will start counting down from this value. - (++) Wait for status flags to be reset. - (++) Depending on window parameter: - (+++) If Window Init parameter is same as Window register value, - nothing more is done but reload counter value in order to exit - function with exact time base. - (+++) Else modify Window register. This will automatically reload - watchdog counter. - - (#) Then the application program must refresh the IWDG counter at regular - intervals during normal operation to prevent an MCU reset, using - HAL_IWDG_Refresh() function. - - *** IWDG HAL driver macros list *** - ==================================== - [..] - Below the list of most used macros in IWDG HAL driver: - (+) __HAL_IWDG_START: Enable the IWDG peripheral - (+) __HAL_IWDG_RELOAD_COUNTER: Reloads IWDG counter with value defined in - the reload register - - @endverbatim - ****************************************************************************** - * @attention - * - *

© Copyright (c) 2016 STMicroelectronics. - * All rights reserved.

- * - * This software component is licensed by ST under BSD 3-Clause license, - * the "License"; You may not use this file except in compliance with the - * License. You may obtain a copy of the License at: - * opensource.org/licenses/BSD-3-Clause - * - ****************************************************************************** - */ - -/* Includes ------------------------------------------------------------------*/ -#include "stm32f0xx_hal.h" - -/** @addtogroup STM32F0xx_HAL_Driver - * @{ - */ - -#ifdef HAL_IWDG_MODULE_ENABLED -/** @addtogroup IWDG - * @brief IWDG HAL module driver. - * @{ - */ - -/* Private typedef -----------------------------------------------------------*/ -/* Private define ------------------------------------------------------------*/ -/** @defgroup IWDG_Private_Defines IWDG Private Defines - * @{ - */ -/* Status register need 5 RC LSI divided by prescaler clock to be updated. With - higher prescaler (256), and according to LSI variation, we need to wait at - least 6 cycles so 48 ms. */ -#define HAL_IWDG_DEFAULT_TIMEOUT 48u -/** - * @} - */ - -/* Private macro -------------------------------------------------------------*/ -/* Private variables ---------------------------------------------------------*/ -/* Private function prototypes -----------------------------------------------*/ -/* Exported functions --------------------------------------------------------*/ - -/** @addtogroup IWDG_Exported_Functions - * @{ - */ - -/** @addtogroup IWDG_Exported_Functions_Group1 - * @brief Initialization and Start functions. - * -@verbatim - =============================================================================== - ##### Initialization and Start functions ##### - =============================================================================== - [..] This section provides functions allowing to: - (+) Initialize the IWDG according to the specified parameters in the - IWDG_InitTypeDef of associated handle. - (+) Manage Window option. - (+) Once initialization is performed in HAL_IWDG_Init function, Watchdog - is reloaded in order to exit function with correct time base. - -@endverbatim - * @{ - */ - -/** - * @brief Initialize the IWDG according to the specified parameters in the - * IWDG_InitTypeDef and start watchdog. Before exiting function, - * watchdog is refreshed in order to have correct time base. - * @param hiwdg pointer to a IWDG_HandleTypeDef structure that contains - * the configuration information for the specified IWDG module. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_IWDG_Init(IWDG_HandleTypeDef *hiwdg) -{ - uint32_t tickstart; - - /* Check the IWDG handle allocation */ - if (hiwdg == NULL) - { - return HAL_ERROR; - } - - /* Check the parameters */ - assert_param(IS_IWDG_ALL_INSTANCE(hiwdg->Instance)); - assert_param(IS_IWDG_PRESCALER(hiwdg->Init.Prescaler)); - assert_param(IS_IWDG_RELOAD(hiwdg->Init.Reload)); - assert_param(IS_IWDG_WINDOW(hiwdg->Init.Window)); - - /* Enable IWDG. LSI is turned on automatically */ - __HAL_IWDG_START(hiwdg); - - /* Enable write access to IWDG_PR, IWDG_RLR and IWDG_WINR registers by writing - 0x5555 in KR */ - IWDG_ENABLE_WRITE_ACCESS(hiwdg); - - /* Write to IWDG registers the Prescaler & Reload values to work with */ - hiwdg->Instance->PR = hiwdg->Init.Prescaler; - hiwdg->Instance->RLR = hiwdg->Init.Reload; - - /* Check pending flag, if previous update not done, return timeout */ - tickstart = HAL_GetTick(); - - /* Wait for register to be updated */ - while (hiwdg->Instance->SR != 0x00u) - { - if ((HAL_GetTick() - tickstart) > HAL_IWDG_DEFAULT_TIMEOUT) - { - return HAL_TIMEOUT; - } - } - - /* If window parameter is different than current value, modify window - register */ - if (hiwdg->Instance->WINR != hiwdg->Init.Window) - { - /* Write to IWDG WINR the IWDG_Window value to compare with. In any case, - even if window feature is disabled, Watchdog will be reloaded by writing - windows register */ - hiwdg->Instance->WINR = hiwdg->Init.Window; - } - else - { - /* Reload IWDG counter with value defined in the reload register */ - __HAL_IWDG_RELOAD_COUNTER(hiwdg); - } - - /* Return function status */ - return HAL_OK; -} - -/** - * @} - */ - - -/** @addtogroup IWDG_Exported_Functions_Group2 - * @brief IO operation functions - * -@verbatim - =============================================================================== - ##### IO operation functions ##### - =============================================================================== - [..] This section provides functions allowing to: - (+) Refresh the IWDG. - -@endverbatim - * @{ - */ - - -/** - * @brief Refresh the IWDG. - * @param hiwdg pointer to a IWDG_HandleTypeDef structure that contains - * the configuration information for the specified IWDG module. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_IWDG_Refresh(IWDG_HandleTypeDef *hiwdg) -{ - /* Reload IWDG counter with value defined in the reload register */ - __HAL_IWDG_RELOAD_COUNTER(hiwdg); - - /* Return function status */ - return HAL_OK; -} - -/** - * @} - */ - -/** - * @} - */ - -#endif /* HAL_IWDG_MODULE_ENABLED */ -/** - * @} - */ - -/** - * @} - */ - -/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_msp_template.c b/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_msp_template.c deleted file mode 100644 index 9f661e9..0000000 --- a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_msp_template.c +++ /dev/null @@ -1,101 +0,0 @@ -/** - ****************************************************************************** - * @file stm32f0xx_hal_msp_template.c - * @author MCD Application Team - * @brief HAL MSP module. - * This file template is located in the HAL folder and should be copied - * to the user folder. - * - @verbatim - =============================================================================== - ##### How to use this driver ##### - =============================================================================== - [..] - - @endverbatim - ****************************************************************************** - * @attention - * - *

© Copyright (c) 2016 STMicroelectronics. - * All rights reserved.

- * - * This software component is licensed by ST under BSD 3-Clause license, - * the "License"; You may not use this file except in compliance with the - * License. You may obtain a copy of the License at: - * opensource.org/licenses/BSD-3-Clause - * - ****************************************************************************** - */ - -/* Includes ------------------------------------------------------------------*/ -#include "stm32f0xx_hal.h" - -/** @addtogroup STM32F0xx_HAL_Driver - * @{ - */ - -/** @defgroup HAL_MSP HAL MSP module driver - * @brief HAL MSP module. - * @{ - */ - -/* Private typedef -----------------------------------------------------------*/ -/* Private define ------------------------------------------------------------*/ -/* Private macro -------------------------------------------------------------*/ -/* Private variables ---------------------------------------------------------*/ -/* Private function prototypes -----------------------------------------------*/ -/* Private functions ---------------------------------------------------------*/ - -/** @defgroup HAL_MSP_Private_Functions HAL MSP Private Functions - * @{ - */ - -/** - * @brief Initializes the Global MSP. - * @retval None - */ -void HAL_MspInit(void) -{ - -} - -/** - * @brief DeInitializes the Global MSP. - * @retval None - */ -void HAL_MspDeInit(void) -{ - -} - -/** - * @brief Initializes the PPP MSP. - * @retval None - */ -void HAL_PPP_MspInit(void) -{ - -} - -/** - * @brief DeInitializes the PPP MSP. - * @retval None - */ -void HAL_PPP_MspDeInit(void) -{ - -} - -/** - * @} - */ - -/** - * @} - */ - -/** - * @} - */ - -/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_pcd.c b/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_pcd.c deleted file mode 100644 index f94a7b5..0000000 --- a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_pcd.c +++ /dev/null @@ -1,1869 +0,0 @@ -/** - ****************************************************************************** - * @file stm32f0xx_hal_pcd.c - * @author MCD Application Team - * @brief PCD HAL module driver. - * This file provides firmware functions to manage the following - * functionalities of the USB Peripheral Controller: - * + Initialization and de-initialization functions - * + IO operation functions - * + Peripheral Control functions - * + Peripheral State functions - * - @verbatim - ============================================================================== - ##### How to use this driver ##### - ============================================================================== - [..] - The PCD HAL driver can be used as follows: - - (#) Declare a PCD_HandleTypeDef handle structure, for example: - PCD_HandleTypeDef hpcd; - - (#) Fill parameters of Init structure in HCD handle - - (#) Call HAL_PCD_Init() API to initialize the PCD peripheral (Core, Device core, ...) - - (#) Initialize the PCD low level resources through the HAL_PCD_MspInit() API: - (##) Enable the PCD/USB Low Level interface clock using - (+++) __HAL_RCC_USB_CLK_ENABLE(); For USB Device only FS peripheral - - (##) Initialize the related GPIO clocks - (##) Configure PCD pin-out - (##) Configure PCD NVIC interrupt - - (#)Associate the Upper USB device stack to the HAL PCD Driver: - (##) hpcd.pData = pdev; - - (#)Enable PCD transmission and reception: - (##) HAL_PCD_Start(); - - @endverbatim - ****************************************************************************** - * @attention - * - *

© Copyright (c) 2016 STMicroelectronics. - * All rights reserved.

- * - * This software component is licensed by ST under BSD 3-Clause license, - * the "License"; You may not use this file except in compliance with the - * License. You may obtain a copy of the License at: - * opensource.org/licenses/BSD-3-Clause - * - ****************************************************************************** - */ - -/* Includes ------------------------------------------------------------------*/ -#include "stm32f0xx_hal.h" - -/** @addtogroup STM32F0xx_HAL_Driver - * @{ - */ - -/** @defgroup PCD PCD - * @brief PCD HAL module driver - * @{ - */ - -#ifdef HAL_PCD_MODULE_ENABLED - -#if defined (USB) - -/* Private types -------------------------------------------------------------*/ -/* Private variables ---------------------------------------------------------*/ -/* Private constants ---------------------------------------------------------*/ -/* Private macros ------------------------------------------------------------*/ -/** @defgroup PCD_Private_Macros PCD Private Macros - * @{ - */ -#define PCD_MIN(a, b) (((a) < (b)) ? (a) : (b)) -#define PCD_MAX(a, b) (((a) > (b)) ? (a) : (b)) -/** - * @} - */ - -/* Private functions prototypes ----------------------------------------------*/ -/** @defgroup PCD_Private_Functions PCD Private Functions - * @{ - */ - -static HAL_StatusTypeDef PCD_EP_ISR_Handler(PCD_HandleTypeDef *hpcd); - -/** - * @} - */ - -/* Exported functions --------------------------------------------------------*/ -/** @defgroup PCD_Exported_Functions PCD Exported Functions - * @{ - */ - -/** @defgroup PCD_Exported_Functions_Group1 Initialization and de-initialization functions - * @brief Initialization and Configuration functions - * -@verbatim - =============================================================================== - ##### Initialization and de-initialization functions ##### - =============================================================================== - [..] This section provides functions allowing to: - -@endverbatim - * @{ - */ - -/** - * @brief Initializes the PCD according to the specified - * parameters in the PCD_InitTypeDef and initialize the associated handle. - * @param hpcd PCD handle - * @retval HAL status - */ -HAL_StatusTypeDef HAL_PCD_Init(PCD_HandleTypeDef *hpcd) -{ - uint8_t i; - - /* Check the PCD handle allocation */ - if (hpcd == NULL) - { - return HAL_ERROR; - } - - /* Check the parameters */ - assert_param(IS_PCD_ALL_INSTANCE(hpcd->Instance)); - - if (hpcd->State == HAL_PCD_STATE_RESET) - { - /* Allocate lock resource and initialize it */ - hpcd->Lock = HAL_UNLOCKED; - -#if (USE_HAL_PCD_REGISTER_CALLBACKS == 1U) - hpcd->SOFCallback = HAL_PCD_SOFCallback; - hpcd->SetupStageCallback = HAL_PCD_SetupStageCallback; - hpcd->ResetCallback = HAL_PCD_ResetCallback; - hpcd->SuspendCallback = HAL_PCD_SuspendCallback; - hpcd->ResumeCallback = HAL_PCD_ResumeCallback; - hpcd->ConnectCallback = HAL_PCD_ConnectCallback; - hpcd->DisconnectCallback = HAL_PCD_DisconnectCallback; - hpcd->DataOutStageCallback = HAL_PCD_DataOutStageCallback; - hpcd->DataInStageCallback = HAL_PCD_DataInStageCallback; - hpcd->ISOOUTIncompleteCallback = HAL_PCD_ISOOUTIncompleteCallback; - hpcd->ISOINIncompleteCallback = HAL_PCD_ISOINIncompleteCallback; - hpcd->LPMCallback = HAL_PCDEx_LPM_Callback; - hpcd->BCDCallback = HAL_PCDEx_BCD_Callback; - - if (hpcd->MspInitCallback == NULL) - { - hpcd->MspInitCallback = HAL_PCD_MspInit; - } - - /* Init the low level hardware */ - hpcd->MspInitCallback(hpcd); -#else - /* Init the low level hardware : GPIO, CLOCK, NVIC... */ - HAL_PCD_MspInit(hpcd); -#endif /* (USE_HAL_PCD_REGISTER_CALLBACKS) */ - } - - hpcd->State = HAL_PCD_STATE_BUSY; - - /* Disable the Interrupts */ - __HAL_PCD_DISABLE(hpcd); - - /* Init endpoints structures */ - for (i = 0U; i < hpcd->Init.dev_endpoints; i++) - { - /* Init ep structure */ - hpcd->IN_ep[i].is_in = 1U; - hpcd->IN_ep[i].num = i; - hpcd->IN_ep[i].tx_fifo_num = i; - /* Control until ep is activated */ - hpcd->IN_ep[i].type = EP_TYPE_CTRL; - hpcd->IN_ep[i].maxpacket = 0U; - hpcd->IN_ep[i].xfer_buff = 0U; - hpcd->IN_ep[i].xfer_len = 0U; - } - - for (i = 0U; i < hpcd->Init.dev_endpoints; i++) - { - hpcd->OUT_ep[i].is_in = 0U; - hpcd->OUT_ep[i].num = i; - /* Control until ep is activated */ - hpcd->OUT_ep[i].type = EP_TYPE_CTRL; - hpcd->OUT_ep[i].maxpacket = 0U; - hpcd->OUT_ep[i].xfer_buff = 0U; - hpcd->OUT_ep[i].xfer_len = 0U; - } - - /* Init Device */ - (void)USB_DevInit(hpcd->Instance, hpcd->Init); - - hpcd->USB_Address = 0U; - hpcd->State = HAL_PCD_STATE_READY; - - /* Activate LPM */ - if (hpcd->Init.lpm_enable == 1U) - { - (void)HAL_PCDEx_ActivateLPM(hpcd); - } - - return HAL_OK; -} - -/** - * @brief DeInitializes the PCD peripheral. - * @param hpcd PCD handle - * @retval HAL status - */ -HAL_StatusTypeDef HAL_PCD_DeInit(PCD_HandleTypeDef *hpcd) -{ - /* Check the PCD handle allocation */ - if (hpcd == NULL) - { - return HAL_ERROR; - } - - hpcd->State = HAL_PCD_STATE_BUSY; - - /* Stop Device */ - (void)HAL_PCD_Stop(hpcd); - -#if (USE_HAL_PCD_REGISTER_CALLBACKS == 1U) - if (hpcd->MspDeInitCallback == NULL) - { - hpcd->MspDeInitCallback = HAL_PCD_MspDeInit; /* Legacy weak MspDeInit */ - } - - /* DeInit the low level hardware */ - hpcd->MspDeInitCallback(hpcd); -#else - /* DeInit the low level hardware: CLOCK, NVIC.*/ - HAL_PCD_MspDeInit(hpcd); -#endif /* USE_HAL_PCD_REGISTER_CALLBACKS */ - - hpcd->State = HAL_PCD_STATE_RESET; - - return HAL_OK; -} - -/** - * @brief Initializes the PCD MSP. - * @param hpcd PCD handle - * @retval None - */ -__weak void HAL_PCD_MspInit(PCD_HandleTypeDef *hpcd) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hpcd); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_PCD_MspInit could be implemented in the user file - */ -} - -/** - * @brief DeInitializes PCD MSP. - * @param hpcd PCD handle - * @retval None - */ -__weak void HAL_PCD_MspDeInit(PCD_HandleTypeDef *hpcd) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hpcd); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_PCD_MspDeInit could be implemented in the user file - */ -} - -#if (USE_HAL_PCD_REGISTER_CALLBACKS == 1U) -/** - * @brief Register a User USB PCD Callback - * To be used instead of the weak predefined callback - * @param hpcd USB PCD handle - * @param CallbackID ID of the callback to be registered - * This parameter can be one of the following values: - * @arg @ref HAL_PCD_SOF_CB_ID USB PCD SOF callback ID - * @arg @ref HAL_PCD_SETUPSTAGE_CB_ID USB PCD Setup callback ID - * @arg @ref HAL_PCD_RESET_CB_ID USB PCD Reset callback ID - * @arg @ref HAL_PCD_SUSPEND_CB_ID USB PCD Suspend callback ID - * @arg @ref HAL_PCD_RESUME_CB_ID USB PCD Resume callback ID - * @arg @ref HAL_PCD_CONNECT_CB_ID USB PCD Connect callback ID - * @arg @ref HAL_PCD_DISCONNECT_CB_ID OTG PCD Disconnect callback ID - * @arg @ref HAL_PCD_MSPINIT_CB_ID MspDeInit callback ID - * @arg @ref HAL_PCD_MSPDEINIT_CB_ID MspDeInit callback ID - * @param pCallback pointer to the Callback function - * @retval HAL status - */ -HAL_StatusTypeDef HAL_PCD_RegisterCallback(PCD_HandleTypeDef *hpcd, HAL_PCD_CallbackIDTypeDef CallbackID, pPCD_CallbackTypeDef pCallback) -{ - HAL_StatusTypeDef status = HAL_OK; - - if (pCallback == NULL) - { - /* Update the error code */ - hpcd->ErrorCode |= HAL_PCD_ERROR_INVALID_CALLBACK; - return HAL_ERROR; - } - /* Process locked */ - __HAL_LOCK(hpcd); - - if (hpcd->State == HAL_PCD_STATE_READY) - { - switch (CallbackID) - { - case HAL_PCD_SOF_CB_ID : - hpcd->SOFCallback = pCallback; - break; - - case HAL_PCD_SETUPSTAGE_CB_ID : - hpcd->SetupStageCallback = pCallback; - break; - - case HAL_PCD_RESET_CB_ID : - hpcd->ResetCallback = pCallback; - break; - - case HAL_PCD_SUSPEND_CB_ID : - hpcd->SuspendCallback = pCallback; - break; - - case HAL_PCD_RESUME_CB_ID : - hpcd->ResumeCallback = pCallback; - break; - - case HAL_PCD_CONNECT_CB_ID : - hpcd->ConnectCallback = pCallback; - break; - - case HAL_PCD_DISCONNECT_CB_ID : - hpcd->DisconnectCallback = pCallback; - break; - - case HAL_PCD_MSPINIT_CB_ID : - hpcd->MspInitCallback = pCallback; - break; - - case HAL_PCD_MSPDEINIT_CB_ID : - hpcd->MspDeInitCallback = pCallback; - break; - - default : - /* Update the error code */ - hpcd->ErrorCode |= HAL_PCD_ERROR_INVALID_CALLBACK; - /* Return error status */ - status = HAL_ERROR; - break; - } - } - else if (hpcd->State == HAL_PCD_STATE_RESET) - { - switch (CallbackID) - { - case HAL_PCD_MSPINIT_CB_ID : - hpcd->MspInitCallback = pCallback; - break; - - case HAL_PCD_MSPDEINIT_CB_ID : - hpcd->MspDeInitCallback = pCallback; - break; - - default : - /* Update the error code */ - hpcd->ErrorCode |= HAL_PCD_ERROR_INVALID_CALLBACK; - /* Return error status */ - status = HAL_ERROR; - break; - } - } - else - { - /* Update the error code */ - hpcd->ErrorCode |= HAL_PCD_ERROR_INVALID_CALLBACK; - /* Return error status */ - status = HAL_ERROR; - } - - /* Release Lock */ - __HAL_UNLOCK(hpcd); - return status; -} - -/** - * @brief Unregister an USB PCD Callback - * USB PCD callabck is redirected to the weak predefined callback - * @param hpcd USB PCD handle - * @param CallbackID ID of the callback to be unregistered - * This parameter can be one of the following values: - * @arg @ref HAL_PCD_SOF_CB_ID USB PCD SOF callback ID - * @arg @ref HAL_PCD_SETUPSTAGE_CB_ID USB PCD Setup callback ID - * @arg @ref HAL_PCD_RESET_CB_ID USB PCD Reset callback ID - * @arg @ref HAL_PCD_SUSPEND_CB_ID USB PCD Suspend callback ID - * @arg @ref HAL_PCD_RESUME_CB_ID USB PCD Resume callback ID - * @arg @ref HAL_PCD_CONNECT_CB_ID USB PCD Connect callback ID - * @arg @ref HAL_PCD_DISCONNECT_CB_ID OTG PCD Disconnect callback ID - * @arg @ref HAL_PCD_MSPINIT_CB_ID MspDeInit callback ID - * @arg @ref HAL_PCD_MSPDEINIT_CB_ID MspDeInit callback ID - * @retval HAL status - */ -HAL_StatusTypeDef HAL_PCD_UnRegisterCallback(PCD_HandleTypeDef *hpcd, HAL_PCD_CallbackIDTypeDef CallbackID) -{ - HAL_StatusTypeDef status = HAL_OK; - - /* Process locked */ - __HAL_LOCK(hpcd); - - /* Setup Legacy weak Callbacks */ - if (hpcd->State == HAL_PCD_STATE_READY) - { - switch (CallbackID) - { - case HAL_PCD_SOF_CB_ID : - hpcd->SOFCallback = HAL_PCD_SOFCallback; - break; - - case HAL_PCD_SETUPSTAGE_CB_ID : - hpcd->SetupStageCallback = HAL_PCD_SetupStageCallback; - break; - - case HAL_PCD_RESET_CB_ID : - hpcd->ResetCallback = HAL_PCD_ResetCallback; - break; - - case HAL_PCD_SUSPEND_CB_ID : - hpcd->SuspendCallback = HAL_PCD_SuspendCallback; - break; - - case HAL_PCD_RESUME_CB_ID : - hpcd->ResumeCallback = HAL_PCD_ResumeCallback; - break; - - case HAL_PCD_CONNECT_CB_ID : - hpcd->ConnectCallback = HAL_PCD_ConnectCallback; - break; - - case HAL_PCD_DISCONNECT_CB_ID : - hpcd->DisconnectCallback = HAL_PCD_DisconnectCallback; - break; - - case HAL_PCD_MSPINIT_CB_ID : - hpcd->MspInitCallback = HAL_PCD_MspInit; - break; - - case HAL_PCD_MSPDEINIT_CB_ID : - hpcd->MspDeInitCallback = HAL_PCD_MspDeInit; - break; - - default : - /* Update the error code */ - hpcd->ErrorCode |= HAL_PCD_ERROR_INVALID_CALLBACK; - - /* Return error status */ - status = HAL_ERROR; - break; - } - } - else if (hpcd->State == HAL_PCD_STATE_RESET) - { - switch (CallbackID) - { - case HAL_PCD_MSPINIT_CB_ID : - hpcd->MspInitCallback = HAL_PCD_MspInit; - break; - - case HAL_PCD_MSPDEINIT_CB_ID : - hpcd->MspDeInitCallback = HAL_PCD_MspDeInit; - break; - - default : - /* Update the error code */ - hpcd->ErrorCode |= HAL_PCD_ERROR_INVALID_CALLBACK; - - /* Return error status */ - status = HAL_ERROR; - break; - } - } - else - { - /* Update the error code */ - hpcd->ErrorCode |= HAL_PCD_ERROR_INVALID_CALLBACK; - - /* Return error status */ - status = HAL_ERROR; - } - - /* Release Lock */ - __HAL_UNLOCK(hpcd); - return status; -} - -/** - * @brief Register USB PCD Data OUT Stage Callback - * To be used instead of the weak HAL_PCD_DataOutStageCallback() predefined callback - * @param hpcd PCD handle - * @param pCallback pointer to the USB PCD Data OUT Stage Callback function - * @retval HAL status - */ -HAL_StatusTypeDef HAL_PCD_RegisterDataOutStageCallback(PCD_HandleTypeDef *hpcd, pPCD_DataOutStageCallbackTypeDef pCallback) -{ - HAL_StatusTypeDef status = HAL_OK; - - if (pCallback == NULL) - { - /* Update the error code */ - hpcd->ErrorCode |= HAL_PCD_ERROR_INVALID_CALLBACK; - - return HAL_ERROR; - } - - /* Process locked */ - __HAL_LOCK(hpcd); - - if (hpcd->State == HAL_PCD_STATE_READY) - { - hpcd->DataOutStageCallback = pCallback; - } - else - { - /* Update the error code */ - hpcd->ErrorCode |= HAL_PCD_ERROR_INVALID_CALLBACK; - - /* Return error status */ - status = HAL_ERROR; - } - - /* Release Lock */ - __HAL_UNLOCK(hpcd); - - return status; -} - -/** - * @brief UnRegister the USB PCD Data OUT Stage Callback - * USB PCD Data OUT Stage Callback is redirected to the weak HAL_PCD_DataOutStageCallback() predefined callback - * @param hpcd PCD handle - * @retval HAL status - */ -HAL_StatusTypeDef HAL_PCD_UnRegisterDataOutStageCallback(PCD_HandleTypeDef *hpcd) -{ - HAL_StatusTypeDef status = HAL_OK; - - /* Process locked */ - __HAL_LOCK(hpcd); - - if (hpcd->State == HAL_PCD_STATE_READY) - { - hpcd->DataOutStageCallback = HAL_PCD_DataOutStageCallback; /* Legacy weak DataOutStageCallback */ - } - else - { - /* Update the error code */ - hpcd->ErrorCode |= HAL_PCD_ERROR_INVALID_CALLBACK; - - /* Return error status */ - status = HAL_ERROR; - } - - /* Release Lock */ - __HAL_UNLOCK(hpcd); - - return status; -} - -/** - * @brief Register USB PCD Data IN Stage Callback - * To be used instead of the weak HAL_PCD_DataInStageCallback() predefined callback - * @param hpcd PCD handle - * @param pCallback pointer to the USB PCD Data IN Stage Callback function - * @retval HAL status - */ -HAL_StatusTypeDef HAL_PCD_RegisterDataInStageCallback(PCD_HandleTypeDef *hpcd, pPCD_DataInStageCallbackTypeDef pCallback) -{ - HAL_StatusTypeDef status = HAL_OK; - - if (pCallback == NULL) - { - /* Update the error code */ - hpcd->ErrorCode |= HAL_PCD_ERROR_INVALID_CALLBACK; - - return HAL_ERROR; - } - - /* Process locked */ - __HAL_LOCK(hpcd); - - if (hpcd->State == HAL_PCD_STATE_READY) - { - hpcd->DataInStageCallback = pCallback; - } - else - { - /* Update the error code */ - hpcd->ErrorCode |= HAL_PCD_ERROR_INVALID_CALLBACK; - - /* Return error status */ - status = HAL_ERROR; - } - - /* Release Lock */ - __HAL_UNLOCK(hpcd); - - return status; -} - -/** - * @brief UnRegister the USB PCD Data IN Stage Callback - * USB PCD Data OUT Stage Callback is redirected to the weak HAL_PCD_DataInStageCallback() predefined callback - * @param hpcd PCD handle - * @retval HAL status - */ -HAL_StatusTypeDef HAL_PCD_UnRegisterDataInStageCallback(PCD_HandleTypeDef *hpcd) -{ - HAL_StatusTypeDef status = HAL_OK; - - /* Process locked */ - __HAL_LOCK(hpcd); - - if (hpcd->State == HAL_PCD_STATE_READY) - { - hpcd->DataInStageCallback = HAL_PCD_DataInStageCallback; /* Legacy weak DataInStageCallback */ - } - else - { - /* Update the error code */ - hpcd->ErrorCode |= HAL_PCD_ERROR_INVALID_CALLBACK; - - /* Return error status */ - status = HAL_ERROR; - } - - /* Release Lock */ - __HAL_UNLOCK(hpcd); - - return status; -} - -/** - * @brief Register USB PCD Iso OUT incomplete Callback - * To be used instead of the weak HAL_PCD_ISOOUTIncompleteCallback() predefined callback - * @param hpcd PCD handle - * @param pCallback pointer to the USB PCD Iso OUT incomplete Callback function - * @retval HAL status - */ -HAL_StatusTypeDef HAL_PCD_RegisterIsoOutIncpltCallback(PCD_HandleTypeDef *hpcd, pPCD_IsoOutIncpltCallbackTypeDef pCallback) -{ - HAL_StatusTypeDef status = HAL_OK; - - if (pCallback == NULL) - { - /* Update the error code */ - hpcd->ErrorCode |= HAL_PCD_ERROR_INVALID_CALLBACK; - - return HAL_ERROR; - } - - /* Process locked */ - __HAL_LOCK(hpcd); - - if (hpcd->State == HAL_PCD_STATE_READY) - { - hpcd->ISOOUTIncompleteCallback = pCallback; - } - else - { - /* Update the error code */ - hpcd->ErrorCode |= HAL_PCD_ERROR_INVALID_CALLBACK; - - /* Return error status */ - status = HAL_ERROR; - } - - /* Release Lock */ - __HAL_UNLOCK(hpcd); - - return status; -} - -/** - * @brief UnRegister the USB PCD Iso OUT incomplete Callback - * USB PCD Iso OUT incomplete Callback is redirected to the weak HAL_PCD_ISOOUTIncompleteCallback() predefined callback - * @param hpcd PCD handle - * @retval HAL status - */ -HAL_StatusTypeDef HAL_PCD_UnRegisterIsoOutIncpltCallback(PCD_HandleTypeDef *hpcd) -{ - HAL_StatusTypeDef status = HAL_OK; - - /* Process locked */ - __HAL_LOCK(hpcd); - - if (hpcd->State == HAL_PCD_STATE_READY) - { - hpcd->ISOOUTIncompleteCallback = HAL_PCD_ISOOUTIncompleteCallback; /* Legacy weak ISOOUTIncompleteCallback */ - } - else - { - /* Update the error code */ - hpcd->ErrorCode |= HAL_PCD_ERROR_INVALID_CALLBACK; - - /* Return error status */ - status = HAL_ERROR; - } - - /* Release Lock */ - __HAL_UNLOCK(hpcd); - - return status; -} - -/** - * @brief Register USB PCD Iso IN incomplete Callback - * To be used instead of the weak HAL_PCD_ISOINIncompleteCallback() predefined callback - * @param hpcd PCD handle - * @param pCallback pointer to the USB PCD Iso IN incomplete Callback function - * @retval HAL status - */ -HAL_StatusTypeDef HAL_PCD_RegisterIsoInIncpltCallback(PCD_HandleTypeDef *hpcd, pPCD_IsoInIncpltCallbackTypeDef pCallback) -{ - HAL_StatusTypeDef status = HAL_OK; - - if (pCallback == NULL) - { - /* Update the error code */ - hpcd->ErrorCode |= HAL_PCD_ERROR_INVALID_CALLBACK; - - return HAL_ERROR; - } - - /* Process locked */ - __HAL_LOCK(hpcd); - - if (hpcd->State == HAL_PCD_STATE_READY) - { - hpcd->ISOINIncompleteCallback = pCallback; - } - else - { - /* Update the error code */ - hpcd->ErrorCode |= HAL_PCD_ERROR_INVALID_CALLBACK; - - /* Return error status */ - status = HAL_ERROR; - } - - /* Release Lock */ - __HAL_UNLOCK(hpcd); - - return status; -} - -/** - * @brief UnRegister the USB PCD Iso IN incomplete Callback - * USB PCD Iso IN incomplete Callback is redirected to the weak HAL_PCD_ISOINIncompleteCallback() predefined callback - * @param hpcd PCD handle - * @retval HAL status - */ -HAL_StatusTypeDef HAL_PCD_UnRegisterIsoInIncpltCallback(PCD_HandleTypeDef *hpcd) -{ - HAL_StatusTypeDef status = HAL_OK; - - /* Process locked */ - __HAL_LOCK(hpcd); - - if (hpcd->State == HAL_PCD_STATE_READY) - { - hpcd->ISOINIncompleteCallback = HAL_PCD_ISOINIncompleteCallback; /* Legacy weak ISOINIncompleteCallback */ - } - else - { - /* Update the error code */ - hpcd->ErrorCode |= HAL_PCD_ERROR_INVALID_CALLBACK; - - /* Return error status */ - status = HAL_ERROR; - } - - /* Release Lock */ - __HAL_UNLOCK(hpcd); - - return status; -} - -/** - * @brief Register USB PCD BCD Callback - * To be used instead of the weak HAL_PCDEx_BCD_Callback() predefined callback - * @param hpcd PCD handle - * @param pCallback pointer to the USB PCD BCD Callback function - * @retval HAL status - */ -HAL_StatusTypeDef HAL_PCD_RegisterBcdCallback(PCD_HandleTypeDef *hpcd, pPCD_BcdCallbackTypeDef pCallback) -{ - HAL_StatusTypeDef status = HAL_OK; - - if (pCallback == NULL) - { - /* Update the error code */ - hpcd->ErrorCode |= HAL_PCD_ERROR_INVALID_CALLBACK; - - return HAL_ERROR; - } - - /* Process locked */ - __HAL_LOCK(hpcd); - - if (hpcd->State == HAL_PCD_STATE_READY) - { - hpcd->BCDCallback = pCallback; - } - else - { - /* Update the error code */ - hpcd->ErrorCode |= HAL_PCD_ERROR_INVALID_CALLBACK; - - /* Return error status */ - status = HAL_ERROR; - } - - /* Release Lock */ - __HAL_UNLOCK(hpcd); - - return status; -} - -/** - * @brief UnRegister the USB PCD BCD Callback - * USB BCD Callback is redirected to the weak HAL_PCDEx_BCD_Callback() predefined callback - * @param hpcd PCD handle - * @retval HAL status - */ -HAL_StatusTypeDef HAL_PCD_UnRegisterBcdCallback(PCD_HandleTypeDef *hpcd) -{ - HAL_StatusTypeDef status = HAL_OK; - - /* Process locked */ - __HAL_LOCK(hpcd); - - if (hpcd->State == HAL_PCD_STATE_READY) - { - hpcd->BCDCallback = HAL_PCDEx_BCD_Callback; /* Legacy weak HAL_PCDEx_BCD_Callback */ - } - else - { - /* Update the error code */ - hpcd->ErrorCode |= HAL_PCD_ERROR_INVALID_CALLBACK; - - /* Return error status */ - status = HAL_ERROR; - } - - /* Release Lock */ - __HAL_UNLOCK(hpcd); - - return status; -} - -/** - * @brief Register USB PCD LPM Callback - * To be used instead of the weak HAL_PCDEx_LPM_Callback() predefined callback - * @param hpcd PCD handle - * @param pCallback pointer to the USB PCD LPM Callback function - * @retval HAL status - */ -HAL_StatusTypeDef HAL_PCD_RegisterLpmCallback(PCD_HandleTypeDef *hpcd, pPCD_LpmCallbackTypeDef pCallback) -{ - HAL_StatusTypeDef status = HAL_OK; - - if (pCallback == NULL) - { - /* Update the error code */ - hpcd->ErrorCode |= HAL_PCD_ERROR_INVALID_CALLBACK; - - return HAL_ERROR; - } - - /* Process locked */ - __HAL_LOCK(hpcd); - - if (hpcd->State == HAL_PCD_STATE_READY) - { - hpcd->LPMCallback = pCallback; - } - else - { - /* Update the error code */ - hpcd->ErrorCode |= HAL_PCD_ERROR_INVALID_CALLBACK; - - /* Return error status */ - status = HAL_ERROR; - } - - /* Release Lock */ - __HAL_UNLOCK(hpcd); - - return status; -} - -/** - * @brief UnRegister the USB PCD LPM Callback - * USB LPM Callback is redirected to the weak HAL_PCDEx_LPM_Callback() predefined callback - * @param hpcd PCD handle - * @retval HAL status - */ -HAL_StatusTypeDef HAL_PCD_UnRegisterLpmCallback(PCD_HandleTypeDef *hpcd) -{ - HAL_StatusTypeDef status = HAL_OK; - - /* Process locked */ - __HAL_LOCK(hpcd); - - if (hpcd->State == HAL_PCD_STATE_READY) - { - hpcd->LPMCallback = HAL_PCDEx_LPM_Callback; /* Legacy weak HAL_PCDEx_LPM_Callback */ - } - else - { - /* Update the error code */ - hpcd->ErrorCode |= HAL_PCD_ERROR_INVALID_CALLBACK; - - /* Return error status */ - status = HAL_ERROR; - } - - /* Release Lock */ - __HAL_UNLOCK(hpcd); - - return status; -} -#endif /* USE_HAL_PCD_REGISTER_CALLBACKS */ - -/** - * @} - */ - -/** @defgroup PCD_Exported_Functions_Group2 Input and Output operation functions - * @brief Data transfers functions - * -@verbatim - =============================================================================== - ##### IO operation functions ##### - =============================================================================== - [..] - This subsection provides a set of functions allowing to manage the PCD data - transfers. - -@endverbatim - * @{ - */ - -/** - * @brief Start the USB device - * @param hpcd PCD handle - * @retval HAL status - */ -HAL_StatusTypeDef HAL_PCD_Start(PCD_HandleTypeDef *hpcd) -{ - __HAL_LOCK(hpcd); - (void)USB_DevConnect(hpcd->Instance); - __HAL_PCD_ENABLE(hpcd); - __HAL_UNLOCK(hpcd); - return HAL_OK; -} - -/** - * @brief Stop the USB device. - * @param hpcd PCD handle - * @retval HAL status - */ -HAL_StatusTypeDef HAL_PCD_Stop(PCD_HandleTypeDef *hpcd) -{ - __HAL_LOCK(hpcd); - __HAL_PCD_DISABLE(hpcd); - - (void)USB_StopDevice(hpcd->Instance); - - __HAL_UNLOCK(hpcd); - - return HAL_OK; -} - - -/** - * @brief This function handles PCD interrupt request. - * @param hpcd PCD handle - * @retval HAL status - */ -void HAL_PCD_IRQHandler(PCD_HandleTypeDef *hpcd) -{ - if (__HAL_PCD_GET_FLAG(hpcd, USB_ISTR_CTR)) - { - /* servicing of the endpoint correct transfer interrupt */ - /* clear of the CTR flag into the sub */ - (void)PCD_EP_ISR_Handler(hpcd); - } - - if (__HAL_PCD_GET_FLAG(hpcd, USB_ISTR_RESET)) - { - __HAL_PCD_CLEAR_FLAG(hpcd, USB_ISTR_RESET); - -#if (USE_HAL_PCD_REGISTER_CALLBACKS == 1U) - hpcd->ResetCallback(hpcd); -#else - HAL_PCD_ResetCallback(hpcd); -#endif /* USE_HAL_PCD_REGISTER_CALLBACKS */ - - (void)HAL_PCD_SetAddress(hpcd, 0U); - } - - if (__HAL_PCD_GET_FLAG(hpcd, USB_ISTR_PMAOVR)) - { - __HAL_PCD_CLEAR_FLAG(hpcd, USB_ISTR_PMAOVR); - } - - if (__HAL_PCD_GET_FLAG(hpcd, USB_ISTR_ERR)) - { - __HAL_PCD_CLEAR_FLAG(hpcd, USB_ISTR_ERR); - } - - if (__HAL_PCD_GET_FLAG(hpcd, USB_ISTR_WKUP)) - { - hpcd->Instance->CNTR &= (uint16_t) ~(USB_CNTR_LPMODE); - hpcd->Instance->CNTR &= (uint16_t) ~(USB_CNTR_FSUSP); - - if (hpcd->LPM_State == LPM_L1) - { - hpcd->LPM_State = LPM_L0; -#if (USE_HAL_PCD_REGISTER_CALLBACKS == 1U) - hpcd->LPMCallback(hpcd, PCD_LPM_L0_ACTIVE); -#else - HAL_PCDEx_LPM_Callback(hpcd, PCD_LPM_L0_ACTIVE); -#endif /* USE_HAL_PCD_REGISTER_CALLBACKS */ - } - -#if (USE_HAL_PCD_REGISTER_CALLBACKS == 1U) - hpcd->ResumeCallback(hpcd); -#else - HAL_PCD_ResumeCallback(hpcd); -#endif /* USE_HAL_PCD_REGISTER_CALLBACKS */ - - __HAL_PCD_CLEAR_FLAG(hpcd, USB_ISTR_WKUP); - } - - if (__HAL_PCD_GET_FLAG(hpcd, USB_ISTR_SUSP)) - { - /* Force low-power mode in the macrocell */ - hpcd->Instance->CNTR |= USB_CNTR_FSUSP; - - /* clear of the ISTR bit must be done after setting of CNTR_FSUSP */ - __HAL_PCD_CLEAR_FLAG(hpcd, USB_ISTR_SUSP); - - hpcd->Instance->CNTR |= USB_CNTR_LPMODE; - - if (__HAL_PCD_GET_FLAG(hpcd, USB_ISTR_WKUP) == 0U) - { -#if (USE_HAL_PCD_REGISTER_CALLBACKS == 1U) - hpcd->SuspendCallback(hpcd); -#else - HAL_PCD_SuspendCallback(hpcd); -#endif /* USE_HAL_PCD_REGISTER_CALLBACKS */ - } - } - - /* Handle LPM Interrupt */ - if (__HAL_PCD_GET_FLAG(hpcd, USB_ISTR_L1REQ)) - { - __HAL_PCD_CLEAR_FLAG(hpcd, USB_ISTR_L1REQ); - if (hpcd->LPM_State == LPM_L0) - { - /* Force suspend and low-power mode before going to L1 state*/ - hpcd->Instance->CNTR |= USB_CNTR_LPMODE; - hpcd->Instance->CNTR |= USB_CNTR_FSUSP; - - hpcd->LPM_State = LPM_L1; - hpcd->BESL = ((uint32_t)hpcd->Instance->LPMCSR & USB_LPMCSR_BESL) >> 2; -#if (USE_HAL_PCD_REGISTER_CALLBACKS == 1U) - hpcd->LPMCallback(hpcd, PCD_LPM_L1_ACTIVE); -#else - HAL_PCDEx_LPM_Callback(hpcd, PCD_LPM_L1_ACTIVE); -#endif /* USE_HAL_PCD_REGISTER_CALLBACKS */ - } - else - { -#if (USE_HAL_PCD_REGISTER_CALLBACKS == 1U) - hpcd->SuspendCallback(hpcd); -#else - HAL_PCD_SuspendCallback(hpcd); -#endif /* USE_HAL_PCD_REGISTER_CALLBACKS */ - } - } - - if (__HAL_PCD_GET_FLAG(hpcd, USB_ISTR_SOF)) - { - __HAL_PCD_CLEAR_FLAG(hpcd, USB_ISTR_SOF); - -#if (USE_HAL_PCD_REGISTER_CALLBACKS == 1U) - hpcd->SOFCallback(hpcd); -#else - HAL_PCD_SOFCallback(hpcd); -#endif /* USE_HAL_PCD_REGISTER_CALLBACKS */ - } - - if (__HAL_PCD_GET_FLAG(hpcd, USB_ISTR_ESOF)) - { - /* clear ESOF flag in ISTR */ - __HAL_PCD_CLEAR_FLAG(hpcd, USB_ISTR_ESOF); - } -} - - -/** - * @brief Data OUT stage callback. - * @param hpcd PCD handle - * @param epnum endpoint number - * @retval None - */ -__weak void HAL_PCD_DataOutStageCallback(PCD_HandleTypeDef *hpcd, uint8_t epnum) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hpcd); - UNUSED(epnum); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_PCD_DataOutStageCallback could be implemented in the user file - */ -} - -/** - * @brief Data IN stage callback - * @param hpcd PCD handle - * @param epnum endpoint number - * @retval None - */ -__weak void HAL_PCD_DataInStageCallback(PCD_HandleTypeDef *hpcd, uint8_t epnum) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hpcd); - UNUSED(epnum); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_PCD_DataInStageCallback could be implemented in the user file - */ -} -/** - * @brief Setup stage callback - * @param hpcd PCD handle - * @retval None - */ -__weak void HAL_PCD_SetupStageCallback(PCD_HandleTypeDef *hpcd) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hpcd); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_PCD_SetupStageCallback could be implemented in the user file - */ -} - -/** - * @brief USB Start Of Frame callback. - * @param hpcd PCD handle - * @retval None - */ -__weak void HAL_PCD_SOFCallback(PCD_HandleTypeDef *hpcd) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hpcd); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_PCD_SOFCallback could be implemented in the user file - */ -} - -/** - * @brief USB Reset callback. - * @param hpcd PCD handle - * @retval None - */ -__weak void HAL_PCD_ResetCallback(PCD_HandleTypeDef *hpcd) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hpcd); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_PCD_ResetCallback could be implemented in the user file - */ -} - -/** - * @brief Suspend event callback. - * @param hpcd PCD handle - * @retval None - */ -__weak void HAL_PCD_SuspendCallback(PCD_HandleTypeDef *hpcd) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hpcd); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_PCD_SuspendCallback could be implemented in the user file - */ -} - -/** - * @brief Resume event callback. - * @param hpcd PCD handle - * @retval None - */ -__weak void HAL_PCD_ResumeCallback(PCD_HandleTypeDef *hpcd) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hpcd); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_PCD_ResumeCallback could be implemented in the user file - */ -} - -/** - * @brief Incomplete ISO OUT callback. - * @param hpcd PCD handle - * @param epnum endpoint number - * @retval None - */ -__weak void HAL_PCD_ISOOUTIncompleteCallback(PCD_HandleTypeDef *hpcd, uint8_t epnum) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hpcd); - UNUSED(epnum); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_PCD_ISOOUTIncompleteCallback could be implemented in the user file - */ -} - -/** - * @brief Incomplete ISO IN callback. - * @param hpcd PCD handle - * @param epnum endpoint number - * @retval None - */ -__weak void HAL_PCD_ISOINIncompleteCallback(PCD_HandleTypeDef *hpcd, uint8_t epnum) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hpcd); - UNUSED(epnum); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_PCD_ISOINIncompleteCallback could be implemented in the user file - */ -} - -/** - * @brief Connection event callback. - * @param hpcd PCD handle - * @retval None - */ -__weak void HAL_PCD_ConnectCallback(PCD_HandleTypeDef *hpcd) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hpcd); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_PCD_ConnectCallback could be implemented in the user file - */ -} - -/** - * @brief Disconnection event callback. - * @param hpcd PCD handle - * @retval None - */ -__weak void HAL_PCD_DisconnectCallback(PCD_HandleTypeDef *hpcd) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hpcd); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_PCD_DisconnectCallback could be implemented in the user file - */ -} - -/** - * @} - */ - -/** @defgroup PCD_Exported_Functions_Group3 Peripheral Control functions - * @brief management functions - * -@verbatim - =============================================================================== - ##### Peripheral Control functions ##### - =============================================================================== - [..] - This subsection provides a set of functions allowing to control the PCD data - transfers. - -@endverbatim - * @{ - */ - -/** - * @brief Connect the USB device - * @param hpcd PCD handle - * @retval HAL status - */ -HAL_StatusTypeDef HAL_PCD_DevConnect(PCD_HandleTypeDef *hpcd) -{ - __HAL_LOCK(hpcd); - (void)USB_DevConnect(hpcd->Instance); - __HAL_UNLOCK(hpcd); - return HAL_OK; -} - -/** - * @brief Disconnect the USB device. - * @param hpcd PCD handle - * @retval HAL status - */ -HAL_StatusTypeDef HAL_PCD_DevDisconnect(PCD_HandleTypeDef *hpcd) -{ - __HAL_LOCK(hpcd); - (void)USB_DevDisconnect(hpcd->Instance); - __HAL_UNLOCK(hpcd); - return HAL_OK; -} - -/** - * @brief Set the USB Device address. - * @param hpcd PCD handle - * @param address new device address - * @retval HAL status - */ -HAL_StatusTypeDef HAL_PCD_SetAddress(PCD_HandleTypeDef *hpcd, uint8_t address) -{ - __HAL_LOCK(hpcd); - hpcd->USB_Address = address; - (void)USB_SetDevAddress(hpcd->Instance, address); - __HAL_UNLOCK(hpcd); - return HAL_OK; -} -/** - * @brief Open and configure an endpoint. - * @param hpcd PCD handle - * @param ep_addr endpoint address - * @param ep_mps endpoint max packet size - * @param ep_type endpoint type - * @retval HAL status - */ -HAL_StatusTypeDef HAL_PCD_EP_Open(PCD_HandleTypeDef *hpcd, uint8_t ep_addr, uint16_t ep_mps, uint8_t ep_type) -{ - HAL_StatusTypeDef ret = HAL_OK; - PCD_EPTypeDef *ep; - - if ((ep_addr & 0x80U) == 0x80U) - { - ep = &hpcd->IN_ep[ep_addr & EP_ADDR_MSK]; - ep->is_in = 1U; - } - else - { - ep = &hpcd->OUT_ep[ep_addr & EP_ADDR_MSK]; - ep->is_in = 0U; - } - - ep->num = ep_addr & EP_ADDR_MSK; - ep->maxpacket = ep_mps; - ep->type = ep_type; - - if (ep->is_in != 0U) - { - /* Assign a Tx FIFO */ - ep->tx_fifo_num = ep->num; - } - /* Set initial data PID. */ - if (ep_type == EP_TYPE_BULK) - { - ep->data_pid_start = 0U; - } - - __HAL_LOCK(hpcd); - (void)USB_ActivateEndpoint(hpcd->Instance, ep); - __HAL_UNLOCK(hpcd); - - return ret; -} - -/** - * @brief Deactivate an endpoint. - * @param hpcd PCD handle - * @param ep_addr endpoint address - * @retval HAL status - */ -HAL_StatusTypeDef HAL_PCD_EP_Close(PCD_HandleTypeDef *hpcd, uint8_t ep_addr) -{ - PCD_EPTypeDef *ep; - - if ((ep_addr & 0x80U) == 0x80U) - { - ep = &hpcd->IN_ep[ep_addr & EP_ADDR_MSK]; - ep->is_in = 1U; - } - else - { - ep = &hpcd->OUT_ep[ep_addr & EP_ADDR_MSK]; - ep->is_in = 0U; - } - ep->num = ep_addr & EP_ADDR_MSK; - - __HAL_LOCK(hpcd); - (void)USB_DeactivateEndpoint(hpcd->Instance, ep); - __HAL_UNLOCK(hpcd); - return HAL_OK; -} - - -/** - * @brief Receive an amount of data. - * @param hpcd PCD handle - * @param ep_addr endpoint address - * @param pBuf pointer to the reception buffer - * @param len amount of data to be received - * @retval HAL status - */ -HAL_StatusTypeDef HAL_PCD_EP_Receive(PCD_HandleTypeDef *hpcd, uint8_t ep_addr, uint8_t *pBuf, uint32_t len) -{ - PCD_EPTypeDef *ep; - - ep = &hpcd->OUT_ep[ep_addr & EP_ADDR_MSK]; - - /*setup and start the Xfer */ - ep->xfer_buff = pBuf; - ep->xfer_len = len; - ep->xfer_count = 0U; - ep->is_in = 0U; - ep->num = ep_addr & EP_ADDR_MSK; - - if ((ep_addr & EP_ADDR_MSK) == 0U) - { - (void)USB_EP0StartXfer(hpcd->Instance, ep); - } - else - { - (void)USB_EPStartXfer(hpcd->Instance, ep); - } - - return HAL_OK; -} - -/** - * @brief Get Received Data Size - * @param hpcd PCD handle - * @param ep_addr endpoint address - * @retval Data Size - */ -uint32_t HAL_PCD_EP_GetRxCount(PCD_HandleTypeDef *hpcd, uint8_t ep_addr) -{ - return hpcd->OUT_ep[ep_addr & EP_ADDR_MSK].xfer_count; -} -/** - * @brief Send an amount of data - * @param hpcd PCD handle - * @param ep_addr endpoint address - * @param pBuf pointer to the transmission buffer - * @param len amount of data to be sent - * @retval HAL status - */ -HAL_StatusTypeDef HAL_PCD_EP_Transmit(PCD_HandleTypeDef *hpcd, uint8_t ep_addr, uint8_t *pBuf, uint32_t len) -{ - PCD_EPTypeDef *ep; - - ep = &hpcd->IN_ep[ep_addr & EP_ADDR_MSK]; - - /*setup and start the Xfer */ - ep->xfer_buff = pBuf; - ep->xfer_len = len; - ep->xfer_count = 0U; - ep->is_in = 1U; - ep->num = ep_addr & EP_ADDR_MSK; - - if ((ep_addr & EP_ADDR_MSK) == 0U) - { - (void)USB_EP0StartXfer(hpcd->Instance, ep); - } - else - { - (void)USB_EPStartXfer(hpcd->Instance, ep); - } - - return HAL_OK; -} - -/** - * @brief Set a STALL condition over an endpoint - * @param hpcd PCD handle - * @param ep_addr endpoint address - * @retval HAL status - */ -HAL_StatusTypeDef HAL_PCD_EP_SetStall(PCD_HandleTypeDef *hpcd, uint8_t ep_addr) -{ - PCD_EPTypeDef *ep; - - if (((uint32_t)ep_addr & EP_ADDR_MSK) > hpcd->Init.dev_endpoints) - { - return HAL_ERROR; - } - - if ((0x80U & ep_addr) == 0x80U) - { - ep = &hpcd->IN_ep[ep_addr & EP_ADDR_MSK]; - ep->is_in = 1U; - } - else - { - ep = &hpcd->OUT_ep[ep_addr]; - ep->is_in = 0U; - } - - ep->is_stall = 1U; - ep->num = ep_addr & EP_ADDR_MSK; - - __HAL_LOCK(hpcd); - - (void)USB_EPSetStall(hpcd->Instance, ep); - if ((ep_addr & EP_ADDR_MSK) == 0U) - { - (void)USB_EP0_OutStart(hpcd->Instance, (uint8_t *)hpcd->Setup); - } - __HAL_UNLOCK(hpcd); - - return HAL_OK; -} - -/** - * @brief Clear a STALL condition over in an endpoint - * @param hpcd PCD handle - * @param ep_addr endpoint address - * @retval HAL status - */ -HAL_StatusTypeDef HAL_PCD_EP_ClrStall(PCD_HandleTypeDef *hpcd, uint8_t ep_addr) -{ - PCD_EPTypeDef *ep; - - if (((uint32_t)ep_addr & 0x0FU) > hpcd->Init.dev_endpoints) - { - return HAL_ERROR; - } - - if ((0x80U & ep_addr) == 0x80U) - { - ep = &hpcd->IN_ep[ep_addr & EP_ADDR_MSK]; - ep->is_in = 1U; - } - else - { - ep = &hpcd->OUT_ep[ep_addr & EP_ADDR_MSK]; - ep->is_in = 0U; - } - - ep->is_stall = 0U; - ep->num = ep_addr & EP_ADDR_MSK; - - __HAL_LOCK(hpcd); - (void)USB_EPClearStall(hpcd->Instance, ep); - __HAL_UNLOCK(hpcd); - - return HAL_OK; -} - -/** - * @brief Flush an endpoint - * @param hpcd PCD handle - * @param ep_addr endpoint address - * @retval HAL status - */ -HAL_StatusTypeDef HAL_PCD_EP_Flush(PCD_HandleTypeDef *hpcd, uint8_t ep_addr) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hpcd); - UNUSED(ep_addr); - - return HAL_OK; -} - -/** - * @brief Activate remote wakeup signalling - * @param hpcd PCD handle - * @retval HAL status - */ -HAL_StatusTypeDef HAL_PCD_ActivateRemoteWakeup(PCD_HandleTypeDef *hpcd) -{ - return (USB_ActivateRemoteWakeup(hpcd->Instance)); -} - -/** - * @brief De-activate remote wakeup signalling. - * @param hpcd PCD handle - * @retval HAL status - */ -HAL_StatusTypeDef HAL_PCD_DeActivateRemoteWakeup(PCD_HandleTypeDef *hpcd) -{ - return (USB_DeActivateRemoteWakeup(hpcd->Instance)); -} - -/** - * @} - */ - -/** @defgroup PCD_Exported_Functions_Group4 Peripheral State functions - * @brief Peripheral State functions - * -@verbatim - =============================================================================== - ##### Peripheral State functions ##### - =============================================================================== - [..] - This subsection permits to get in run-time the status of the peripheral - and the data flow. - -@endverbatim - * @{ - */ - -/** - * @brief Return the PCD handle state. - * @param hpcd PCD handle - * @retval HAL state - */ -PCD_StateTypeDef HAL_PCD_GetState(PCD_HandleTypeDef *hpcd) -{ - return hpcd->State; -} - -/** - * @} - */ - -/** - * @} - */ - -/* Private functions ---------------------------------------------------------*/ -/** @addtogroup PCD_Private_Functions - * @{ - */ - - -/** - * @brief This function handles PCD Endpoint interrupt request. - * @param hpcd PCD handle - * @retval HAL status - */ -static HAL_StatusTypeDef PCD_EP_ISR_Handler(PCD_HandleTypeDef *hpcd) -{ - PCD_EPTypeDef *ep; - uint16_t count; - uint16_t wIstr; - uint16_t wEPVal; - uint8_t epindex; - - /* stay in loop while pending interrupts */ - while ((hpcd->Instance->ISTR & USB_ISTR_CTR) != 0U) - { - wIstr = hpcd->Instance->ISTR; - /* extract highest priority endpoint number */ - epindex = (uint8_t)(wIstr & USB_ISTR_EP_ID); - - if (epindex == 0U) - { - /* Decode and service control endpoint interrupt */ - - /* DIR bit = origin of the interrupt */ - if ((wIstr & USB_ISTR_DIR) == 0U) - { - /* DIR = 0 */ - - /* DIR = 0 => IN int */ - /* DIR = 0 implies that (EP_CTR_TX = 1) always */ - PCD_CLEAR_TX_EP_CTR(hpcd->Instance, PCD_ENDP0); - ep = &hpcd->IN_ep[0]; - - ep->xfer_count = PCD_GET_EP_TX_CNT(hpcd->Instance, ep->num); - ep->xfer_buff += ep->xfer_count; - - /* TX COMPLETE */ -#if (USE_HAL_PCD_REGISTER_CALLBACKS == 1U) - hpcd->DataInStageCallback(hpcd, 0U); -#else - HAL_PCD_DataInStageCallback(hpcd, 0U); -#endif /* USE_HAL_PCD_REGISTER_CALLBACKS */ - - if ((hpcd->USB_Address > 0U) && (ep->xfer_len == 0U)) - { - hpcd->Instance->DADDR = ((uint16_t)hpcd->USB_Address | USB_DADDR_EF); - hpcd->USB_Address = 0U; - } - } - else - { - /* DIR = 1 */ - - /* DIR = 1 & CTR_RX => SETUP or OUT int */ - /* DIR = 1 & (CTR_TX | CTR_RX) => 2 int pending */ - ep = &hpcd->OUT_ep[0]; - wEPVal = PCD_GET_ENDPOINT(hpcd->Instance, PCD_ENDP0); - - if ((wEPVal & USB_EP_SETUP) != 0U) - { - /* Get SETUP Packet*/ - ep->xfer_count = PCD_GET_EP_RX_CNT(hpcd->Instance, ep->num); - - USB_ReadPMA(hpcd->Instance, (uint8_t *)hpcd->Setup, - ep->pmaadress, (uint16_t)ep->xfer_count); - - /* SETUP bit kept frozen while CTR_RX = 1*/ - PCD_CLEAR_RX_EP_CTR(hpcd->Instance, PCD_ENDP0); - - /* Process SETUP Packet*/ -#if (USE_HAL_PCD_REGISTER_CALLBACKS == 1U) - hpcd->SetupStageCallback(hpcd); -#else - HAL_PCD_SetupStageCallback(hpcd); -#endif /* USE_HAL_PCD_REGISTER_CALLBACKS */ - } - - else if ((wEPVal & USB_EP_CTR_RX) != 0U) - { - PCD_CLEAR_RX_EP_CTR(hpcd->Instance, PCD_ENDP0); - - /* Get Control Data OUT Packet*/ - ep->xfer_count = PCD_GET_EP_RX_CNT(hpcd->Instance, ep->num); - - if ((ep->xfer_count != 0U) && (ep->xfer_buff != 0U)) - { - USB_ReadPMA(hpcd->Instance, ep->xfer_buff, - ep->pmaadress, (uint16_t)ep->xfer_count); - - ep->xfer_buff += ep->xfer_count; - - /* Process Control Data OUT Packet*/ -#if (USE_HAL_PCD_REGISTER_CALLBACKS == 1U) - hpcd->DataOutStageCallback(hpcd, 0U); -#else - HAL_PCD_DataOutStageCallback(hpcd, 0U); -#endif /* USE_HAL_PCD_REGISTER_CALLBACKS */ - } - - PCD_SET_EP_RX_CNT(hpcd->Instance, PCD_ENDP0, ep->maxpacket); - PCD_SET_EP_RX_STATUS(hpcd->Instance, PCD_ENDP0, USB_EP_RX_VALID); - } - } - } - else - { - /* Decode and service non control endpoints interrupt */ - - /* process related endpoint register */ - wEPVal = PCD_GET_ENDPOINT(hpcd->Instance, epindex); - if ((wEPVal & USB_EP_CTR_RX) != 0U) - { - /* clear int flag */ - PCD_CLEAR_RX_EP_CTR(hpcd->Instance, epindex); - ep = &hpcd->OUT_ep[epindex]; - - /* OUT double Buffering*/ - if (ep->doublebuffer == 0U) - { - count = (uint16_t)PCD_GET_EP_RX_CNT(hpcd->Instance, ep->num); - if (count != 0U) - { - USB_ReadPMA(hpcd->Instance, ep->xfer_buff, ep->pmaadress, count); - } - } - else - { - if ((PCD_GET_ENDPOINT(hpcd->Instance, ep->num) & USB_EP_DTOG_RX) != 0U) - { - /*read from endpoint BUF0Addr buffer*/ - count = (uint16_t)PCD_GET_EP_DBUF0_CNT(hpcd->Instance, ep->num); - if (count != 0U) - { - USB_ReadPMA(hpcd->Instance, ep->xfer_buff, ep->pmaaddr0, count); - } - } - else - { - /*read from endpoint BUF1Addr buffer*/ - count = (uint16_t)PCD_GET_EP_DBUF1_CNT(hpcd->Instance, ep->num); - if (count != 0U) - { - USB_ReadPMA(hpcd->Instance, ep->xfer_buff, ep->pmaaddr1, count); - } - } - /* free EP OUT Buffer */ - PCD_FreeUserBuffer(hpcd->Instance, ep->num, 0U); - } - /*multi-packet on the NON control OUT endpoint*/ - ep->xfer_count += count; - ep->xfer_buff += count; - - if ((ep->xfer_len == 0U) || (count < ep->maxpacket)) - { - /* RX COMPLETE */ -#if (USE_HAL_PCD_REGISTER_CALLBACKS == 1U) - hpcd->DataOutStageCallback(hpcd, ep->num); -#else - HAL_PCD_DataOutStageCallback(hpcd, ep->num); -#endif /* USE_HAL_PCD_REGISTER_CALLBACKS */ - } - else - { - (void)HAL_PCD_EP_Receive(hpcd, ep->num, ep->xfer_buff, ep->xfer_len); - } - - } /* if((wEPVal & EP_CTR_RX) */ - - if ((wEPVal & USB_EP_CTR_TX) != 0U) - { - ep = &hpcd->IN_ep[epindex]; - - /* clear int flag */ - PCD_CLEAR_TX_EP_CTR(hpcd->Instance, epindex); - - /*multi-packet on the NON control IN endpoint*/ - ep->xfer_count = PCD_GET_EP_TX_CNT(hpcd->Instance, ep->num); - ep->xfer_buff += ep->xfer_count; - - /* Zero Length Packet? */ - if (ep->xfer_len == 0U) - { - /* TX COMPLETE */ -#if (USE_HAL_PCD_REGISTER_CALLBACKS == 1U) - hpcd->DataInStageCallback(hpcd, ep->num); -#else - HAL_PCD_DataInStageCallback(hpcd, ep->num); -#endif /* USE_HAL_PCD_REGISTER_CALLBACKS */ - } - else - { - (void)HAL_PCD_EP_Transmit(hpcd, ep->num, ep->xfer_buff, ep->xfer_len); - } - } - } - } - return HAL_OK; -} - - -/** - * @} - */ -#endif /* defined (USB) */ -#endif /* HAL_PCD_MODULE_ENABLED */ - -/** - * @} - */ - -/** - * @} - */ - -/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_pcd_ex.c b/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_pcd_ex.c deleted file mode 100644 index 26dd51f..0000000 --- a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_pcd_ex.c +++ /dev/null @@ -1,338 +0,0 @@ -/** - ****************************************************************************** - * @file stm32f0xx_hal_pcd_ex.c - * @author MCD Application Team - * @brief PCD Extended HAL module driver. - * This file provides firmware functions to manage the following - * functionalities of the USB Peripheral Controller: - * + Extended features functions - * - ****************************************************************************** - * @attention - * - *

© Copyright (c) 2016 STMicroelectronics. - * All rights reserved.

- * - * This software component is licensed by ST under BSD 3-Clause license, - * the "License"; You may not use this file except in compliance with the - * License. You may obtain a copy of the License at: - * opensource.org/licenses/BSD-3-Clause - * - ****************************************************************************** - */ - -/* Includes ------------------------------------------------------------------*/ -#include "stm32f0xx_hal.h" - -/** @addtogroup STM32F0xx_HAL_Driver - * @{ - */ - -/** @defgroup PCDEx PCDEx - * @brief PCD Extended HAL module driver - * @{ - */ - -#ifdef HAL_PCD_MODULE_ENABLED - -#if defined (USB) -/* Private types -------------------------------------------------------------*/ -/* Private variables ---------------------------------------------------------*/ -/* Private constants ---------------------------------------------------------*/ -/* Private macros ------------------------------------------------------------*/ -/* Private functions ---------------------------------------------------------*/ -/* Exported functions --------------------------------------------------------*/ - -/** @defgroup PCDEx_Exported_Functions PCDEx Exported Functions - * @{ - */ - -/** @defgroup PCDEx_Exported_Functions_Group1 Peripheral Control functions - * @brief PCDEx control functions - * -@verbatim - =============================================================================== - ##### Extended features functions ##### - =============================================================================== - [..] This section provides functions allowing to: - (+) Update FIFO configuration - -@endverbatim - * @{ - */ - -/** - * @brief Configure PMA for EP - * @param hpcd Device instance - * @param ep_addr endpoint address - * @param ep_kind endpoint Kind - * USB_SNG_BUF: Single Buffer used - * USB_DBL_BUF: Double Buffer used - * @param pmaadress: EP address in The PMA: In case of single buffer endpoint - * this parameter is 16-bit value providing the address - * in PMA allocated to endpoint. - * In case of double buffer endpoint this parameter - * is a 32-bit value providing the endpoint buffer 0 address - * in the LSB part of 32-bit value and endpoint buffer 1 address - * in the MSB part of 32-bit value. - * @retval HAL status - */ - -HAL_StatusTypeDef HAL_PCDEx_PMAConfig(PCD_HandleTypeDef *hpcd, - uint16_t ep_addr, - uint16_t ep_kind, - uint32_t pmaadress) -{ - PCD_EPTypeDef *ep; - - /* initialize ep structure*/ - if ((0x80U & ep_addr) == 0x80U) - { - ep = &hpcd->IN_ep[ep_addr & EP_ADDR_MSK]; - } - else - { - ep = &hpcd->OUT_ep[ep_addr]; - } - - /* Here we check if the endpoint is single or double Buffer*/ - if (ep_kind == PCD_SNG_BUF) - { - /* Single Buffer */ - ep->doublebuffer = 0U; - /* Configure the PMA */ - ep->pmaadress = (uint16_t)pmaadress; - } - else /* USB_DBL_BUF */ - { - /* Double Buffer Endpoint */ - ep->doublebuffer = 1U; - /* Configure the PMA */ - ep->pmaaddr0 = (uint16_t)(pmaadress & 0xFFFFU); - ep->pmaaddr1 = (uint16_t)((pmaadress & 0xFFFF0000U) >> 16); - } - - return HAL_OK; -} - -/** - * @brief Activate BatteryCharging feature. - * @param hpcd PCD handle - * @retval HAL status - */ -HAL_StatusTypeDef HAL_PCDEx_ActivateBCD(PCD_HandleTypeDef *hpcd) -{ - USB_TypeDef *USBx = hpcd->Instance; - hpcd->battery_charging_active = 1U; - - /* Enable BCD feature */ - USBx->BCDR |= USB_BCDR_BCDEN; - - /* Enable DCD : Data Contact Detect */ - USBx->BCDR &= ~(USB_BCDR_PDEN); - USBx->BCDR &= ~(USB_BCDR_SDEN); - USBx->BCDR |= USB_BCDR_DCDEN; - - return HAL_OK; -} - -/** - * @brief Deactivate BatteryCharging feature. - * @param hpcd PCD handle - * @retval HAL status - */ -HAL_StatusTypeDef HAL_PCDEx_DeActivateBCD(PCD_HandleTypeDef *hpcd) -{ - USB_TypeDef *USBx = hpcd->Instance; - hpcd->battery_charging_active = 0U; - - /* Disable BCD feature */ - USBx->BCDR &= ~(USB_BCDR_BCDEN); - - return HAL_OK; -} - -/** - * @brief Handle BatteryCharging Process. - * @param hpcd PCD handle - * @retval HAL status - */ -void HAL_PCDEx_BCD_VBUSDetect(PCD_HandleTypeDef *hpcd) -{ - USB_TypeDef *USBx = hpcd->Instance; - uint32_t tickstart = HAL_GetTick(); - - /* Wait Detect flag or a timeout is happen*/ - while ((USBx->BCDR & USB_BCDR_DCDET) == 0U) - { - /* Check for the Timeout */ - if ((HAL_GetTick() - tickstart) > 1000U) - { -#if (USE_HAL_PCD_REGISTER_CALLBACKS == 1U) - hpcd->BCDCallback(hpcd, PCD_BCD_ERROR); -#else - HAL_PCDEx_BCD_Callback(hpcd, PCD_BCD_ERROR); -#endif /* USE_HAL_PCD_REGISTER_CALLBACKS */ - - return; - } - } - - HAL_Delay(200U); - - /* Data Pin Contact ? Check Detect flag */ - if ((USBx->BCDR & USB_BCDR_DCDET) == USB_BCDR_DCDET) - { -#if (USE_HAL_PCD_REGISTER_CALLBACKS == 1U) - hpcd->BCDCallback(hpcd, PCD_BCD_CONTACT_DETECTION); -#else - HAL_PCDEx_BCD_Callback(hpcd, PCD_BCD_CONTACT_DETECTION); -#endif /* USE_HAL_PCD_REGISTER_CALLBACKS */ - } - /* Primary detection: checks if connected to Standard Downstream Port - (without charging capability) */ - USBx->BCDR &= ~(USB_BCDR_DCDEN); - HAL_Delay(50U); - USBx->BCDR |= (USB_BCDR_PDEN); - HAL_Delay(50U); - - /* If Charger detect ? */ - if ((USBx->BCDR & USB_BCDR_PDET) == USB_BCDR_PDET) - { - /* Start secondary detection to check connection to Charging Downstream - Port or Dedicated Charging Port */ - USBx->BCDR &= ~(USB_BCDR_PDEN); - HAL_Delay(50U); - USBx->BCDR |= (USB_BCDR_SDEN); - HAL_Delay(50U); - - /* If CDP ? */ - if ((USBx->BCDR & USB_BCDR_SDET) == USB_BCDR_SDET) - { - /* Dedicated Downstream Port DCP */ -#if (USE_HAL_PCD_REGISTER_CALLBACKS == 1U) - hpcd->BCDCallback(hpcd, PCD_BCD_DEDICATED_CHARGING_PORT); -#else - HAL_PCDEx_BCD_Callback(hpcd, PCD_BCD_DEDICATED_CHARGING_PORT); -#endif /* USE_HAL_PCD_REGISTER_CALLBACKS */ - } - else - { - /* Charging Downstream Port CDP */ -#if (USE_HAL_PCD_REGISTER_CALLBACKS == 1U) - hpcd->BCDCallback(hpcd, PCD_BCD_CHARGING_DOWNSTREAM_PORT); -#else - HAL_PCDEx_BCD_Callback(hpcd, PCD_BCD_CHARGING_DOWNSTREAM_PORT); -#endif /* USE_HAL_PCD_REGISTER_CALLBACKS */ - } - } - else /* NO */ - { - /* Standard Downstream Port */ -#if (USE_HAL_PCD_REGISTER_CALLBACKS == 1U) - hpcd->BCDCallback(hpcd, PCD_BCD_STD_DOWNSTREAM_PORT); -#else - HAL_PCDEx_BCD_Callback(hpcd, PCD_BCD_STD_DOWNSTREAM_PORT); -#endif /* USE_HAL_PCD_REGISTER_CALLBACKS */ - } - - /* Battery Charging capability discovery finished Start Enumeration */ - (void)HAL_PCDEx_DeActivateBCD(hpcd); -#if (USE_HAL_PCD_REGISTER_CALLBACKS == 1U) - hpcd->BCDCallback(hpcd, PCD_BCD_DISCOVERY_COMPLETED); -#else - HAL_PCDEx_BCD_Callback(hpcd, PCD_BCD_DISCOVERY_COMPLETED); -#endif /* USE_HAL_PCD_REGISTER_CALLBACKS */ -} - - -/** - * @brief Activate LPM feature. - * @param hpcd PCD handle - * @retval HAL status - */ -HAL_StatusTypeDef HAL_PCDEx_ActivateLPM(PCD_HandleTypeDef *hpcd) -{ - - USB_TypeDef *USBx = hpcd->Instance; - hpcd->lpm_active = 1U; - hpcd->LPM_State = LPM_L0; - - USBx->LPMCSR |= USB_LPMCSR_LMPEN; - USBx->LPMCSR |= USB_LPMCSR_LPMACK; - - return HAL_OK; -} - -/** - * @brief Deactivate LPM feature. - * @param hpcd PCD handle - * @retval HAL status - */ -HAL_StatusTypeDef HAL_PCDEx_DeActivateLPM(PCD_HandleTypeDef *hpcd) -{ - USB_TypeDef *USBx = hpcd->Instance; - - hpcd->lpm_active = 0U; - - USBx->LPMCSR &= ~(USB_LPMCSR_LMPEN); - USBx->LPMCSR &= ~(USB_LPMCSR_LPMACK); - - return HAL_OK; -} - - - -/** - * @brief Send LPM message to user layer callback. - * @param hpcd PCD handle - * @param msg LPM message - * @retval HAL status - */ -__weak void HAL_PCDEx_LPM_Callback(PCD_HandleTypeDef *hpcd, PCD_LPM_MsgTypeDef msg) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hpcd); - UNUSED(msg); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_PCDEx_LPM_Callback could be implemented in the user file - */ -} - -/** - * @brief Send BatteryCharging message to user layer callback. - * @param hpcd PCD handle - * @param msg LPM message - * @retval HAL status - */ -__weak void HAL_PCDEx_BCD_Callback(PCD_HandleTypeDef *hpcd, PCD_BCD_MsgTypeDef msg) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hpcd); - UNUSED(msg); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_PCDEx_BCD_Callback could be implemented in the user file - */ -} - -/** - * @} - */ - -/** - * @} - */ -#endif /* defined (USB) */ -#endif /* HAL_PCD_MODULE_ENABLED */ - -/** - * @} - */ - -/** - * @} - */ - -/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_pwr.c b/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_pwr.c deleted file mode 100644 index 558d869..0000000 --- a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_pwr.c +++ /dev/null @@ -1,454 +0,0 @@ -/** - ****************************************************************************** - * @file stm32f0xx_hal_pwr.c - * @author MCD Application Team - * @brief PWR HAL module driver. - * This file provides firmware functions to manage the following - * functionalities of the Power Controller (PWR) peripheral: - * + Initialization/de-initialization function - * + Peripheral Control function - * - @verbatim - ****************************************************************************** - * @attention - * - *

© Copyright (c) 2016 STMicroelectronics. - * All rights reserved.

- * - * This software component is licensed by ST under BSD 3-Clause license, - * the "License"; You may not use this file except in compliance with the - * License. You may obtain a copy of the License at: - * opensource.org/licenses/BSD-3-Clause - * - ****************************************************************************** - */ - -/* Includes ------------------------------------------------------------------*/ -#include "stm32f0xx_hal.h" - -/** @addtogroup STM32F0xx_HAL_Driver - * @{ - */ - -/** @defgroup PWR PWR - * @brief PWR HAL module driver - * @{ - */ - -#ifdef HAL_PWR_MODULE_ENABLED - -/* Private typedef -----------------------------------------------------------*/ -/* Private define ------------------------------------------------------------*/ -/* Private macro -------------------------------------------------------------*/ -/* Private variables ---------------------------------------------------------*/ -/* Private function prototypes -----------------------------------------------*/ -/* Private functions ---------------------------------------------------------*/ - -/** @defgroup PWR_Exported_Functions PWR Exported Functions - * @{ - */ - -/** @defgroup PWR_Exported_Functions_Group1 Initialization and de-initialization functions - * @brief Initialization and de-initialization functions - * -@verbatim - =============================================================================== - ##### Initialization and de-initialization functions ##### - =============================================================================== - [..] - After reset, the backup domain (RTC registers, RTC backup data - registers) is protected against possible unwanted - write accesses. - To enable access to the RTC Domain and RTC registers, proceed as follows: - (+) Enable the Power Controller (PWR) APB1 interface clock using the - __HAL_RCC_PWR_CLK_ENABLE() macro. - (+) Enable access to RTC domain using the HAL_PWR_EnableBkUpAccess() function. - -@endverbatim - * @{ - */ - -/** - * @brief Deinitializes the PWR peripheral registers to their default reset values. - * @retval None - */ -void HAL_PWR_DeInit(void) -{ - __HAL_RCC_PWR_FORCE_RESET(); - __HAL_RCC_PWR_RELEASE_RESET(); -} - -/** - * @brief Enables access to the backup domain (RTC registers, RTC - * backup data registers when present). - * @note If the HSE divided by 32 is used as the RTC clock, the - * Backup Domain Access should be kept enabled. - * @retval None - */ -void HAL_PWR_EnableBkUpAccess(void) -{ - PWR->CR |= (uint32_t)PWR_CR_DBP; -} - -/** - * @brief Disables access to the backup domain (RTC registers, RTC - * backup data registers when present). - * @note If the HSE divided by 32 is used as the RTC clock, the - * Backup Domain Access should be kept enabled. - * @retval None - */ -void HAL_PWR_DisableBkUpAccess(void) -{ - PWR->CR &= ~((uint32_t)PWR_CR_DBP); -} - -/** - * @} - */ - -/** @defgroup PWR_Exported_Functions_Group2 Peripheral Control functions - * @brief Low Power modes configuration functions - * -@verbatim - - =============================================================================== - ##### Peripheral Control functions ##### - =============================================================================== - - *** WakeUp pin configuration *** - ================================ - [..] - (+) WakeUp pin is used to wakeup the system from Standby mode. This pin is - forced in input pull down configuration and is active on rising edges. - (+) There are two WakeUp pins, and up to eight Wakeup pins on STM32F07x & STM32F09x devices. - (++)WakeUp Pin 1 on PA.00. - (++)WakeUp Pin 2 on PC.13. - (++)WakeUp Pin 3 on PE.06.(STM32F07x/STM32F09x) - (++)WakeUp Pin 4 on PA.02.(STM32F07x/STM32F09x) - (++)WakeUp Pin 5 on PC.05.(STM32F07x/STM32F09x) - (++)WakeUp Pin 6 on PB.05.(STM32F07x/STM32F09x) - (++)WakeUp Pin 7 on PB.15.(STM32F07x/STM32F09x) - (++)WakeUp Pin 8 on PF.02.(STM32F07x/STM32F09x) - - *** Low Power modes configuration *** - ===================================== - [..] - The devices feature 3 low-power modes: - (+) Sleep mode: Cortex-M0 core stopped, peripherals kept running. - (+) Stop mode: all clocks are stopped, regulator running, regulator - in low power mode - (+) Standby mode: 1.2V domain powered off (mode not available on STM32F0x8 devices). - - *** Sleep mode *** - ================== - [..] - (+) Entry: - The Sleep mode is entered by using the HAL_PWR_EnterSLEEPMode(PWR_MAINREGULATOR_ON, PWR_SLEEPENTRY_WFx) - functions with - (++) PWR_SLEEPENTRY_WFI: enter SLEEP mode with WFI instruction - (++) PWR_SLEEPENTRY_WFE: enter SLEEP mode with WFE instruction - - (+) Exit: - (++) Any peripheral interrupt acknowledged by the nested vectored interrupt - controller (NVIC) can wake up the device from Sleep mode. - - *** Stop mode *** - ================= - [..] - In Stop mode, all clocks in the 1.8V domain are stopped, the PLL, the HSI, - and the HSE RC oscillators are disabled. Internal SRAM and register contents - are preserved. - The voltage regulator can be configured either in normal or low-power mode. - To minimize the consumption. - - (+) Entry: - The Stop mode is entered using the HAL_PWR_EnterSTOPMode(PWR_MAINREGULATOR_ON, PWR_STOPENTRY_WFI ) - function with: - (++) Main regulator ON. - (++) Low Power regulator ON. - (++) PWR_STOPENTRY_WFI: enter STOP mode with WFI instruction - (++) PWR_STOPENTRY_WFE: enter STOP mode with WFE instruction - (+) Exit: - (++) Any EXTI Line (Internal or External) configured in Interrupt/Event mode. - (++) Some specific communication peripherals (CEC, USART, I2C) interrupts, - when programmed in wakeup mode (the peripheral must be - programmed in wakeup mode and the corresponding interrupt vector - must be enabled in the NVIC) - - *** Standby mode *** - ==================== - [..] - The Standby mode allows to achieve the lowest power consumption. It is based - on the Cortex-M0 deep sleep mode, with the voltage regulator disabled. - The 1.8V domain is consequently powered off. The PLL, the HSI oscillator and - the HSE oscillator are also switched off. SRAM and register contents are lost - except for the RTC registers, RTC backup registers and Standby circuitry. - The voltage regulator is OFF. - - (+) Entry: - (++) The Standby mode is entered using the HAL_PWR_EnterSTANDBYMode() function. - (+) Exit: - (++) WKUP pin rising edge, RTC alarm (Alarm A), RTC wakeup, - tamper event, time-stamp event, external reset in NRST pin, IWDG reset. - - *** Auto-wakeup (AWU) from low-power mode *** - ============================================= - [..] - The MCU can be woken up from low-power mode by an RTC Alarm event, an RTC - Wakeup event, a tamper event, a time-stamp event, or a comparator event, - without depending on an external interrupt (Auto-wakeup mode). - - (+) RTC auto-wakeup (AWU) from the Stop and Standby modes - - (++) To wake up from the Stop mode with an RTC alarm event, it is necessary to - configure the RTC to generate the RTC alarm using the HAL_RTC_SetAlarm_IT() function. - - (++) To wake up from the Stop mode with an RTC Tamper or time stamp event, it - is necessary to configure the RTC to detect the tamper or time stamp event using the - HAL_RTC_SetTimeStamp_IT() or HAL_RTC_SetTamper_IT() functions. - - (++) To wake up from the Stop mode with an RTC WakeUp event, it is necessary to - configure the RTC to generate the RTC WakeUp event using the HAL_RTC_SetWakeUpTimer_IT() function. - - (+) Comparator auto-wakeup (AWU) from the Stop mode - - (++) To wake up from the Stop mode with a comparator wakeup event, it is necessary to: - (+++) Configure the EXTI Line associated with the comparator (example EXTI Line 22 for comparator 2) - to be sensitive to to the selected edges (falling, rising or falling - and rising) (Interrupt or Event modes) using the EXTI_Init() function. - (+++) Configure the comparator to generate the event. -@endverbatim - * @{ - */ - -/** - * @brief Enables the WakeUp PINx functionality. - * @param WakeUpPinx Specifies the Power Wake-Up pin to enable. - * This parameter can be value of : - * @ref PWREx_WakeUp_Pins - * @retval None - */ -void HAL_PWR_EnableWakeUpPin(uint32_t WakeUpPinx) -{ - /* Check the parameters */ - assert_param(IS_PWR_WAKEUP_PIN(WakeUpPinx)); - /* Enable the EWUPx pin */ - SET_BIT(PWR->CSR, WakeUpPinx); -} - -/** - * @brief Disables the WakeUp PINx functionality. - * @param WakeUpPinx Specifies the Power Wake-Up pin to disable. - * This parameter can be values of : - * @ref PWREx_WakeUp_Pins - * @retval None - */ -void HAL_PWR_DisableWakeUpPin(uint32_t WakeUpPinx) -{ - /* Check the parameters */ - assert_param(IS_PWR_WAKEUP_PIN(WakeUpPinx)); - /* Disable the EWUPx pin */ - CLEAR_BIT(PWR->CSR, WakeUpPinx); -} - -/** - * @brief Enters Sleep mode. - * @note In Sleep mode, all I/O pins keep the same state as in Run mode. - * @param Regulator Specifies the regulator state in SLEEP mode. - * On STM32F0 devices, this parameter is a dummy value and it is ignored - * as regulator can't be modified in this mode. Parameter is kept for platform - * compatibility. - * @param SLEEPEntry Specifies if SLEEP mode is entered with WFI or WFE instruction. - * When WFI entry is used, tick interrupt have to be disabled if not desired as - * the interrupt wake up source. - * This parameter can be one of the following values: - * @arg PWR_SLEEPENTRY_WFI: enter SLEEP mode with WFI instruction - * @arg PWR_SLEEPENTRY_WFE: enter SLEEP mode with WFE instruction - * @retval None - */ -void HAL_PWR_EnterSLEEPMode(uint32_t Regulator, uint8_t SLEEPEntry) -{ - /* Check the parameters */ - assert_param(IS_PWR_REGULATOR(Regulator)); - assert_param(IS_PWR_SLEEP_ENTRY(SLEEPEntry)); - - /* Clear SLEEPDEEP bit of Cortex System Control Register */ - SCB->SCR &= (uint32_t)~((uint32_t)SCB_SCR_SLEEPDEEP_Msk); - - /* Select SLEEP mode entry -------------------------------------------------*/ - if(SLEEPEntry == PWR_SLEEPENTRY_WFI) - { - /* Request Wait For Interrupt */ - __WFI(); - } - else - { - /* Request Wait For Event */ - __SEV(); - __WFE(); - __WFE(); - } -} - -/** - * @brief Enters STOP mode. - * @note In Stop mode, all I/O pins keep the same state as in Run mode. - * @note When exiting Stop mode by issuing an interrupt or a wakeup event, - * the HSI RC oscillator is selected as system clock. - * @note When the voltage regulator operates in low power mode, an additional - * startup delay is incurred when waking up from Stop mode. - * By keeping the internal regulator ON during Stop mode, the consumption - * is higher although the startup time is reduced. - * @param Regulator Specifies the regulator state in STOP mode. - * This parameter can be one of the following values: - * @arg PWR_MAINREGULATOR_ON: STOP mode with regulator ON - * @arg PWR_LOWPOWERREGULATOR_ON: STOP mode with low power regulator ON - * @param STOPEntry specifies if STOP mode in entered with WFI or WFE instruction. - * This parameter can be one of the following values: - * @arg PWR_STOPENTRY_WFI:Enter STOP mode with WFI instruction - * @arg PWR_STOPENTRY_WFE: Enter STOP mode with WFE instruction - * @retval None - */ -void HAL_PWR_EnterSTOPMode(uint32_t Regulator, uint8_t STOPEntry) -{ - uint32_t tmpreg = 0; - - /* Check the parameters */ - assert_param(IS_PWR_REGULATOR(Regulator)); - assert_param(IS_PWR_STOP_ENTRY(STOPEntry)); - - /* Select the regulator state in STOP mode ---------------------------------*/ - tmpreg = PWR->CR; - - /* Clear PDDS and LPDS bits */ - tmpreg &= (uint32_t)~(PWR_CR_PDDS | PWR_CR_LPDS); - - /* Set LPDS bit according to Regulator value */ - tmpreg |= Regulator; - - /* Store the new value */ - PWR->CR = tmpreg; - - /* Set SLEEPDEEP bit of Cortex System Control Register */ - SCB->SCR |= SCB_SCR_SLEEPDEEP_Msk; - - /* Select STOP mode entry --------------------------------------------------*/ - if(STOPEntry == PWR_STOPENTRY_WFI) - { - /* Request Wait For Interrupt */ - __WFI(); - } - else - { - /* Request Wait For Event */ - __SEV(); - __WFE(); - __WFE(); - } - - /* Reset SLEEPDEEP bit of Cortex System Control Register */ - SCB->SCR &= (uint32_t)~((uint32_t)SCB_SCR_SLEEPDEEP_Msk); -} - -/** - * @brief Enters STANDBY mode. - * @note In Standby mode, all I/O pins are high impedance except for: - * - Reset pad (still available) - * - RTC alternate function pins if configured for tamper, time-stamp, RTC - * Alarm out, or RTC clock calibration out. - * - WKUP pins if enabled. - * STM32F0x8 devices, the Stop mode is available, but it is - * aningless to distinguish between voltage regulator in Low power - * mode and voltage regulator in Run mode because the regulator - * not used and the core is supplied directly from an external source. - * Consequently, the Standby mode is not available on those devices. - * @retval None - */ -void HAL_PWR_EnterSTANDBYMode(void) -{ - /* Select STANDBY mode */ - PWR->CR |= (uint32_t)PWR_CR_PDDS; - - /* Set SLEEPDEEP bit of Cortex System Control Register */ - SCB->SCR |= SCB_SCR_SLEEPDEEP_Msk; - - /* This option is used to ensure that store operations are completed */ -#if defined ( __CC_ARM) - __force_stores(); -#endif - /* Request Wait For Interrupt */ - __WFI(); -} - -/** - * @brief Indicates Sleep-On-Exit when returning from Handler mode to Thread mode. - * @note Set SLEEPONEXIT bit of SCR register. When this bit is set, the processor - * re-enters SLEEP mode when an interruption handling is over. - * Setting this bit is useful when the processor is expected to run only on - * interruptions handling. - * @retval None - */ -void HAL_PWR_EnableSleepOnExit(void) -{ - /* Set SLEEPONEXIT bit of Cortex System Control Register */ - SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPONEXIT_Msk)); -} - - -/** - * @brief Disables Sleep-On-Exit feature when returning from Handler mode to Thread mode. - * @note Clears SLEEPONEXIT bit of SCR register. When this bit is set, the processor - * re-enters SLEEP mode when an interruption handling is over. - * @retval None - */ -void HAL_PWR_DisableSleepOnExit(void) -{ - /* Clear SLEEPONEXIT bit of Cortex System Control Register */ - CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPONEXIT_Msk)); -} - - - -/** - * @brief Enables CORTEX M4 SEVONPEND bit. - * @note Sets SEVONPEND bit of SCR register. When this bit is set, this causes - * WFE to wake up when an interrupt moves from inactive to pended. - * @retval None - */ -void HAL_PWR_EnableSEVOnPend(void) -{ - /* Set SEVONPEND bit of Cortex System Control Register */ - SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SEVONPEND_Msk)); -} - - -/** - * @brief Disables CORTEX M4 SEVONPEND bit. - * @note Clears SEVONPEND bit of SCR register. When this bit is set, this causes - * WFE to wake up when an interrupt moves from inactive to pended. - * @retval None - */ -void HAL_PWR_DisableSEVOnPend(void) -{ - /* Clear SEVONPEND bit of Cortex System Control Register */ - CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SEVONPEND_Msk)); -} - -/** - * @} - */ - -/** - * @} - */ - -#endif /* HAL_PWR_MODULE_ENABLED */ -/** - * @} - */ - -/** - * @} - */ - -/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_pwr_ex.c b/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_pwr_ex.c deleted file mode 100644 index c14370b..0000000 --- a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_pwr_ex.c +++ /dev/null @@ -1,274 +0,0 @@ -/** - ****************************************************************************** - * @file stm32f0xx_hal_pwr_ex.c - * @author MCD Application Team - * @brief Extended PWR HAL module driver. - * This file provides firmware functions to manage the following - * functionalities of the Power Controller (PWR) peripheral: - * + Extended Initialization and de-initialization functions - * + Extended Peripheral Control functions - * - ****************************************************************************** - * @attention - * - *

© Copyright (c) 2016 STMicroelectronics. - * All rights reserved.

- * - * This software component is licensed by ST under BSD 3-Clause license, - * the "License"; You may not use this file except in compliance with the - * License. You may obtain a copy of the License at: - * opensource.org/licenses/BSD-3-Clause - * - ****************************************************************************** - */ - -/* Includes ------------------------------------------------------------------*/ -#include "stm32f0xx_hal.h" - -/** @addtogroup STM32F0xx_HAL_Driver - * @{ - */ - -/** @defgroup PWREx PWREx - * @brief PWREx HAL module driver - * @{ - */ - -#ifdef HAL_PWR_MODULE_ENABLED - -/* Private typedef -----------------------------------------------------------*/ -/* Private define ------------------------------------------------------------*/ -/** @defgroup PWREx_Private_Constants PWREx Private Constants - * @{ - */ -#define PVD_MODE_IT (0x00010000U) -#define PVD_MODE_EVT (0x00020000U) -#define PVD_RISING_EDGE (0x00000001U) -#define PVD_FALLING_EDGE (0x00000002U) -/** - * @} - */ - -/* Private macro -------------------------------------------------------------*/ -/* Private variables ---------------------------------------------------------*/ -/* Private function prototypes -----------------------------------------------*/ -/* Exported functions ---------------------------------------------------------*/ - -/** @defgroup PWREx_Exported_Functions PWREx Exported Functions - * @{ - */ - -/** @defgroup PWREx_Exported_Functions_Group1 Peripheral Extended Control Functions - * @brief Extended Peripheral Control functions - * -@verbatim - - =============================================================================== - ##### Peripheral extended control functions ##### - =============================================================================== - - *** PVD configuration *** - ========================= - [..] - (+) The PVD is used to monitor the VDD power supply by comparing it to a - threshold selected by the PVD Level (PLS[2:0] bits in the PWR_CR). - (+) A PVDO flag is available to indicate if VDD/VDDA is higher or lower - than the PVD threshold. This event is internally connected to the EXTI - line16 and can generate an interrupt if enabled. This is done through - HAL_PWR_ConfigPVD(), HAL_PWR_EnablePVD() functions. - (+) The PVD is stopped in Standby mode. - -@- PVD is not available on STM32F030x4/x6/x8 - - *** VDDIO2 Monitor Configuration *** - ==================================== - [..] - (+) VDDIO2 monitor is used to monitor the VDDIO2 power supply by comparing it - to VREFInt Voltage - (+) This monitor is internally connected to the EXTI line31 - and can generate an interrupt if enabled. This is done through - HAL_PWREx_EnableVddio2Monitor() function. - -@- VDDIO2 is available on STM32F07x/09x/04x - -@endverbatim - * @{ - */ - -#if defined (STM32F031x6) || defined (STM32F051x8) || \ - defined (STM32F071xB) || defined (STM32F091xC) || \ - defined (STM32F042x6) || defined (STM32F072xB) -/** - * @brief Configures the voltage threshold detected by the Power Voltage Detector(PVD). - * @param sConfigPVD pointer to an PWR_PVDTypeDef structure that contains the configuration - * information for the PVD. - * @note Refer to the electrical characteristics of your device datasheet for - * more details about the voltage threshold corresponding to each - * detection level. - * @retval None - */ -void HAL_PWR_ConfigPVD(PWR_PVDTypeDef *sConfigPVD) -{ - /* Check the parameters */ - assert_param(IS_PWR_PVD_LEVEL(sConfigPVD->PVDLevel)); - assert_param(IS_PWR_PVD_MODE(sConfigPVD->Mode)); - - /* Set PLS[7:5] bits according to PVDLevel value */ - MODIFY_REG(PWR->CR, PWR_CR_PLS, sConfigPVD->PVDLevel); - - /* Clear any previous config. Keep it clear if no event or IT mode is selected */ - __HAL_PWR_PVD_EXTI_DISABLE_EVENT(); - __HAL_PWR_PVD_EXTI_DISABLE_IT(); - __HAL_PWR_PVD_EXTI_DISABLE_RISING_EDGE();__HAL_PWR_PVD_EXTI_DISABLE_FALLING_EDGE(); - - /* Configure interrupt mode */ - if((sConfigPVD->Mode & PVD_MODE_IT) == PVD_MODE_IT) - { - __HAL_PWR_PVD_EXTI_ENABLE_IT(); - } - - /* Configure event mode */ - if((sConfigPVD->Mode & PVD_MODE_EVT) == PVD_MODE_EVT) - { - __HAL_PWR_PVD_EXTI_ENABLE_EVENT(); - } - - /* Configure the edge */ - if((sConfigPVD->Mode & PVD_RISING_EDGE) == PVD_RISING_EDGE) - { - __HAL_PWR_PVD_EXTI_ENABLE_RISING_EDGE(); - } - - if((sConfigPVD->Mode & PVD_FALLING_EDGE) == PVD_FALLING_EDGE) - { - __HAL_PWR_PVD_EXTI_ENABLE_FALLING_EDGE(); - } -} - -/** - * @brief Enables the Power Voltage Detector(PVD). - * @retval None - */ -void HAL_PWR_EnablePVD(void) -{ - PWR->CR |= (uint32_t)PWR_CR_PVDE; -} - -/** - * @brief Disables the Power Voltage Detector(PVD). - * @retval None - */ -void HAL_PWR_DisablePVD(void) -{ - PWR->CR &= ~((uint32_t)PWR_CR_PVDE); -} - -/** - * @brief This function handles the PWR PVD interrupt request. - * @note This API should be called under the PVD_IRQHandler() or PVD_VDDIO2_IRQHandler(). - * @retval None - */ -void HAL_PWR_PVD_IRQHandler(void) -{ - /* Check PWR exti flag */ - if(__HAL_PWR_PVD_EXTI_GET_FLAG() != RESET) - { - /* PWR PVD interrupt user callback */ - HAL_PWR_PVDCallback(); - - /* Clear PWR Exti pending bit */ - __HAL_PWR_PVD_EXTI_CLEAR_FLAG(); - } -} - -/** - * @brief PWR PVD interrupt callback - * @retval None - */ -__weak void HAL_PWR_PVDCallback(void) -{ - /* NOTE : This function Should not be modified, when the callback is needed, - the HAL_PWR_PVDCallback could be implemented in the user file - */ -} - -#endif /* defined (STM32F031x6) || defined (STM32F051x8) || */ - /* defined (STM32F071xB) || defined (STM32F091xC) || */ - /* defined (STM32F042x6) || defined (STM32F072xB) */ - -#if defined (STM32F042x6) || defined (STM32F048xx) || \ - defined (STM32F071xB) || defined (STM32F072xB) || defined (STM32F078xx) || \ - defined (STM32F091xC) || defined (STM32F098xx) -/** - * @brief Enable VDDIO2 monitor: enable Exti 31 and falling edge detection. - * @note If Exti 31 is enable correlty and VDDIO2 voltage goes below Vrefint, - an interrupt is generated Irq line 1. - NVIS has to be enable by user. - * @retval None - */ -void HAL_PWREx_EnableVddio2Monitor(void) -{ - __HAL_PWR_VDDIO2_EXTI_ENABLE_IT(); - __HAL_PWR_VDDIO2_EXTI_ENABLE_FALLING_EDGE(); -} - -/** - * @brief Disable the Vddio2 Monitor. - * @retval None - */ -void HAL_PWREx_DisableVddio2Monitor(void) -{ - __HAL_PWR_VDDIO2_EXTI_DISABLE_IT(); - __HAL_PWR_VDDIO2_EXTI_DISABLE_FALLING_EDGE(); - -} - -/** - * @brief This function handles the PWR Vddio2 monitor interrupt request. - * @note This API should be called under the VDDIO2_IRQHandler() PVD_VDDIO2_IRQHandler(). - * @retval None - */ -void HAL_PWREx_Vddio2Monitor_IRQHandler(void) -{ - /* Check PWR exti flag */ - if(__HAL_PWR_VDDIO2_EXTI_GET_FLAG() != RESET) - { - /* PWR Vddio2 monitor interrupt user callback */ - HAL_PWREx_Vddio2MonitorCallback(); - - /* Clear PWR Exti pending bit */ - __HAL_PWR_VDDIO2_EXTI_CLEAR_FLAG(); - } -} - -/** - * @brief PWR Vddio2 Monitor interrupt callback - * @retval None - */ -__weak void HAL_PWREx_Vddio2MonitorCallback(void) -{ - /* NOTE : This function Should not be modified, when the callback is needed, - the HAL_PWREx_Vddio2MonitorCallback could be implemented in the user file - */ -} - -#endif /* defined (STM32F042x6) || defined (STM32F048xx) || \ - defined (STM32F071xB) || defined (STM32F072xB) || defined (STM32F078xx) || \ - defined (STM32F091xC) || defined (STM32F098xx) */ - -/** - * @} - */ - -/** - * @} - */ - -#endif /* HAL_PWR_MODULE_ENABLED */ -/** - * @} - */ - -/** - * @} - */ - -/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_rcc.c b/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_rcc.c deleted file mode 100644 index 3dd009c..0000000 --- a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_rcc.c +++ /dev/null @@ -1,1365 +0,0 @@ -/** - ****************************************************************************** - * @file stm32f0xx_hal_rcc.c - * @author MCD Application Team - * @brief RCC HAL module driver. - * This file provides firmware functions to manage the following - * functionalities of the Reset and Clock Control (RCC) peripheral: - * + Initialization and de-initialization functions - * + Peripheral Control functions - * - @verbatim - ============================================================================== - ##### RCC specific features ##### - ============================================================================== - [..] - After reset the device is running from Internal High Speed oscillator - (HSI 8MHz) with Flash 0 wait state, Flash prefetch buffer is enabled, - and all peripherals are off except internal SRAM, Flash and JTAG. - (+) There is no prescaler on High speed (AHB) and Low speed (APB) buses; - all peripherals mapped on these buses are running at HSI speed. - (+) The clock for all peripherals is switched off, except the SRAM and FLASH. - (+) All GPIOs are in input floating state, except the JTAG pins which - are assigned to be used for debug purpose. - [..] Once the device started from reset, the user application has to: - (+) Configure the clock source to be used to drive the System clock - (if the application needs higher frequency/performance) - (+) Configure the System clock frequency and Flash settings - (+) Configure the AHB and APB buses prescalers - (+) Enable the clock for the peripheral(s) to be used - (+) Configure the clock source(s) for peripherals whose clocks are not - derived from the System clock (RTC, ADC, I2C, USART, TIM, USB FS, etc..) - - ##### RCC Limitations ##### - ============================================================================== - [..] - A delay between an RCC peripheral clock enable and the effective peripheral - enabling should be taken into account in order to manage the peripheral read/write - from/to registers. - (+) This delay depends on the peripheral mapping. - (++) AHB & APB peripherals, 1 dummy read is necessary - - [..] - Workarounds: - (#) For AHB & APB peripherals, a dummy read to the peripheral register has been - inserted in each __HAL_RCC_PPP_CLK_ENABLE() macro. - - @endverbatim - ****************************************************************************** - * @attention - * - *

© Copyright (c) 2016 STMicroelectronics. - * All rights reserved.

- * - * This software component is licensed by ST under BSD 3-Clause license, - * the "License"; You may not use this file except in compliance with the - * License. You may obtain a copy of the License at: - * opensource.org/licenses/BSD-3-Clause - * - ****************************************************************************** - */ - -/* Includes ------------------------------------------------------------------*/ -#include "stm32f0xx_hal.h" - -/** @addtogroup STM32F0xx_HAL_Driver - * @{ - */ - -/** @defgroup RCC RCC -* @brief RCC HAL module driver - * @{ - */ - -#ifdef HAL_RCC_MODULE_ENABLED - -/* Private typedef -----------------------------------------------------------*/ -/* Private define ------------------------------------------------------------*/ -/** @defgroup RCC_Private_Constants RCC Private Constants - * @{ - */ -/** - * @} - */ -/* Private macro -------------------------------------------------------------*/ -/** @defgroup RCC_Private_Macros RCC Private Macros - * @{ - */ - -#define MCO1_CLK_ENABLE() __HAL_RCC_GPIOA_CLK_ENABLE() -#define MCO1_GPIO_PORT GPIOA -#define MCO1_PIN GPIO_PIN_8 - -/** - * @} - */ - -/* Private variables ---------------------------------------------------------*/ -/** @defgroup RCC_Private_Variables RCC Private Variables - * @{ - */ -/** - * @} - */ - -/* Private function prototypes -----------------------------------------------*/ -/* Exported functions ---------------------------------------------------------*/ - -/** @defgroup RCC_Exported_Functions RCC Exported Functions - * @{ - */ - -/** @defgroup RCC_Exported_Functions_Group1 Initialization and de-initialization functions - * @brief Initialization and Configuration functions - * - @verbatim - =============================================================================== - ##### Initialization and de-initialization functions ##### - =============================================================================== - [..] - This section provides functions allowing to configure the internal/external oscillators - (HSE, HSI, HSI14, HSI48, LSE, LSI, PLL, CSS and MCO) and the System buses clocks (SYSCLK, - AHB and APB1). - - [..] Internal/external clock and PLL configuration - (#) HSI (high-speed internal), 8 MHz factory-trimmed RC used directly or through - the PLL as System clock source. - The HSI clock can be used also to clock the USART and I2C peripherals. - - (#) HSI14 (high-speed internal), 14 MHz factory-trimmed RC used directly to clock - the ADC peripheral. - - (#) LSI (low-speed internal), ~40 KHz low consumption RC used as IWDG and/or RTC - clock source. - - (#) HSE (high-speed external), 4 to 32 MHz crystal oscillator used directly or - through the PLL as System clock source. Can be used also as RTC clock source. - - (#) LSE (low-speed external), 32 KHz oscillator used as RTC clock source. - - (#) PLL (clocked by HSI, HSI48 or HSE), featuring different output clocks: - (++) The first output is used to generate the high speed system clock (up to 48 MHz) - (++) The second output is used to generate the clock for the USB FS (48 MHz) - (++) The third output may be used to generate the clock for the TIM, I2C and USART - peripherals (up to 48 MHz) - - (#) CSS (Clock security system), once enable using the macro __HAL_RCC_CSS_ENABLE() - and if a HSE clock failure occurs(HSE used directly or through PLL as System - clock source), the System clocks automatically switched to HSI and an interrupt - is generated if enabled. The interrupt is linked to the Cortex-M0 NMI - (Non-Maskable Interrupt) exception vector. - - (#) MCO (microcontroller clock output), used to output SYSCLK, HSI, HSE, LSI, LSE or PLL - clock (divided by 2) output on pin (such as PA8 pin). - - [..] System, AHB and APB buses clocks configuration - (#) Several clock sources can be used to drive the System clock (SYSCLK): HSI, - HSE and PLL. - The AHB clock (HCLK) is derived from System clock through configurable - prescaler and used to clock the CPU, memory and peripherals mapped - on AHB bus (DMA, GPIO...). APB1 (PCLK1) clock is derived - from AHB clock through configurable prescalers and used to clock - the peripherals mapped on these buses. You can use - "@ref HAL_RCC_GetSysClockFreq()" function to retrieve the frequencies of these clocks. - - (#) All the peripheral clocks are derived from the System clock (SYSCLK) except: - (++) The FLASH program/erase clock which is always HSI 8MHz clock. - (++) The USB 48 MHz clock which is derived from the PLL VCO clock. - (++) The USART clock which can be derived as well from HSI 8MHz, LSI or LSE. - (++) The I2C clock which can be derived as well from HSI 8MHz clock. - (++) The ADC clock which is derived from PLL output. - (++) The RTC clock which is derived from the LSE, LSI or 1 MHz HSE_RTC - (HSE divided by a programmable prescaler). The System clock (SYSCLK) - frequency must be higher or equal to the RTC clock frequency. - (++) IWDG clock which is always the LSI clock. - - (#) For the STM32F0xx devices, the maximum frequency of the SYSCLK, HCLK and PCLK1 is 48 MHz, - Depending on the SYSCLK frequency, the flash latency should be adapted accordingly. - - (#) After reset, the System clock source is the HSI (8 MHz) with 0 WS and - prefetch is disabled. - @endverbatim - * @{ - */ - -/* - Additional consideration on the SYSCLK based on Latency settings: - +-----------------------------------------------+ - | Latency | SYSCLK clock frequency (MHz) | - |---------------|-------------------------------| - |0WS(1CPU cycle)| 0 < SYSCLK <= 24 | - |---------------|-------------------------------| - |1WS(2CPU cycle)| 24 < SYSCLK <= 48 | - +-----------------------------------------------+ - */ - -/** - * @brief Resets the RCC clock configuration to the default reset state. - * @note The default reset state of the clock configuration is given below: - * - HSI ON and used as system clock source - * - HSE and PLL OFF - * - AHB, APB1 prescaler set to 1. - * - CSS and MCO1 OFF - * - All interrupts disabled - * - All interrupt and reset flags cleared - * @note This function does not modify the configuration of the - * - Peripheral clocks - * - LSI, LSE and RTC clocks - * @retval HAL status - */ -HAL_StatusTypeDef HAL_RCC_DeInit(void) -{ - uint32_t tickstart; - - /* Get Start Tick*/ - tickstart = HAL_GetTick(); - - /* Set HSION bit, HSITRIM[4:0] bits to the reset value*/ - SET_BIT(RCC->CR, RCC_CR_HSION | RCC_CR_HSITRIM_4); - - /* Wait till HSI is ready */ - while (READ_BIT(RCC->CR, RCC_CR_HSIRDY) == RESET) - { - if ((HAL_GetTick() - tickstart) > HSI_TIMEOUT_VALUE) - { - return HAL_TIMEOUT; - } - } - - /* Reset SW[1:0], HPRE[3:0], PPRE[2:0] and MCOSEL[2:0] bits */ - CLEAR_BIT(RCC->CFGR, RCC_CFGR_SW | RCC_CFGR_HPRE | RCC_CFGR_PPRE | RCC_CFGR_MCO); - - /* Wait till HSI as SYSCLK status is enabled */ - while (READ_BIT(RCC->CFGR, RCC_CFGR_SWS) != RESET) - { - if ((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE) - { - return HAL_TIMEOUT; - } - } - - /* Update the SystemCoreClock global variable for HSI as system clock source */ - SystemCoreClock = HSI_VALUE; - - /* Adapt Systick interrupt period */ - if (HAL_InitTick(uwTickPrio) != HAL_OK) - { - return HAL_ERROR; - } - - /* Reset HSEON, CSSON, PLLON bits */ - CLEAR_BIT(RCC->CR, RCC_CR_PLLON | RCC_CR_CSSON | RCC_CR_HSEON); - - /* Reset HSEBYP bit */ - CLEAR_BIT(RCC->CR, RCC_CR_HSEBYP); - - /* Get start tick */ - tickstart = HAL_GetTick(); - - /* Wait till PLLRDY is cleared */ - while(READ_BIT(RCC->CR, RCC_CR_PLLRDY) != RESET) - { - if((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE) - { - return HAL_TIMEOUT; - } - } - - /* Reset CFGR register */ - CLEAR_REG(RCC->CFGR); - - /* Reset CFGR2 register */ - CLEAR_REG(RCC->CFGR2); - - /* Reset CFGR3 register */ - CLEAR_REG(RCC->CFGR3); - - /* Disable all interrupts */ - CLEAR_REG(RCC->CIR); - - /* Clear all reset flags */ - __HAL_RCC_CLEAR_RESET_FLAGS(); - - return HAL_OK; -} - -/** - * @brief Initializes the RCC Oscillators according to the specified parameters in the - * RCC_OscInitTypeDef. - * @param RCC_OscInitStruct pointer to an RCC_OscInitTypeDef structure that - * contains the configuration information for the RCC Oscillators. - * @note The PLL is not disabled when used as system clock. - * @note Transitions LSE Bypass to LSE On and LSE On to LSE Bypass are not - * supported by this macro. User should request a transition to LSE Off - * first and then LSE On or LSE Bypass. - * @note Transition HSE Bypass to HSE On and HSE On to HSE Bypass are not - * supported by this macro. User should request a transition to HSE Off - * first and then HSE On or HSE Bypass. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_RCC_OscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct) -{ - uint32_t tickstart; - uint32_t pll_config; - uint32_t pll_config2; - - /* Check Null pointer */ - if(RCC_OscInitStruct == NULL) - { - return HAL_ERROR; - } - - /* Check the parameters */ - assert_param(IS_RCC_OSCILLATORTYPE(RCC_OscInitStruct->OscillatorType)); - - /*------------------------------- HSE Configuration ------------------------*/ - if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSE) == RCC_OSCILLATORTYPE_HSE) - { - /* Check the parameters */ - assert_param(IS_RCC_HSE(RCC_OscInitStruct->HSEState)); - - /* When the HSE is used as system clock or clock source for PLL in these cases it is not allowed to be disabled */ - if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_HSE) - || ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && (__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_HSE))) - { - if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET) && (RCC_OscInitStruct->HSEState == RCC_HSE_OFF)) - { - return HAL_ERROR; - } - } - else - { - /* Set the new HSE configuration ---------------------------------------*/ - __HAL_RCC_HSE_CONFIG(RCC_OscInitStruct->HSEState); - - - /* Check the HSE State */ - if(RCC_OscInitStruct->HSEState != RCC_HSE_OFF) - { - /* Get Start Tick */ - tickstart = HAL_GetTick(); - - /* Wait till HSE is ready */ - while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET) - { - if((HAL_GetTick() - tickstart ) > HSE_TIMEOUT_VALUE) - { - return HAL_TIMEOUT; - } - } - } - else - { - /* Get Start Tick */ - tickstart = HAL_GetTick(); - - /* Wait till HSE is disabled */ - while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET) - { - if((HAL_GetTick() - tickstart ) > HSE_TIMEOUT_VALUE) - { - return HAL_TIMEOUT; - } - } - } - } - } - /*----------------------------- HSI Configuration --------------------------*/ - if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI) == RCC_OSCILLATORTYPE_HSI) - { - /* Check the parameters */ - assert_param(IS_RCC_HSI(RCC_OscInitStruct->HSIState)); - assert_param(IS_RCC_CALIBRATION_VALUE(RCC_OscInitStruct->HSICalibrationValue)); - - /* Check if HSI is used as system clock or as PLL source when PLL is selected as system clock */ - if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_HSI) - || ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && (__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_HSI))) - { - /* When HSI is used as system clock it will not disabled */ - if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != RESET) && (RCC_OscInitStruct->HSIState != RCC_HSI_ON)) - { - return HAL_ERROR; - } - /* Otherwise, just the calibration is allowed */ - else - { - /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/ - __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue); - } - } - else - { - /* Check the HSI State */ - if(RCC_OscInitStruct->HSIState != RCC_HSI_OFF) - { - /* Enable the Internal High Speed oscillator (HSI). */ - __HAL_RCC_HSI_ENABLE(); - - /* Get Start Tick */ - tickstart = HAL_GetTick(); - - /* Wait till HSI is ready */ - while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == RESET) - { - if((HAL_GetTick() - tickstart ) > HSI_TIMEOUT_VALUE) - { - return HAL_TIMEOUT; - } - } - - /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/ - __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue); - } - else - { - /* Disable the Internal High Speed oscillator (HSI). */ - __HAL_RCC_HSI_DISABLE(); - - /* Get Start Tick */ - tickstart = HAL_GetTick(); - - /* Wait till HSI is disabled */ - while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != RESET) - { - if((HAL_GetTick() - tickstart ) > HSI_TIMEOUT_VALUE) - { - return HAL_TIMEOUT; - } - } - } - } - } - /*------------------------------ LSI Configuration -------------------------*/ - if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSI) == RCC_OSCILLATORTYPE_LSI) - { - /* Check the parameters */ - assert_param(IS_RCC_LSI(RCC_OscInitStruct->LSIState)); - - /* Check the LSI State */ - if(RCC_OscInitStruct->LSIState != RCC_LSI_OFF) - { - /* Enable the Internal Low Speed oscillator (LSI). */ - __HAL_RCC_LSI_ENABLE(); - - /* Get Start Tick */ - tickstart = HAL_GetTick(); - - /* Wait till LSI is ready */ - while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) == RESET) - { - if((HAL_GetTick() - tickstart ) > LSI_TIMEOUT_VALUE) - { - return HAL_TIMEOUT; - } - } - } - else - { - /* Disable the Internal Low Speed oscillator (LSI). */ - __HAL_RCC_LSI_DISABLE(); - - /* Get Start Tick */ - tickstart = HAL_GetTick(); - - /* Wait till LSI is disabled */ - while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) != RESET) - { - if((HAL_GetTick() - tickstart ) > LSI_TIMEOUT_VALUE) - { - return HAL_TIMEOUT; - } - } - } - } - /*------------------------------ LSE Configuration -------------------------*/ - if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSE) == RCC_OSCILLATORTYPE_LSE) - { - FlagStatus pwrclkchanged = RESET; - - /* Check the parameters */ - assert_param(IS_RCC_LSE(RCC_OscInitStruct->LSEState)); - - /* Update LSE configuration in Backup Domain control register */ - /* Requires to enable write access to Backup Domain of necessary */ - if(__HAL_RCC_PWR_IS_CLK_DISABLED()) - { - __HAL_RCC_PWR_CLK_ENABLE(); - pwrclkchanged = SET; - } - - if(HAL_IS_BIT_CLR(PWR->CR, PWR_CR_DBP)) - { - /* Enable write access to Backup domain */ - SET_BIT(PWR->CR, PWR_CR_DBP); - - /* Wait for Backup domain Write protection disable */ - tickstart = HAL_GetTick(); - - while(HAL_IS_BIT_CLR(PWR->CR, PWR_CR_DBP)) - { - if((HAL_GetTick() - tickstart) > RCC_DBP_TIMEOUT_VALUE) - { - return HAL_TIMEOUT; - } - } - } - - /* Set the new LSE configuration -----------------------------------------*/ - __HAL_RCC_LSE_CONFIG(RCC_OscInitStruct->LSEState); - /* Check the LSE State */ - if(RCC_OscInitStruct->LSEState != RCC_LSE_OFF) - { - /* Get Start Tick */ - tickstart = HAL_GetTick(); - - /* Wait till LSE is ready */ - while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) == RESET) - { - if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE) - { - return HAL_TIMEOUT; - } - } - } - else - { - /* Get Start Tick */ - tickstart = HAL_GetTick(); - - /* Wait till LSE is disabled */ - while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) != RESET) - { - if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE) - { - return HAL_TIMEOUT; - } - } - } - - /* Require to disable power clock if necessary */ - if(pwrclkchanged == SET) - { - __HAL_RCC_PWR_CLK_DISABLE(); - } - } - - /*----------------------------- HSI14 Configuration --------------------------*/ - if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI14) == RCC_OSCILLATORTYPE_HSI14) - { - /* Check the parameters */ - assert_param(IS_RCC_HSI14(RCC_OscInitStruct->HSI14State)); - assert_param(IS_RCC_CALIBRATION_VALUE(RCC_OscInitStruct->HSI14CalibrationValue)); - - /* Check the HSI14 State */ - if(RCC_OscInitStruct->HSI14State == RCC_HSI14_ON) - { - /* Disable ADC control of the Internal High Speed oscillator HSI14 */ - __HAL_RCC_HSI14ADC_DISABLE(); - - /* Enable the Internal High Speed oscillator (HSI). */ - __HAL_RCC_HSI14_ENABLE(); - - /* Get Start Tick */ - tickstart = HAL_GetTick(); - - /* Wait till HSI is ready */ - while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSI14RDY) == RESET) - { - if((HAL_GetTick() - tickstart) > HSI14_TIMEOUT_VALUE) - { - return HAL_TIMEOUT; - } - } - - /* Adjusts the Internal High Speed oscillator 14Mhz (HSI14) calibration value. */ - __HAL_RCC_HSI14_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSI14CalibrationValue); - } - else if(RCC_OscInitStruct->HSI14State == RCC_HSI14_ADC_CONTROL) - { - /* Enable ADC control of the Internal High Speed oscillator HSI14 */ - __HAL_RCC_HSI14ADC_ENABLE(); - - /* Adjusts the Internal High Speed oscillator 14Mhz (HSI14) calibration value. */ - __HAL_RCC_HSI14_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSI14CalibrationValue); - } - else - { - /* Disable ADC control of the Internal High Speed oscillator HSI14 */ - __HAL_RCC_HSI14ADC_DISABLE(); - - /* Disable the Internal High Speed oscillator (HSI). */ - __HAL_RCC_HSI14_DISABLE(); - - /* Get Start Tick */ - tickstart = HAL_GetTick(); - - /* Wait till HSI is ready */ - while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSI14RDY) != RESET) - { - if((HAL_GetTick() - tickstart) > HSI14_TIMEOUT_VALUE) - { - return HAL_TIMEOUT; - } - } - } - } - -#if defined(RCC_HSI48_SUPPORT) - /*----------------------------- HSI48 Configuration --------------------------*/ - if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI48) == RCC_OSCILLATORTYPE_HSI48) - { - /* Check the parameters */ - assert_param(IS_RCC_HSI48(RCC_OscInitStruct->HSI48State)); - - /* When the HSI48 is used as system clock it is not allowed to be disabled */ - if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_HSI48) || - ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && (__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_HSI48))) - { - if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSI48RDY) != RESET) && (RCC_OscInitStruct->HSI48State != RCC_HSI48_ON)) - { - return HAL_ERROR; - } - } - else - { - /* Check the HSI48 State */ - if(RCC_OscInitStruct->HSI48State != RCC_HSI48_OFF) - { - /* Enable the Internal High Speed oscillator (HSI48). */ - __HAL_RCC_HSI48_ENABLE(); - - /* Get Start Tick */ - tickstart = HAL_GetTick(); - - /* Wait till HSI48 is ready */ - while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSI48RDY) == RESET) - { - if((HAL_GetTick() - tickstart) > HSI48_TIMEOUT_VALUE) - { - return HAL_TIMEOUT; - } - } - } - else - { - /* Disable the Internal High Speed oscillator (HSI48). */ - __HAL_RCC_HSI48_DISABLE(); - - /* Get Start Tick */ - tickstart = HAL_GetTick(); - - /* Wait till HSI48 is ready */ - while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSI48RDY) != RESET) - { - if((HAL_GetTick() - tickstart) > HSI48_TIMEOUT_VALUE) - { - return HAL_TIMEOUT; - } - } - } - } - } -#endif /* RCC_HSI48_SUPPORT */ - - /*-------------------------------- PLL Configuration -----------------------*/ - /* Check the parameters */ - assert_param(IS_RCC_PLL(RCC_OscInitStruct->PLL.PLLState)); - if ((RCC_OscInitStruct->PLL.PLLState) != RCC_PLL_NONE) - { - /* Check if the PLL is used as system clock or not */ - if(__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_PLLCLK) - { - if((RCC_OscInitStruct->PLL.PLLState) == RCC_PLL_ON) - { - /* Check the parameters */ - assert_param(IS_RCC_PLLSOURCE(RCC_OscInitStruct->PLL.PLLSource)); - assert_param(IS_RCC_PLL_MUL(RCC_OscInitStruct->PLL.PLLMUL)); - assert_param(IS_RCC_PREDIV(RCC_OscInitStruct->PLL.PREDIV)); - - /* Disable the main PLL. */ - __HAL_RCC_PLL_DISABLE(); - - /* Get Start Tick */ - tickstart = HAL_GetTick(); - - /* Wait till PLL is disabled */ - while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != RESET) - { - if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE) - { - return HAL_TIMEOUT; - } - } - - /* Configure the main PLL clock source, predivider and multiplication factor. */ - __HAL_RCC_PLL_CONFIG(RCC_OscInitStruct->PLL.PLLSource, - RCC_OscInitStruct->PLL.PREDIV, - RCC_OscInitStruct->PLL.PLLMUL); - /* Enable the main PLL. */ - __HAL_RCC_PLL_ENABLE(); - - /* Get Start Tick */ - tickstart = HAL_GetTick(); - - /* Wait till PLL is ready */ - while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET) - { - if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE) - { - return HAL_TIMEOUT; - } - } - } - else - { - /* Disable the main PLL. */ - __HAL_RCC_PLL_DISABLE(); - - /* Get Start Tick */ - tickstart = HAL_GetTick(); - - /* Wait till PLL is disabled */ - while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != RESET) - { - if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE) - { - return HAL_TIMEOUT; - } - } - } - } - else - { - /* Check if there is a request to disable the PLL used as System clock source */ - if((RCC_OscInitStruct->PLL.PLLState) == RCC_PLL_OFF) - { - return HAL_ERROR; - } - else - { - /* Do not return HAL_ERROR if request repeats the current configuration */ - pll_config = RCC->CFGR; - pll_config2 = RCC->CFGR2; - if((READ_BIT(pll_config, RCC_CFGR_PLLSRC) != RCC_OscInitStruct->PLL.PLLSource) || - (READ_BIT(pll_config2, RCC_CFGR2_PREDIV) != RCC_OscInitStruct->PLL.PREDIV) || - (READ_BIT(pll_config, RCC_CFGR_PLLMUL) != RCC_OscInitStruct->PLL.PLLMUL)) - { - return HAL_ERROR; - } - } - } - } - - return HAL_OK; -} - -/** - * @brief Initializes the CPU, AHB and APB buses clocks according to the specified - * parameters in the RCC_ClkInitStruct. - * @param RCC_ClkInitStruct pointer to an RCC_OscInitTypeDef structure that - * contains the configuration information for the RCC peripheral. - * @param FLatency FLASH Latency - * The value of this parameter depend on device used within the same series - * @note The SystemCoreClock CMSIS variable is used to store System Clock Frequency - * and updated by @ref HAL_RCC_GetHCLKFreq() function called within this function - * - * @note The HSI is used (enabled by hardware) as system clock source after - * start-up from Reset, wake-up from STOP and STANDBY mode, or in case - * of failure of the HSE used directly or indirectly as system clock - * (if the Clock Security System CSS is enabled). - * - * @note A switch from one clock source to another occurs only if the target - * clock source is ready (clock stable after start-up delay or PLL locked). - * If a clock source which is not yet ready is selected, the switch will - * occur when the clock source will be ready. - * You can use @ref HAL_RCC_GetClockConfig() function to know which clock is - * currently used as system clock source. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_RCC_ClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t FLatency) -{ - uint32_t tickstart; - - /* Check Null pointer */ - if(RCC_ClkInitStruct == NULL) - { - return HAL_ERROR; - } - - /* Check the parameters */ - assert_param(IS_RCC_CLOCKTYPE(RCC_ClkInitStruct->ClockType)); - assert_param(IS_FLASH_LATENCY(FLatency)); - - /* To correctly read data from FLASH memory, the number of wait states (LATENCY) - must be correctly programmed according to the frequency of the CPU clock - (HCLK) of the device. */ - - /* Increasing the number of wait states because of higher CPU frequency */ - if(FLatency > __HAL_FLASH_GET_LATENCY()) - { - /* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */ - __HAL_FLASH_SET_LATENCY(FLatency); - - /* Check that the new number of wait states is taken into account to access the Flash - memory by reading the FLASH_ACR register */ - if(__HAL_FLASH_GET_LATENCY() != FLatency) - { - return HAL_ERROR; - } - } - - /*-------------------------- HCLK Configuration --------------------------*/ - if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_HCLK) == RCC_CLOCKTYPE_HCLK) - { - /* Set the highest APB divider in order to ensure that we do not go through - a non-spec phase whatever we decrease or increase HCLK. */ - if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK1) == RCC_CLOCKTYPE_PCLK1) - { - MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE, RCC_HCLK_DIV16); - } - - /* Set the new HCLK clock divider */ - assert_param(IS_RCC_HCLK(RCC_ClkInitStruct->AHBCLKDivider)); - MODIFY_REG(RCC->CFGR, RCC_CFGR_HPRE, RCC_ClkInitStruct->AHBCLKDivider); - } - - /*------------------------- SYSCLK Configuration ---------------------------*/ - if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_SYSCLK) == RCC_CLOCKTYPE_SYSCLK) - { - assert_param(IS_RCC_SYSCLKSOURCE(RCC_ClkInitStruct->SYSCLKSource)); - - /* HSE is selected as System Clock Source */ - if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE) - { - /* Check the HSE ready flag */ - if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET) - { - return HAL_ERROR; - } - } - /* PLL is selected as System Clock Source */ - else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK) - { - /* Check the PLL ready flag */ - if(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET) - { - return HAL_ERROR; - } - } -#if defined(RCC_CFGR_SWS_HSI48) - /* HSI48 is selected as System Clock Source */ - else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSI48) - { - /* Check the HSI48 ready flag */ - if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSI48RDY) == RESET) - { - return HAL_ERROR; - } - } -#endif /* RCC_CFGR_SWS_HSI48 */ - /* HSI is selected as System Clock Source */ - else - { - /* Check the HSI ready flag */ - if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == RESET) - { - return HAL_ERROR; - } - } - __HAL_RCC_SYSCLK_CONFIG(RCC_ClkInitStruct->SYSCLKSource); - - /* Get Start Tick */ - tickstart = HAL_GetTick(); - - while (__HAL_RCC_GET_SYSCLK_SOURCE() != (RCC_ClkInitStruct->SYSCLKSource << RCC_CFGR_SWS_Pos)) - { - if((HAL_GetTick() - tickstart ) > CLOCKSWITCH_TIMEOUT_VALUE) - { - return HAL_TIMEOUT; - } - } - } - - /* Decreasing the number of wait states because of lower CPU frequency */ - if(FLatency < __HAL_FLASH_GET_LATENCY()) - { - /* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */ - __HAL_FLASH_SET_LATENCY(FLatency); - - /* Check that the new number of wait states is taken into account to access the Flash - memory by reading the FLASH_ACR register */ - if(__HAL_FLASH_GET_LATENCY() != FLatency) - { - return HAL_ERROR; - } - } - - /*-------------------------- PCLK1 Configuration ---------------------------*/ - if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK1) == RCC_CLOCKTYPE_PCLK1) - { - assert_param(IS_RCC_PCLK(RCC_ClkInitStruct->APB1CLKDivider)); - MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE, RCC_ClkInitStruct->APB1CLKDivider); - } - - /* Update the SystemCoreClock global variable */ - SystemCoreClock = HAL_RCC_GetSysClockFreq() >> AHBPrescTable[(RCC->CFGR & RCC_CFGR_HPRE)>> RCC_CFGR_HPRE_BITNUMBER]; - - /* Configure the source of time base considering new system clocks settings*/ - HAL_InitTick (TICK_INT_PRIORITY); - - return HAL_OK; -} - -/** - * @} - */ - -/** @defgroup RCC_Exported_Functions_Group2 Peripheral Control functions - * @brief RCC clocks control functions - * - @verbatim - =============================================================================== - ##### Peripheral Control functions ##### - =============================================================================== - [..] - This subsection provides a set of functions allowing to control the RCC Clocks - frequencies. - - @endverbatim - * @{ - */ - -#if defined(RCC_CFGR_MCOPRE) -/** - * @brief Selects the clock source to output on MCO pin. - * @note MCO pin should be configured in alternate function mode. - * @param RCC_MCOx specifies the output direction for the clock source. - * This parameter can be one of the following values: - * @arg @ref RCC_MCO1 Clock source to output on MCO1 pin(PA8). - * @param RCC_MCOSource specifies the clock source to output. - * This parameter can be one of the following values: - * @arg @ref RCC_MCO1SOURCE_NOCLOCK No clock selected - * @arg @ref RCC_MCO1SOURCE_SYSCLK System Clock selected as MCO clock - * @arg @ref RCC_MCO1SOURCE_HSI HSI selected as MCO clock - * @arg @ref RCC_MCO1SOURCE_HSE HSE selected as MCO clock - * @arg @ref RCC_MCO1SOURCE_LSI LSI selected as MCO clock - * @arg @ref RCC_MCO1SOURCE_LSE LSE selected as MCO clock - * @arg @ref RCC_MCO1SOURCE_HSI14 HSI14 selected as MCO clock - @if STM32F042x6 - * @arg @ref RCC_MCO1SOURCE_HSI48 HSI48 selected as MCO clock - * @arg @ref RCC_MCO1SOURCE_PLLCLK PLLCLK selected as MCO clock - @elseif STM32F048xx - * @arg @ref RCC_MCO1SOURCE_HSI48 HSI48 selected as MCO clock - * @arg @ref RCC_MCO1SOURCE_PLLCLK PLLCLK selected as MCO clock - @elseif STM32F071xB - * @arg @ref RCC_MCO1SOURCE_HSI48 HSI48 selected as MCO clock - * @arg @ref RCC_MCO1SOURCE_PLLCLK PLLCLK selected as MCO clock - @elseif STM32F072xB - * @arg @ref RCC_MCO1SOURCE_HSI48 HSI48 selected as MCO clock - * @arg @ref RCC_MCO1SOURCE_PLLCLK PLLCLK selected as MCO clock - @elseif STM32F078xx - * @arg @ref RCC_MCO1SOURCE_HSI48 HSI48 selected as MCO clock - * @arg @ref RCC_MCO1SOURCE_PLLCLK PLLCLK selected as MCO clock - @elseif STM32F091xC - * @arg @ref RCC_MCO1SOURCE_HSI48 HSI48 selected as MCO clock - * @arg @ref RCC_MCO1SOURCE_PLLCLK PLLCLK selected as MCO clock - @elseif STM32F098xx - * @arg @ref RCC_MCO1SOURCE_HSI48 HSI48 selected as MCO clock - * @arg @ref RCC_MCO1SOURCE_PLLCLK PLLCLK selected as MCO clock - @elif STM32F030x6 - * @arg @ref RCC_MCO1SOURCE_PLLCLK PLLCLK selected as MCO clock - @elif STM32F030xC - * @arg @ref RCC_MCO1SOURCE_PLLCLK PLLCLK selected as MCO clock - @elif STM32F031x6 - * @arg @ref RCC_MCO1SOURCE_PLLCLK PLLCLK selected as MCO clock - @elif STM32F038xx - * @arg @ref RCC_MCO1SOURCE_PLLCLK PLLCLK selected as MCO clock - @elif STM32F070x6 - * @arg @ref RCC_MCO1SOURCE_PLLCLK PLLCLK selected as MCO clock - @elif STM32F070xB - * @arg @ref RCC_MCO1SOURCE_PLLCLK PLLCLK selected as MCO clock - @endif - * @arg @ref RCC_MCO1SOURCE_PLLCLK_DIV2 PLLCLK Divided by 2 selected as MCO clock - * @param RCC_MCODiv specifies the MCO DIV. - * This parameter can be one of the following values: - * @arg @ref RCC_MCODIV_1 no division applied to MCO clock - * @arg @ref RCC_MCODIV_2 division by 2 applied to MCO clock - * @arg @ref RCC_MCODIV_4 division by 4 applied to MCO clock - * @arg @ref RCC_MCODIV_8 division by 8 applied to MCO clock - * @arg @ref RCC_MCODIV_16 division by 16 applied to MCO clock - * @arg @ref RCC_MCODIV_32 division by 32 applied to MCO clock - * @arg @ref RCC_MCODIV_64 division by 64 applied to MCO clock - * @arg @ref RCC_MCODIV_128 division by 128 applied to MCO clock - * @retval None - */ -#else -/** - * @brief Selects the clock source to output on MCO pin. - * @note MCO pin should be configured in alternate function mode. - * @param RCC_MCOx specifies the output direction for the clock source. - * This parameter can be one of the following values: - * @arg @ref RCC_MCO1 Clock source to output on MCO1 pin(PA8). - * @param RCC_MCOSource specifies the clock source to output. - * This parameter can be one of the following values: - * @arg @ref RCC_MCO1SOURCE_NOCLOCK No clock selected as MCO clock - * @arg @ref RCC_MCO1SOURCE_SYSCLK System clock selected as MCO clock - * @arg @ref RCC_MCO1SOURCE_HSI HSI selected as MCO clock - * @arg @ref RCC_MCO1SOURCE_HSE HSE selected as MCO clock - * @arg @ref RCC_MCO1SOURCE_LSI LSI selected as MCO clock - * @arg @ref RCC_MCO1SOURCE_LSE LSE selected as MCO clock - * @arg @ref RCC_MCO1SOURCE_HSI14 HSI14 selected as MCO clock - * @arg @ref RCC_MCO1SOURCE_PLLCLK_DIV2 PLLCLK Divided by 2 selected as MCO clock - * @param RCC_MCODiv specifies the MCO DIV. - * This parameter can be one of the following values: - * @arg @ref RCC_MCODIV_1 no division applied to MCO clock - * @retval None - */ -#endif -void HAL_RCC_MCOConfig(uint32_t RCC_MCOx, uint32_t RCC_MCOSource, uint32_t RCC_MCODiv) -{ - GPIO_InitTypeDef gpio; - - /* Check the parameters */ - assert_param(IS_RCC_MCO(RCC_MCOx)); - assert_param(IS_RCC_MCODIV(RCC_MCODiv)); - assert_param(IS_RCC_MCO1SOURCE(RCC_MCOSource)); - - /* Configure the MCO1 pin in alternate function mode */ - gpio.Mode = GPIO_MODE_AF_PP; - gpio.Speed = GPIO_SPEED_FREQ_HIGH; - gpio.Pull = GPIO_NOPULL; - gpio.Pin = MCO1_PIN; - gpio.Alternate = GPIO_AF0_MCO; - - /* MCO1 Clock Enable */ - MCO1_CLK_ENABLE(); - - HAL_GPIO_Init(MCO1_GPIO_PORT, &gpio); - - /* Configure the MCO clock source */ - __HAL_RCC_MCO1_CONFIG(RCC_MCOSource, RCC_MCODiv); -} - -/** - * @brief Enables the Clock Security System. - * @note If a failure is detected on the HSE oscillator clock, this oscillator - * is automatically disabled and an interrupt is generated to inform the - * software about the failure (Clock Security System Interrupt, CSSI), - * allowing the MCU to perform rescue operations. The CSSI is linked to - * the Cortex-M0 NMI (Non-Maskable Interrupt) exception vector. - * @retval None - */ -void HAL_RCC_EnableCSS(void) -{ - SET_BIT(RCC->CR, RCC_CR_CSSON) ; -} - -/** - * @brief Disables the Clock Security System. - * @retval None - */ -void HAL_RCC_DisableCSS(void) -{ - CLEAR_BIT(RCC->CR, RCC_CR_CSSON) ; -} - -/** - * @brief Returns the SYSCLK frequency - * @note The system frequency computed by this function is not the real - * frequency in the chip. It is calculated based on the predefined - * constant and the selected clock source: - * @note If SYSCLK source is HSI, function returns values based on HSI_VALUE(*) - * @note If SYSCLK source is HSE, function returns a value based on HSE_VALUE - * divided by PREDIV factor(**) - * @note If SYSCLK source is PLL, function returns a value based on HSE_VALUE - * divided by PREDIV factor(**) or depending on STM32F0xxxx devices either a value based - * on HSI_VALUE divided by 2 or HSI_VALUE divided by PREDIV factor(*) multiplied by the - * PLL factor. - * @note (*) HSI_VALUE is a constant defined in stm32f0xx_hal_conf.h file (default value - * 8 MHz) but the real value may vary depending on the variations - * in voltage and temperature. - * @note (**) HSE_VALUE is a constant defined in stm32f0xx_hal_conf.h file (default value - * 8 MHz), user has to ensure that HSE_VALUE is same as the real - * frequency of the crystal used. Otherwise, this function may - * have wrong result. - * - * @note The result of this function could be not correct when using fractional - * value for HSE crystal. - * - * @note This function can be used by the user application to compute the - * baud-rate for the communication peripherals or configure other parameters. - * - * @note Each time SYSCLK changes, this function must be called to update the - * right SYSCLK value. Otherwise, any configuration based on this function will be incorrect. - * - * @retval SYSCLK frequency - */ -uint32_t HAL_RCC_GetSysClockFreq(void) -{ - const uint8_t aPLLMULFactorTable[16] = { 2U, 3U, 4U, 5U, 6U, 7U, 8U, 9U, - 10U, 11U, 12U, 13U, 14U, 15U, 16U, 16U}; - const uint8_t aPredivFactorTable[16] = { 1U, 2U, 3U, 4U, 5U, 6U, 7U, 8U, - 9U,10U, 11U, 12U, 13U, 14U, 15U, 16U}; - - uint32_t tmpreg = 0U, prediv = 0U, pllclk = 0U, pllmul = 0U; - uint32_t sysclockfreq = 0U; - - tmpreg = RCC->CFGR; - - /* Get SYSCLK source -------------------------------------------------------*/ - switch (tmpreg & RCC_CFGR_SWS) - { - case RCC_SYSCLKSOURCE_STATUS_HSE: /* HSE used as system clock */ - { - sysclockfreq = HSE_VALUE; - break; - } - case RCC_SYSCLKSOURCE_STATUS_PLLCLK: /* PLL used as system clock */ - { - pllmul = aPLLMULFactorTable[(uint32_t)(tmpreg & RCC_CFGR_PLLMUL) >> RCC_CFGR_PLLMUL_BITNUMBER]; - prediv = aPredivFactorTable[(uint32_t)(RCC->CFGR2 & RCC_CFGR2_PREDIV) >> RCC_CFGR2_PREDIV_BITNUMBER]; - if ((tmpreg & RCC_CFGR_PLLSRC) == RCC_PLLSOURCE_HSE) - { - /* HSE used as PLL clock source : PLLCLK = HSE/PREDIV * PLLMUL */ - pllclk = (uint32_t)((uint64_t) HSE_VALUE / (uint64_t) (prediv)) * ((uint64_t) pllmul); - } -#if defined(RCC_CFGR_PLLSRC_HSI48_PREDIV) - else if ((tmpreg & RCC_CFGR_PLLSRC) == RCC_PLLSOURCE_HSI48) - { - /* HSI48 used as PLL clock source : PLLCLK = HSI48/PREDIV * PLLMUL */ - pllclk = (uint32_t)((uint64_t) HSI48_VALUE / (uint64_t) (prediv)) * ((uint64_t) pllmul); - } -#endif /* RCC_CFGR_PLLSRC_HSI48_PREDIV */ - else - { -#if (defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F070x6) || defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || defined(STM32F070xB) || defined(STM32F091xC) || defined(STM32F098xx) || defined(STM32F030xC)) - /* HSI used as PLL clock source : PLLCLK = HSI/PREDIV * PLLMUL */ - pllclk = (uint32_t)((uint64_t) HSI_VALUE / (uint64_t) (prediv)) * ((uint64_t) pllmul); -#else - /* HSI used as PLL clock source : PLLCLK = HSI/2 * PLLMUL */ - pllclk = (uint32_t)((uint64_t) (HSI_VALUE >> 1U) * ((uint64_t) pllmul)); -#endif - } - sysclockfreq = pllclk; - break; - } -#if defined(RCC_CFGR_SWS_HSI48) - case RCC_SYSCLKSOURCE_STATUS_HSI48: /* HSI48 used as system clock source */ - { - sysclockfreq = HSI48_VALUE; - break; - } -#endif /* RCC_CFGR_SWS_HSI48 */ - case RCC_SYSCLKSOURCE_STATUS_HSI: /* HSI used as system clock source */ - default: /* HSI used as system clock */ - { - sysclockfreq = HSI_VALUE; - break; - } - } - return sysclockfreq; -} - -/** - * @brief Returns the HCLK frequency - * @note Each time HCLK changes, this function must be called to update the - * right HCLK value. Otherwise, any configuration based on this function will be incorrect. - * - * @note The SystemCoreClock CMSIS variable is used to store System Clock Frequency - * and updated within this function - * @retval HCLK frequency - */ -uint32_t HAL_RCC_GetHCLKFreq(void) -{ - return SystemCoreClock; -} - -/** - * @brief Returns the PCLK1 frequency - * @note Each time PCLK1 changes, this function must be called to update the - * right PCLK1 value. Otherwise, any configuration based on this function will be incorrect. - * @retval PCLK1 frequency - */ -uint32_t HAL_RCC_GetPCLK1Freq(void) -{ - /* Get HCLK source and Compute PCLK1 frequency ---------------------------*/ - return (HAL_RCC_GetHCLKFreq() >> APBPrescTable[(RCC->CFGR & RCC_CFGR_PPRE) >> RCC_CFGR_PPRE_BITNUMBER]); -} - -/** - * @brief Configures the RCC_OscInitStruct according to the internal - * RCC configuration registers. - * @param RCC_OscInitStruct pointer to an RCC_OscInitTypeDef structure that - * will be configured. - * @retval None - */ -void HAL_RCC_GetOscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct) -{ - /* Check the parameters */ - assert_param(RCC_OscInitStruct != NULL); - - /* Set all possible values for the Oscillator type parameter ---------------*/ - RCC_OscInitStruct->OscillatorType = RCC_OSCILLATORTYPE_HSE | RCC_OSCILLATORTYPE_HSI \ - | RCC_OSCILLATORTYPE_LSE | RCC_OSCILLATORTYPE_LSI | RCC_OSCILLATORTYPE_HSI14; -#if defined(RCC_HSI48_SUPPORT) - RCC_OscInitStruct->OscillatorType |= RCC_OSCILLATORTYPE_HSI48; -#endif /* RCC_HSI48_SUPPORT */ - - - /* Get the HSE configuration -----------------------------------------------*/ - if((RCC->CR &RCC_CR_HSEBYP) == RCC_CR_HSEBYP) - { - RCC_OscInitStruct->HSEState = RCC_HSE_BYPASS; - } - else if((RCC->CR &RCC_CR_HSEON) == RCC_CR_HSEON) - { - RCC_OscInitStruct->HSEState = RCC_HSE_ON; - } - else - { - RCC_OscInitStruct->HSEState = RCC_HSE_OFF; - } - - /* Get the HSI configuration -----------------------------------------------*/ - if((RCC->CR &RCC_CR_HSION) == RCC_CR_HSION) - { - RCC_OscInitStruct->HSIState = RCC_HSI_ON; - } - else - { - RCC_OscInitStruct->HSIState = RCC_HSI_OFF; - } - - RCC_OscInitStruct->HSICalibrationValue = (uint32_t)((RCC->CR &RCC_CR_HSITRIM) >> RCC_CR_HSITRIM_BitNumber); - - /* Get the LSE configuration -----------------------------------------------*/ - if((RCC->BDCR &RCC_BDCR_LSEBYP) == RCC_BDCR_LSEBYP) - { - RCC_OscInitStruct->LSEState = RCC_LSE_BYPASS; - } - else if((RCC->BDCR &RCC_BDCR_LSEON) == RCC_BDCR_LSEON) - { - RCC_OscInitStruct->LSEState = RCC_LSE_ON; - } - else - { - RCC_OscInitStruct->LSEState = RCC_LSE_OFF; - } - - /* Get the LSI configuration -----------------------------------------------*/ - if((RCC->CSR &RCC_CSR_LSION) == RCC_CSR_LSION) - { - RCC_OscInitStruct->LSIState = RCC_LSI_ON; - } - else - { - RCC_OscInitStruct->LSIState = RCC_LSI_OFF; - } - - /* Get the HSI14 configuration -----------------------------------------------*/ - if((RCC->CR2 & RCC_CR2_HSI14ON) == RCC_CR2_HSI14ON) - { - RCC_OscInitStruct->HSI14State = RCC_HSI_ON; - } - else - { - RCC_OscInitStruct->HSI14State = RCC_HSI_OFF; - } - - RCC_OscInitStruct->HSI14CalibrationValue = (uint32_t)((RCC->CR2 & RCC_CR2_HSI14TRIM) >> RCC_HSI14TRIM_BIT_NUMBER); - -#if defined(RCC_HSI48_SUPPORT) - /* Get the HSI48 configuration if any-----------------------------------------*/ - RCC_OscInitStruct->HSI48State = __HAL_RCC_GET_HSI48_STATE(); -#endif /* RCC_HSI48_SUPPORT */ - - /* Get the PLL configuration -----------------------------------------------*/ - if((RCC->CR &RCC_CR_PLLON) == RCC_CR_PLLON) - { - RCC_OscInitStruct->PLL.PLLState = RCC_PLL_ON; - } - else - { - RCC_OscInitStruct->PLL.PLLState = RCC_PLL_OFF; - } - RCC_OscInitStruct->PLL.PLLSource = (uint32_t)(RCC->CFGR & RCC_CFGR_PLLSRC); - RCC_OscInitStruct->PLL.PLLMUL = (uint32_t)(RCC->CFGR & RCC_CFGR_PLLMUL); - RCC_OscInitStruct->PLL.PREDIV = (uint32_t)(RCC->CFGR2 & RCC_CFGR2_PREDIV); -} - -/** - * @brief Get the RCC_ClkInitStruct according to the internal - * RCC configuration registers. - * @param RCC_ClkInitStruct pointer to an RCC_ClkInitTypeDef structure that - * contains the current clock configuration. - * @param pFLatency Pointer on the Flash Latency. - * @retval None - */ -void HAL_RCC_GetClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t *pFLatency) -{ - /* Check the parameters */ - assert_param(RCC_ClkInitStruct != NULL); - assert_param(pFLatency != NULL); - - /* Set all possible values for the Clock type parameter --------------------*/ - RCC_ClkInitStruct->ClockType = RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1; - - /* Get the SYSCLK configuration --------------------------------------------*/ - RCC_ClkInitStruct->SYSCLKSource = (uint32_t)(RCC->CFGR & RCC_CFGR_SW); - - /* Get the HCLK configuration ----------------------------------------------*/ - RCC_ClkInitStruct->AHBCLKDivider = (uint32_t)(RCC->CFGR & RCC_CFGR_HPRE); - - /* Get the APB1 configuration ----------------------------------------------*/ - RCC_ClkInitStruct->APB1CLKDivider = (uint32_t)(RCC->CFGR & RCC_CFGR_PPRE); - /* Get the Flash Wait State (Latency) configuration ------------------------*/ - *pFLatency = __HAL_FLASH_GET_LATENCY(); -} - -/** - * @brief This function handles the RCC CSS interrupt request. - * @note This API should be called under the NMI_Handler(). - * @retval None - */ -void HAL_RCC_NMI_IRQHandler(void) -{ - /* Check RCC CSSF flag */ - if(__HAL_RCC_GET_IT(RCC_IT_CSS)) - { - /* RCC Clock Security System interrupt user callback */ - HAL_RCC_CSSCallback(); - - /* Clear RCC CSS pending bit */ - __HAL_RCC_CLEAR_IT(RCC_IT_CSS); - } -} - -/** - * @brief RCC Clock Security System interrupt callback - * @retval none - */ -__weak void HAL_RCC_CSSCallback(void) -{ - /* NOTE : This function Should not be modified, when the callback is needed, - the HAL_RCC_CSSCallback could be implemented in the user file - */ -} - -/** - * @} - */ - -/** - * @} - */ - -#endif /* HAL_RCC_MODULE_ENABLED */ -/** - * @} - */ - -/** - * @} - */ - -/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_rcc_ex.c b/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_rcc_ex.c deleted file mode 100644 index 386e9ae..0000000 --- a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_rcc_ex.c +++ /dev/null @@ -1,964 +0,0 @@ -/** - ****************************************************************************** - * @file stm32f0xx_hal_rcc_ex.c - * @author MCD Application Team - * @brief Extended RCC HAL module driver. - * This file provides firmware functions to manage the following - * functionalities RCC extension peripheral: - * + Extended Peripheral Control functions - * + Extended Clock Recovery System Control functions - * - ****************************************************************************** - * @attention - * - *

© Copyright (c) 2016 STMicroelectronics. - * All rights reserved.

- * - * This software component is licensed by ST under BSD 3-Clause license, - * the "License"; You may not use this file except in compliance with the - * License. You may obtain a copy of the License at: - * opensource.org/licenses/BSD-3-Clause - * - ****************************************************************************** - */ - -/* Includes ------------------------------------------------------------------*/ -#include "stm32f0xx_hal.h" - -/** @addtogroup STM32F0xx_HAL_Driver - * @{ - */ - -#ifdef HAL_RCC_MODULE_ENABLED - -/** @defgroup RCCEx RCCEx - * @brief RCC Extension HAL module driver. - * @{ - */ - -/* Private typedef -----------------------------------------------------------*/ -/* Private define ------------------------------------------------------------*/ -#if defined(CRS) -/** @defgroup RCCEx_Private_Constants RCCEx Private Constants - * @{ - */ -/* Bit position in register */ -#define CRS_CFGR_FELIM_BITNUMBER 16 -#define CRS_CR_TRIM_BITNUMBER 8 -#define CRS_ISR_FECAP_BITNUMBER 16 -/** - * @} - */ -#endif /* CRS */ - -/* Private macro -------------------------------------------------------------*/ -/** @defgroup RCCEx_Private_Macros RCCEx Private Macros - * @{ - */ -/** - * @} - */ - -/* Private variables ---------------------------------------------------------*/ -/* Private function prototypes -----------------------------------------------*/ -/* Private functions ---------------------------------------------------------*/ - -/** @defgroup RCCEx_Exported_Functions RCCEx Exported Functions - * @{ - */ - -/** @defgroup RCCEx_Exported_Functions_Group1 Extended Peripheral Control functions - * @brief Extended Peripheral Control functions - * -@verbatim - =============================================================================== - ##### Extended Peripheral Control functions ##### - =============================================================================== - [..] - This subsection provides a set of functions allowing to control the RCC Clocks - frequencies. - [..] - (@) Important note: Care must be taken when HAL_RCCEx_PeriphCLKConfig() is used to - select the RTC clock source; in this case the Backup domain will be reset in - order to modify the RTC Clock source, as consequence RTC registers (including - the backup registers) are set to their reset values. - -@endverbatim - * @{ - */ - -/** - * @brief Initializes the RCC extended peripherals clocks according to the specified - * parameters in the RCC_PeriphCLKInitTypeDef. - * @param PeriphClkInit pointer to an RCC_PeriphCLKInitTypeDef structure that - * contains the configuration information for the Extended Peripherals clocks - * (USART, RTC, I2C, CEC and USB). - * - * @note Care must be taken when @ref HAL_RCCEx_PeriphCLKConfig() is used to select - * the RTC clock source; in this case the Backup domain will be reset in - * order to modify the RTC Clock source, as consequence RTC registers (including - * the backup registers) and RCC_BDCR register are set to their reset values. - * - * @retval HAL status - */ -HAL_StatusTypeDef HAL_RCCEx_PeriphCLKConfig(RCC_PeriphCLKInitTypeDef *PeriphClkInit) -{ - uint32_t tickstart = 0U; - uint32_t temp_reg = 0U; - - /* Check the parameters */ - assert_param(IS_RCC_PERIPHCLOCK(PeriphClkInit->PeriphClockSelection)); - - /*---------------------------- RTC configuration -------------------------------*/ - if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_RTC) == (RCC_PERIPHCLK_RTC)) - { - /* check for RTC Parameters used to output RTCCLK */ - assert_param(IS_RCC_RTCCLKSOURCE(PeriphClkInit->RTCClockSelection)); - - FlagStatus pwrclkchanged = RESET; - - /* As soon as function is called to change RTC clock source, activation of the - power domain is done. */ - /* Requires to enable write access to Backup Domain of necessary */ - if(__HAL_RCC_PWR_IS_CLK_DISABLED()) - { - __HAL_RCC_PWR_CLK_ENABLE(); - pwrclkchanged = SET; - } - - if(HAL_IS_BIT_CLR(PWR->CR, PWR_CR_DBP)) - { - /* Enable write access to Backup domain */ - SET_BIT(PWR->CR, PWR_CR_DBP); - - /* Wait for Backup domain Write protection disable */ - tickstart = HAL_GetTick(); - - while(HAL_IS_BIT_CLR(PWR->CR, PWR_CR_DBP)) - { - if((HAL_GetTick() - tickstart) > RCC_DBP_TIMEOUT_VALUE) - { - return HAL_TIMEOUT; - } - } - } - - /* Reset the Backup domain only if the RTC Clock source selection is modified from reset value */ - temp_reg = (RCC->BDCR & RCC_BDCR_RTCSEL); - if((temp_reg != 0x00000000U) && (temp_reg != (PeriphClkInit->RTCClockSelection & RCC_BDCR_RTCSEL))) - { - /* Store the content of BDCR register before the reset of Backup Domain */ - temp_reg = (RCC->BDCR & ~(RCC_BDCR_RTCSEL)); - /* RTC Clock selection can be changed only if the Backup Domain is reset */ - __HAL_RCC_BACKUPRESET_FORCE(); - __HAL_RCC_BACKUPRESET_RELEASE(); - /* Restore the Content of BDCR register */ - RCC->BDCR = temp_reg; - - /* Wait for LSERDY if LSE was enabled */ - if (HAL_IS_BIT_SET(temp_reg, RCC_BDCR_LSEON)) - { - /* Get Start Tick */ - tickstart = HAL_GetTick(); - - /* Wait till LSE is ready */ - while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) == RESET) - { - if((HAL_GetTick() - tickstart) > RCC_LSE_TIMEOUT_VALUE) - { - return HAL_TIMEOUT; - } - } - } - } - __HAL_RCC_RTC_CONFIG(PeriphClkInit->RTCClockSelection); - - /* Require to disable power clock if necessary */ - if(pwrclkchanged == SET) - { - __HAL_RCC_PWR_CLK_DISABLE(); - } - } - - /*------------------------------- USART1 Configuration ------------------------*/ - if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_USART1) == RCC_PERIPHCLK_USART1) - { - /* Check the parameters */ - assert_param(IS_RCC_USART1CLKSOURCE(PeriphClkInit->Usart1ClockSelection)); - - /* Configure the USART1 clock source */ - __HAL_RCC_USART1_CONFIG(PeriphClkInit->Usart1ClockSelection); - } - -#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx)\ - || defined(STM32F091xC) || defined(STM32F098xx) - /*----------------------------- USART2 Configuration --------------------------*/ - if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_USART2) == RCC_PERIPHCLK_USART2) - { - /* Check the parameters */ - assert_param(IS_RCC_USART2CLKSOURCE(PeriphClkInit->Usart2ClockSelection)); - - /* Configure the USART2 clock source */ - __HAL_RCC_USART2_CONFIG(PeriphClkInit->Usart2ClockSelection); - } -#endif /* STM32F071xB || STM32F072xB || STM32F078xx || */ - /* STM32F091xC || STM32F098xx */ - -#if defined(STM32F091xC) || defined(STM32F098xx) - /*----------------------------- USART3 Configuration --------------------------*/ - if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_USART3) == RCC_PERIPHCLK_USART3) - { - /* Check the parameters */ - assert_param(IS_RCC_USART3CLKSOURCE(PeriphClkInit->Usart3ClockSelection)); - - /* Configure the USART3 clock source */ - __HAL_RCC_USART3_CONFIG(PeriphClkInit->Usart3ClockSelection); - } -#endif /* STM32F091xC || STM32F098xx */ - - /*------------------------------ I2C1 Configuration ------------------------*/ - if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_I2C1) == RCC_PERIPHCLK_I2C1) - { - /* Check the parameters */ - assert_param(IS_RCC_I2C1CLKSOURCE(PeriphClkInit->I2c1ClockSelection)); - - /* Configure the I2C1 clock source */ - __HAL_RCC_I2C1_CONFIG(PeriphClkInit->I2c1ClockSelection); - } - -#if defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F072xB) || defined(STM32F078xx) || defined(STM32F070xB) || defined(STM32F070x6) - /*------------------------------ USB Configuration ------------------------*/ - if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_USB) == RCC_PERIPHCLK_USB) - { - /* Check the parameters */ - assert_param(IS_RCC_USBCLKSOURCE(PeriphClkInit->UsbClockSelection)); - - /* Configure the USB clock source */ - __HAL_RCC_USB_CONFIG(PeriphClkInit->UsbClockSelection); - } -#endif /* STM32F042x6 || STM32F048xx || STM32F072xB || STM32F078xx || STM32F070xB || STM32F070x6 */ - -#if defined(STM32F042x6) || defined(STM32F048xx)\ - || defined(STM32F051x8) || defined(STM32F058xx)\ - || defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx)\ - || defined(STM32F091xC) || defined(STM32F098xx) - /*------------------------------ CEC clock Configuration -------------------*/ - if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_CEC) == RCC_PERIPHCLK_CEC) - { - /* Check the parameters */ - assert_param(IS_RCC_CECCLKSOURCE(PeriphClkInit->CecClockSelection)); - - /* Configure the CEC clock source */ - __HAL_RCC_CEC_CONFIG(PeriphClkInit->CecClockSelection); - } -#endif /* STM32F042x6 || STM32F048xx || */ - /* STM32F051x8 || STM32F058xx || */ - /* STM32F071xB || STM32F072xB || STM32F078xx || */ - /* STM32F091xC || STM32F098xx */ - - return HAL_OK; -} - -/** - * @brief Get the RCC_ClkInitStruct according to the internal - * RCC configuration registers. - * @param PeriphClkInit pointer to an RCC_PeriphCLKInitTypeDef structure that - * returns the configuration information for the Extended Peripherals clocks - * (USART, RTC, I2C, CEC and USB). - * @retval None - */ -void HAL_RCCEx_GetPeriphCLKConfig(RCC_PeriphCLKInitTypeDef *PeriphClkInit) -{ - /* Set all possible values for the extended clock type parameter------------*/ - /* Common part first */ - PeriphClkInit->PeriphClockSelection = RCC_PERIPHCLK_USART1 | RCC_PERIPHCLK_I2C1 | RCC_PERIPHCLK_RTC; - /* Get the RTC configuration --------------------------------------------*/ - PeriphClkInit->RTCClockSelection = __HAL_RCC_GET_RTC_SOURCE(); - /* Get the USART1 clock configuration --------------------------------------------*/ - PeriphClkInit->Usart1ClockSelection = __HAL_RCC_GET_USART1_SOURCE(); - /* Get the I2C1 clock source -----------------------------------------------*/ - PeriphClkInit->I2c1ClockSelection = __HAL_RCC_GET_I2C1_SOURCE(); - -#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx)\ - || defined(STM32F091xC) || defined(STM32F098xx) - PeriphClkInit->PeriphClockSelection |= RCC_PERIPHCLK_USART2; - /* Get the USART2 clock source ---------------------------------------------*/ - PeriphClkInit->Usart2ClockSelection = __HAL_RCC_GET_USART2_SOURCE(); -#endif /* STM32F071xB || STM32F072xB || STM32F078xx || */ - /* STM32F091xC || STM32F098xx */ - -#if defined(STM32F091xC) || defined(STM32F098xx) - PeriphClkInit->PeriphClockSelection |= RCC_PERIPHCLK_USART3; - /* Get the USART3 clock source ---------------------------------------------*/ - PeriphClkInit->Usart3ClockSelection = __HAL_RCC_GET_USART3_SOURCE(); -#endif /* STM32F091xC || STM32F098xx */ - -#if defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F072xB) || defined(STM32F078xx) || defined(STM32F070xB) || defined(STM32F070x6) - PeriphClkInit->PeriphClockSelection |= RCC_PERIPHCLK_USB; - /* Get the USB clock source ---------------------------------------------*/ - PeriphClkInit->UsbClockSelection = __HAL_RCC_GET_USB_SOURCE(); -#endif /* STM32F042x6 || STM32F048xx || STM32F072xB || STM32F078xx || STM32F070xB || STM32F070x6 */ - -#if defined(STM32F042x6) || defined(STM32F048xx)\ - || defined(STM32F051x8) || defined(STM32F058xx)\ - || defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx)\ - || defined(STM32F091xC) || defined(STM32F098xx) - PeriphClkInit->PeriphClockSelection |= RCC_PERIPHCLK_CEC; - /* Get the CEC clock source ------------------------------------------------*/ - PeriphClkInit->CecClockSelection = __HAL_RCC_GET_CEC_SOURCE(); -#endif /* STM32F042x6 || STM32F048xx || */ - /* STM32F051x8 || STM32F058xx || */ - /* STM32F071xB || STM32F072xB || STM32F078xx || */ - /* STM32F091xC || STM32F098xx */ - -} - -/** - * @brief Returns the peripheral clock frequency - * @note Returns 0 if peripheral clock is unknown - * @param PeriphClk Peripheral clock identifier - * This parameter can be one of the following values: - * @arg @ref RCC_PERIPHCLK_RTC RTC peripheral clock - * @arg @ref RCC_PERIPHCLK_USART1 USART1 peripheral clock - * @arg @ref RCC_PERIPHCLK_I2C1 I2C1 peripheral clock - @if STM32F042x6 - * @arg @ref RCC_PERIPHCLK_USB USB peripheral clock - * @arg @ref RCC_PERIPHCLK_CEC CEC peripheral clock - @endif - @if STM32F048xx - * @arg @ref RCC_PERIPHCLK_USB USB peripheral clock - * @arg @ref RCC_PERIPHCLK_CEC CEC peripheral clock - @endif - @if STM32F051x8 - * @arg @ref RCC_PERIPHCLK_CEC CEC peripheral clock - @endif - @if STM32F058xx - * @arg @ref RCC_PERIPHCLK_CEC CEC peripheral clock - @endif - @if STM32F070x6 - * @arg @ref RCC_PERIPHCLK_USB USB peripheral clock - @endif - @if STM32F070xB - * @arg @ref RCC_PERIPHCLK_USB USB peripheral clock - @endif - @if STM32F071xB - * @arg @ref RCC_PERIPHCLK_USART2 USART2 peripheral clock - * @arg @ref RCC_PERIPHCLK_CEC CEC peripheral clock - @endif - @if STM32F072xB - * @arg @ref RCC_PERIPHCLK_USART2 USART2 peripheral clock - * @arg @ref RCC_PERIPHCLK_USB USB peripheral clock - * @arg @ref RCC_PERIPHCLK_CEC CEC peripheral clock - @endif - @if STM32F078xx - * @arg @ref RCC_PERIPHCLK_USART2 USART2 peripheral clock - * @arg @ref RCC_PERIPHCLK_USB USB peripheral clock - * @arg @ref RCC_PERIPHCLK_CEC CEC peripheral clock - @endif - @if STM32F091xC - * @arg @ref RCC_PERIPHCLK_USART2 USART2 peripheral clock - * @arg @ref RCC_PERIPHCLK_USART3 USART2 peripheral clock - * @arg @ref RCC_PERIPHCLK_CEC CEC peripheral clock - @endif - @if STM32F098xx - * @arg @ref RCC_PERIPHCLK_USART2 USART2 peripheral clock - * @arg @ref RCC_PERIPHCLK_USART3 USART2 peripheral clock - * @arg @ref RCC_PERIPHCLK_CEC CEC peripheral clock - @endif - * @retval Frequency in Hz (0: means that no available frequency for the peripheral) - */ -uint32_t HAL_RCCEx_GetPeriphCLKFreq(uint32_t PeriphClk) -{ - /* frequency == 0 : means that no available frequency for the peripheral */ - uint32_t frequency = 0U; - - uint32_t srcclk = 0U; -#if defined(USB) - uint32_t pllmull = 0U, pllsource = 0U, predivfactor = 0U; -#endif /* USB */ - - /* Check the parameters */ - assert_param(IS_RCC_PERIPHCLOCK(PeriphClk)); - - switch (PeriphClk) - { - case RCC_PERIPHCLK_RTC: - { - /* Get the current RTC source */ - srcclk = __HAL_RCC_GET_RTC_SOURCE(); - - /* Check if LSE is ready and if RTC clock selection is LSE */ - if ((srcclk == RCC_RTCCLKSOURCE_LSE) && (HAL_IS_BIT_SET(RCC->BDCR, RCC_BDCR_LSERDY))) - { - frequency = LSE_VALUE; - } - /* Check if LSI is ready and if RTC clock selection is LSI */ - else if ((srcclk == RCC_RTCCLKSOURCE_LSI) && (HAL_IS_BIT_SET(RCC->CSR, RCC_CSR_LSIRDY))) - { - frequency = LSI_VALUE; - } - /* Check if HSE is ready and if RTC clock selection is HSI_DIV32*/ - else if ((srcclk == RCC_RTCCLKSOURCE_HSE_DIV32) && (HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSERDY))) - { - frequency = HSE_VALUE / 32U; - } - break; - } - case RCC_PERIPHCLK_USART1: - { - /* Get the current USART1 source */ - srcclk = __HAL_RCC_GET_USART1_SOURCE(); - - /* Check if USART1 clock selection is PCLK1 */ - if (srcclk == RCC_USART1CLKSOURCE_PCLK1) - { - frequency = HAL_RCC_GetPCLK1Freq(); - } - /* Check if HSI is ready and if USART1 clock selection is HSI */ - else if ((srcclk == RCC_USART1CLKSOURCE_HSI) && (HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY))) - { - frequency = HSI_VALUE; - } - /* Check if USART1 clock selection is SYSCLK */ - else if (srcclk == RCC_USART1CLKSOURCE_SYSCLK) - { - frequency = HAL_RCC_GetSysClockFreq(); - } - /* Check if LSE is ready and if USART1 clock selection is LSE */ - else if ((srcclk == RCC_USART1CLKSOURCE_LSE) && (HAL_IS_BIT_SET(RCC->BDCR, RCC_BDCR_LSERDY))) - { - frequency = LSE_VALUE; - } - break; - } -#if defined(RCC_CFGR3_USART2SW) - case RCC_PERIPHCLK_USART2: - { - /* Get the current USART2 source */ - srcclk = __HAL_RCC_GET_USART2_SOURCE(); - - /* Check if USART2 clock selection is PCLK1 */ - if (srcclk == RCC_USART2CLKSOURCE_PCLK1) - { - frequency = HAL_RCC_GetPCLK1Freq(); - } - /* Check if HSI is ready and if USART2 clock selection is HSI */ - else if ((srcclk == RCC_USART2CLKSOURCE_HSI) && (HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY))) - { - frequency = HSI_VALUE; - } - /* Check if USART2 clock selection is SYSCLK */ - else if (srcclk == RCC_USART2CLKSOURCE_SYSCLK) - { - frequency = HAL_RCC_GetSysClockFreq(); - } - /* Check if LSE is ready and if USART2 clock selection is LSE */ - else if ((srcclk == RCC_USART2CLKSOURCE_LSE) && (HAL_IS_BIT_SET(RCC->BDCR, RCC_BDCR_LSERDY))) - { - frequency = LSE_VALUE; - } - break; - } -#endif /* RCC_CFGR3_USART2SW */ -#if defined(RCC_CFGR3_USART3SW) - case RCC_PERIPHCLK_USART3: - { - /* Get the current USART3 source */ - srcclk = __HAL_RCC_GET_USART3_SOURCE(); - - /* Check if USART3 clock selection is PCLK1 */ - if (srcclk == RCC_USART3CLKSOURCE_PCLK1) - { - frequency = HAL_RCC_GetPCLK1Freq(); - } - /* Check if HSI is ready and if USART3 clock selection is HSI */ - else if ((srcclk == RCC_USART3CLKSOURCE_HSI) && (HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY))) - { - frequency = HSI_VALUE; - } - /* Check if USART3 clock selection is SYSCLK */ - else if (srcclk == RCC_USART3CLKSOURCE_SYSCLK) - { - frequency = HAL_RCC_GetSysClockFreq(); - } - /* Check if LSE is ready and if USART3 clock selection is LSE */ - else if ((srcclk == RCC_USART3CLKSOURCE_LSE) && (HAL_IS_BIT_SET(RCC->BDCR, RCC_BDCR_LSERDY))) - { - frequency = LSE_VALUE; - } - break; - } -#endif /* RCC_CFGR3_USART3SW */ - case RCC_PERIPHCLK_I2C1: - { - /* Get the current I2C1 source */ - srcclk = __HAL_RCC_GET_I2C1_SOURCE(); - - /* Check if HSI is ready and if I2C1 clock selection is HSI */ - if ((srcclk == RCC_I2C1CLKSOURCE_HSI) && (HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY))) - { - frequency = HSI_VALUE; - } - /* Check if I2C1 clock selection is SYSCLK */ - else if (srcclk == RCC_I2C1CLKSOURCE_SYSCLK) - { - frequency = HAL_RCC_GetSysClockFreq(); - } - break; - } -#if defined(USB) - case RCC_PERIPHCLK_USB: - { - /* Get the current USB source */ - srcclk = __HAL_RCC_GET_USB_SOURCE(); - - /* Check if PLL is ready and if USB clock selection is PLL */ - if ((srcclk == RCC_USBCLKSOURCE_PLL) && (HAL_IS_BIT_SET(RCC->CR, RCC_CR_PLLRDY))) - { - /* Get PLL clock source and multiplication factor ----------------------*/ - pllmull = RCC->CFGR & RCC_CFGR_PLLMUL; - pllsource = RCC->CFGR & RCC_CFGR_PLLSRC; - pllmull = (pllmull >> RCC_CFGR_PLLMUL_BITNUMBER) + 2U; - predivfactor = (RCC->CFGR2 & RCC_CFGR2_PREDIV) + 1U; - - if (pllsource == RCC_CFGR_PLLSRC_HSE_PREDIV) - { - /* HSE used as PLL clock source : frequency = HSE/PREDIV * PLLMUL */ - frequency = (HSE_VALUE/predivfactor) * pllmull; - } -#if defined(RCC_CR2_HSI48ON) - else if (pllsource == RCC_CFGR_PLLSRC_HSI48_PREDIV) - { - /* HSI48 used as PLL clock source : frequency = HSI48/PREDIV * PLLMUL */ - frequency = (HSI48_VALUE / predivfactor) * pllmull; - } -#endif /* RCC_CR2_HSI48ON */ - else - { -#if defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F078xx) || defined(STM32F072xB) || defined(STM32F070xB) - /* HSI used as PLL clock source : frequency = HSI/PREDIV * PLLMUL */ - frequency = (HSI_VALUE / predivfactor) * pllmull; -#else - /* HSI used as PLL clock source : frequency = HSI/2U * PLLMUL */ - frequency = (HSI_VALUE >> 1U) * pllmull; -#endif /* STM32F042x6 || STM32F048xx || STM32F072xB || STM32F078xx || STM32F070xB */ - } - } -#if defined(RCC_CR2_HSI48ON) - /* Check if HSI48 is ready and if USB clock selection is HSI48 */ - else if ((srcclk == RCC_USBCLKSOURCE_HSI48) && (HAL_IS_BIT_SET(RCC->CR2, RCC_CR2_HSI48RDY))) - { - frequency = HSI48_VALUE; - } -#endif /* RCC_CR2_HSI48ON */ - break; - } -#endif /* USB */ -#if defined(CEC) - case RCC_PERIPHCLK_CEC: - { - /* Get the current CEC source */ - srcclk = __HAL_RCC_GET_CEC_SOURCE(); - - /* Check if HSI is ready and if CEC clock selection is HSI */ - if ((srcclk == RCC_CECCLKSOURCE_HSI) && (HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY))) - { - frequency = HSI_VALUE; - } - /* Check if LSE is ready and if CEC clock selection is LSE */ - else if ((srcclk == RCC_CECCLKSOURCE_LSE) && (HAL_IS_BIT_SET(RCC->BDCR, RCC_BDCR_LSERDY))) - { - frequency = LSE_VALUE; - } - break; - } -#endif /* CEC */ - default: - { - break; - } - } - return(frequency); -} - -/** - * @} - */ - -#if defined(CRS) - -/** @defgroup RCCEx_Exported_Functions_Group3 Extended Clock Recovery System Control functions - * @brief Extended Clock Recovery System Control functions - * -@verbatim - =============================================================================== - ##### Extended Clock Recovery System Control functions ##### - =============================================================================== - [..] - For devices with Clock Recovery System feature (CRS), RCC Extention HAL driver can be used as follows: - - (#) In System clock config, HSI48 needs to be enabled - - (#) Enable CRS clock in IP MSP init which will use CRS functions - - (#) Call CRS functions as follows: - (##) Prepare synchronization configuration necessary for HSI48 calibration - (+++) Default values can be set for frequency Error Measurement (reload and error limit) - and also HSI48 oscillator smooth trimming. - (+++) Macro @ref __HAL_RCC_CRS_RELOADVALUE_CALCULATE can be also used to calculate - directly reload value with target and synchronization frequencies values - (##) Call function @ref HAL_RCCEx_CRSConfig which - (+++) Reset CRS registers to their default values. - (+++) Configure CRS registers with synchronization configuration - (+++) Enable automatic calibration and frequency error counter feature - Note: When using USB LPM (Link Power Management) and the device is in Sleep mode, the - periodic USB SOF will not be generated by the host. No SYNC signal will therefore be - provided to the CRS to calibrate the HSI48 on the run. To guarantee the required clock - precision after waking up from Sleep mode, the LSE or reference clock on the GPIOs - should be used as SYNC signal. - - (##) A polling function is provided to wait for complete synchronization - (+++) Call function @ref HAL_RCCEx_CRSWaitSynchronization() - (+++) According to CRS status, user can decide to adjust again the calibration or continue - application if synchronization is OK - - (#) User can retrieve information related to synchronization in calling function - @ref HAL_RCCEx_CRSGetSynchronizationInfo() - - (#) Regarding synchronization status and synchronization information, user can try a new calibration - in changing synchronization configuration and call again HAL_RCCEx_CRSConfig. - Note: When the SYNC event is detected during the downcounting phase (before reaching the zero value), - it means that the actual frequency is lower than the target (and so, that the TRIM value should be - incremented), while when it is detected during the upcounting phase it means that the actual frequency - is higher (and that the TRIM value should be decremented). - - (#) In interrupt mode, user can resort to the available macros (__HAL_RCC_CRS_XXX_IT). Interrupts will go - through CRS Handler (RCC_IRQn/RCC_IRQHandler) - (++) Call function @ref HAL_RCCEx_CRSConfig() - (++) Enable RCC_IRQn (thanks to NVIC functions) - (++) Enable CRS interrupt (@ref __HAL_RCC_CRS_ENABLE_IT) - (++) Implement CRS status management in the following user callbacks called from - HAL_RCCEx_CRS_IRQHandler(): - (+++) @ref HAL_RCCEx_CRS_SyncOkCallback() - (+++) @ref HAL_RCCEx_CRS_SyncWarnCallback() - (+++) @ref HAL_RCCEx_CRS_ExpectedSyncCallback() - (+++) @ref HAL_RCCEx_CRS_ErrorCallback() - - (#) To force a SYNC EVENT, user can use the function @ref HAL_RCCEx_CRSSoftwareSynchronizationGenerate(). - This function can be called before calling @ref HAL_RCCEx_CRSConfig (for instance in Systick handler) - -@endverbatim - * @{ - */ - -/** - * @brief Start automatic synchronization for polling mode - * @param pInit Pointer on RCC_CRSInitTypeDef structure - * @retval None - */ -void HAL_RCCEx_CRSConfig(RCC_CRSInitTypeDef *pInit) -{ - uint32_t value = 0U; - - /* Check the parameters */ - assert_param(IS_RCC_CRS_SYNC_DIV(pInit->Prescaler)); - assert_param(IS_RCC_CRS_SYNC_SOURCE(pInit->Source)); - assert_param(IS_RCC_CRS_SYNC_POLARITY(pInit->Polarity)); - assert_param(IS_RCC_CRS_RELOADVALUE(pInit->ReloadValue)); - assert_param(IS_RCC_CRS_ERRORLIMIT(pInit->ErrorLimitValue)); - assert_param(IS_RCC_CRS_HSI48CALIBRATION(pInit->HSI48CalibrationValue)); - - /* CONFIGURATION */ - - /* Before configuration, reset CRS registers to their default values*/ - __HAL_RCC_CRS_FORCE_RESET(); - __HAL_RCC_CRS_RELEASE_RESET(); - - /* Set the SYNCDIV[2:0] bits according to Prescaler value */ - /* Set the SYNCSRC[1:0] bits according to Source value */ - /* Set the SYNCSPOL bit according to Polarity value */ - value = (pInit->Prescaler | pInit->Source | pInit->Polarity); - /* Set the RELOAD[15:0] bits according to ReloadValue value */ - value |= pInit->ReloadValue; - /* Set the FELIM[7:0] bits according to ErrorLimitValue value */ - value |= (pInit->ErrorLimitValue << CRS_CFGR_FELIM_BITNUMBER); - WRITE_REG(CRS->CFGR, value); - - /* Adjust HSI48 oscillator smooth trimming */ - /* Set the TRIM[5:0] bits according to RCC_CRS_HSI48CalibrationValue value */ - MODIFY_REG(CRS->CR, CRS_CR_TRIM, (pInit->HSI48CalibrationValue << CRS_CR_TRIM_BITNUMBER)); - - /* START AUTOMATIC SYNCHRONIZATION*/ - - /* Enable Automatic trimming & Frequency error counter */ - SET_BIT(CRS->CR, CRS_CR_AUTOTRIMEN | CRS_CR_CEN); -} - -/** - * @brief Generate the software synchronization event - * @retval None - */ -void HAL_RCCEx_CRSSoftwareSynchronizationGenerate(void) -{ - SET_BIT(CRS->CR, CRS_CR_SWSYNC); -} - -/** - * @brief Return synchronization info - * @param pSynchroInfo Pointer on RCC_CRSSynchroInfoTypeDef structure - * @retval None - */ -void HAL_RCCEx_CRSGetSynchronizationInfo(RCC_CRSSynchroInfoTypeDef *pSynchroInfo) -{ - /* Check the parameter */ - assert_param(pSynchroInfo != NULL); - - /* Get the reload value */ - pSynchroInfo->ReloadValue = (uint32_t)(READ_BIT(CRS->CFGR, CRS_CFGR_RELOAD)); - - /* Get HSI48 oscillator smooth trimming */ - pSynchroInfo->HSI48CalibrationValue = (uint32_t)(READ_BIT(CRS->CR, CRS_CR_TRIM) >> CRS_CR_TRIM_BITNUMBER); - - /* Get Frequency error capture */ - pSynchroInfo->FreqErrorCapture = (uint32_t)(READ_BIT(CRS->ISR, CRS_ISR_FECAP) >> CRS_ISR_FECAP_BITNUMBER); - - /* Get Frequency error direction */ - pSynchroInfo->FreqErrorDirection = (uint32_t)(READ_BIT(CRS->ISR, CRS_ISR_FEDIR)); -} - -/** -* @brief Wait for CRS Synchronization status. -* @param Timeout Duration of the timeout -* @note Timeout is based on the maximum time to receive a SYNC event based on synchronization -* frequency. -* @note If Timeout set to HAL_MAX_DELAY, HAL_TIMEOUT will be never returned. -* @retval Combination of Synchronization status -* This parameter can be a combination of the following values: -* @arg @ref RCC_CRS_TIMEOUT -* @arg @ref RCC_CRS_SYNCOK -* @arg @ref RCC_CRS_SYNCWARN -* @arg @ref RCC_CRS_SYNCERR -* @arg @ref RCC_CRS_SYNCMISS -* @arg @ref RCC_CRS_TRIMOVF -*/ -uint32_t HAL_RCCEx_CRSWaitSynchronization(uint32_t Timeout) -{ - uint32_t crsstatus = RCC_CRS_NONE; - uint32_t tickstart = 0U; - - /* Get timeout */ - tickstart = HAL_GetTick(); - - /* Wait for CRS flag or timeout detection */ - do - { - if(Timeout != HAL_MAX_DELAY) - { - if((Timeout == 0U) || ((HAL_GetTick() - tickstart) > Timeout)) - { - crsstatus = RCC_CRS_TIMEOUT; - } - } - /* Check CRS SYNCOK flag */ - if(__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_SYNCOK)) - { - /* CRS SYNC event OK */ - crsstatus |= RCC_CRS_SYNCOK; - - /* Clear CRS SYNC event OK bit */ - __HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_SYNCOK); - } - - /* Check CRS SYNCWARN flag */ - if(__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_SYNCWARN)) - { - /* CRS SYNC warning */ - crsstatus |= RCC_CRS_SYNCWARN; - - /* Clear CRS SYNCWARN bit */ - __HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_SYNCWARN); - } - - /* Check CRS TRIM overflow flag */ - if(__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_TRIMOVF)) - { - /* CRS SYNC Error */ - crsstatus |= RCC_CRS_TRIMOVF; - - /* Clear CRS Error bit */ - __HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_TRIMOVF); - } - - /* Check CRS Error flag */ - if(__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_SYNCERR)) - { - /* CRS SYNC Error */ - crsstatus |= RCC_CRS_SYNCERR; - - /* Clear CRS Error bit */ - __HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_SYNCERR); - } - - /* Check CRS SYNC Missed flag */ - if(__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_SYNCMISS)) - { - /* CRS SYNC Missed */ - crsstatus |= RCC_CRS_SYNCMISS; - - /* Clear CRS SYNC Missed bit */ - __HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_SYNCMISS); - } - - /* Check CRS Expected SYNC flag */ - if(__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_ESYNC)) - { - /* frequency error counter reached a zero value */ - __HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_ESYNC); - } - } while(RCC_CRS_NONE == crsstatus); - - return crsstatus; -} - -/** - * @brief Handle the Clock Recovery System interrupt request. - * @retval None - */ -void HAL_RCCEx_CRS_IRQHandler(void) -{ - uint32_t crserror = RCC_CRS_NONE; - /* Get current IT flags and IT sources values */ - uint32_t itflags = READ_REG(CRS->ISR); - uint32_t itsources = READ_REG(CRS->CR); - - /* Check CRS SYNCOK flag */ - if(((itflags & RCC_CRS_FLAG_SYNCOK) != RESET) && ((itsources & RCC_CRS_IT_SYNCOK) != RESET)) - { - /* Clear CRS SYNC event OK flag */ - WRITE_REG(CRS->ICR, CRS_ICR_SYNCOKC); - - /* user callback */ - HAL_RCCEx_CRS_SyncOkCallback(); - } - /* Check CRS SYNCWARN flag */ - else if(((itflags & RCC_CRS_FLAG_SYNCWARN) != RESET) && ((itsources & RCC_CRS_IT_SYNCWARN) != RESET)) - { - /* Clear CRS SYNCWARN flag */ - WRITE_REG(CRS->ICR, CRS_ICR_SYNCWARNC); - - /* user callback */ - HAL_RCCEx_CRS_SyncWarnCallback(); - } - /* Check CRS Expected SYNC flag */ - else if(((itflags & RCC_CRS_FLAG_ESYNC) != RESET) && ((itsources & RCC_CRS_IT_ESYNC) != RESET)) - { - /* frequency error counter reached a zero value */ - WRITE_REG(CRS->ICR, CRS_ICR_ESYNCC); - - /* user callback */ - HAL_RCCEx_CRS_ExpectedSyncCallback(); - } - /* Check CRS Error flags */ - else - { - if(((itflags & RCC_CRS_FLAG_ERR) != RESET) && ((itsources & RCC_CRS_IT_ERR) != RESET)) - { - if((itflags & RCC_CRS_FLAG_SYNCERR) != RESET) - { - crserror |= RCC_CRS_SYNCERR; - } - if((itflags & RCC_CRS_FLAG_SYNCMISS) != RESET) - { - crserror |= RCC_CRS_SYNCMISS; - } - if((itflags & RCC_CRS_FLAG_TRIMOVF) != RESET) - { - crserror |= RCC_CRS_TRIMOVF; - } - - /* Clear CRS Error flags */ - WRITE_REG(CRS->ICR, CRS_ICR_ERRC); - - /* user error callback */ - HAL_RCCEx_CRS_ErrorCallback(crserror); - } - } -} - -/** - * @brief RCCEx Clock Recovery System SYNCOK interrupt callback. - * @retval none - */ -__weak void HAL_RCCEx_CRS_SyncOkCallback(void) -{ - /* NOTE : This function should not be modified, when the callback is needed, - the @ref HAL_RCCEx_CRS_SyncOkCallback should be implemented in the user file - */ -} - -/** - * @brief RCCEx Clock Recovery System SYNCWARN interrupt callback. - * @retval none - */ -__weak void HAL_RCCEx_CRS_SyncWarnCallback(void) -{ - /* NOTE : This function should not be modified, when the callback is needed, - the @ref HAL_RCCEx_CRS_SyncWarnCallback should be implemented in the user file - */ -} - -/** - * @brief RCCEx Clock Recovery System Expected SYNC interrupt callback. - * @retval none - */ -__weak void HAL_RCCEx_CRS_ExpectedSyncCallback(void) -{ - /* NOTE : This function should not be modified, when the callback is needed, - the @ref HAL_RCCEx_CRS_ExpectedSyncCallback should be implemented in the user file - */ -} - -/** - * @brief RCCEx Clock Recovery System Error interrupt callback. - * @param Error Combination of Error status. - * This parameter can be a combination of the following values: - * @arg @ref RCC_CRS_SYNCERR - * @arg @ref RCC_CRS_SYNCMISS - * @arg @ref RCC_CRS_TRIMOVF - * @retval none - */ -__weak void HAL_RCCEx_CRS_ErrorCallback(uint32_t Error) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(Error); - - /* NOTE : This function should not be modified, when the callback is needed, - the @ref HAL_RCCEx_CRS_ErrorCallback should be implemented in the user file - */ -} - -/** - * @} - */ - -#endif /* CRS */ - -/** - * @} - */ - -/** - * @} - */ - -/** - * @} - */ - -#endif /* HAL_RCC_MODULE_ENABLED */ - -/** - * @} - */ - -/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_rtc.c b/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_rtc.c deleted file mode 100644 index 9f3de31..0000000 --- a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_rtc.c +++ /dev/null @@ -1,1666 +0,0 @@ -/** - ****************************************************************************** - * @file stm32f0xx_hal_rtc.c - * @author MCD Application Team - * @brief RTC HAL module driver. - * This file provides firmware functions to manage the following - * functionalities of the Real Time Clock (RTC) peripheral: - * + Initialization and de-initialization functions - * + RTC Time and Date functions - * + RTC Alarm functions - * + Peripheral Control functions - * + Peripheral State functions - * - @verbatim - ============================================================================== - ##### How to use RTC Driver ##### - =================================================================== - [..] - (+) Enable the RTC domain access (see description in the section above). - (+) Configure the RTC Prescaler (Asynchronous and Synchronous) and RTC hour - format using the HAL_RTC_Init() function. - - *** Time and Date configuration *** - =================================== - [..] - (+) To configure the RTC Calendar (Time and Date) use the HAL_RTC_SetTime() - and HAL_RTC_SetDate() functions. - (+) To read the RTC Calendar, use the HAL_RTC_GetTime() and HAL_RTC_GetDate() functions. - - *** Alarm configuration *** - =========================== - [..] - (+) To configure the RTC Alarm use the HAL_RTC_SetAlarm() function. - You can also configure the RTC Alarm with interrupt mode using the - HAL_RTC_SetAlarm_IT() function. - (+) To read the RTC Alarm, use the HAL_RTC_GetAlarm() function. - - ##### RTC and low power modes ##### - =================================================================== - [..] The MCU can be woken up from a low power mode by an RTC alternate - function. - [..] The RTC alternate functions are the RTC alarm (Alarm A), - RTC wake-up, RTC tamper event detection and RTC time stamp event detection. - These RTC alternate functions can wake up the system from the Stop and - Standby low power modes. - [..] The system can also wake up from low power modes without depending - on an external interrupt (Auto-wake-up mode), by using the RTC alarm - or the RTC wake-up events. - [..] The RTC provides a programmable time base for waking up from the - Stop or Standby mode at regular intervals. - Wake-up from STOP and STANDBY modes is possible only when the RTC clock source - is LSE or LSI. - - *** Callback registration *** - ============================================= - - The compilation define USE_RTC_REGISTER_CALLBACKS when set to 1 - allows the user to configure dynamically the driver callbacks. - Use Function @ref HAL_RTC_RegisterCallback() to register an interrupt callback. - - Function @ref HAL_RTC_RegisterCallback() allows to register following callbacks: - (+) AlarmAEventCallback : RTC Alarm A Event callback. - (+) TimeStampEventCallback : RTC TimeStamp Event callback. - (+) WakeUpTimerEventCallback : RTC WakeUpTimer Event callback. - (+) Tamper1EventCallback : RTC Tamper 1 Event callback. - (+) Tamper2EventCallback : RTC Tamper 2 Event callback. - (+) Tamper3EventCallback : RTC Tamper 3 Event callback. - (+) MspInitCallback : RTC MspInit callback. - (+) MspDeInitCallback : RTC MspDeInit callback. - This function takes as parameters the HAL peripheral handle, the Callback ID - and a pointer to the user callback function. - - Use function @ref HAL_RTC_UnRegisterCallback() to reset a callback to the default - weak function. - @ref HAL_RTC_UnRegisterCallback() takes as parameters the HAL peripheral handle, - and the Callback ID. - This function allows to reset following callbacks: - (+) AlarmAEventCallback : RTC Alarm A Event callback. - (+) TimeStampEventCallback : RTC TimeStamp Event callback. - (+) WakeUpTimerEventCallback : RTC WakeUpTimer Event callback. - (+) Tamper1EventCallback : RTC Tamper 1 Event callback. - (+) Tamper2EventCallback : RTC Tamper 2 Event callback. - (+) Tamper3EventCallback : RTC Tamper 3 Event callback. - (+) MspInitCallback : RTC MspInit callback. - (+) MspDeInitCallback : RTC MspDeInit callback. - - By default, after the @ref HAL_RTC_Init() and when the state is HAL_RTC_STATE_RESET, - all callbacks are set to the corresponding weak functions : - examples @ref AlarmAEventCallback(), @ref WakeUpTimerEventCallback(). - Exception done for MspInit and MspDeInit callbacks that are reset to the legacy weak function - in the @ref HAL_RTC_Init()/@ref HAL_RTC_DeInit() only when these callbacks are null - (not registered beforehand). - If not, MspInit or MspDeInit are not null, @ref HAL_RTC_Init()/@ref HAL_RTC_DeInit() - keep and use the user MspInit/MspDeInit callbacks (registered beforehand) - - Callbacks can be registered/unregistered in HAL_RTC_STATE_READY state only. - Exception done MspInit/MspDeInit that can be registered/unregistered - in HAL_RTC_STATE_READY or HAL_RTC_STATE_RESET state, - thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit. - In that case first register the MspInit/MspDeInit user callbacks - using @ref HAL_RTC_RegisterCallback() before calling @ref HAL_RTC_DeInit() - or @ref HAL_RTC_Init() function. - - When The compilation define USE_HAL_RTC_REGISTER_CALLBACKS is set to 0 or - not defined, the callback registration feature is not available and all callbacks - are set to the corresponding weak functions. - @endverbatim - - ****************************************************************************** - * @attention - * - *

© Copyright (c) 2016 STMicroelectronics. - * All rights reserved.

- * - * This software component is licensed by ST under BSD 3-Clause license, - * the "License"; You may not use this file except in compliance with the - * License. You may obtain a copy of the License at: - * opensource.org/licenses/BSD-3-Clause - * - ****************************************************************************** - */ - -/* Includes ------------------------------------------------------------------*/ -#include "stm32f0xx_hal.h" - -/** @addtogroup STM32F0xx_HAL_Driver - * @{ - */ - -/** @addtogroup RTC - * @brief RTC HAL module driver - * @{ - */ - -#ifdef HAL_RTC_MODULE_ENABLED - -/* Private typedef -----------------------------------------------------------*/ -/* Private define ------------------------------------------------------------*/ -/* Private macro -------------------------------------------------------------*/ -/* Private variables ---------------------------------------------------------*/ -/* Private function prototypes -----------------------------------------------*/ -/* Exported functions ---------------------------------------------------------*/ - -/** @addtogroup RTC_Exported_Functions - * @{ - */ - -/** @addtogroup RTC_Exported_Functions_Group1 - * @brief Initialization and Configuration functions - * -@verbatim - =============================================================================== - ##### Initialization and de-initialization functions ##### - =============================================================================== - [..] This section provides functions allowing to initialize and configure the - RTC Prescaler (Synchronous and Asynchronous), RTC Hour format, disable - RTC registers Write protection, enter and exit the RTC initialization mode, - RTC registers synchronization check and reference clock detection enable. - (#) The RTC Prescaler is programmed to generate the RTC 1Hz time base. - It is split into 2 programmable prescalers to minimize power consumption. - (++) A 7-bit asynchronous prescaler and a 15-bit synchronous prescaler. - (++) When both prescalers are used, it is recommended to configure the - asynchronous prescaler to a high value to minimize power consumption. - (#) All RTC registers are Write protected. Writing to the RTC registers - is enabled by writing a key into the Write Protection register, RTC_WPR. - (#) To configure the RTC Calendar, user application should enter - initialization mode. In this mode, the calendar counter is stopped - and its value can be updated. When the initialization sequence is - complete, the calendar restarts counting after 4 RTCCLK cycles. - (#) To read the calendar through the shadow registers after Calendar - initialization, calendar update or after wake-up from low power modes - the software must first clear the RSF flag. The software must then - wait until it is set again before reading the calendar, which means - that the calendar registers have been correctly copied into the - RTC_TR and RTC_DR shadow registers.The HAL_RTC_WaitForSynchro() function - implements the above software sequence (RSF clear and RSF check). - -@endverbatim - * @{ - */ - -/** - * @brief Initialize the RTC according to the specified parameters - * in the RTC_InitTypeDef structure and initialize the associated handle. - * @param hrtc RTC handle - * @retval HAL status - */ -HAL_StatusTypeDef HAL_RTC_Init(RTC_HandleTypeDef *hrtc) -{ - /* Check the RTC peripheral state */ - if (hrtc == NULL) - { - return HAL_ERROR; - } - - /* Check the parameters */ - assert_param(IS_RTC_ALL_INSTANCE(hrtc->Instance)); - assert_param(IS_RTC_HOUR_FORMAT(hrtc->Init.HourFormat)); - assert_param(IS_RTC_ASYNCH_PREDIV(hrtc->Init.AsynchPrediv)); - assert_param(IS_RTC_SYNCH_PREDIV(hrtc->Init.SynchPrediv)); - assert_param(IS_RTC_OUTPUT(hrtc->Init.OutPut)); - assert_param(IS_RTC_OUTPUT_POL(hrtc->Init.OutPutPolarity)); - assert_param(IS_RTC_OUTPUT_TYPE(hrtc->Init.OutPutType)); - -#if (USE_HAL_RTC_REGISTER_CALLBACKS == 1) - if (hrtc->State == HAL_RTC_STATE_RESET) - { - /* Allocate lock resource and initialize it */ - hrtc->Lock = HAL_UNLOCKED; - - hrtc->AlarmAEventCallback = HAL_RTC_AlarmAEventCallback; /* Legacy weak AlarmAEventCallback */ - hrtc->TimeStampEventCallback = HAL_RTCEx_TimeStampEventCallback; /* Legacy weak TimeStampEventCallback */ -#if defined(RTC_WAKEUP_SUPPORT) - hrtc->WakeUpTimerEventCallback = HAL_RTCEx_WakeUpTimerEventCallback; /* Legacy weak WakeUpTimerEventCallback */ -#endif /* RTC_WAKEUP_SUPPORT */ - hrtc->Tamper1EventCallback = HAL_RTCEx_Tamper1EventCallback; /* Legacy weak Tamper1EventCallback */ - hrtc->Tamper2EventCallback = HAL_RTCEx_Tamper2EventCallback; /* Legacy weak Tamper2EventCallback */ -#if defined(RTC_TAMPER3_SUPPORT) - hrtc->Tamper3EventCallback = HAL_RTCEx_Tamper3EventCallback; /* Legacy weak Tamper3EventCallback */ -#endif /* RTC_TAMPER3_SUPPORT */ - - if (hrtc->MspInitCallback == NULL) - { - hrtc->MspInitCallback = HAL_RTC_MspInit; - } - /* Init the low level hardware */ - hrtc->MspInitCallback(hrtc); - - if (hrtc->MspDeInitCallback == NULL) - { - hrtc->MspDeInitCallback = HAL_RTC_MspDeInit; - } - } -#else - if (hrtc->State == HAL_RTC_STATE_RESET) - { - /* Allocate lock resource and initialize it */ - hrtc->Lock = HAL_UNLOCKED; - - /* Initialize RTC MSP */ - HAL_RTC_MspInit(hrtc); - } -#endif /* (USE_HAL_RTC_REGISTER_CALLBACKS) */ - - /* Set RTC state */ - hrtc->State = HAL_RTC_STATE_BUSY; - - /* Disable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); - - /* Set Initialization mode */ - if (RTC_EnterInitMode(hrtc) != HAL_OK) - { - /* Enable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); - - /* Set RTC state */ - hrtc->State = HAL_RTC_STATE_ERROR; - - return HAL_ERROR; - } - else - { - /* Clear RTC_CR FMT, OSEL and POL Bits */ - hrtc->Instance->CR &= ((uint32_t)~(RTC_CR_FMT | RTC_CR_OSEL | RTC_CR_POL)); - /* Set RTC_CR register */ - hrtc->Instance->CR |= (uint32_t)(hrtc->Init.HourFormat | hrtc->Init.OutPut | hrtc->Init.OutPutPolarity); - - /* Configure the RTC PRER */ - hrtc->Instance->PRER = (uint32_t)(hrtc->Init.SynchPrediv); - hrtc->Instance->PRER |= (uint32_t)(hrtc->Init.AsynchPrediv << 16U); - - /* Exit Initialization mode */ - hrtc->Instance->ISR &= (uint32_t)~RTC_ISR_INIT; - - /* If CR_BYPSHAD bit = 0, wait for synchro else this check is not needed */ - if ((hrtc->Instance->CR & RTC_CR_BYPSHAD) == RESET) - { - if (HAL_RTC_WaitForSynchro(hrtc) != HAL_OK) - { - /* Enable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); - - hrtc->State = HAL_RTC_STATE_ERROR; - - return HAL_ERROR; - } - } - - hrtc->Instance->TAFCR &= (uint32_t)~RTC_TAFCR_ALARMOUTTYPE; - hrtc->Instance->TAFCR |= (uint32_t)(hrtc->Init.OutPutType); - - /* Enable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); - - /* Set RTC state */ - hrtc->State = HAL_RTC_STATE_READY; - - return HAL_OK; - } -} - -/** - * @brief DeInitialize the RTC peripheral. - * @param hrtc RTC handle - * @note This function doesn't reset the RTC Backup Data registers. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_RTC_DeInit(RTC_HandleTypeDef *hrtc) -{ -#if defined (STM32F030xC) || defined (STM32F070xB) || \ - defined (STM32F071xB) || defined (STM32F072xB) || defined (STM32F078xx) || \ - defined (STM32F091xC) || defined (STM32F098xx) - uint32_t tickstart = 0; -#endif /* defined (STM32F030xC) || defined (STM32F070xB) ||\ - defined (STM32F071xB) || defined (STM32F072xB) || defined (STM32F078xx) || \ - defined (STM32F091xC) || defined (STM32F098xx) ||*/ - - /* Check the parameters */ - assert_param(IS_RTC_ALL_INSTANCE(hrtc->Instance)); - - /* Set RTC state */ - hrtc->State = HAL_RTC_STATE_BUSY; - - /* Disable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); - - /* Set Initialization mode */ - if (RTC_EnterInitMode(hrtc) != HAL_OK) - { - /* Enable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); - - /* Set RTC state */ - hrtc->State = HAL_RTC_STATE_ERROR; - - return HAL_ERROR; - } - else - { - /* Reset TR, DR and CR registers */ - hrtc->Instance->TR = 0x00000000U; - hrtc->Instance->DR = 0x00002101U; - -#if defined (STM32F030xC) || defined (STM32F070xB) || \ - defined (STM32F071xB) || defined (STM32F072xB) || defined (STM32F078xx) || \ - defined (STM32F091xC) || defined (STM32F098xx) - /* Reset All CR bits except CR[2:0] */ - hrtc->Instance->CR &= 0x00000007U; - - tickstart = HAL_GetTick(); - - /* Wait till WUTWF flag is set and if Time out is reached exit */ - while (((hrtc->Instance->ISR) & RTC_ISR_WUTWF) == (uint32_t)RESET) - { - if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE) - { - /* Enable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); - - /* Set RTC state */ - hrtc->State = HAL_RTC_STATE_TIMEOUT; - - return HAL_TIMEOUT; - } - } -#endif /* defined (STM32F030xC) || defined (STM32F070xB) ||\ - defined (STM32F071xB) || defined (STM32F072xB) || defined (STM32F078xx) || \ - defined (STM32F091xC) || defined (STM32F098xx) ||*/ - - /* Reset all RTC CR register bits */ - hrtc->Instance->CR &= 0x00000000U; -#if defined (STM32F030xC) || defined (STM32F070xB) || \ - defined (STM32F071xB) || defined (STM32F072xB) || defined (STM32F078xx) || \ - defined (STM32F091xC) || defined (STM32F098xx) - hrtc->Instance->WUTR = 0x0000FFFFU; -#endif /* defined (STM32F030xC) || defined (STM32F070xB) ||\ - defined (STM32F071xB) || defined (STM32F072xB) || defined (STM32F078xx) || \ - defined (STM32F091xC) || defined (STM32F098xx) ||*/ - hrtc->Instance->PRER = 0x007F00FFU; - hrtc->Instance->ALRMAR = 0x00000000U; - hrtc->Instance->SHIFTR = 0x00000000U; - hrtc->Instance->CALR = 0x00000000U; - hrtc->Instance->ALRMASSR = 0x00000000U; - - /* Reset ISR register and exit initialization mode */ - hrtc->Instance->ISR = 0x00000000U; - - /* Reset Tamper and alternate functions configuration register */ - hrtc->Instance->TAFCR = 0x00000000; - - /* If RTC_CR_BYPSHAD bit = 0, wait for synchro else this check is not needed */ - if ((hrtc->Instance->CR & RTC_CR_BYPSHAD) == RESET) - { - if (HAL_RTC_WaitForSynchro(hrtc) != HAL_OK) - { - /* Enable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); - - hrtc->State = HAL_RTC_STATE_ERROR; - - return HAL_ERROR; - } - } - } - - /* Enable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); - -#if (USE_HAL_RTC_REGISTER_CALLBACKS == 1) - if (hrtc->MspDeInitCallback == NULL) - { - hrtc->MspDeInitCallback = HAL_RTC_MspDeInit; - } - - /* DeInit the low level hardware: CLOCK, NVIC.*/ - hrtc->MspDeInitCallback(hrtc); - -#else - /* De-Initialize RTC MSP */ - HAL_RTC_MspDeInit(hrtc); -#endif /* (USE_HAL_RTC_REGISTER_CALLBACKS) */ - - hrtc->State = HAL_RTC_STATE_RESET; - - /* Release Lock */ - __HAL_UNLOCK(hrtc); - - return HAL_OK; -} - -#if (USE_HAL_RTC_REGISTER_CALLBACKS == 1) -/** - * @brief Register a User RTC Callback - * To be used instead of the weak predefined callback - * @param hrtc RTC handle - * @param CallbackID ID of the callback to be registered - * This parameter can be one of the following values: - * @arg @ref HAL_RTC_ALARM_A_EVENT_CB_ID Alarm A Event Callback ID - * @arg @ref HAL_RTC_TIMESTAMP_EVENT_CB_ID TimeStamp Event Callback ID - * @arg @ref HAL_RTC_WAKEUPTIMER_EVENT_CB_ID WakeUp Timer Event Callback ID - * @arg @ref HAL_RTC_TAMPER1_EVENT_CB_ID Tamper 1 Callback ID - * @arg @ref HAL_RTC_TAMPER2_EVENT_CB_ID Tamper 2 Callback ID - * @arg @ref HAL_RTC_TAMPER3_EVENT_CB_ID Tamper 3 Callback ID - * @arg @ref HAL_RTC_MSPINIT_CB_ID Msp Init callback ID - * @arg @ref HAL_RTC_MSPDEINIT_CB_ID Msp DeInit callback ID - * @param pCallback pointer to the Callback function - * @retval HAL status - */ -HAL_StatusTypeDef HAL_RTC_RegisterCallback(RTC_HandleTypeDef *hrtc, HAL_RTC_CallbackIDTypeDef CallbackID, pRTC_CallbackTypeDef pCallback) -{ - HAL_StatusTypeDef status = HAL_OK; - - if (pCallback == NULL) - { - return HAL_ERROR; - } - - /* Process locked */ - __HAL_LOCK(hrtc); - - if (HAL_RTC_STATE_READY == hrtc->State) - { - switch (CallbackID) - { - case HAL_RTC_ALARM_A_EVENT_CB_ID : - hrtc->AlarmAEventCallback = pCallback; - break; - - case HAL_RTC_TIMESTAMP_EVENT_CB_ID : - hrtc->TimeStampEventCallback = pCallback; - break; - -#if defined(RTC_WAKEUP_SUPPORT) - case HAL_RTC_WAKEUPTIMER_EVENT_CB_ID : - hrtc->WakeUpTimerEventCallback = pCallback; - break; -#endif /* RTC_WAKEUP_SUPPORT */ - case HAL_RTC_TAMPER1_EVENT_CB_ID : - hrtc->Tamper1EventCallback = pCallback; - break; - - case HAL_RTC_TAMPER2_EVENT_CB_ID : - hrtc->Tamper2EventCallback = pCallback; - break; - -#if defined(RTC_TAMPER3_SUPPORT) - case HAL_RTC_TAMPER3_EVENT_CB_ID : - hrtc->Tamper3EventCallback = pCallback; - break; -#endif /* RTC_TAMPER3_SUPPORT */ - case HAL_RTC_MSPINIT_CB_ID : - hrtc->MspInitCallback = pCallback; - break; - - case HAL_RTC_MSPDEINIT_CB_ID : - hrtc->MspDeInitCallback = pCallback; - break; - - default : - /* Return error status */ - status = HAL_ERROR; - break; - } - } - else if (HAL_RTC_STATE_RESET == hrtc->State) - { - switch (CallbackID) - { - case HAL_RTC_MSPINIT_CB_ID : - hrtc->MspInitCallback = pCallback; - break; - - case HAL_RTC_MSPDEINIT_CB_ID : - hrtc->MspDeInitCallback = pCallback; - break; - - default : - /* Return error status */ - status = HAL_ERROR; - break; - } - } - else - { - /* Return error status */ - status = HAL_ERROR; - } - - /* Release Lock */ - __HAL_UNLOCK(hrtc); - - return status; -} - -/** - * @brief Unregister an RTC Callback - * RTC callabck is redirected to the weak predefined callback - * @param hrtc RTC handle - * @param CallbackID ID of the callback to be unregistered - * This parameter can be one of the following values: - * @arg @ref HAL_RTC_ALARM_A_EVENT_CB_ID Alarm A Event Callback ID - * @arg @ref HAL_RTC_TIMESTAMP_EVENT_CB_ID TimeStamp Event Callback ID - * @arg @ref HAL_RTC_WAKEUPTIMER_EVENT_CB_ID WakeUp Timer Event Callback ID - * @arg @ref HAL_RTC_TAMPER1_EVENT_CB_ID Tamper 1 Callback ID - * @arg @ref HAL_RTC_TAMPER2_EVENT_CB_ID Tamper 2 Callback ID - * @arg @ref HAL_RTC_TAMPER3_EVENT_CB_ID Tamper 3 Callback ID - * @arg @ref HAL_RTC_MSPINIT_CB_ID Msp Init callback ID - * @arg @ref HAL_RTC_MSPDEINIT_CB_ID Msp DeInit callback ID - * @retval HAL status - */ -HAL_StatusTypeDef HAL_RTC_UnRegisterCallback(RTC_HandleTypeDef *hrtc, HAL_RTC_CallbackIDTypeDef CallbackID) -{ - HAL_StatusTypeDef status = HAL_OK; - - /* Process locked */ - __HAL_LOCK(hrtc); - - if (HAL_RTC_STATE_READY == hrtc->State) - { - switch (CallbackID) - { - case HAL_RTC_ALARM_A_EVENT_CB_ID : - hrtc->AlarmAEventCallback = HAL_RTC_AlarmAEventCallback; /* Legacy weak AlarmAEventCallback */ - break; - - case HAL_RTC_TIMESTAMP_EVENT_CB_ID : - hrtc->TimeStampEventCallback = HAL_RTCEx_TimeStampEventCallback; /* Legacy weak TimeStampEventCallback */ - break; -#if defined(RTC_WAKEUP_SUPPORT) - case HAL_RTC_WAKEUPTIMER_EVENT_CB_ID : - hrtc->WakeUpTimerEventCallback = HAL_RTCEx_WakeUpTimerEventCallback; /* Legacy weak WakeUpTimerEventCallback */ - break; -#endif /* RTC_WAKEUP_SUPPORT */ - case HAL_RTC_TAMPER1_EVENT_CB_ID : - hrtc->Tamper1EventCallback = HAL_RTCEx_Tamper1EventCallback; /* Legacy weak Tamper1EventCallback */ - break; - - case HAL_RTC_TAMPER2_EVENT_CB_ID : - hrtc->Tamper2EventCallback = HAL_RTCEx_Tamper2EventCallback; /* Legacy weak Tamper2EventCallback */ - break; -#if defined( RTC_TAMPER3_SUPPORT) - case HAL_RTC_TAMPER3_EVENT_CB_ID : - hrtc->Tamper3EventCallback = HAL_RTCEx_Tamper3EventCallback; /* Legacy weak Tamper3EventCallback */ - break; -#endif /* RTC_TAMPER3_SUPPORT */ - case HAL_RTC_MSPINIT_CB_ID : - hrtc->MspInitCallback = HAL_RTC_MspInit; - break; - - case HAL_RTC_MSPDEINIT_CB_ID : - hrtc->MspDeInitCallback = HAL_RTC_MspDeInit; - break; - - default : - /* Return error status */ - status = HAL_ERROR; - break; - } - } - else if (HAL_RTC_STATE_RESET == hrtc->State) - { - switch (CallbackID) - { - case HAL_RTC_MSPINIT_CB_ID : - hrtc->MspInitCallback = HAL_RTC_MspInit; - break; - - case HAL_RTC_MSPDEINIT_CB_ID : - hrtc->MspDeInitCallback = HAL_RTC_MspDeInit; - break; - - default : - /* Return error status */ - status = HAL_ERROR; - break; - } - } - else - { - /* Return error status */ - status = HAL_ERROR; - } - - /* Release Lock */ - __HAL_UNLOCK(hrtc); - - return status; -} -#endif /* USE_HAL_RTC_REGISTER_CALLBACKS */ - -/** - * @brief Initialize the RTC MSP. - * @param hrtc RTC handle - * @retval None - */ -__weak void HAL_RTC_MspInit(RTC_HandleTypeDef *hrtc) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hrtc); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_RTC_MspInit could be implemented in the user file - */ -} - -/** - * @brief DeInitialize the RTC MSP. - * @param hrtc RTC handle - * @retval None - */ -__weak void HAL_RTC_MspDeInit(RTC_HandleTypeDef *hrtc) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hrtc); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_RTC_MspDeInit could be implemented in the user file - */ -} - -/** - * @} - */ - -/** @addtogroup RTC_Exported_Functions_Group2 - * @brief RTC Time and Date functions - * -@verbatim - =============================================================================== - ##### RTC Time and Date functions ##### - =============================================================================== - - [..] This section provides functions allowing to configure Time and Date features - -@endverbatim - * @{ - */ - -/** - * @brief Set RTC current time. - * @param hrtc RTC handle - * @param sTime Pointer to Time structure - * @param Format Specifies the format of the entered parameters. - * This parameter can be one of the following values: - * @arg RTC_FORMAT_BIN: Binary data format - * @arg RTC_FORMAT_BCD: BCD data format - * @retval HAL status - */ -HAL_StatusTypeDef HAL_RTC_SetTime(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTime, uint32_t Format) -{ - uint32_t tmpreg = 0U; - - /* Check the parameters */ - assert_param(IS_RTC_FORMAT(Format)); - assert_param(IS_RTC_DAYLIGHT_SAVING(sTime->DayLightSaving)); - assert_param(IS_RTC_STORE_OPERATION(sTime->StoreOperation)); - - /* Process Locked */ - __HAL_LOCK(hrtc); - - hrtc->State = HAL_RTC_STATE_BUSY; - - if (Format == RTC_FORMAT_BIN) - { - if ((hrtc->Instance->CR & RTC_CR_FMT) != (uint32_t)RESET) - { - assert_param(IS_RTC_HOUR12(sTime->Hours)); - assert_param(IS_RTC_HOURFORMAT12(sTime->TimeFormat)); - } - else - { - sTime->TimeFormat = 0x00U; - assert_param(IS_RTC_HOUR24(sTime->Hours)); - } - assert_param(IS_RTC_MINUTES(sTime->Minutes)); - assert_param(IS_RTC_SECONDS(sTime->Seconds)); - - tmpreg = (uint32_t)(((uint32_t)RTC_ByteToBcd2(sTime->Hours) << 16U) | \ - ((uint32_t)RTC_ByteToBcd2(sTime->Minutes) << 8U) | \ - ((uint32_t)RTC_ByteToBcd2(sTime->Seconds)) | \ - (((uint32_t)sTime->TimeFormat) << 16U)); - } - else - { - if ((hrtc->Instance->CR & RTC_CR_FMT) != (uint32_t)RESET) - { - assert_param(IS_RTC_HOUR12(RTC_Bcd2ToByte(sTime->Hours))); - assert_param(IS_RTC_HOURFORMAT12(sTime->TimeFormat)); - } - else - { - sTime->TimeFormat = 0x00U; - assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sTime->Hours))); - } - assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sTime->Minutes))); - assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sTime->Seconds))); - tmpreg = (((uint32_t)(sTime->Hours) << 16U) | \ - ((uint32_t)(sTime->Minutes) << 8U) | \ - ((uint32_t)sTime->Seconds) | \ - ((uint32_t)(sTime->TimeFormat) << 16U)); - } - - /* Disable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); - - /* Set Initialization mode */ - if (RTC_EnterInitMode(hrtc) != HAL_OK) - { - /* Enable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); - - /* Set RTC state */ - hrtc->State = HAL_RTC_STATE_ERROR; - - /* Process Unlocked */ - __HAL_UNLOCK(hrtc); - - return HAL_ERROR; - } - else - { - /* Set the RTC_TR register */ - hrtc->Instance->TR = (uint32_t)(tmpreg & RTC_TR_RESERVED_MASK); - - /* Clear the bits to be configured */ - hrtc->Instance->CR &= ((uint32_t)~RTC_CR_BKP); - - /* Configure the RTC_CR register */ - hrtc->Instance->CR |= (uint32_t)(sTime->DayLightSaving | sTime->StoreOperation); - - /* Exit Initialization mode */ - hrtc->Instance->ISR &= ((uint32_t)~RTC_ISR_INIT); - - /* If CR_BYPSHAD bit = 0, wait for synchro else this check is not needed */ - if ((hrtc->Instance->CR & RTC_CR_BYPSHAD) == RESET) - { - if (HAL_RTC_WaitForSynchro(hrtc) != HAL_OK) - { - /* Enable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); - - hrtc->State = HAL_RTC_STATE_ERROR; - - /* Process Unlocked */ - __HAL_UNLOCK(hrtc); - - return HAL_ERROR; - } - } - - /* Enable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); - - hrtc->State = HAL_RTC_STATE_READY; - - __HAL_UNLOCK(hrtc); - - return HAL_OK; - } -} - -/** - * @brief Get RTC current time. - * @param hrtc RTC handle - * @param sTime Pointer to Time structure with Hours, Minutes and Seconds fields returned - * with input format (BIN or BCD), also SubSeconds field returning the - * RTC_SSR register content and SecondFraction field the Synchronous pre-scaler - * factor to be used for second fraction ratio computation. - * @param Format Specifies the format of the entered parameters. - * This parameter can be one of the following values: - * @arg RTC_FORMAT_BIN: Binary data format - * @arg RTC_FORMAT_BCD: BCD data format - * @note You can use SubSeconds and SecondFraction (sTime structure fields returned) to convert SubSeconds - * value in second fraction ratio with time unit following generic formula: - * Second fraction ratio * time_unit= [(SecondFraction-SubSeconds)/(SecondFraction+1)] * time_unit - * This conversion can be performed only if no shift operation is pending (ie. SHFP=0) when PREDIV_S >= SS - * @note You must call HAL_RTC_GetDate() after HAL_RTC_GetTime() to unlock the values - * in the higher-order calendar shadow registers to ensure consistency between the time and date values. - * Reading RTC current time locks the values in calendar shadow registers until Current date is read - * to ensure consistency between the time and date values. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_RTC_GetTime(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTime, uint32_t Format) -{ - uint32_t tmpreg = 0; - - /* Check the parameters */ - assert_param(IS_RTC_FORMAT(Format)); - - /* Get subseconds structure field from the corresponding register*/ - sTime->SubSeconds = (uint32_t)(hrtc->Instance->SSR); - - /* Get SecondFraction structure field from the corresponding register field*/ - sTime->SecondFraction = (uint32_t)(hrtc->Instance->PRER & RTC_PRER_PREDIV_S); - - /* Get the TR register */ - tmpreg = (uint32_t)(hrtc->Instance->TR & RTC_TR_RESERVED_MASK); - - /* Fill the structure fields with the read parameters */ - sTime->Hours = (uint8_t)((tmpreg & (RTC_TR_HT | RTC_TR_HU)) >> 16U); - sTime->Minutes = (uint8_t)((tmpreg & (RTC_TR_MNT | RTC_TR_MNU)) >> 8U); - sTime->Seconds = (uint8_t)(tmpreg & (RTC_TR_ST | RTC_TR_SU)); - sTime->TimeFormat = (uint8_t)((tmpreg & (RTC_TR_PM)) >> 16U); - - /* Check the input parameters format */ - if (Format == RTC_FORMAT_BIN) - { - /* Convert the time structure parameters to Binary format */ - sTime->Hours = (uint8_t)RTC_Bcd2ToByte(sTime->Hours); - sTime->Minutes = (uint8_t)RTC_Bcd2ToByte(sTime->Minutes); - sTime->Seconds = (uint8_t)RTC_Bcd2ToByte(sTime->Seconds); - } - - return HAL_OK; -} - -/** - * @brief Set RTC current date. - * @param hrtc RTC handle - * @param sDate Pointer to date structure - * @param Format specifies the format of the entered parameters. - * This parameter can be one of the following values: - * @arg RTC_FORMAT_BIN: Binary data format - * @arg RTC_FORMAT_BCD: BCD data format - * @retval HAL status - */ -HAL_StatusTypeDef HAL_RTC_SetDate(RTC_HandleTypeDef *hrtc, RTC_DateTypeDef *sDate, uint32_t Format) -{ - uint32_t datetmpreg = 0U; - - /* Check the parameters */ - assert_param(IS_RTC_FORMAT(Format)); - - /* Process Locked */ - __HAL_LOCK(hrtc); - - hrtc->State = HAL_RTC_STATE_BUSY; - - if ((Format == RTC_FORMAT_BIN) && ((sDate->Month & 0x10U) == 0x10U)) - { - sDate->Month = (uint8_t)((sDate->Month & (uint8_t)~(0x10U)) + (uint8_t)0x0AU); - } - - assert_param(IS_RTC_WEEKDAY(sDate->WeekDay)); - - if (Format == RTC_FORMAT_BIN) - { - assert_param(IS_RTC_YEAR(sDate->Year)); - assert_param(IS_RTC_MONTH(sDate->Month)); - assert_param(IS_RTC_DATE(sDate->Date)); - - datetmpreg = (((uint32_t)RTC_ByteToBcd2(sDate->Year) << 16U) | \ - ((uint32_t)RTC_ByteToBcd2(sDate->Month) << 8U) | \ - ((uint32_t)RTC_ByteToBcd2(sDate->Date)) | \ - ((uint32_t)sDate->WeekDay << 13U)); - } - else - { - assert_param(IS_RTC_YEAR(RTC_Bcd2ToByte(sDate->Year))); - assert_param(IS_RTC_MONTH(RTC_Bcd2ToByte(sDate->Month))); - assert_param(IS_RTC_DATE(RTC_Bcd2ToByte(sDate->Date))); - - datetmpreg = ((((uint32_t)sDate->Year) << 16U) | \ - (((uint32_t)sDate->Month) << 8U) | \ - ((uint32_t)sDate->Date) | \ - (((uint32_t)sDate->WeekDay) << 13U)); - } - - /* Disable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); - - /* Set Initialization mode */ - if (RTC_EnterInitMode(hrtc) != HAL_OK) - { - /* Enable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); - - /* Set RTC state*/ - hrtc->State = HAL_RTC_STATE_ERROR; - - /* Process Unlocked */ - __HAL_UNLOCK(hrtc); - - return HAL_ERROR; - } - else - { - /* Set the RTC_DR register */ - hrtc->Instance->DR = (uint32_t)(datetmpreg & RTC_DR_RESERVED_MASK); - - /* Exit Initialization mode */ - hrtc->Instance->ISR &= ((uint32_t)~RTC_ISR_INIT); - - /* If CR_BYPSHAD bit = 0, wait for synchro else this check is not needed */ - if ((hrtc->Instance->CR & RTC_CR_BYPSHAD) == RESET) - { - if (HAL_RTC_WaitForSynchro(hrtc) != HAL_OK) - { - /* Enable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); - - hrtc->State = HAL_RTC_STATE_ERROR; - - /* Process Unlocked */ - __HAL_UNLOCK(hrtc); - - return HAL_ERROR; - } - } - - /* Enable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); - - hrtc->State = HAL_RTC_STATE_READY ; - - /* Process Unlocked */ - __HAL_UNLOCK(hrtc); - - return HAL_OK; - } -} - -/** - * @brief Get RTC current date. - * @param hrtc RTC handle - * @param sDate Pointer to Date structure - * @param Format Specifies the format of the entered parameters. - * This parameter can be one of the following values: - * @arg RTC_FORMAT_BIN : Binary data format - * @arg RTC_FORMAT_BCD : BCD data format - * @note You must call HAL_RTC_GetDate() after HAL_RTC_GetTime() to unlock the values - * in the higher-order calendar shadow registers to ensure consistency between the time and date values. - * Reading RTC current time locks the values in calendar shadow registers until Current date is read. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_RTC_GetDate(RTC_HandleTypeDef *hrtc, RTC_DateTypeDef *sDate, uint32_t Format) -{ - uint32_t datetmpreg = 0U; - - /* Check the parameters */ - assert_param(IS_RTC_FORMAT(Format)); - - /* Get the DR register */ - datetmpreg = (uint32_t)(hrtc->Instance->DR & RTC_DR_RESERVED_MASK); - - /* Fill the structure fields with the read parameters */ - sDate->Year = (uint8_t)((datetmpreg & (RTC_DR_YT | RTC_DR_YU)) >> 16U); - sDate->Month = (uint8_t)((datetmpreg & (RTC_DR_MT | RTC_DR_MU)) >> 8U); - sDate->Date = (uint8_t)(datetmpreg & (RTC_DR_DT | RTC_DR_DU)); - sDate->WeekDay = (uint8_t)((datetmpreg & (RTC_DR_WDU)) >> 13U); - - /* Check the input parameters format */ - if (Format == RTC_FORMAT_BIN) - { - /* Convert the date structure parameters to Binary format */ - sDate->Year = (uint8_t)RTC_Bcd2ToByte(sDate->Year); - sDate->Month = (uint8_t)RTC_Bcd2ToByte(sDate->Month); - sDate->Date = (uint8_t)RTC_Bcd2ToByte(sDate->Date); - } - return HAL_OK; -} - -/** - * @} - */ - -/** @addtogroup RTC_Exported_Functions_Group3 - * @brief RTC Alarm functions - * -@verbatim - =============================================================================== - ##### RTC Alarm functions ##### - =============================================================================== - - [..] This section provides functions allowing to configure Alarm feature - -@endverbatim - * @{ - */ -/** - * @brief Set the specified RTC Alarm. - * @param hrtc RTC handle - * @param sAlarm Pointer to Alarm structure - * @param Format Specifies the format of the entered parameters. - * This parameter can be one of the following values: - * @arg RTC_FORMAT_BIN: Binary data format - * @arg RTC_FORMAT_BCD: BCD data format - * @retval HAL status - */ -HAL_StatusTypeDef HAL_RTC_SetAlarm(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Format) -{ - uint32_t tickstart = 0U; - uint32_t tmpreg = 0U, subsecondtmpreg = 0U; - - /* Check the parameters */ - assert_param(IS_RTC_FORMAT(Format)); - assert_param(IS_RTC_ALARM(sAlarm->Alarm)); - assert_param(IS_RTC_ALARM_MASK(sAlarm->AlarmMask)); - assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel)); - assert_param(IS_RTC_ALARM_SUB_SECOND_VALUE(sAlarm->AlarmTime.SubSeconds)); - assert_param(IS_RTC_ALARM_SUB_SECOND_MASK(sAlarm->AlarmSubSecondMask)); - - /* Process Locked */ - __HAL_LOCK(hrtc); - - hrtc->State = HAL_RTC_STATE_BUSY; - - if (Format == RTC_FORMAT_BIN) - { - if ((hrtc->Instance->CR & RTC_CR_FMT) != (uint32_t)RESET) - { - assert_param(IS_RTC_HOUR12(sAlarm->AlarmTime.Hours)); - assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat)); - } - else - { - sAlarm->AlarmTime.TimeFormat = 0x00U; - assert_param(IS_RTC_HOUR24(sAlarm->AlarmTime.Hours)); - } - assert_param(IS_RTC_MINUTES(sAlarm->AlarmTime.Minutes)); - assert_param(IS_RTC_SECONDS(sAlarm->AlarmTime.Seconds)); - - if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE) - { - assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(sAlarm->AlarmDateWeekDay)); - } - else - { - assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(sAlarm->AlarmDateWeekDay)); - } - - tmpreg = (((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Hours) << 16U) | \ - ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Minutes) << 8U) | \ - ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Seconds)) | \ - ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << 16U) | \ - ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmDateWeekDay) << 24U) | \ - ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \ - ((uint32_t)sAlarm->AlarmMask)); - } - else - { - if ((hrtc->Instance->CR & RTC_CR_FMT) != (uint32_t)RESET) - { - assert_param(IS_RTC_HOUR12(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours))); - assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat)); - } - else - { - sAlarm->AlarmTime.TimeFormat = 0x00U; - assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours))); - } - - assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes))); - assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds))); - - if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE) - { - assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay))); - } - else - { - assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay))); - } - - tmpreg = (((uint32_t)(sAlarm->AlarmTime.Hours) << 16U) | \ - ((uint32_t)(sAlarm->AlarmTime.Minutes) << 8U) | \ - ((uint32_t) sAlarm->AlarmTime.Seconds) | \ - ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << 16U) | \ - ((uint32_t)(sAlarm->AlarmDateWeekDay) << 24U) | \ - ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \ - ((uint32_t)sAlarm->AlarmMask)); - } - - /* Configure the Alarm A Sub Second registers */ - subsecondtmpreg = (uint32_t)((uint32_t)(sAlarm->AlarmTime.SubSeconds) | (uint32_t)(sAlarm->AlarmSubSecondMask)); - - /* Disable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); - - /* Disable the Alarm A interrupt */ - __HAL_RTC_ALARMA_DISABLE(hrtc); - - /* In case of interrupt mode is used, the interrupt source must disabled */ - __HAL_RTC_ALARM_DISABLE_IT(hrtc, RTC_IT_ALRA); - - tickstart = HAL_GetTick(); - /* Wait till RTC ALRAWF flag is set and if Time out is reached exit */ - while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAWF) == RESET) - { - if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE) - { - /* Enable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); - - hrtc->State = HAL_RTC_STATE_TIMEOUT; - - /* Process Unlocked */ - __HAL_UNLOCK(hrtc); - - return HAL_TIMEOUT; - } - } - - hrtc->Instance->ALRMAR = (uint32_t)tmpreg; - /* Configure the Alarm A Sub Second register */ - hrtc->Instance->ALRMASSR = subsecondtmpreg; - /* Configure the Alarm state: Enable Alarm */ - __HAL_RTC_ALARMA_ENABLE(hrtc); - - /* Enable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); - - /* Change RTC state */ - hrtc->State = HAL_RTC_STATE_READY; - - /* Process Unlocked */ - __HAL_UNLOCK(hrtc); - - return HAL_OK; -} - -/** - * @brief Set the specified RTC Alarm with Interrupt. - * @param hrtc RTC handle - * @param sAlarm Pointer to Alarm structure - * @param Format Specifies the format of the entered parameters. - * This parameter can be one of the following values: - * @arg RTC_FORMAT_BIN: Binary data format - * @arg RTC_FORMAT_BCD: BCD data format - * @note The Alarm register can only be written when the corresponding Alarm - * is disabled (Use the HAL_RTC_DeactivateAlarm()). - * @note The HAL_RTC_SetTime() must be called before enabling the Alarm feature. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_RTC_SetAlarm_IT(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Format) -{ - uint32_t tickstart = 0U; - uint32_t tmpreg = 0U, subsecondtmpreg = 0U; - - /* Check the parameters */ - assert_param(IS_RTC_FORMAT(Format)); - assert_param(IS_RTC_ALARM(sAlarm->Alarm)); - assert_param(IS_RTC_ALARM_MASK(sAlarm->AlarmMask)); - assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel)); - assert_param(IS_RTC_ALARM_SUB_SECOND_VALUE(sAlarm->AlarmTime.SubSeconds)); - assert_param(IS_RTC_ALARM_SUB_SECOND_MASK(sAlarm->AlarmSubSecondMask)); - - /* Process Locked */ - __HAL_LOCK(hrtc); - - hrtc->State = HAL_RTC_STATE_BUSY; - - if (Format == RTC_FORMAT_BIN) - { - if ((hrtc->Instance->CR & RTC_CR_FMT) != (uint32_t)RESET) - { - assert_param(IS_RTC_HOUR12(sAlarm->AlarmTime.Hours)); - assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat)); - } - else - { - sAlarm->AlarmTime.TimeFormat = 0x00U; - assert_param(IS_RTC_HOUR24(sAlarm->AlarmTime.Hours)); - } - assert_param(IS_RTC_MINUTES(sAlarm->AlarmTime.Minutes)); - assert_param(IS_RTC_SECONDS(sAlarm->AlarmTime.Seconds)); - - if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE) - { - assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(sAlarm->AlarmDateWeekDay)); - } - else - { - assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(sAlarm->AlarmDateWeekDay)); - } - tmpreg = (((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Hours) << 16U) | \ - ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Minutes) << 8U) | \ - ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Seconds)) | \ - ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << 16U) | \ - ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmDateWeekDay) << 24U) | \ - ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \ - ((uint32_t)sAlarm->AlarmMask)); - } - else - { - if ((hrtc->Instance->CR & RTC_CR_FMT) != (uint32_t)RESET) - { - assert_param(IS_RTC_HOUR12(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours))); - assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat)); - } - else - { - sAlarm->AlarmTime.TimeFormat = 0x00U; - assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours))); - } - - assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes))); - assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds))); - - if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE) - { - assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay))); - } - else - { - assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay))); - } - tmpreg = (((uint32_t)(sAlarm->AlarmTime.Hours) << 16U) | \ - ((uint32_t)(sAlarm->AlarmTime.Minutes) << 8U) | \ - ((uint32_t) sAlarm->AlarmTime.Seconds) | \ - ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << 16U) | \ - ((uint32_t)(sAlarm->AlarmDateWeekDay) << 24U) | \ - ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \ - ((uint32_t)sAlarm->AlarmMask)); - } - /* Configure the Alarm A Sub Second registers */ - subsecondtmpreg = (uint32_t)((uint32_t)(sAlarm->AlarmTime.SubSeconds) | (uint32_t)(sAlarm->AlarmSubSecondMask)); - - /* Disable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); - - /* Disable the Alarm A interrupt */ - __HAL_RTC_ALARMA_DISABLE(hrtc); - - /* Clear flag alarm A */ - __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF); - - tickstart = HAL_GetTick(); - - /* Wait till RTC ALRAWF flag is set and if Time out is reached exit */ - while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAWF) == RESET) - { - if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE) - { - /* Enable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); - - hrtc->State = HAL_RTC_STATE_TIMEOUT; - - /* Process Unlocked */ - __HAL_UNLOCK(hrtc); - - return HAL_TIMEOUT; - } - } - - hrtc->Instance->ALRMAR = (uint32_t)tmpreg; - /* Configure the Alarm A Sub Second register */ - hrtc->Instance->ALRMASSR = subsecondtmpreg; - /* Configure the Alarm state: Enable Alarm */ - __HAL_RTC_ALARMA_ENABLE(hrtc); - /* Configure the Alarm interrupt */ - __HAL_RTC_ALARM_ENABLE_IT(hrtc, RTC_IT_ALRA); - - /* RTC Alarm Interrupt Configuration: EXTI configuration */ - __HAL_RTC_ALARM_EXTI_ENABLE_IT(); - - __HAL_RTC_ALARM_EXTI_ENABLE_RISING_EDGE(); - - /* Enable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); - - hrtc->State = HAL_RTC_STATE_READY; - - /* Process Unlocked */ - __HAL_UNLOCK(hrtc); - - return HAL_OK; -} - -/** - * @brief Deactivate the specified RTC Alarm. - * @param hrtc RTC handle - * @param Alarm Specifies the Alarm. - * This parameter can be one of the following values: - * @arg RTC_ALARM_A: AlarmA - * @retval HAL status - */ -HAL_StatusTypeDef HAL_RTC_DeactivateAlarm(RTC_HandleTypeDef *hrtc, uint32_t Alarm) -{ - uint32_t tickstart = 0U; - - /* Check the parameters */ - assert_param(IS_RTC_ALARM(Alarm)); - - /* Process Locked */ - __HAL_LOCK(hrtc); - - hrtc->State = HAL_RTC_STATE_BUSY; - - /* Disable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); - - __HAL_RTC_ALARMA_DISABLE(hrtc); - - /* In case of interrupt mode is used, the interrupt source must disabled */ - __HAL_RTC_ALARM_DISABLE_IT(hrtc, RTC_IT_ALRA); - - tickstart = HAL_GetTick(); - - /* Wait till RTC ALRxWF flag is set and if Time out is reached exit */ - while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAWF) == RESET) - { - if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE) - { - /* Enable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); - - hrtc->State = HAL_RTC_STATE_TIMEOUT; - - /* Process Unlocked */ - __HAL_UNLOCK(hrtc); - - return HAL_TIMEOUT; - } - } - /* Enable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); - - hrtc->State = HAL_RTC_STATE_READY; - - /* Process Unlocked */ - __HAL_UNLOCK(hrtc); - - return HAL_OK; -} - -/** - * @brief Get the RTC Alarm value and masks. - * @param hrtc RTC handle - * @param sAlarm Pointer to Date structure - * @param Alarm Specifies the Alarm. - * This parameter can be one of the following values: - * @arg RTC_ALARM_A: AlarmA - * @param Format Specifies the format of the entered parameters. - * This parameter can be one of the following values: - * @arg RTC_FORMAT_BIN: Binary data format - * @arg RTC_FORMAT_BCD: BCD data format - * @retval HAL status - */ -HAL_StatusTypeDef HAL_RTC_GetAlarm(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Alarm, uint32_t Format) -{ - uint32_t tmpreg = 0U, subsecondtmpreg = 0U; - - /* Check the parameters */ - assert_param(IS_RTC_FORMAT(Format)); - assert_param(IS_RTC_ALARM(Alarm)); - - sAlarm->Alarm = RTC_ALARM_A; - - tmpreg = (uint32_t)(hrtc->Instance->ALRMAR); - subsecondtmpreg = (uint32_t)((hrtc->Instance->ALRMASSR) & RTC_ALRMASSR_SS); - - /* Fill the structure with the read parameters */ - sAlarm->AlarmTime.Hours = (uint32_t)((tmpreg & (RTC_ALRMAR_HT | RTC_ALRMAR_HU)) >> 16U); - sAlarm->AlarmTime.Minutes = (uint32_t)((tmpreg & (RTC_ALRMAR_MNT | RTC_ALRMAR_MNU)) >> 8U); - sAlarm->AlarmTime.Seconds = (uint32_t)(tmpreg & (RTC_ALRMAR_ST | RTC_ALRMAR_SU)); - sAlarm->AlarmTime.TimeFormat = (uint32_t)((tmpreg & RTC_ALRMAR_PM) >> 16U); - sAlarm->AlarmTime.SubSeconds = (uint32_t) subsecondtmpreg; - sAlarm->AlarmDateWeekDay = (uint32_t)((tmpreg & (RTC_ALRMAR_DT | RTC_ALRMAR_DU)) >> 24U); - sAlarm->AlarmDateWeekDaySel = (uint32_t)(tmpreg & RTC_ALRMAR_WDSEL); - sAlarm->AlarmMask = (uint32_t)(tmpreg & RTC_ALARMMASK_ALL); - - if (Format == RTC_FORMAT_BIN) - { - sAlarm->AlarmTime.Hours = RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours); - sAlarm->AlarmTime.Minutes = RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes); - sAlarm->AlarmTime.Seconds = RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds); - sAlarm->AlarmDateWeekDay = RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay); - } - - return HAL_OK; -} - -/** - * @brief Handle Alarm interrupt request. - * @param hrtc RTC handle - * @retval None - */ -void HAL_RTC_AlarmIRQHandler(RTC_HandleTypeDef *hrtc) -{ - /* Get the AlarmA interrupt source enable status */ - if (__HAL_RTC_ALARM_GET_IT_SOURCE(hrtc, RTC_IT_ALRA) != RESET) - { - /* Get the pending status of the AlarmA Interrupt */ - if (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAF) != RESET) - { - /* AlarmA callback */ -#if (USE_HAL_RTC_REGISTER_CALLBACKS == 1) - hrtc->AlarmAEventCallback(hrtc); -#else - HAL_RTC_AlarmAEventCallback(hrtc); -#endif /* USE_HAL_RTC_REGISTER_CALLBACKS */ - - /* Clear the AlarmA interrupt pending bit */ - __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF); - } - } - - /* Clear the EXTI's line Flag for RTC Alarm */ - __HAL_RTC_ALARM_EXTI_CLEAR_FLAG(); - - /* Change RTC state */ - hrtc->State = HAL_RTC_STATE_READY; -} - -/** - * @brief Alarm A callback. - * @param hrtc RTC handle - * @retval None - */ -__weak void HAL_RTC_AlarmAEventCallback(RTC_HandleTypeDef *hrtc) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hrtc); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_RTC_AlarmAEventCallback could be implemented in the user file - */ -} - -/** - * @brief Handle AlarmA Polling request. - * @param hrtc RTC handle - * @param Timeout Timeout duration - * @retval HAL status - */ -HAL_StatusTypeDef HAL_RTC_PollForAlarmAEvent(RTC_HandleTypeDef *hrtc, uint32_t Timeout) -{ - - uint32_t tickstart = HAL_GetTick(); - - while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAF) == RESET) - { - if (Timeout != HAL_MAX_DELAY) - { - if ((Timeout == 0U) || ((HAL_GetTick() - tickstart) > Timeout)) - { - hrtc->State = HAL_RTC_STATE_TIMEOUT; - return HAL_TIMEOUT; - } - } - } - - /* Clear the Alarm interrupt pending bit */ - __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF); - - /* Change RTC state */ - hrtc->State = HAL_RTC_STATE_READY; - - return HAL_OK; -} - -/** - * @} - */ - -/** @addtogroup RTC_Exported_Functions_Group4 - * @brief Peripheral Control functions - * -@verbatim - =============================================================================== - ##### Peripheral Control functions ##### - =============================================================================== - [..] - This subsection provides functions allowing to - (+) Wait for RTC Time and Date Synchronization - -@endverbatim - * @{ - */ - -/** - * @brief Wait until the RTC Time and Date registers (RTC_TR and RTC_DR) are - * synchronized with RTC APB clock. - * @note The RTC Resynchronization mode is write protected, use the - * __HAL_RTC_WRITEPROTECTION_DISABLE() before calling this function. - * @note To read the calendar through the shadow registers after Calendar - * initialization, calendar update or after wakeup from low power modes - * the software must first clear the RSF flag. - * The software must then wait until it is set again before reading - * the calendar, which means that the calendar registers have been - * correctly copied into the RTC_TR and RTC_DR shadow registers. - * @param hrtc RTC handle - * @retval HAL status - */ -HAL_StatusTypeDef HAL_RTC_WaitForSynchro(RTC_HandleTypeDef *hrtc) -{ - uint32_t tickstart = 0U; - - /* Clear RSF flag */ - hrtc->Instance->ISR &= (uint32_t)RTC_RSF_MASK; - - tickstart = HAL_GetTick(); - - /* Wait the registers to be synchronised */ - while ((hrtc->Instance->ISR & RTC_ISR_RSF) == (uint32_t)RESET) - { - if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE) - { - return HAL_TIMEOUT; - } - } - - return HAL_OK; -} - -/** - * @} - */ - -/** @addtogroup RTC_Exported_Functions_Group5 - * @brief Peripheral State functions - * -@verbatim - =============================================================================== - ##### Peripheral State functions ##### - =============================================================================== - [..] - This subsection provides functions allowing to - (+) Get RTC state - -@endverbatim - * @{ - */ -/** - * @brief Return the RTC handle state. - * @param hrtc RTC handle - * @retval HAL state - */ -HAL_RTCStateTypeDef HAL_RTC_GetState(RTC_HandleTypeDef *hrtc) -{ - /* Return RTC handle state */ - return hrtc->State; -} - -/** - * @} - */ - -/** - * @} - */ - -/** @addtogroup RTC_Private_Functions - * @{ - */ -/** - * @brief Enter the RTC Initialization mode. - * @note The RTC Initialization mode is write protected, use the - * __HAL_RTC_WRITEPROTECTION_DISABLE() before calling this function. - * @param hrtc RTC handle - * @retval HAL status - */ -HAL_StatusTypeDef RTC_EnterInitMode(RTC_HandleTypeDef *hrtc) -{ - uint32_t tickstart = 0U; - - /* Check if the Initialization mode is set */ - if ((hrtc->Instance->ISR & RTC_ISR_INITF) == (uint32_t)RESET) - { - /* Set the Initialization mode */ - hrtc->Instance->ISR = (uint32_t)RTC_INIT_MASK; - - tickstart = HAL_GetTick(); - - /* Wait till RTC is in INIT state and if Time out is reached exit */ - while ((hrtc->Instance->ISR & RTC_ISR_INITF) == (uint32_t)RESET) - { - if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE) - { - return HAL_TIMEOUT; - } - } - } - - return HAL_OK; -} - - -/** - * @brief Convert a 2 digit decimal to BCD format. - * @param Value Byte to be converted - * @retval Converted byte - */ -uint8_t RTC_ByteToBcd2(uint8_t Value) -{ - uint32_t bcdhigh = 0U; - - while (Value >= 10U) - { - bcdhigh++; - Value -= 10U; - } - - return ((uint8_t)(bcdhigh << 4U) | Value); -} - -/** - * @brief Convert from 2 digit BCD to Binary. - * @param Value BCD value to be converted - * @retval Converted word - */ -uint8_t RTC_Bcd2ToByte(uint8_t Value) -{ - uint32_t tmp = 0U; - tmp = ((uint8_t)(Value & (uint8_t)0xF0U) >> (uint8_t)0x4U) * 10U; - return (tmp + (Value & (uint8_t)0x0FU)); -} -/** - * @} - */ - -#endif /* HAL_RTC_MODULE_ENABLED */ - -/** - * @} - */ - - -/** - * @} - */ - -/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_rtc_ex.c b/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_rtc_ex.c deleted file mode 100644 index 59888c1..0000000 --- a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_rtc_ex.c +++ /dev/null @@ -1,1600 +0,0 @@ -/** - ****************************************************************************** - * @file stm32f0xx_hal_rtc_ex.c - * @author MCD Application Team - * @brief Extended RTC HAL module driver. - * This file provides firmware functions to manage the following - * functionalities of the Real Time Clock (RTC) Extended peripheral: - * + RTC Time Stamp functions - * + RTC Tamper functions - * + RTC Wake-up functions - * + Extended Control functions - * + Extended RTC features functions - * - @verbatim - ============================================================================== - ##### How to use this driver ##### - ============================================================================== - [..] - (+) Enable the RTC domain access. - (+) Configure the RTC Prescaler (Asynchronous and Synchronous) and RTC hour - format using the HAL_RTC_Init() function. - - *** RTC Wake-up configuration *** - ================================ - [..] - (+) To configure the RTC Wakeup Clock source and Counter use the HAL_RTCEx_SetWakeUpTimer() - function. You can also configure the RTC Wakeup timer with interrupt mode - using the HAL_RTCEx_SetWakeUpTimer_IT() function. - (+) To read the RTC WakeUp Counter register, use the HAL_RTCEx_GetWakeUpTimer() - function. - (@) Not available on F030x4/x6/x8 and F070x6 - - *** TimeStamp configuration *** - =============================== - [..] - (+) Configure the RTC_AF trigger and enable the RTC TimeStamp using the - HAL_RTCEx_SetTimeStamp() function. You can also configure the RTC TimeStamp with - interrupt mode using the HAL_RTCEx_SetTimeStamp_IT() function. - (+) To read the RTC TimeStamp Time and Date register, use the HAL_RTCEx_GetTimeStamp() - function. - - *** Tamper configuration *** - ============================ - [..] - (+) Enable the RTC Tamper and configure the Tamper filter count, trigger Edge - or Level according to the Tamper filter (if equal to 0 Edge else Level) - value, sampling frequency, precharge or discharge and Pull-UP using the - HAL_RTCEx_SetTamper() function. You can configure RTC Tamper in interrupt - mode using HAL_RTCEx_SetTamper_IT() function. - - *** Backup Data Registers configuration *** - =========================================== - [..] - (+) To write to the RTC Backup Data registers, use the HAL_RTCEx_BKUPWrite() - function. - (+) To read the RTC Backup Data registers, use the HAL_RTCEx_BKUPRead() - function. - (@) Not available on F030x6/x8/xC and F070x6/xB (F0xx Value Line devices) - - - @endverbatim - ****************************************************************************** - * @attention - * - *

© Copyright (c) 2016 STMicroelectronics. - * All rights reserved.

- * - * This software component is licensed by ST under BSD 3-Clause license, - * the "License"; You may not use this file except in compliance with the - * License. You may obtain a copy of the License at: - * opensource.org/licenses/BSD-3-Clause - * - ****************************************************************************** - */ - -/* Includes ------------------------------------------------------------------*/ -#include "stm32f0xx_hal.h" - -/** @addtogroup STM32F0xx_HAL_Driver - * @{ - */ - - - -/** @addtogroup RTCEx - * @brief RTC Extended HAL module driver - * @{ - */ - -#ifdef HAL_RTC_MODULE_ENABLED - -/* Private typedef -----------------------------------------------------------*/ -/* Private define ------------------------------------------------------------*/ -/* Private macro -------------------------------------------------------------*/ -/* Private variables ---------------------------------------------------------*/ -/* Private function prototypes -----------------------------------------------*/ -/* Exported functions ---------------------------------------------------------*/ - -/** @addtogroup RTCEx_Exported_Functions - * @{ - */ - - -/** @addtogroup RTCEx_Exported_Functions_Group1 - * @brief RTC TimeStamp and Tamper functions - * -@verbatim - =============================================================================== - ##### RTC TimeStamp and Tamper functions ##### - =============================================================================== - - [..] This section provides functions allowing to configure TimeStamp feature - -@endverbatim - * @{ - */ - -/** - * @brief Set TimeStamp. - * @note This API must be called before enabling the TimeStamp feature. - * @param hrtc RTC handle - * @param TimeStampEdge Specifies the pin edge on which the TimeStamp is - * activated. - * This parameter can be one of the following values: - * @arg RTC_TIMESTAMPEDGE_RISING: the Time stamp event occurs on the - * rising edge of the related pin. - * @arg RTC_TIMESTAMPEDGE_FALLING: the Time stamp event occurs on the - * falling edge of the related pin. - * @param RTC_TimeStampPin specifies the RTC TimeStamp Pin. - * This parameter can be one of the following values: - * @arg RTC_TIMESTAMPPIN_DEFAULT: PC13 is selected as RTC TimeStamp Pin. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_RTCEx_SetTimeStamp(RTC_HandleTypeDef *hrtc, uint32_t TimeStampEdge, uint32_t RTC_TimeStampPin) -{ - uint32_t tmpreg = 0U; - - /* Check the parameters */ - assert_param(IS_TIMESTAMP_EDGE(TimeStampEdge)); - assert_param(IS_RTC_TIMESTAMP_PIN(RTC_TimeStampPin)); - - /* Process Locked */ - __HAL_LOCK(hrtc); - - hrtc->State = HAL_RTC_STATE_BUSY; - - /* Get the RTC_CR register and clear the bits to be configured */ - tmpreg = (uint32_t)(hrtc->Instance->CR & (uint32_t)~(RTC_CR_TSEDGE | RTC_CR_TSE)); - - tmpreg |= TimeStampEdge; - - /* Disable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); - - /* Configure the Time Stamp TSEDGE and Enable bits */ - hrtc->Instance->CR = (uint32_t)tmpreg; - - __HAL_RTC_TIMESTAMP_ENABLE(hrtc); - - /* Enable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); - - /* Change RTC state */ - hrtc->State = HAL_RTC_STATE_READY; - - /* Process Unlocked */ - __HAL_UNLOCK(hrtc); - - return HAL_OK; -} - -/** - * @brief Set TimeStamp with Interrupt. - * @param hrtc RTC handle - * @note This API must be called before enabling the TimeStamp feature. - * @param TimeStampEdge Specifies the pin edge on which the TimeStamp is - * activated. - * This parameter can be one of the following values: - * @arg RTC_TIMESTAMPEDGE_RISING: the Time stamp event occurs on the - * rising edge of the related pin. - * @arg RTC_TIMESTAMPEDGE_FALLING: the Time stamp event occurs on the - * falling edge of the related pin. - * @param RTC_TimeStampPin Specifies the RTC TimeStamp Pin. - * This parameter can be one of the following values: - * @arg RTC_TIMESTAMPPIN_DEFAULT: PC13 is selected as RTC TimeStamp Pin. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_RTCEx_SetTimeStamp_IT(RTC_HandleTypeDef *hrtc, uint32_t TimeStampEdge, uint32_t RTC_TimeStampPin) -{ - uint32_t tmpreg = 0U; - - /* Check the parameters */ - assert_param(IS_TIMESTAMP_EDGE(TimeStampEdge)); - assert_param(IS_RTC_TIMESTAMP_PIN(RTC_TimeStampPin)); - - /* Process Locked */ - __HAL_LOCK(hrtc); - - hrtc->State = HAL_RTC_STATE_BUSY; - - /* Get the RTC_CR register and clear the bits to be configured */ - tmpreg = (uint32_t)(hrtc->Instance->CR & (uint32_t)~(RTC_CR_TSEDGE | RTC_CR_TSE)); - - tmpreg |= TimeStampEdge; - - /* Disable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); - - /* Configure the Time Stamp TSEDGE and Enable bits */ - hrtc->Instance->CR = (uint32_t)tmpreg; - - __HAL_RTC_TIMESTAMP_ENABLE(hrtc); - - /* Enable IT timestamp */ - __HAL_RTC_TIMESTAMP_ENABLE_IT(hrtc, RTC_IT_TS); - - /* RTC timestamp Interrupt Configuration: EXTI configuration */ - __HAL_RTC_TAMPER_TIMESTAMP_EXTI_ENABLE_IT(); - - __HAL_RTC_TAMPER_TIMESTAMP_EXTI_ENABLE_RISING_EDGE(); - - /* Enable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); - - hrtc->State = HAL_RTC_STATE_READY; - - /* Process Unlocked */ - __HAL_UNLOCK(hrtc); - - return HAL_OK; -} - -/** - * @brief Deactivate TimeStamp. - * @param hrtc RTC handle - * @retval HAL status - */ -HAL_StatusTypeDef HAL_RTCEx_DeactivateTimeStamp(RTC_HandleTypeDef *hrtc) -{ - uint32_t tmpreg = 0U; - - /* Process Locked */ - __HAL_LOCK(hrtc); - - hrtc->State = HAL_RTC_STATE_BUSY; - - /* Disable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); - - /* In case of interrupt mode is used, the interrupt source must disabled */ - __HAL_RTC_TIMESTAMP_DISABLE_IT(hrtc, RTC_IT_TS); - - /* Get the RTC_CR register and clear the bits to be configured */ - tmpreg = (uint32_t)(hrtc->Instance->CR & (uint32_t)~(RTC_CR_TSEDGE | RTC_CR_TSE)); - - /* Configure the Time Stamp TSEDGE and Enable bits */ - hrtc->Instance->CR = (uint32_t)tmpreg; - - /* Enable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); - - hrtc->State = HAL_RTC_STATE_READY; - - /* Process Unlocked */ - __HAL_UNLOCK(hrtc); - - return HAL_OK; -} - -/** - * @brief Get the RTC TimeStamp value. - * @param hrtc RTC handle - - * @param sTimeStamp Pointer to Time structure - * @param sTimeStampDate Pointer to Date structure - * @param Format specifies the format of the entered parameters. - * This parameter can be one of the following values: - * @arg RTC_FORMAT_BIN: Binary data format - * @arg RTC_FORMAT_BCD: BCD data format - * @retval HAL status - */ -HAL_StatusTypeDef HAL_RTCEx_GetTimeStamp(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTimeStamp, RTC_DateTypeDef *sTimeStampDate, uint32_t Format) -{ - uint32_t tmptime = 0U, tmpdate = 0U; - - /* Check the parameters */ - assert_param(IS_RTC_FORMAT(Format)); - - /* Get the TimeStamp time and date registers values */ - tmptime = (uint32_t)(hrtc->Instance->TSTR & RTC_TR_RESERVED_MASK); - tmpdate = (uint32_t)(hrtc->Instance->TSDR & RTC_DR_RESERVED_MASK); - - /* Fill the Time structure fields with the read parameters */ - sTimeStamp->Hours = (uint8_t)((tmptime & (RTC_TR_HT | RTC_TR_HU)) >> 16U); - sTimeStamp->Minutes = (uint8_t)((tmptime & (RTC_TR_MNT | RTC_TR_MNU)) >> 8U); - sTimeStamp->Seconds = (uint8_t)(tmptime & (RTC_TR_ST | RTC_TR_SU)); - sTimeStamp->TimeFormat = (uint8_t)((tmptime & (RTC_TR_PM)) >> 16U); - sTimeStamp->SubSeconds = (uint32_t) hrtc->Instance->TSSSR; - - /* Fill the Date structure fields with the read parameters */ - sTimeStampDate->Year = 0; - sTimeStampDate->Month = (uint8_t)((tmpdate & (RTC_DR_MT | RTC_DR_MU)) >> 8U); - sTimeStampDate->Date = (uint8_t)(tmpdate & (RTC_DR_DT | RTC_DR_DU)); - sTimeStampDate->WeekDay = (uint8_t)((tmpdate & (RTC_DR_WDU)) >> 13U); - - /* Check the input parameters format */ - if (Format == RTC_FORMAT_BIN) - { - /* Convert the TimeStamp structure parameters to Binary format */ - sTimeStamp->Hours = (uint8_t)RTC_Bcd2ToByte(sTimeStamp->Hours); - sTimeStamp->Minutes = (uint8_t)RTC_Bcd2ToByte(sTimeStamp->Minutes); - sTimeStamp->Seconds = (uint8_t)RTC_Bcd2ToByte(sTimeStamp->Seconds); - - /* Convert the DateTimeStamp structure parameters to Binary format */ - sTimeStampDate->Month = (uint8_t)RTC_Bcd2ToByte(sTimeStampDate->Month); - sTimeStampDate->Date = (uint8_t)RTC_Bcd2ToByte(sTimeStampDate->Date); - sTimeStampDate->WeekDay = (uint8_t)RTC_Bcd2ToByte(sTimeStampDate->WeekDay); - } - - /* Clear the TIMESTAMP Flag */ - __HAL_RTC_TIMESTAMP_CLEAR_FLAG(hrtc, RTC_FLAG_TSF); - - return HAL_OK; -} - -/** - * @brief Set Tamper - * @note By calling this API we disable the tamper interrupt for all tampers. - * @param hrtc RTC handle - * @param sTamper Pointer to Tamper Structure. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_RTCEx_SetTamper(RTC_HandleTypeDef *hrtc, RTC_TamperTypeDef *sTamper) -{ - uint32_t tmpreg = 0U; - - /* Check the parameters */ - assert_param(IS_RTC_TAMPER(sTamper->Tamper)); - assert_param(IS_RTC_TAMPER_TRIGGER(sTamper->Trigger)); - assert_param(IS_RTC_TAMPER_FILTER(sTamper->Filter)); - assert_param(IS_RTC_TAMPER_SAMPLING_FREQ(sTamper->SamplingFrequency)); - assert_param(IS_RTC_TAMPER_PRECHARGE_DURATION(sTamper->PrechargeDuration)); - assert_param(IS_RTC_TAMPER_PULLUP_STATE(sTamper->TamperPullUp)); - assert_param(IS_RTC_TAMPER_TIMESTAMPONTAMPER_DETECTION(sTamper->TimeStampOnTamperDetection)); - - /* Process Locked */ - __HAL_LOCK(hrtc); - - hrtc->State = HAL_RTC_STATE_BUSY; - - if (sTamper->Trigger != RTC_TAMPERTRIGGER_RISINGEDGE) - { - sTamper->Trigger = (uint32_t)(sTamper->Tamper << 1U); - } - - tmpreg = ((uint32_t)sTamper->Tamper | (uint32_t)sTamper->Trigger | (uint32_t)sTamper->Filter | \ - (uint32_t)sTamper->SamplingFrequency | (uint32_t)sTamper->PrechargeDuration | \ - (uint32_t)sTamper->TamperPullUp | sTamper->TimeStampOnTamperDetection); - - hrtc->Instance->TAFCR &= (uint32_t)~((uint32_t)sTamper->Tamper | (uint32_t)(sTamper->Tamper << 1U) | (uint32_t)RTC_TAFCR_TAMPTS | \ - (uint32_t)RTC_TAFCR_TAMPFREQ | (uint32_t)RTC_TAFCR_TAMPFLT | (uint32_t)RTC_TAFCR_TAMPPRCH | \ - (uint32_t)RTC_TAFCR_TAMPPUDIS | (uint32_t)RTC_TAFCR_TAMPIE); - - hrtc->Instance->TAFCR |= tmpreg; - - hrtc->State = HAL_RTC_STATE_READY; - - /* Process Unlocked */ - __HAL_UNLOCK(hrtc); - - return HAL_OK; -} - -/** - * @brief Sets Tamper with interrupt. - * @note By calling this API we force the tamper interrupt for all tampers. - * @param hrtc pointer to a RTC_HandleTypeDef structure that contains - * the configuration information for RTC. - * @param sTamper Pointer to RTC Tamper. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_RTCEx_SetTamper_IT(RTC_HandleTypeDef *hrtc, RTC_TamperTypeDef *sTamper) -{ - uint32_t tmpreg = 0U; - - /* Check the parameters */ - assert_param(IS_RTC_TAMPER(sTamper->Tamper)); - assert_param(IS_RTC_TAMPER_TRIGGER(sTamper->Trigger)); - assert_param(IS_RTC_TAMPER_FILTER(sTamper->Filter)); - assert_param(IS_RTC_TAMPER_SAMPLING_FREQ(sTamper->SamplingFrequency)); - assert_param(IS_RTC_TAMPER_PRECHARGE_DURATION(sTamper->PrechargeDuration)); - assert_param(IS_RTC_TAMPER_PULLUP_STATE(sTamper->TamperPullUp)); - assert_param(IS_RTC_TAMPER_TIMESTAMPONTAMPER_DETECTION(sTamper->TimeStampOnTamperDetection)); - - /* Process Locked */ - __HAL_LOCK(hrtc); - - hrtc->State = HAL_RTC_STATE_BUSY; - - /* Configure the tamper trigger */ - if (sTamper->Trigger != RTC_TAMPERTRIGGER_RISINGEDGE) - { - sTamper->Trigger = (uint32_t)(sTamper->Tamper << 1U); - } - - tmpreg = ((uint32_t)sTamper->Tamper | (uint32_t)sTamper->Trigger | (uint32_t)sTamper->Filter | \ - (uint32_t)sTamper->SamplingFrequency | (uint32_t)sTamper->PrechargeDuration | \ - (uint32_t)sTamper->TamperPullUp | sTamper->TimeStampOnTamperDetection); - - hrtc->Instance->TAFCR &= (uint32_t)~((uint32_t)sTamper->Tamper | (uint32_t)(sTamper->Tamper << 1U) | (uint32_t)RTC_TAFCR_TAMPTS | \ - (uint32_t)RTC_TAFCR_TAMPFREQ | (uint32_t)RTC_TAFCR_TAMPFLT | (uint32_t)RTC_TAFCR_TAMPPRCH | \ - (uint32_t)RTC_TAFCR_TAMPPUDIS); - - hrtc->Instance->TAFCR |= tmpreg; - - /* Configure the Tamper Interrupt in the RTC_TAFCR */ - hrtc->Instance->TAFCR |= (uint32_t)RTC_TAFCR_TAMPIE; - - /* RTC Tamper Interrupt Configuration: EXTI configuration */ - __HAL_RTC_TAMPER_TIMESTAMP_EXTI_ENABLE_IT(); - - __HAL_RTC_TAMPER_TIMESTAMP_EXTI_ENABLE_RISING_EDGE(); - - hrtc->State = HAL_RTC_STATE_READY; - - /* Process Unlocked */ - __HAL_UNLOCK(hrtc); - - return HAL_OK; -} - -/** - * @brief Deactivate Tamper. - * @param hrtc RTC handle - * @param Tamper Selected tamper pin. - * This parameter can be any combination of RTC_TAMPER_1, RTC_TAMPER_2 and RTC_TAMPER_3. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_RTCEx_DeactivateTamper(RTC_HandleTypeDef *hrtc, uint32_t Tamper) -{ - assert_param(IS_RTC_TAMPER(Tamper)); - - /* Process Locked */ - __HAL_LOCK(hrtc); - - hrtc->State = HAL_RTC_STATE_BUSY; - - /* Disable the selected Tamper pin */ - hrtc->Instance->TAFCR &= (uint32_t)~Tamper; - - hrtc->State = HAL_RTC_STATE_READY; - - /* Process Unlocked */ - __HAL_UNLOCK(hrtc); - - return HAL_OK; -} - -/** - * @brief Handle TimeStamp interrupt request. - * @param hrtc RTC handle - * @retval None - */ -void HAL_RTCEx_TamperTimeStampIRQHandler(RTC_HandleTypeDef *hrtc) -{ - /* Get the TimeStamp interrupt source enable status */ - if (__HAL_RTC_TIMESTAMP_GET_IT_SOURCE(hrtc, RTC_IT_TS) != RESET) - { - /* Get the pending status of the TIMESTAMP Interrupt */ - if (__HAL_RTC_TIMESTAMP_GET_FLAG(hrtc, RTC_FLAG_TSF) != RESET) - { - /* TIMESTAMP callback */ -#if (USE_HAL_RTC_REGISTER_CALLBACKS == 1) - hrtc->TimeStampEventCallback(hrtc); -#else - HAL_RTCEx_TimeStampEventCallback(hrtc); -#endif /* USE_HAL_RTC_REGISTER_CALLBACKS */ - - /* Clear the TIMESTAMP interrupt pending bit */ - __HAL_RTC_TIMESTAMP_CLEAR_FLAG(hrtc, RTC_FLAG_TSF); - } - } - - /* Get the Tamper interrupts source enable status */ - if (__HAL_RTC_TAMPER_GET_IT_SOURCE(hrtc, RTC_IT_TAMP)) - { - /* Get the pending status of the Tamper1 Interrupt */ - if (__HAL_RTC_TAMPER_GET_FLAG(hrtc, RTC_FLAG_TAMP1F) != RESET) - { - /* Tamper1 callback */ -#if (USE_HAL_RTC_REGISTER_CALLBACKS == 1) - hrtc->Tamper1EventCallback(hrtc); -#else - HAL_RTCEx_Tamper1EventCallback(hrtc); -#endif /* USE_HAL_RTC_REGISTER_CALLBACKS */ - - /* Clear the Tamper1 interrupt pending bit */ - __HAL_RTC_TAMPER_CLEAR_FLAG(hrtc, RTC_FLAG_TAMP1F); - } - } - - /* Get the Tamper interrupts source enable status */ - if (__HAL_RTC_TAMPER_GET_IT_SOURCE(hrtc, RTC_IT_TAMP)) - { - /* Get the pending status of the Tamper2 Interrupt */ - if (__HAL_RTC_TAMPER_GET_FLAG(hrtc, RTC_FLAG_TAMP2F) != RESET) - { - /* Tamper2 callback */ -#if (USE_HAL_RTC_REGISTER_CALLBACKS == 1) - hrtc->Tamper2EventCallback(hrtc); -#else - HAL_RTCEx_Tamper2EventCallback(hrtc); -#endif /* USE_HAL_RTC_REGISTER_CALLBACKS */ - - /* Clear the Tamper2 interrupt pending bit */ - __HAL_RTC_TAMPER_CLEAR_FLAG(hrtc, RTC_FLAG_TAMP2F); - } - } - -#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || defined(STM32F091xC) || defined(STM32F098xx) - /* Get the Tamper interrupts source enable status */ - if (__HAL_RTC_TAMPER_GET_IT_SOURCE(hrtc, RTC_IT_TAMP)) - { - /* Get the pending status of the Tamper3 Interrupt */ - if (__HAL_RTC_TAMPER_GET_FLAG(hrtc, RTC_FLAG_TAMP3F) != RESET) - { - /* Tamper3 callback */ -#if (USE_HAL_RTC_REGISTER_CALLBACKS == 1) - hrtc->Tamper3EventCallback(hrtc); -#else - HAL_RTCEx_Tamper3EventCallback(hrtc); -#endif /* USE_HAL_RTC_REGISTER_CALLBACKS */ - - /* Clear the Tamper3 interrupt pending bit */ - __HAL_RTC_TAMPER_CLEAR_FLAG(hrtc, RTC_FLAG_TAMP3F); - } - } -#endif - - /* Clear the EXTI's Flag for RTC TimeStamp and Tamper */ - __HAL_RTC_TAMPER_TIMESTAMP_EXTI_CLEAR_FLAG(); - - /* Change RTC state */ - hrtc->State = HAL_RTC_STATE_READY; -} - -/** - * @brief TimeStamp callback. - * @param hrtc RTC handle - * @retval None - */ -__weak void HAL_RTCEx_TimeStampEventCallback(RTC_HandleTypeDef *hrtc) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hrtc); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_RTCEx_TimeStampEventCallback could be implemented in the user file - */ -} - -/** - * @brief Tamper 1 callback. - * @param hrtc RTC handle - * @retval None - */ -__weak void HAL_RTCEx_Tamper1EventCallback(RTC_HandleTypeDef *hrtc) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hrtc); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_RTCEx_Tamper1EventCallback could be implemented in the user file - */ -} - -/** - * @brief Tamper 2 callback. - * @param hrtc RTC handle - * @retval None - */ -__weak void HAL_RTCEx_Tamper2EventCallback(RTC_HandleTypeDef *hrtc) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hrtc); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_RTCEx_Tamper2EventCallback could be implemented in the user file - */ -} - -#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || defined(STM32F091xC) || defined(STM32F098xx) -/** - * @brief Tamper 3 callback. - * @param hrtc RTC handle - * @retval None - */ -__weak void HAL_RTCEx_Tamper3EventCallback(RTC_HandleTypeDef *hrtc) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hrtc); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_RTCEx_Tamper3EventCallback could be implemented in the user file - */ -} -#endif - -/** - * @brief Handle TimeStamp polling request. - * @param hrtc RTC handle - * @param Timeout Timeout duration - * @retval HAL status - */ -HAL_StatusTypeDef HAL_RTCEx_PollForTimeStampEvent(RTC_HandleTypeDef *hrtc, uint32_t Timeout) -{ - uint32_t tickstart = HAL_GetTick(); - - while (__HAL_RTC_TIMESTAMP_GET_FLAG(hrtc, RTC_FLAG_TSF) == RESET) - { - if (__HAL_RTC_TIMESTAMP_GET_FLAG(hrtc, RTC_FLAG_TSOVF) != RESET) - { - /* Clear the TIMESTAMP OverRun Flag */ - __HAL_RTC_TIMESTAMP_CLEAR_FLAG(hrtc, RTC_FLAG_TSOVF); - - /* Change TIMESTAMP state */ - hrtc->State = HAL_RTC_STATE_ERROR; - - return HAL_ERROR; - } - - if (Timeout != HAL_MAX_DELAY) - { - if ((Timeout == 0U) || ((HAL_GetTick() - tickstart) > Timeout)) - { - hrtc->State = HAL_RTC_STATE_TIMEOUT; - return HAL_TIMEOUT; - } - } - } - - /* Change RTC state */ - hrtc->State = HAL_RTC_STATE_READY; - - return HAL_OK; -} - -/** - * @brief Handle Tamper 1 Polling. - * @param hrtc RTC handle - * @param Timeout Timeout duration - * @retval HAL status - */ -HAL_StatusTypeDef HAL_RTCEx_PollForTamper1Event(RTC_HandleTypeDef *hrtc, uint32_t Timeout) -{ - uint32_t tickstart = HAL_GetTick(); - - /* Get the status of the Interrupt */ - while (__HAL_RTC_TAMPER_GET_FLAG(hrtc, RTC_FLAG_TAMP1F) == RESET) - { - if (Timeout != HAL_MAX_DELAY) - { - if ((Timeout == 0U) || ((HAL_GetTick() - tickstart) > Timeout)) - { - hrtc->State = HAL_RTC_STATE_TIMEOUT; - return HAL_TIMEOUT; - } - } - } - - /* Clear the Tamper Flag */ - __HAL_RTC_TAMPER_CLEAR_FLAG(hrtc, RTC_FLAG_TAMP1F); - - /* Change RTC state */ - hrtc->State = HAL_RTC_STATE_READY; - - return HAL_OK; -} - -/** - * @brief Handle Tamper 2 Polling. - * @param hrtc RTC handle - * @param Timeout Timeout duration - * @retval HAL status - */ -HAL_StatusTypeDef HAL_RTCEx_PollForTamper2Event(RTC_HandleTypeDef *hrtc, uint32_t Timeout) -{ - uint32_t tickstart = HAL_GetTick(); - - /* Get the status of the Interrupt */ - while (__HAL_RTC_TAMPER_GET_FLAG(hrtc, RTC_FLAG_TAMP2F) == RESET) - { - if (Timeout != HAL_MAX_DELAY) - { - if ((Timeout == 0U) || ((HAL_GetTick() - tickstart) > Timeout)) - { - hrtc->State = HAL_RTC_STATE_TIMEOUT; - return HAL_TIMEOUT; - } - } - } - - /* Clear the Tamper Flag */ - __HAL_RTC_TAMPER_CLEAR_FLAG(hrtc, RTC_FLAG_TAMP2F); - - /* Change RTC state */ - hrtc->State = HAL_RTC_STATE_READY; - - return HAL_OK; -} - -#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || defined(STM32F091xC) || defined(STM32F098xx) -/** - * @brief Handle Tamper 3 Polling. - * @param hrtc RTC handle - * @param Timeout Timeout duration - * @retval HAL status - */ -HAL_StatusTypeDef HAL_RTCEx_PollForTamper3Event(RTC_HandleTypeDef *hrtc, uint32_t Timeout) -{ - uint32_t tickstart = HAL_GetTick(); - - /* Get the status of the Interrupt */ - while (__HAL_RTC_TAMPER_GET_FLAG(hrtc, RTC_FLAG_TAMP3F) == RESET) - { - if (Timeout != HAL_MAX_DELAY) - { - if ((Timeout == 0U) || ((HAL_GetTick() - tickstart) > Timeout)) - { - hrtc->State = HAL_RTC_STATE_TIMEOUT; - return HAL_TIMEOUT; - } - } - } - - /* Clear the Tamper Flag */ - __HAL_RTC_TAMPER_CLEAR_FLAG(hrtc, RTC_FLAG_TAMP3F); - - /* Change RTC state */ - hrtc->State = HAL_RTC_STATE_READY; - - return HAL_OK; -} -#endif - -/** - * @} - */ - -#if defined(STM32F070xB) || defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || defined(STM32F091xC) || defined(STM32F098xx) || defined(STM32F030xC) -/** @addtogroup RTCEx_Exported_Functions_Group2 - * @brief RTC Wake-up functions - * -@verbatim - =============================================================================== - ##### RTC Wake-up functions ##### - =============================================================================== - - [..] This section provides functions allowing to configure Wake-up feature - -@endverbatim - * @{ - */ - -/** - * @brief Set wake up timer. - * @param hrtc RTC handle - * @param WakeUpCounter Wake up counter - * @param WakeUpClock Wake up clock - * @retval HAL status - */ -HAL_StatusTypeDef HAL_RTCEx_SetWakeUpTimer(RTC_HandleTypeDef *hrtc, uint32_t WakeUpCounter, uint32_t WakeUpClock) -{ - uint32_t tickstart = 0U; - - /* Check the parameters */ - assert_param(IS_RTC_WAKEUP_CLOCK(WakeUpClock)); - assert_param(IS_RTC_WAKEUP_COUNTER(WakeUpCounter)); - - /* Process Locked */ - __HAL_LOCK(hrtc); - - hrtc->State = HAL_RTC_STATE_BUSY; - - /* Disable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); - - /*Check RTC WUTWF flag is reset only when wake up timer enabled*/ - if ((hrtc->Instance->CR & RTC_CR_WUTE) != RESET) - { - tickstart = HAL_GetTick(); - - /* Wait till RTC WUTWF flag is reset and if Time out is reached exit */ - while (__HAL_RTC_WAKEUPTIMER_GET_FLAG(hrtc, RTC_FLAG_WUTWF) == SET) - { - if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE) - { - /* Enable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); - - hrtc->State = HAL_RTC_STATE_TIMEOUT; - - /* Process Unlocked */ - __HAL_UNLOCK(hrtc); - - return HAL_TIMEOUT; - } - } - } - - __HAL_RTC_WAKEUPTIMER_DISABLE(hrtc); - - tickstart = HAL_GetTick(); - - /* Wait till RTC WUTWF flag is set and if Time out is reached exit */ - while (__HAL_RTC_WAKEUPTIMER_GET_FLAG(hrtc, RTC_FLAG_WUTWF) == RESET) - { - if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE) - { - /* Enable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); - - hrtc->State = HAL_RTC_STATE_TIMEOUT; - - /* Process Unlocked */ - __HAL_UNLOCK(hrtc); - - return HAL_TIMEOUT; - } - } - - /* Clear the Wakeup Timer clock source bits in CR register */ - hrtc->Instance->CR &= (uint32_t)~RTC_CR_WUCKSEL; - - /* Configure the clock source */ - hrtc->Instance->CR |= (uint32_t)WakeUpClock; - - /* Configure the Wakeup Timer counter */ - hrtc->Instance->WUTR = (uint32_t)WakeUpCounter; - - /* Enable the Wakeup Timer */ - __HAL_RTC_WAKEUPTIMER_ENABLE(hrtc); - - /* Enable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); - - hrtc->State = HAL_RTC_STATE_READY; - - /* Process Unlocked */ - __HAL_UNLOCK(hrtc); - - return HAL_OK; -} - -/** - * @brief Set wake up timer with interrupt. - * @param hrtc RTC handle - * @param WakeUpCounter Wake up counter - * @param WakeUpClock Wake up clock - * @retval HAL status - */ -HAL_StatusTypeDef HAL_RTCEx_SetWakeUpTimer_IT(RTC_HandleTypeDef *hrtc, uint32_t WakeUpCounter, uint32_t WakeUpClock) -{ - uint32_t tickstart = 0U; - - /* Check the parameters */ - assert_param(IS_RTC_WAKEUP_CLOCK(WakeUpClock)); - assert_param(IS_RTC_WAKEUP_COUNTER(WakeUpCounter)); - - /* Process Locked */ - __HAL_LOCK(hrtc); - - hrtc->State = HAL_RTC_STATE_BUSY; - - /* Disable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); - - /*Check RTC WUTWF flag is reset only when wake up timer enabled*/ - if ((hrtc->Instance->CR & RTC_CR_WUTE) != RESET) - { - tickstart = HAL_GetTick(); - - /* Wait till RTC WUTWF flag is reset and if Time out is reached exit */ - while (__HAL_RTC_WAKEUPTIMER_GET_FLAG(hrtc, RTC_FLAG_WUTWF) == SET) - { - if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE) - { - /* Enable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); - - hrtc->State = HAL_RTC_STATE_TIMEOUT; - - /* Process Unlocked */ - __HAL_UNLOCK(hrtc); - - return HAL_TIMEOUT; - } - } - } - - /* Disable the Wake-Up timer */ - __HAL_RTC_WAKEUPTIMER_DISABLE(hrtc); - - /* Clear flag Wake-Up */ - __HAL_RTC_WAKEUPTIMER_CLEAR_FLAG(hrtc, RTC_FLAG_WUTF); - - tickstart = HAL_GetTick(); - - /* Wait till RTC WUTWF flag is set and if Time out is reached exit */ - while (__HAL_RTC_WAKEUPTIMER_GET_FLAG(hrtc, RTC_FLAG_WUTWF) == RESET) - { - if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE) - { - /* Enable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); - - hrtc->State = HAL_RTC_STATE_TIMEOUT; - - /* Process Unlocked */ - __HAL_UNLOCK(hrtc); - - return HAL_TIMEOUT; - } - } - - /* Configure the Wakeup Timer counter */ - hrtc->Instance->WUTR = (uint32_t)WakeUpCounter; - - /* Clear the Wakeup Timer clock source bits in CR register */ - hrtc->Instance->CR &= (uint32_t)~RTC_CR_WUCKSEL; - - /* Configure the clock source */ - hrtc->Instance->CR |= (uint32_t)WakeUpClock; - - /* RTC WakeUpTimer Interrupt Configuration: EXTI configuration */ - __HAL_RTC_WAKEUPTIMER_EXTI_ENABLE_IT(); - - __HAL_RTC_WAKEUPTIMER_EXTI_ENABLE_RISING_EDGE(); - - /* Configure the Interrupt in the RTC_CR register */ - __HAL_RTC_WAKEUPTIMER_ENABLE_IT(hrtc, RTC_IT_WUT); - - /* Enable the Wakeup Timer */ - __HAL_RTC_WAKEUPTIMER_ENABLE(hrtc); - - /* Enable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); - - hrtc->State = HAL_RTC_STATE_READY; - - /* Process Unlocked */ - __HAL_UNLOCK(hrtc); - - return HAL_OK; -} - -/** - * @brief Deactivate wake up timer counter. - * @param hrtc RTC handle - * @retval HAL status - */ -uint32_t HAL_RTCEx_DeactivateWakeUpTimer(RTC_HandleTypeDef *hrtc) -{ - uint32_t tickstart = 0U; - - /* Process Locked */ - __HAL_LOCK(hrtc); - - hrtc->State = HAL_RTC_STATE_BUSY; - - /* Disable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); - - /* Disable the Wakeup Timer */ - __HAL_RTC_WAKEUPTIMER_DISABLE(hrtc); - - /* In case of interrupt mode is used, the interrupt source must disabled */ - __HAL_RTC_WAKEUPTIMER_DISABLE_IT(hrtc, RTC_IT_WUT); - - tickstart = HAL_GetTick(); - /* Wait till RTC WUTWF flag is set and if Time out is reached exit */ - while (__HAL_RTC_WAKEUPTIMER_GET_FLAG(hrtc, RTC_FLAG_WUTWF) == RESET) - { - if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE) - { - /* Enable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); - - hrtc->State = HAL_RTC_STATE_TIMEOUT; - - /* Process Unlocked */ - __HAL_UNLOCK(hrtc); - - return HAL_TIMEOUT; - } - } - - /* Enable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); - - hrtc->State = HAL_RTC_STATE_READY; - - /* Process Unlocked */ - __HAL_UNLOCK(hrtc); - - return HAL_OK; -} - -/** - * @brief Get wake up timer counter. - * @param hrtc RTC handle - * @retval Counter value - */ -uint32_t HAL_RTCEx_GetWakeUpTimer(RTC_HandleTypeDef *hrtc) -{ - /* Get the counter value */ - return ((uint32_t)(hrtc->Instance->WUTR & RTC_WUTR_WUT)); -} - -/** - * @brief Handle Wake Up Timer interrupt request. - * @param hrtc RTC handle - * @retval None - */ -void HAL_RTCEx_WakeUpTimerIRQHandler(RTC_HandleTypeDef *hrtc) -{ - /* Get the WAKEUPTIMER interrupt source enable status */ - if (__HAL_RTC_WAKEUPTIMER_GET_IT_SOURCE(hrtc, RTC_IT_WUT) != RESET) - { - /* Get the pending status of the WAKEUPTIMER Interrupt */ - if (__HAL_RTC_WAKEUPTIMER_GET_FLAG(hrtc, RTC_FLAG_WUTF) != RESET) - { - /* WAKEUPTIMER callback */ -#if (USE_HAL_RTC_REGISTER_CALLBACKS == 1) - hrtc->WakeUpTimerEventCallback(hrtc); -#else - HAL_RTCEx_WakeUpTimerEventCallback(hrtc); -#endif /* USE_HAL_RTC_REGISTER_CALLBACKS */ - - /* Clear the WAKEUPTIMER interrupt pending bit */ - __HAL_RTC_WAKEUPTIMER_CLEAR_FLAG(hrtc, RTC_FLAG_WUTF); - } - } - - /* Clear the EXTI's line Flag for RTC WakeUpTimer */ - __HAL_RTC_WAKEUPTIMER_EXTI_CLEAR_FLAG(); - - /* Change RTC state */ - hrtc->State = HAL_RTC_STATE_READY; -} - -/** - * @brief Wake Up Timer callback. - * @param hrtc RTC handle - * @retval None - */ -__weak void HAL_RTCEx_WakeUpTimerEventCallback(RTC_HandleTypeDef *hrtc) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hrtc); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_RTCEx_WakeUpTimerEventCallback could be implemented in the user file - */ -} - - -/** - * @brief Handle Wake Up Timer Polling. - * @param hrtc RTC handle - * @param Timeout Timeout duration - * @retval HAL status - */ -HAL_StatusTypeDef HAL_RTCEx_PollForWakeUpTimerEvent(RTC_HandleTypeDef *hrtc, uint32_t Timeout) -{ - uint32_t tickstart = HAL_GetTick(); - - while (__HAL_RTC_WAKEUPTIMER_GET_FLAG(hrtc, RTC_FLAG_WUTF) == RESET) - { - if (Timeout != HAL_MAX_DELAY) - { - if ((Timeout == 0U) || ((HAL_GetTick() - tickstart) > Timeout)) - { - hrtc->State = HAL_RTC_STATE_TIMEOUT; - - return HAL_TIMEOUT; - } - } - } - - /* Clear the WAKEUPTIMER Flag */ - __HAL_RTC_WAKEUPTIMER_CLEAR_FLAG(hrtc, RTC_FLAG_WUTF); - - /* Change RTC state */ - hrtc->State = HAL_RTC_STATE_READY; - - return HAL_OK; -} - -/** - * @} - */ -#endif /* defined(STM32F070xB) || defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || defined(STM32F091xC) || defined(STM32F098xx) | defined(STM32F030xC) */ - -/** @addtogroup RTCEx_Exported_Functions_Group3 - * @brief Extended Peripheral Control functions - * -@verbatim - =============================================================================== - ##### Extended Peripheral Control functions ##### - =============================================================================== - [..] - This subsection provides functions allowing to - (+) Write a data in a specified RTC Backup data register - (+) Read a data in a specified RTC Backup data register - (+) Set the Coarse calibration parameters. - (+) Deactivate the Coarse calibration parameters - (+) Set the Smooth calibration parameters. - (+) Configure the Synchronization Shift Control Settings. - (+) Configure the Calibration Pinout (RTC_CALIB) Selection (1Hz or 512Hz). - (+) Deactivate the Calibration Pinout (RTC_CALIB) Selection (1Hz or 512Hz). - (+) Enable the RTC reference clock detection. - (+) Disable the RTC reference clock detection. - (+) Enable the Bypass Shadow feature. - (+) Disable the Bypass Shadow feature. - -@endverbatim - * @{ - */ - -#if !defined(STM32F030x6) && !defined(STM32F030x8) && !defined(STM32F070x6) && !defined(STM32F070xB) && !defined(STM32F030xC) -/** - * @brief Write a data in a specified RTC Backup data register. - * @param hrtc RTC handle - * @param BackupRegister RTC Backup data Register number. - * This parameter can be: RTC_BKP_DRx where x can be from 0 to 4 to - * specify the register. - * @param Data Data to be written in the specified RTC Backup data register. - * @retval None - */ -void HAL_RTCEx_BKUPWrite(RTC_HandleTypeDef *hrtc, uint32_t BackupRegister, uint32_t Data) -{ - uint32_t tmp = 0U; - - /* Check the parameters */ - assert_param(IS_RTC_BKP(BackupRegister)); - - tmp = (uint32_t) & (hrtc->Instance->BKP0R); - tmp += (BackupRegister * 4U); - - /* Write the specified register */ - *(__IO uint32_t *)tmp = (uint32_t)Data; -} - -/** - * @brief Reads data from the specified RTC Backup data Register. - * @param hrtc RTC handle - * @param BackupRegister RTC Backup data Register number. - * This parameter can be: RTC_BKP_DRx where x can be from 0 to 4 to - * specify the register. - * @retval Read value - */ -uint32_t HAL_RTCEx_BKUPRead(RTC_HandleTypeDef *hrtc, uint32_t BackupRegister) -{ - uint32_t tmp = 0U; - - /* Check the parameters */ - assert_param(IS_RTC_BKP(BackupRegister)); - - tmp = (uint32_t) & (hrtc->Instance->BKP0R); - tmp += (BackupRegister * 4U); - - /* Read the specified register */ - return (*(__IO uint32_t *)tmp); -} -#endif /* !defined(STM32F030x6) && !defined(STM32F030x8) && !defined(STM32F070x6) && !defined(STM32F070xB) && !defined(STM32F030xC) */ - -/** - * @brief Set the Smooth calibration parameters. - * @param hrtc RTC handle - * @param SmoothCalibPeriod Select the Smooth Calibration Period. - * This parameter can be can be one of the following values : - * @arg RTC_SMOOTHCALIB_PERIOD_32SEC: The smooth calibration period is 32s. - * @arg RTC_SMOOTHCALIB_PERIOD_16SEC: The smooth calibration period is 16s. - * @arg RTC_SMOOTHCALIB_PERIOD_8SEC: The smooth calibration period is 8s. - * @param SmoothCalibPlusPulses Select to Set or reset the CALP bit. - * This parameter can be one of the following values: - * @arg RTC_SMOOTHCALIB_PLUSPULSES_SET: Add one RTCCLK pulse every 2*11 pulses. - * @arg RTC_SMOOTHCALIB_PLUSPULSES_RESET: No RTCCLK pulses are added. - * @param SmoothCalibMinusPulsesValue Select the value of CALM[8:0] bits. - * This parameter can be one any value from 0 to 0x000001FF. - * @note To deactivate the smooth calibration, the field SmoothCalibPlusPulses - * must be equal to SMOOTHCALIB_PLUSPULSES_RESET and the field - * SmoothCalibMinusPulsesValue mut be equal to 0. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_RTCEx_SetSmoothCalib(RTC_HandleTypeDef *hrtc, uint32_t SmoothCalibPeriod, uint32_t SmoothCalibPlusPulses, uint32_t SmoothCalibMinusPulsesValue) -{ - uint32_t tickstart = 0U; - - /* Check the parameters */ - assert_param(IS_RTC_SMOOTH_CALIB_PERIOD(SmoothCalibPeriod)); - assert_param(IS_RTC_SMOOTH_CALIB_PLUS(SmoothCalibPlusPulses)); - assert_param(IS_RTC_SMOOTH_CALIB_MINUS(SmoothCalibMinusPulsesValue)); - - /* Process Locked */ - __HAL_LOCK(hrtc); - - hrtc->State = HAL_RTC_STATE_BUSY; - - /* Disable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); - - /* check if a calibration is pending*/ - if ((hrtc->Instance->ISR & RTC_ISR_RECALPF) != RESET) - { - tickstart = HAL_GetTick(); - - /* check if a calibration is pending*/ - while ((hrtc->Instance->ISR & RTC_ISR_RECALPF) != RESET) - { - if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE) - { - /* Enable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); - - /* Change RTC state */ - hrtc->State = HAL_RTC_STATE_TIMEOUT; - - /* Process Unlocked */ - __HAL_UNLOCK(hrtc); - - return HAL_TIMEOUT; - } - } - } - - /* Configure the Smooth calibration settings */ - hrtc->Instance->CALR = (uint32_t)((uint32_t)SmoothCalibPeriod | (uint32_t)SmoothCalibPlusPulses | (uint32_t)SmoothCalibMinusPulsesValue); - - /* Enable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); - - /* Change RTC state */ - hrtc->State = HAL_RTC_STATE_READY; - - /* Process Unlocked */ - __HAL_UNLOCK(hrtc); - - return HAL_OK; -} - -/** - * @brief Configure the Synchronization Shift Control Settings. - * @note When REFCKON is set, firmware must not write to Shift control register. - * @param hrtc RTC handle - * @param ShiftAdd1S Select to add or not 1 second to the time calendar. - * This parameter can be one of the following values : - * @arg RTC_SHIFTADD1S_SET: Add one second to the clock calendar. - * @arg RTC_SHIFTADD1S_RESET: No effect. - * @param ShiftSubFS Select the number of Second Fractions to substitute. - * This parameter can be one any value from 0 to 0x7FFF. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_RTCEx_SetSynchroShift(RTC_HandleTypeDef *hrtc, uint32_t ShiftAdd1S, uint32_t ShiftSubFS) -{ - uint32_t tickstart = 0U; - - /* Check the parameters */ - assert_param(IS_RTC_SHIFT_ADD1S(ShiftAdd1S)); - assert_param(IS_RTC_SHIFT_SUBFS(ShiftSubFS)); - - /* Process Locked */ - __HAL_LOCK(hrtc); - - hrtc->State = HAL_RTC_STATE_BUSY; - - /* Disable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); - - tickstart = HAL_GetTick(); - - /* Wait until the shift is completed*/ - while ((hrtc->Instance->ISR & RTC_ISR_SHPF) != RESET) - { - if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE) - { - /* Enable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); - - hrtc->State = HAL_RTC_STATE_TIMEOUT; - - /* Process Unlocked */ - __HAL_UNLOCK(hrtc); - - return HAL_TIMEOUT; - } - } - - /* Check if the reference clock detection is disabled */ - if ((hrtc->Instance->CR & RTC_CR_REFCKON) == RESET) - { - /* Configure the Shift settings */ - hrtc->Instance->SHIFTR = (uint32_t)(uint32_t)(ShiftSubFS) | (uint32_t)(ShiftAdd1S); - - /* If RTC_CR_BYPSHAD bit = 0, wait for synchro else this check is not needed */ - if ((hrtc->Instance->CR & RTC_CR_BYPSHAD) == RESET) - { - if (HAL_RTC_WaitForSynchro(hrtc) != HAL_OK) - { - /* Enable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); - - hrtc->State = HAL_RTC_STATE_ERROR; - - /* Process Unlocked */ - __HAL_UNLOCK(hrtc); - - return HAL_ERROR; - } - } - } - else - { - /* Enable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); - - /* Change RTC state */ - hrtc->State = HAL_RTC_STATE_ERROR; - - /* Process Unlocked */ - __HAL_UNLOCK(hrtc); - - return HAL_ERROR; - } - - /* Enable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); - - /* Change RTC state */ - hrtc->State = HAL_RTC_STATE_READY; - - /* Process Unlocked */ - __HAL_UNLOCK(hrtc); - - return HAL_OK; -} - -/** - * @brief Configure the Calibration Pinout (RTC_CALIB) Selection (1Hz or 512Hz). - * @param hrtc RTC handle - * @param CalibOutput Select the Calibration output Selection . - * This parameter can be one of the following values: - * @arg RTC_CALIBOUTPUT_512HZ: A signal has a regular waveform at 512Hz. - * @arg RTC_CALIBOUTPUT_1HZ: A signal has a regular waveform at 1Hz. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_RTCEx_SetCalibrationOutPut(RTC_HandleTypeDef *hrtc, uint32_t CalibOutput) -{ - /* Check the parameters */ - assert_param(IS_RTC_CALIB_OUTPUT(CalibOutput)); - - /* Process Locked */ - __HAL_LOCK(hrtc); - - hrtc->State = HAL_RTC_STATE_BUSY; - - /* Disable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); - - /* Clear flags before config */ - hrtc->Instance->CR &= (uint32_t)~RTC_CR_COSEL; - - /* Configure the RTC_CR register */ - hrtc->Instance->CR |= (uint32_t)CalibOutput; - - __HAL_RTC_CALIBRATION_OUTPUT_ENABLE(hrtc); - - /* Enable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); - - /* Change RTC state */ - hrtc->State = HAL_RTC_STATE_READY; - - /* Process Unlocked */ - __HAL_UNLOCK(hrtc); - - return HAL_OK; -} - -/** - * @brief Deactivate the Calibration Pinout (RTC_CALIB) Selection (1Hz or 512Hz). - * @param hrtc RTC handle - * @retval HAL status - */ -HAL_StatusTypeDef HAL_RTCEx_DeactivateCalibrationOutPut(RTC_HandleTypeDef *hrtc) -{ - /* Process Locked */ - __HAL_LOCK(hrtc); - - hrtc->State = HAL_RTC_STATE_BUSY; - - /* Disable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); - - __HAL_RTC_CALIBRATION_OUTPUT_DISABLE(hrtc); - - /* Enable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); - - /* Change RTC state */ - hrtc->State = HAL_RTC_STATE_READY; - - /* Process Unlocked */ - __HAL_UNLOCK(hrtc); - - return HAL_OK; -} - -/** - * @brief Enable the RTC reference clock detection. - * @param hrtc RTC handle - * @retval HAL status - */ -HAL_StatusTypeDef HAL_RTCEx_SetRefClock(RTC_HandleTypeDef *hrtc) -{ - /* Process Locked */ - __HAL_LOCK(hrtc); - - hrtc->State = HAL_RTC_STATE_BUSY; - - /* Disable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); - - /* Set Initialization mode */ - if (RTC_EnterInitMode(hrtc) != HAL_OK) - { - /* Enable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); - - /* Set RTC state*/ - hrtc->State = HAL_RTC_STATE_ERROR; - - /* Process Unlocked */ - __HAL_UNLOCK(hrtc); - - return HAL_ERROR; - } - else - { - __HAL_RTC_CLOCKREF_DETECTION_ENABLE(hrtc); - - /* Exit Initialization mode */ - hrtc->Instance->ISR &= (uint32_t)~RTC_ISR_INIT; - } - - /* Enable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); - - /* Change RTC state */ - hrtc->State = HAL_RTC_STATE_READY; - - /* Process Unlocked */ - __HAL_UNLOCK(hrtc); - - return HAL_OK; -} - -/** - * @brief Disable the RTC reference clock detection. - * @param hrtc RTC handle - * @retval HAL status - */ -HAL_StatusTypeDef HAL_RTCEx_DeactivateRefClock(RTC_HandleTypeDef *hrtc) -{ - /* Process Locked */ - __HAL_LOCK(hrtc); - - hrtc->State = HAL_RTC_STATE_BUSY; - - /* Disable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); - - /* Set Initialization mode */ - if (RTC_EnterInitMode(hrtc) != HAL_OK) - { - /* Enable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); - - /* Set RTC state*/ - hrtc->State = HAL_RTC_STATE_ERROR; - - /* Process Unlocked */ - __HAL_UNLOCK(hrtc); - - return HAL_ERROR; - } - else - { - __HAL_RTC_CLOCKREF_DETECTION_DISABLE(hrtc); - - /* Exit Initialization mode */ - hrtc->Instance->ISR &= (uint32_t)~RTC_ISR_INIT; - } - - /* Enable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); - - /* Change RTC state */ - hrtc->State = HAL_RTC_STATE_READY; - - /* Process Unlocked */ - __HAL_UNLOCK(hrtc); - - return HAL_OK; -} - -/** - * @brief Enable the Bypass Shadow feature. - * @param hrtc RTC handle - * @note When the Bypass Shadow is enabled the calendar value are taken - * directly from the Calendar counter. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_RTCEx_EnableBypassShadow(RTC_HandleTypeDef *hrtc) -{ - /* Process Locked */ - __HAL_LOCK(hrtc); - - hrtc->State = HAL_RTC_STATE_BUSY; - - /* Disable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); - - /* Set the BYPSHAD bit */ - hrtc->Instance->CR |= (uint8_t)RTC_CR_BYPSHAD; - - /* Enable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); - - /* Change RTC state */ - hrtc->State = HAL_RTC_STATE_READY; - - /* Process Unlocked */ - __HAL_UNLOCK(hrtc); - - return HAL_OK; -} - -/** - * @brief Disable the Bypass Shadow feature. - * @param hrtc RTC handle - * @note When the Bypass Shadow is enabled the calendar value are taken - * directly from the Calendar counter. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_RTCEx_DisableBypassShadow(RTC_HandleTypeDef *hrtc) -{ - /* Process Locked */ - __HAL_LOCK(hrtc); - - hrtc->State = HAL_RTC_STATE_BUSY; - - /* Disable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); - - /* Reset the BYPSHAD bit */ - hrtc->Instance->CR &= ((uint8_t)~RTC_CR_BYPSHAD); - - /* Enable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); - - /* Change RTC state */ - hrtc->State = HAL_RTC_STATE_READY; - - /* Process Unlocked */ - __HAL_UNLOCK(hrtc); - - return HAL_OK; -} - -/** - * @} - */ - -/** - * @} - */ - -#endif /* HAL_RTC_MODULE_ENABLED */ - -/** - * @} - */ - -/** - * @} - */ - -/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_smartcard.c b/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_smartcard.c deleted file mode 100644 index 4674aef..0000000 --- a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_smartcard.c +++ /dev/null @@ -1,2873 +0,0 @@ -/** - ****************************************************************************** - * @file stm32f0xx_hal_smartcard.c - * @author MCD Application Team - * @brief SMARTCARD HAL module driver. - * This file provides firmware functions to manage the following - * functionalities of the SMARTCARD peripheral: - * + Initialization and de-initialization functions - * + IO operation functions - * + Peripheral Control functions - * + Peripheral State and Error functions - * - @verbatim - ============================================================================== - ##### How to use this driver ##### - ============================================================================== - [..] - The SMARTCARD HAL driver can be used as follows: - - (#) Declare a SMARTCARD_HandleTypeDef handle structure (eg. SMARTCARD_HandleTypeDef hsmartcard). - (#) Associate a USART to the SMARTCARD handle hsmartcard. - (#) Initialize the SMARTCARD low level resources by implementing the HAL_SMARTCARD_MspInit() API: - (++) Enable the USARTx interface clock. - (++) USART pins configuration: - (+++) Enable the clock for the USART GPIOs. - (+++) Configure the USART pins (TX as alternate function pull-up, RX as alternate function Input). - (++) NVIC configuration if you need to use interrupt process (HAL_SMARTCARD_Transmit_IT() - and HAL_SMARTCARD_Receive_IT() APIs): - (+++) Configure the USARTx interrupt priority. - (+++) Enable the NVIC USART IRQ handle. - (++) DMA Configuration if you need to use DMA process (HAL_SMARTCARD_Transmit_DMA() - and HAL_SMARTCARD_Receive_DMA() APIs): - (+++) Declare a DMA handle structure for the Tx/Rx channel. - (+++) Enable the DMAx interface clock. - (+++) Configure the declared DMA handle structure with the required Tx/Rx parameters. - (+++) Configure the DMA Tx/Rx channel. - (+++) Associate the initialized DMA handle to the SMARTCARD DMA Tx/Rx handle. - (+++) Configure the priority and enable the NVIC for the transfer complete interrupt on the DMA Tx/Rx channel. - - (#) Program the Baud Rate, Parity, Mode(Receiver/Transmitter), clock enabling/disabling and accordingly, - the clock parameters (parity, phase, last bit), prescaler value, guard time and NACK on transmission - error enabling or disabling in the hsmartcard handle Init structure. - - (#) If required, program SMARTCARD advanced features (TX/RX pins swap, TimeOut, auto-retry counter,...) - in the hsmartcard handle AdvancedInit structure. - - (#) Initialize the SMARTCARD registers by calling the HAL_SMARTCARD_Init() API: - (++) This API configures also the low level Hardware GPIO, CLOCK, CORTEX...etc) - by calling the customized HAL_SMARTCARD_MspInit() API. - [..] - (@) The specific SMARTCARD interrupts (Transmission complete interrupt, - RXNE interrupt and Error Interrupts) will be managed using the macros - __HAL_SMARTCARD_ENABLE_IT() and __HAL_SMARTCARD_DISABLE_IT() inside the transmit and receive process. - - [..] - [..] Three operation modes are available within this driver : - - *** Polling mode IO operation *** - ================================= - [..] - (+) Send an amount of data in blocking mode using HAL_SMARTCARD_Transmit() - (+) Receive an amount of data in blocking mode using HAL_SMARTCARD_Receive() - - *** Interrupt mode IO operation *** - =================================== - [..] - (+) Send an amount of data in non-blocking mode using HAL_SMARTCARD_Transmit_IT() - (+) At transmission end of transfer HAL_SMARTCARD_TxCpltCallback() is executed and user can - add his own code by customization of function pointer HAL_SMARTCARD_TxCpltCallback() - (+) Receive an amount of data in non-blocking mode using HAL_SMARTCARD_Receive_IT() - (+) At reception end of transfer HAL_SMARTCARD_RxCpltCallback() is executed and user can - add his own code by customization of function pointer HAL_SMARTCARD_RxCpltCallback() - (+) In case of transfer Error, HAL_SMARTCARD_ErrorCallback() function is executed and user can - add his own code by customization of function pointer HAL_SMARTCARD_ErrorCallback() - - *** DMA mode IO operation *** - ============================== - [..] - (+) Send an amount of data in non-blocking mode (DMA) using HAL_SMARTCARD_Transmit_DMA() - (+) At transmission end of transfer HAL_SMARTCARD_TxCpltCallback() is executed and user can - add his own code by customization of function pointer HAL_SMARTCARD_TxCpltCallback() - (+) Receive an amount of data in non-blocking mode (DMA) using HAL_SMARTCARD_Receive_DMA() - (+) At reception end of transfer HAL_SMARTCARD_RxCpltCallback() is executed and user can - add his own code by customization of function pointer HAL_SMARTCARD_RxCpltCallback() - (+) In case of transfer Error, HAL_SMARTCARD_ErrorCallback() function is executed and user can - add his own code by customization of function pointer HAL_SMARTCARD_ErrorCallback() - - *** SMARTCARD HAL driver macros list *** - ======================================== - [..] - Below the list of most used macros in SMARTCARD HAL driver. - - (+) __HAL_SMARTCARD_GET_FLAG : Check whether or not the specified SMARTCARD flag is set - (+) __HAL_SMARTCARD_CLEAR_FLAG : Clear the specified SMARTCARD pending flag - (+) __HAL_SMARTCARD_ENABLE_IT: Enable the specified SMARTCARD interrupt - (+) __HAL_SMARTCARD_DISABLE_IT: Disable the specified SMARTCARD interrupt - (+) __HAL_SMARTCARD_GET_IT_SOURCE: Check whether or not the specified SMARTCARD interrupt is enabled - - [..] - (@) You can refer to the SMARTCARD HAL driver header file for more useful macros - - ##### Callback registration ##### - ================================== - - [..] - The compilation define USE_HAL_SMARTCARD_REGISTER_CALLBACKS when set to 1 - allows the user to configure dynamically the driver callbacks. - - [..] - Use Function @ref HAL_SMARTCARD_RegisterCallback() to register a user callback. - Function @ref HAL_SMARTCARD_RegisterCallback() allows to register following callbacks: - (+) TxCpltCallback : Tx Complete Callback. - (+) RxCpltCallback : Rx Complete Callback. - (+) ErrorCallback : Error Callback. - (+) AbortCpltCallback : Abort Complete Callback. - (+) AbortTransmitCpltCallback : Abort Transmit Complete Callback. - (+) AbortReceiveCpltCallback : Abort Receive Complete Callback. - (+) MspInitCallback : SMARTCARD MspInit. - (+) MspDeInitCallback : SMARTCARD MspDeInit. - This function takes as parameters the HAL peripheral handle, the Callback ID - and a pointer to the user callback function. - - [..] - Use function @ref HAL_SMARTCARD_UnRegisterCallback() to reset a callback to the default - weak (surcharged) function. - @ref HAL_SMARTCARD_UnRegisterCallback() takes as parameters the HAL peripheral handle, - and the Callback ID. - This function allows to reset following callbacks: - (+) TxCpltCallback : Tx Complete Callback. - (+) RxCpltCallback : Rx Complete Callback. - (+) ErrorCallback : Error Callback. - (+) AbortCpltCallback : Abort Complete Callback. - (+) AbortTransmitCpltCallback : Abort Transmit Complete Callback. - (+) AbortReceiveCpltCallback : Abort Receive Complete Callback. - (+) MspInitCallback : SMARTCARD MspInit. - (+) MspDeInitCallback : SMARTCARD MspDeInit. - - [..] - By default, after the @ref HAL_SMARTCARD_Init() and when the state is HAL_SMARTCARD_STATE_RESET - all callbacks are set to the corresponding weak (surcharged) functions: - examples @ref HAL_SMARTCARD_TxCpltCallback(), @ref HAL_SMARTCARD_RxCpltCallback(). - Exception done for MspInit and MspDeInit functions that are respectively - reset to the legacy weak (surcharged) functions in the @ref HAL_SMARTCARD_Init() - and @ref HAL_SMARTCARD_DeInit() only when these callbacks are null (not registered beforehand). - If not, MspInit or MspDeInit are not null, the @ref HAL_SMARTCARD_Init() and @ref HAL_SMARTCARD_DeInit() - keep and use the user MspInit/MspDeInit callbacks (registered beforehand). - - [..] - Callbacks can be registered/unregistered in HAL_SMARTCARD_STATE_READY state only. - Exception done MspInit/MspDeInit that can be registered/unregistered - in HAL_SMARTCARD_STATE_READY or HAL_SMARTCARD_STATE_RESET state, thus registered (user) - MspInit/DeInit callbacks can be used during the Init/DeInit. - In that case first register the MspInit/MspDeInit user callbacks - using @ref HAL_SMARTCARD_RegisterCallback() before calling @ref HAL_SMARTCARD_DeInit() - or @ref HAL_SMARTCARD_Init() function. - - [..] - When The compilation define USE_HAL_SMARTCARD_REGISTER_CALLBACKS is set to 0 or - not defined, the callback registration feature is not available - and weak (surcharged) callbacks are used. - - - @endverbatim - ****************************************************************************** - * @attention - * - *

© Copyright (c) 2016 STMicroelectronics. - * All rights reserved.

- * - * This software component is licensed by ST under BSD 3-Clause license, - * the "License"; You may not use this file except in compliance with the - * License. You may obtain a copy of the License at: - * opensource.org/licenses/BSD-3-Clause - * - ****************************************************************************** - */ -#if !defined(STM32F030x6) && !defined(STM32F030x8) && !defined(STM32F070x6) && !defined(STM32F070xB) && !defined(STM32F030xC) -/* Includes ------------------------------------------------------------------*/ -#include "stm32f0xx_hal.h" - -/** @addtogroup STM32F0xx_HAL_Driver - * @{ - */ - -/** @defgroup SMARTCARD SMARTCARD - * @brief HAL SMARTCARD module driver - * @{ - */ - -#ifdef HAL_SMARTCARD_MODULE_ENABLED - -/* Private typedef -----------------------------------------------------------*/ -/* Private define ------------------------------------------------------------*/ -/** @defgroup SMARTCARD_Private_Constants SMARTCARD Private Constants - * @{ - */ -#define SMARTCARD_TEACK_REACK_TIMEOUT 1000U /*!< SMARTCARD TX or RX enable acknowledge time-out value */ - -#define USART_CR1_FIELDS ((uint32_t)(USART_CR1_M | USART_CR1_PCE | USART_CR1_PS | \ - USART_CR1_TE | USART_CR1_RE | USART_CR1_OVER8)) /*!< USART CR1 fields of parameters set by SMARTCARD_SetConfig API */ - -#define USART_CR2_CLK_FIELDS ((uint32_t)(USART_CR2_CLKEN | USART_CR2_CPOL | USART_CR2_CPHA | \ - USART_CR2_LBCL)) /*!< SMARTCARD clock-related USART CR2 fields of parameters */ - -#define USART_CR2_FIELDS ((uint32_t)(USART_CR2_RTOEN | USART_CR2_CLK_FIELDS | USART_CR2_STOP)) /*!< USART CR2 fields of parameters set by SMARTCARD_SetConfig API */ - -#define USART_CR3_FIELDS ((uint32_t)(USART_CR3_ONEBIT | USART_CR3_NACK | USART_CR3_SCARCNT)) /*!< USART CR3 fields of parameters set by SMARTCARD_SetConfig API */ - -#define USART_BRR_MIN 0x10U /*!< USART BRR minimum authorized value */ - -#define USART_BRR_MAX 0x0000FFFFU /*!< USART BRR maximum authorized value */ -/** - * @} - */ - -/* Private macros ------------------------------------------------------------*/ -/* Private variables ---------------------------------------------------------*/ -/* Private function prototypes -----------------------------------------------*/ -/** @addtogroup SMARTCARD_Private_Functions - * @{ - */ -#if (USE_HAL_SMARTCARD_REGISTER_CALLBACKS == 1) -void SMARTCARD_InitCallbacksToDefault(SMARTCARD_HandleTypeDef *hsmartcard); -#endif /* USE_HAL_SMARTCARD_REGISTER_CALLBACKS */ -static HAL_StatusTypeDef SMARTCARD_SetConfig(SMARTCARD_HandleTypeDef *hsmartcard); -static void SMARTCARD_AdvFeatureConfig(SMARTCARD_HandleTypeDef *hsmartcard); -static HAL_StatusTypeDef SMARTCARD_CheckIdleState(SMARTCARD_HandleTypeDef *hsmartcard); -static HAL_StatusTypeDef SMARTCARD_WaitOnFlagUntilTimeout(SMARTCARD_HandleTypeDef *hsmartcard, uint32_t Flag, - FlagStatus Status, uint32_t Tickstart, uint32_t Timeout); -static void SMARTCARD_EndTxTransfer(SMARTCARD_HandleTypeDef *hsmartcard); -static void SMARTCARD_EndRxTransfer(SMARTCARD_HandleTypeDef *hsmartcard); -static void SMARTCARD_DMATransmitCplt(DMA_HandleTypeDef *hdma); -static void SMARTCARD_DMAReceiveCplt(DMA_HandleTypeDef *hdma); -static void SMARTCARD_DMAError(DMA_HandleTypeDef *hdma); -static void SMARTCARD_DMAAbortOnError(DMA_HandleTypeDef *hdma); -static void SMARTCARD_DMATxAbortCallback(DMA_HandleTypeDef *hdma); -static void SMARTCARD_DMARxAbortCallback(DMA_HandleTypeDef *hdma); -static void SMARTCARD_DMATxOnlyAbortCallback(DMA_HandleTypeDef *hdma); -static void SMARTCARD_DMARxOnlyAbortCallback(DMA_HandleTypeDef *hdma); -static void SMARTCARD_TxISR(SMARTCARD_HandleTypeDef *hsmartcard); -static void SMARTCARD_EndTransmit_IT(SMARTCARD_HandleTypeDef *hsmartcard); -static void SMARTCARD_RxISR(SMARTCARD_HandleTypeDef *hsmartcard); -/** - * @} - */ - -/* Exported functions --------------------------------------------------------*/ - -/** @defgroup SMARTCARD_Exported_Functions SMARTCARD Exported Functions - * @{ - */ - -/** @defgroup SMARTCARD_Exported_Functions_Group1 Initialization and de-initialization functions - * @brief Initialization and Configuration functions - * -@verbatim - ============================================================================== - ##### Initialization and Configuration functions ##### - ============================================================================== - [..] - This subsection provides a set of functions allowing to initialize the USARTx - associated to the SmartCard. - (+) These parameters can be configured: - (++) Baud Rate - (++) Parity: parity should be enabled, frame Length is fixed to 8 bits plus parity - (++) Receiver/transmitter modes - (++) Synchronous mode (and if enabled, phase, polarity and last bit parameters) - (++) Prescaler value - (++) Guard bit time - (++) NACK enabling or disabling on transmission error - - (+) The following advanced features can be configured as well: - (++) TX and/or RX pin level inversion - (++) data logical level inversion - (++) RX and TX pins swap - (++) RX overrun detection disabling - (++) DMA disabling on RX error - (++) MSB first on communication line - (++) Time out enabling (and if activated, timeout value) - (++) Block length - (++) Auto-retry counter - [..] - The HAL_SMARTCARD_Init() API follows the USART synchronous configuration procedures - (details for the procedures are available in reference manual). - -@endverbatim - - The USART frame format is given in the following table: - - Table 1. USART frame format. - +---------------------------------------------------------------+ - | M1M0 bits | PCE bit | USART frame | - |-----------------------|---------------------------------------| - | 01 | 1 | | SB | 8 bit data | PB | STB | | - +---------------------------------------------------------------+ - - - * @{ - */ - -/** - * @brief Initialize the SMARTCARD mode according to the specified - * parameters in the SMARTCARD_HandleTypeDef and initialize the associated handle. - * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains - * the configuration information for the specified SMARTCARD module. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_SMARTCARD_Init(SMARTCARD_HandleTypeDef *hsmartcard) -{ - /* Check the SMARTCARD handle allocation */ - if (hsmartcard == NULL) - { - return HAL_ERROR; - } - - /* Check the USART associated to the SMARTCARD handle */ - assert_param(IS_SMARTCARD_INSTANCE(hsmartcard->Instance)); - - if (hsmartcard->gState == HAL_SMARTCARD_STATE_RESET) - { - /* Allocate lock resource and initialize it */ - hsmartcard->Lock = HAL_UNLOCKED; - -#if USE_HAL_SMARTCARD_REGISTER_CALLBACKS == 1 - SMARTCARD_InitCallbacksToDefault(hsmartcard); - - if (hsmartcard->MspInitCallback == NULL) - { - hsmartcard->MspInitCallback = HAL_SMARTCARD_MspInit; - } - - /* Init the low level hardware */ - hsmartcard->MspInitCallback(hsmartcard); -#else - /* Init the low level hardware : GPIO, CLOCK */ - HAL_SMARTCARD_MspInit(hsmartcard); -#endif /* USE_HAL_SMARTCARD_REGISTER_CALLBACKS */ - } - - hsmartcard->gState = HAL_SMARTCARD_STATE_BUSY; - - /* Disable the Peripheral to set smartcard mode */ - CLEAR_BIT(hsmartcard->Instance->CR1, USART_CR1_UE); - - /* In SmartCard mode, the following bits must be kept cleared: - - LINEN in the USART_CR2 register, - - HDSEL and IREN bits in the USART_CR3 register.*/ - CLEAR_BIT(hsmartcard->Instance->CR2, USART_CR2_LINEN); - CLEAR_BIT(hsmartcard->Instance->CR3, (USART_CR3_HDSEL | USART_CR3_IREN)); - - /* set the USART in SMARTCARD mode */ - SET_BIT(hsmartcard->Instance->CR3, USART_CR3_SCEN); - - /* Set the SMARTCARD Communication parameters */ - if (SMARTCARD_SetConfig(hsmartcard) == HAL_ERROR) - { - return HAL_ERROR; - } - - /* Set the SMARTCARD transmission completion indication */ - SMARTCARD_TRANSMISSION_COMPLETION_SETTING(hsmartcard); - - if (hsmartcard->AdvancedInit.AdvFeatureInit != SMARTCARD_ADVFEATURE_NO_INIT) - { - SMARTCARD_AdvFeatureConfig(hsmartcard); - } - - /* Enable the Peripheral */ - SET_BIT(hsmartcard->Instance->CR1, USART_CR1_UE); - - /* TEACK and/or REACK to check before moving hsmartcard->gState and hsmartcard->RxState to Ready */ - return (SMARTCARD_CheckIdleState(hsmartcard)); -} - -/** - * @brief DeInitialize the SMARTCARD peripheral. - * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains - * the configuration information for the specified SMARTCARD module. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_SMARTCARD_DeInit(SMARTCARD_HandleTypeDef *hsmartcard) -{ - /* Check the SMARTCARD handle allocation */ - if (hsmartcard == NULL) - { - return HAL_ERROR; - } - - /* Check the USART/UART associated to the SMARTCARD handle */ - assert_param(IS_SMARTCARD_INSTANCE(hsmartcard->Instance)); - - hsmartcard->gState = HAL_SMARTCARD_STATE_BUSY; - - /* Disable the Peripheral */ - CLEAR_BIT(hsmartcard->Instance->CR1, USART_CR1_UE); - - WRITE_REG(hsmartcard->Instance->CR1, 0x0U); - WRITE_REG(hsmartcard->Instance->CR2, 0x0U); - WRITE_REG(hsmartcard->Instance->CR3, 0x0U); - WRITE_REG(hsmartcard->Instance->RTOR, 0x0U); - WRITE_REG(hsmartcard->Instance->GTPR, 0x0U); - - /* DeInit the low level hardware */ -#if USE_HAL_SMARTCARD_REGISTER_CALLBACKS == 1 - if (hsmartcard->MspDeInitCallback == NULL) - { - hsmartcard->MspDeInitCallback = HAL_SMARTCARD_MspDeInit; - } - /* DeInit the low level hardware */ - hsmartcard->MspDeInitCallback(hsmartcard); -#else - HAL_SMARTCARD_MspDeInit(hsmartcard); -#endif /* USE_HAL_SMARTCARD_REGISTER_CALLBACKS */ - - hsmartcard->ErrorCode = HAL_SMARTCARD_ERROR_NONE; - hsmartcard->gState = HAL_SMARTCARD_STATE_RESET; - hsmartcard->RxState = HAL_SMARTCARD_STATE_RESET; - - /* Process Unlock */ - __HAL_UNLOCK(hsmartcard); - - return HAL_OK; -} - -/** - * @brief Initialize the SMARTCARD MSP. - * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains - * the configuration information for the specified SMARTCARD module. - * @retval None - */ -__weak void HAL_SMARTCARD_MspInit(SMARTCARD_HandleTypeDef *hsmartcard) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hsmartcard); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_SMARTCARD_MspInit can be implemented in the user file - */ -} - -/** - * @brief DeInitialize the SMARTCARD MSP. - * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains - * the configuration information for the specified SMARTCARD module. - * @retval None - */ -__weak void HAL_SMARTCARD_MspDeInit(SMARTCARD_HandleTypeDef *hsmartcard) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hsmartcard); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_SMARTCARD_MspDeInit can be implemented in the user file - */ -} - -#if (USE_HAL_SMARTCARD_REGISTER_CALLBACKS == 1) -/** - * @brief Register a User SMARTCARD Callback - * To be used instead of the weak predefined callback - * @param hsmartcard smartcard handle - * @param CallbackID ID of the callback to be registered - * This parameter can be one of the following values: - * @arg @ref HAL_SMARTCARD_TX_COMPLETE_CB_ID Tx Complete Callback ID - * @arg @ref HAL_SMARTCARD_RX_COMPLETE_CB_ID Rx Complete Callback ID - * @arg @ref HAL_SMARTCARD_ERROR_CB_ID Error Callback ID - * @arg @ref HAL_SMARTCARD_ABORT_COMPLETE_CB_ID Abort Complete Callback ID - * @arg @ref HAL_SMARTCARD_ABORT_TRANSMIT_COMPLETE_CB_ID Abort Transmit Complete Callback ID - * @arg @ref HAL_SMARTCARD_ABORT_RECEIVE_COMPLETE_CB_ID Abort Receive Complete Callback ID - * @arg @ref HAL_SMARTCARD_MSPINIT_CB_ID MspInit Callback ID - * @arg @ref HAL_SMARTCARD_MSPDEINIT_CB_ID MspDeInit Callback ID - * @param pCallback pointer to the Callback function - * @retval HAL status - */ -HAL_StatusTypeDef HAL_SMARTCARD_RegisterCallback(SMARTCARD_HandleTypeDef *hsmartcard, - HAL_SMARTCARD_CallbackIDTypeDef CallbackID, pSMARTCARD_CallbackTypeDef pCallback) -{ - HAL_StatusTypeDef status = HAL_OK; - - if (pCallback == NULL) - { - /* Update the error code */ - hsmartcard->ErrorCode |= HAL_SMARTCARD_ERROR_INVALID_CALLBACK; - - return HAL_ERROR; - } - /* Process locked */ - __HAL_LOCK(hsmartcard); - - if (hsmartcard->gState == HAL_SMARTCARD_STATE_READY) - { - switch (CallbackID) - { - - case HAL_SMARTCARD_TX_COMPLETE_CB_ID : - hsmartcard->TxCpltCallback = pCallback; - break; - - case HAL_SMARTCARD_RX_COMPLETE_CB_ID : - hsmartcard->RxCpltCallback = pCallback; - break; - - case HAL_SMARTCARD_ERROR_CB_ID : - hsmartcard->ErrorCallback = pCallback; - break; - - case HAL_SMARTCARD_ABORT_COMPLETE_CB_ID : - hsmartcard->AbortCpltCallback = pCallback; - break; - - case HAL_SMARTCARD_ABORT_TRANSMIT_COMPLETE_CB_ID : - hsmartcard->AbortTransmitCpltCallback = pCallback; - break; - - case HAL_SMARTCARD_ABORT_RECEIVE_COMPLETE_CB_ID : - hsmartcard->AbortReceiveCpltCallback = pCallback; - break; - - - case HAL_SMARTCARD_MSPINIT_CB_ID : - hsmartcard->MspInitCallback = pCallback; - break; - - case HAL_SMARTCARD_MSPDEINIT_CB_ID : - hsmartcard->MspDeInitCallback = pCallback; - break; - - default : - /* Update the error code */ - hsmartcard->ErrorCode |= HAL_SMARTCARD_ERROR_INVALID_CALLBACK; - - /* Return error status */ - status = HAL_ERROR; - break; - } - } - else if (hsmartcard->gState == HAL_SMARTCARD_STATE_RESET) - { - switch (CallbackID) - { - case HAL_SMARTCARD_MSPINIT_CB_ID : - hsmartcard->MspInitCallback = pCallback; - break; - - case HAL_SMARTCARD_MSPDEINIT_CB_ID : - hsmartcard->MspDeInitCallback = pCallback; - break; - - default : - /* Update the error code */ - hsmartcard->ErrorCode |= HAL_SMARTCARD_ERROR_INVALID_CALLBACK; - - /* Return error status */ - status = HAL_ERROR; - break; - } - } - else - { - /* Update the error code */ - hsmartcard->ErrorCode |= HAL_SMARTCARD_ERROR_INVALID_CALLBACK; - - /* Return error status */ - status = HAL_ERROR; - } - - /* Release Lock */ - __HAL_UNLOCK(hsmartcard); - - return status; -} - -/** - * @brief Unregister an SMARTCARD callback - * SMARTCARD callback is redirected to the weak predefined callback - * @param hsmartcard smartcard handle - * @param CallbackID ID of the callback to be unregistered - * This parameter can be one of the following values: - * @arg @ref HAL_SMARTCARD_TX_COMPLETE_CB_ID Tx Complete Callback ID - * @arg @ref HAL_SMARTCARD_RX_COMPLETE_CB_ID Rx Complete Callback ID - * @arg @ref HAL_SMARTCARD_ERROR_CB_ID Error Callback ID - * @arg @ref HAL_SMARTCARD_ABORT_COMPLETE_CB_ID Abort Complete Callback ID - * @arg @ref HAL_SMARTCARD_ABORT_TRANSMIT_COMPLETE_CB_ID Abort Transmit Complete Callback ID - * @arg @ref HAL_SMARTCARD_ABORT_RECEIVE_COMPLETE_CB_ID Abort Receive Complete Callback ID - * @arg @ref HAL_SMARTCARD_MSPINIT_CB_ID MspInit Callback ID - * @arg @ref HAL_SMARTCARD_MSPDEINIT_CB_ID MspDeInit Callback ID - * @retval HAL status - */ -HAL_StatusTypeDef HAL_SMARTCARD_UnRegisterCallback(SMARTCARD_HandleTypeDef *hsmartcard, - HAL_SMARTCARD_CallbackIDTypeDef CallbackID) -{ - HAL_StatusTypeDef status = HAL_OK; - - /* Process locked */ - __HAL_LOCK(hsmartcard); - - if (HAL_SMARTCARD_STATE_READY == hsmartcard->gState) - { - switch (CallbackID) - { - case HAL_SMARTCARD_TX_COMPLETE_CB_ID : - hsmartcard->TxCpltCallback = HAL_SMARTCARD_TxCpltCallback; /* Legacy weak TxCpltCallback */ - break; - - case HAL_SMARTCARD_RX_COMPLETE_CB_ID : - hsmartcard->RxCpltCallback = HAL_SMARTCARD_RxCpltCallback; /* Legacy weak RxCpltCallback */ - break; - - case HAL_SMARTCARD_ERROR_CB_ID : - hsmartcard->ErrorCallback = HAL_SMARTCARD_ErrorCallback; /* Legacy weak ErrorCallback */ - break; - - case HAL_SMARTCARD_ABORT_COMPLETE_CB_ID : - hsmartcard->AbortCpltCallback = HAL_SMARTCARD_AbortCpltCallback; /* Legacy weak AbortCpltCallback */ - break; - - case HAL_SMARTCARD_ABORT_TRANSMIT_COMPLETE_CB_ID : - hsmartcard->AbortTransmitCpltCallback = HAL_SMARTCARD_AbortTransmitCpltCallback; /* Legacy weak AbortTransmitCpltCallback */ - break; - - case HAL_SMARTCARD_ABORT_RECEIVE_COMPLETE_CB_ID : - hsmartcard->AbortReceiveCpltCallback = HAL_SMARTCARD_AbortReceiveCpltCallback; /* Legacy weak AbortReceiveCpltCallback */ - break; - - - case HAL_SMARTCARD_MSPINIT_CB_ID : - hsmartcard->MspInitCallback = HAL_SMARTCARD_MspInit; /* Legacy weak MspInitCallback */ - break; - - case HAL_SMARTCARD_MSPDEINIT_CB_ID : - hsmartcard->MspDeInitCallback = HAL_SMARTCARD_MspDeInit; /* Legacy weak MspDeInitCallback */ - break; - - default : - /* Update the error code */ - hsmartcard->ErrorCode |= HAL_SMARTCARD_ERROR_INVALID_CALLBACK; - - /* Return error status */ - status = HAL_ERROR; - break; - } - } - else if (HAL_SMARTCARD_STATE_RESET == hsmartcard->gState) - { - switch (CallbackID) - { - case HAL_SMARTCARD_MSPINIT_CB_ID : - hsmartcard->MspInitCallback = HAL_SMARTCARD_MspInit; - break; - - case HAL_SMARTCARD_MSPDEINIT_CB_ID : - hsmartcard->MspDeInitCallback = HAL_SMARTCARD_MspDeInit; - break; - - default : - /* Update the error code */ - hsmartcard->ErrorCode |= HAL_SMARTCARD_ERROR_INVALID_CALLBACK; - - /* Return error status */ - status = HAL_ERROR; - break; - } - } - else - { - /* Update the error code */ - hsmartcard->ErrorCode |= HAL_SMARTCARD_ERROR_INVALID_CALLBACK; - - /* Return error status */ - status = HAL_ERROR; - } - - /* Release Lock */ - __HAL_UNLOCK(hsmartcard); - - return status; -} -#endif /* USE_HAL_SMARTCARD_REGISTER_CALLBACKS */ - -/** - * @} - */ - -/** @defgroup SMARTCARD_Exported_Functions_Group2 IO operation functions - * @brief SMARTCARD Transmit and Receive functions - * -@verbatim - ============================================================================== - ##### IO operation functions ##### - ============================================================================== - [..] - This subsection provides a set of functions allowing to manage the SMARTCARD data transfers. - - [..] - Smartcard is a single wire half duplex communication protocol. - The Smartcard interface is designed to support asynchronous protocol Smartcards as - defined in the ISO 7816-3 standard. The USART should be configured as: - (+) 8 bits plus parity: where M=1 and PCE=1 in the USART_CR1 register - (+) 1.5 stop bits when transmitting and receiving: where STOP=11 in the USART_CR2 register. - - [..] - (+) There are two modes of transfer: - (++) Blocking mode: The communication is performed in polling mode. - The HAL status of all data processing is returned by the same function - after finishing transfer. - (++) Non-Blocking mode: The communication is performed using Interrupts - or DMA, the relevant API's return the HAL status. - The end of the data processing will be indicated through the - dedicated SMARTCARD IRQ when using Interrupt mode or the DMA IRQ when - using DMA mode. - (++) The HAL_SMARTCARD_TxCpltCallback(), HAL_SMARTCARD_RxCpltCallback() user callbacks - will be executed respectively at the end of the Transmit or Receive process - The HAL_SMARTCARD_ErrorCallback() user callback will be executed when a communication - error is detected. - - (+) Blocking mode APIs are : - (++) HAL_SMARTCARD_Transmit() - (++) HAL_SMARTCARD_Receive() - - (+) Non Blocking mode APIs with Interrupt are : - (++) HAL_SMARTCARD_Transmit_IT() - (++) HAL_SMARTCARD_Receive_IT() - (++) HAL_SMARTCARD_IRQHandler() - - (+) Non Blocking mode functions with DMA are : - (++) HAL_SMARTCARD_Transmit_DMA() - (++) HAL_SMARTCARD_Receive_DMA() - - (+) A set of Transfer Complete Callbacks are provided in non Blocking mode: - (++) HAL_SMARTCARD_TxCpltCallback() - (++) HAL_SMARTCARD_RxCpltCallback() - (++) HAL_SMARTCARD_ErrorCallback() - - [..] - (#) Non-Blocking mode transfers could be aborted using Abort API's : - (++) HAL_SMARTCARD_Abort() - (++) HAL_SMARTCARD_AbortTransmit() - (++) HAL_SMARTCARD_AbortReceive() - (++) HAL_SMARTCARD_Abort_IT() - (++) HAL_SMARTCARD_AbortTransmit_IT() - (++) HAL_SMARTCARD_AbortReceive_IT() - - (#) For Abort services based on interrupts (HAL_SMARTCARD_Abortxxx_IT), a set of Abort Complete Callbacks are provided: - (++) HAL_SMARTCARD_AbortCpltCallback() - (++) HAL_SMARTCARD_AbortTransmitCpltCallback() - (++) HAL_SMARTCARD_AbortReceiveCpltCallback() - - (#) In Non-Blocking mode transfers, possible errors are split into 2 categories. - Errors are handled as follows : - (++) Error is considered as Recoverable and non blocking : Transfer could go till end, but error severity is - to be evaluated by user : this concerns Frame Error, Parity Error or Noise Error in Interrupt mode reception . - Received character is then retrieved and stored in Rx buffer, Error code is set to allow user to identify error type, - and HAL_SMARTCARD_ErrorCallback() user callback is executed. Transfer is kept ongoing on SMARTCARD side. - If user wants to abort it, Abort services should be called by user. - (++) Error is considered as Blocking : Transfer could not be completed properly and is aborted. - This concerns Frame Error in Interrupt mode tranmission, Overrun Error in Interrupt mode reception and all errors in DMA mode. - Error code is set to allow user to identify error type, and HAL_SMARTCARD_ErrorCallback() user callback is executed. - -@endverbatim - * @{ - */ - -/** - * @brief Send an amount of data in blocking mode. - * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains - * the configuration information for the specified SMARTCARD module. - * @param pData pointer to data buffer. - * @param Size amount of data to be sent. - * @param Timeout Timeout duration. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_SMARTCARD_Transmit(SMARTCARD_HandleTypeDef *hsmartcard, uint8_t *pData, uint16_t Size, - uint32_t Timeout) -{ - uint32_t tickstart; - uint8_t *ptmpdata = pData; - - /* Check that a Tx process is not already ongoing */ - if (hsmartcard->gState == HAL_SMARTCARD_STATE_READY) - { - if ((ptmpdata == NULL) || (Size == 0U)) - { - return HAL_ERROR; - } - - /* Process Locked */ - __HAL_LOCK(hsmartcard); - - hsmartcard->gState = HAL_SMARTCARD_STATE_BUSY_TX; - - /* Init tickstart for timeout management */ - tickstart = HAL_GetTick(); - - /* Disable the Peripheral first to update mode for TX master */ - CLEAR_BIT(hsmartcard->Instance->CR1, USART_CR1_UE); - - /* Disable Rx, enable Tx */ - CLEAR_BIT(hsmartcard->Instance->CR1, USART_CR1_RE); - SET_BIT(hsmartcard->Instance->RQR, (uint16_t)SMARTCARD_RXDATA_FLUSH_REQUEST); - SET_BIT(hsmartcard->Instance->CR1, USART_CR1_TE); - - /* Enable the Peripheral */ - SET_BIT(hsmartcard->Instance->CR1, USART_CR1_UE); - - hsmartcard->ErrorCode = HAL_SMARTCARD_ERROR_NONE; - hsmartcard->TxXferSize = Size; - hsmartcard->TxXferCount = Size; - - while (hsmartcard->TxXferCount > 0U) - { - hsmartcard->TxXferCount--; - if (SMARTCARD_WaitOnFlagUntilTimeout(hsmartcard, SMARTCARD_FLAG_TXE, RESET, tickstart, Timeout) != HAL_OK) - { - return HAL_TIMEOUT; - } - hsmartcard->Instance->TDR = (uint8_t)(*ptmpdata & 0xFFU); - ptmpdata++; - } - if (SMARTCARD_WaitOnFlagUntilTimeout(hsmartcard, SMARTCARD_TRANSMISSION_COMPLETION_FLAG(hsmartcard), RESET, tickstart, - Timeout) != HAL_OK) - { - return HAL_TIMEOUT; - } - /* Re-enable Rx at end of transmission if initial mode is Rx/Tx */ - if (hsmartcard->Init.Mode == SMARTCARD_MODE_TX_RX) - { - /* Disable the Peripheral first to update modes */ - CLEAR_BIT(hsmartcard->Instance->CR1, USART_CR1_UE); - SET_BIT(hsmartcard->Instance->CR1, USART_CR1_RE); - /* Enable the Peripheral */ - SET_BIT(hsmartcard->Instance->CR1, USART_CR1_UE); - } - - /* At end of Tx process, restore hsmartcard->gState to Ready */ - hsmartcard->gState = HAL_SMARTCARD_STATE_READY; - - /* Process Unlocked */ - __HAL_UNLOCK(hsmartcard); - - return HAL_OK; - } - else - { - return HAL_BUSY; - } -} - -/** - * @brief Receive an amount of data in blocking mode. - * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains - * the configuration information for the specified SMARTCARD module. - * @param pData pointer to data buffer. - * @param Size amount of data to be received. - * @param Timeout Timeout duration. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_SMARTCARD_Receive(SMARTCARD_HandleTypeDef *hsmartcard, uint8_t *pData, uint16_t Size, - uint32_t Timeout) -{ - uint32_t tickstart; - uint8_t *ptmpdata = pData; - - /* Check that a Rx process is not already ongoing */ - if (hsmartcard->RxState == HAL_SMARTCARD_STATE_READY) - { - if ((ptmpdata == NULL) || (Size == 0U)) - { - return HAL_ERROR; - } - - /* Process Locked */ - __HAL_LOCK(hsmartcard); - - hsmartcard->ErrorCode = HAL_SMARTCARD_ERROR_NONE; - hsmartcard->RxState = HAL_SMARTCARD_STATE_BUSY_RX; - - /* Init tickstart for timeout management */ - tickstart = HAL_GetTick(); - - hsmartcard->RxXferSize = Size; - hsmartcard->RxXferCount = Size; - - /* Check the remain data to be received */ - while (hsmartcard->RxXferCount > 0U) - { - hsmartcard->RxXferCount--; - - if (SMARTCARD_WaitOnFlagUntilTimeout(hsmartcard, SMARTCARD_FLAG_RXNE, RESET, tickstart, Timeout) != HAL_OK) - { - return HAL_TIMEOUT; - } - *ptmpdata = (uint8_t)(hsmartcard->Instance->RDR & (uint8_t)0x00FF); - ptmpdata++; - } - - /* At end of Rx process, restore hsmartcard->RxState to Ready */ - hsmartcard->RxState = HAL_SMARTCARD_STATE_READY; - - /* Process Unlocked */ - __HAL_UNLOCK(hsmartcard); - - return HAL_OK; - } - else - { - return HAL_BUSY; - } -} - -/** - * @brief Send an amount of data in interrupt mode. - * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains - * the configuration information for the specified SMARTCARD module. - * @param pData pointer to data buffer. - * @param Size amount of data to be sent. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_SMARTCARD_Transmit_IT(SMARTCARD_HandleTypeDef *hsmartcard, uint8_t *pData, uint16_t Size) -{ - /* Check that a Tx process is not already ongoing */ - if (hsmartcard->gState == HAL_SMARTCARD_STATE_READY) - { - if ((pData == NULL) || (Size == 0U)) - { - return HAL_ERROR; - } - - /* Process Locked */ - __HAL_LOCK(hsmartcard); - - hsmartcard->ErrorCode = HAL_SMARTCARD_ERROR_NONE; - hsmartcard->gState = HAL_SMARTCARD_STATE_BUSY_TX; - - hsmartcard->pTxBuffPtr = pData; - hsmartcard->TxXferSize = Size; - hsmartcard->TxXferCount = Size; - hsmartcard->TxISR = NULL; - - /* Disable the Peripheral first to update mode for TX master */ - CLEAR_BIT(hsmartcard->Instance->CR1, USART_CR1_UE); - - /* Disable Rx, enable Tx */ - CLEAR_BIT(hsmartcard->Instance->CR1, USART_CR1_RE); - SET_BIT(hsmartcard->Instance->RQR, (uint16_t)SMARTCARD_RXDATA_FLUSH_REQUEST); - SET_BIT(hsmartcard->Instance->CR1, USART_CR1_TE); - - /* Enable the Peripheral */ - SET_BIT(hsmartcard->Instance->CR1, USART_CR1_UE); - - /* Configure Tx interrupt processing */ - /* Set the Tx ISR function pointer */ - hsmartcard->TxISR = SMARTCARD_TxISR; - - /* Process Unlocked */ - __HAL_UNLOCK(hsmartcard); - - /* Enable the SMARTCARD Error Interrupt: (Frame error) */ - SET_BIT(hsmartcard->Instance->CR3, USART_CR3_EIE); - - /* Enable the SMARTCARD Transmit Data Register Empty Interrupt */ - SET_BIT(hsmartcard->Instance->CR1, USART_CR1_TXEIE); - - return HAL_OK; - } - else - { - return HAL_BUSY; - } -} - -/** - * @brief Receive an amount of data in interrupt mode. - * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains - * the configuration information for the specified SMARTCARD module. - * @param pData pointer to data buffer. - * @param Size amount of data to be received. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_SMARTCARD_Receive_IT(SMARTCARD_HandleTypeDef *hsmartcard, uint8_t *pData, uint16_t Size) -{ - /* Check that a Rx process is not already ongoing */ - if (hsmartcard->RxState == HAL_SMARTCARD_STATE_READY) - { - if ((pData == NULL) || (Size == 0U)) - { - return HAL_ERROR; - } - - /* Process Locked */ - __HAL_LOCK(hsmartcard); - - hsmartcard->ErrorCode = HAL_SMARTCARD_ERROR_NONE; - hsmartcard->RxState = HAL_SMARTCARD_STATE_BUSY_RX; - - hsmartcard->pRxBuffPtr = pData; - hsmartcard->RxXferSize = Size; - hsmartcard->RxXferCount = Size; - - /* Configure Rx interrupt processing */ - /* Set the Rx ISR function pointer */ - hsmartcard->RxISR = SMARTCARD_RxISR; - - /* Process Unlocked */ - __HAL_UNLOCK(hsmartcard); - - /* Enable the SMARTCARD Parity Error and Data Register not empty Interrupts */ - SET_BIT(hsmartcard->Instance->CR1, USART_CR1_PEIE | USART_CR1_RXNEIE); - - /* Enable the SMARTCARD Error Interrupt: (Frame error, noise error, overrun error) */ - SET_BIT(hsmartcard->Instance->CR3, USART_CR3_EIE); - - return HAL_OK; - } - else - { - return HAL_BUSY; - } -} - -/** - * @brief Send an amount of data in DMA mode. - * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains - * the configuration information for the specified SMARTCARD module. - * @param pData pointer to data buffer. - * @param Size amount of data to be sent. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_SMARTCARD_Transmit_DMA(SMARTCARD_HandleTypeDef *hsmartcard, uint8_t *pData, uint16_t Size) -{ - /* Check that a Tx process is not already ongoing */ - if (hsmartcard->gState == HAL_SMARTCARD_STATE_READY) - { - if ((pData == NULL) || (Size == 0U)) - { - return HAL_ERROR; - } - - /* Process Locked */ - __HAL_LOCK(hsmartcard); - - hsmartcard->gState = HAL_SMARTCARD_STATE_BUSY_TX; - - hsmartcard->ErrorCode = HAL_SMARTCARD_ERROR_NONE; - hsmartcard->pTxBuffPtr = pData; - hsmartcard->TxXferSize = Size; - hsmartcard->TxXferCount = Size; - - /* Disable the Peripheral first to update mode for TX master */ - CLEAR_BIT(hsmartcard->Instance->CR1, USART_CR1_UE); - - /* Disable Rx, enable Tx */ - CLEAR_BIT(hsmartcard->Instance->CR1, USART_CR1_RE); - SET_BIT(hsmartcard->Instance->RQR, (uint16_t)SMARTCARD_RXDATA_FLUSH_REQUEST); - SET_BIT(hsmartcard->Instance->CR1, USART_CR1_TE); - - /* Enable the Peripheral */ - SET_BIT(hsmartcard->Instance->CR1, USART_CR1_UE); - - /* Set the SMARTCARD DMA transfer complete callback */ - hsmartcard->hdmatx->XferCpltCallback = SMARTCARD_DMATransmitCplt; - - /* Set the SMARTCARD error callback */ - hsmartcard->hdmatx->XferErrorCallback = SMARTCARD_DMAError; - - /* Set the DMA abort callback */ - hsmartcard->hdmatx->XferAbortCallback = NULL; - - /* Enable the SMARTCARD transmit DMA channel */ - if (HAL_DMA_Start_IT(hsmartcard->hdmatx, (uint32_t)hsmartcard->pTxBuffPtr, (uint32_t)&hsmartcard->Instance->TDR, - Size) == HAL_OK) - { - /* Clear the TC flag in the ICR register */ - CLEAR_BIT(hsmartcard->Instance->ICR, USART_ICR_TCCF); - - /* Process Unlocked */ - __HAL_UNLOCK(hsmartcard); - - /* Enable the UART Error Interrupt: (Frame error) */ - SET_BIT(hsmartcard->Instance->CR3, USART_CR3_EIE); - - /* Enable the DMA transfer for transmit request by setting the DMAT bit - in the SMARTCARD associated USART CR3 register */ - SET_BIT(hsmartcard->Instance->CR3, USART_CR3_DMAT); - - return HAL_OK; - } - else - { - /* Set error code to DMA */ - hsmartcard->ErrorCode = HAL_SMARTCARD_ERROR_DMA; - - /* Process Unlocked */ - __HAL_UNLOCK(hsmartcard); - - /* Restore hsmartcard->State to ready */ - hsmartcard->gState = HAL_SMARTCARD_STATE_READY; - - return HAL_ERROR; - } - } - else - { - return HAL_BUSY; - } -} - -/** - * @brief Receive an amount of data in DMA mode. - * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains - * the configuration information for the specified SMARTCARD module. - * @param pData pointer to data buffer. - * @param Size amount of data to be received. - * @note The SMARTCARD-associated USART parity is enabled (PCE = 1), - * the received data contain the parity bit (MSB position). - * @retval HAL status - */ -HAL_StatusTypeDef HAL_SMARTCARD_Receive_DMA(SMARTCARD_HandleTypeDef *hsmartcard, uint8_t *pData, uint16_t Size) -{ - /* Check that a Rx process is not already ongoing */ - if (hsmartcard->RxState == HAL_SMARTCARD_STATE_READY) - { - if ((pData == NULL) || (Size == 0U)) - { - return HAL_ERROR; - } - - /* Process Locked */ - __HAL_LOCK(hsmartcard); - - hsmartcard->ErrorCode = HAL_SMARTCARD_ERROR_NONE; - hsmartcard->RxState = HAL_SMARTCARD_STATE_BUSY_RX; - - hsmartcard->pRxBuffPtr = pData; - hsmartcard->RxXferSize = Size; - - /* Set the SMARTCARD DMA transfer complete callback */ - hsmartcard->hdmarx->XferCpltCallback = SMARTCARD_DMAReceiveCplt; - - /* Set the SMARTCARD DMA error callback */ - hsmartcard->hdmarx->XferErrorCallback = SMARTCARD_DMAError; - - /* Set the DMA abort callback */ - hsmartcard->hdmarx->XferAbortCallback = NULL; - - /* Enable the DMA channel */ - if (HAL_DMA_Start_IT(hsmartcard->hdmarx, (uint32_t)&hsmartcard->Instance->RDR, (uint32_t)hsmartcard->pRxBuffPtr, - Size) == HAL_OK) - { - /* Process Unlocked */ - __HAL_UNLOCK(hsmartcard); - - /* Enable the SMARTCARD Parity Error Interrupt */ - SET_BIT(hsmartcard->Instance->CR1, USART_CR1_PEIE); - - /* Enable the SMARTCARD Error Interrupt: (Frame error, noise error, overrun error) */ - SET_BIT(hsmartcard->Instance->CR3, USART_CR3_EIE); - - /* Enable the DMA transfer for the receiver request by setting the DMAR bit - in the SMARTCARD associated USART CR3 register */ - SET_BIT(hsmartcard->Instance->CR3, USART_CR3_DMAR); - - return HAL_OK; - } - else - { - /* Set error code to DMA */ - hsmartcard->ErrorCode = HAL_SMARTCARD_ERROR_DMA; - - /* Process Unlocked */ - __HAL_UNLOCK(hsmartcard); - - /* Restore hsmartcard->State to ready */ - hsmartcard->RxState = HAL_SMARTCARD_STATE_READY; - - return HAL_ERROR; - } - } - else - { - return HAL_BUSY; - } -} - -/** - * @brief Abort ongoing transfers (blocking mode). - * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains - * the configuration information for the specified SMARTCARD module. - * @note This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode. - * This procedure performs following operations : - * - Disable SMARTCARD Interrupts (Tx and Rx) - * - Disable the DMA transfer in the peripheral register (if enabled) - * - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode) - * - Set handle State to READY - * @note This procedure is executed in blocking mode : when exiting function, Abort is considered as completed. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_SMARTCARD_Abort(SMARTCARD_HandleTypeDef *hsmartcard) -{ - /* Disable RTOIE, EOBIE, TXEIE, TCIE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */ - CLEAR_BIT(hsmartcard->Instance->CR1, - (USART_CR1_RXNEIE | USART_CR1_PEIE | USART_CR1_TXEIE | USART_CR1_TCIE | USART_CR1_RTOIE | USART_CR1_EOBIE)); - CLEAR_BIT(hsmartcard->Instance->CR3, USART_CR3_EIE); - - /* Disable the SMARTCARD DMA Tx request if enabled */ - if (HAL_IS_BIT_SET(hsmartcard->Instance->CR3, USART_CR3_DMAT)) - { - CLEAR_BIT(hsmartcard->Instance->CR3, USART_CR3_DMAT); - - /* Abort the SMARTCARD DMA Tx channel : use blocking DMA Abort API (no callback) */ - if (hsmartcard->hdmatx != NULL) - { - /* Set the SMARTCARD DMA Abort callback to Null. - No call back execution at end of DMA abort procedure */ - hsmartcard->hdmatx->XferAbortCallback = NULL; - - if (HAL_DMA_Abort(hsmartcard->hdmatx) != HAL_OK) - { - if (HAL_DMA_GetError(hsmartcard->hdmatx) == HAL_DMA_ERROR_TIMEOUT) - { - /* Set error code to DMA */ - hsmartcard->ErrorCode = HAL_SMARTCARD_ERROR_DMA; - - return HAL_TIMEOUT; - } - } - } - } - - /* Disable the SMARTCARD DMA Rx request if enabled */ - if (HAL_IS_BIT_SET(hsmartcard->Instance->CR3, USART_CR3_DMAR)) - { - CLEAR_BIT(hsmartcard->Instance->CR3, USART_CR3_DMAR); - - /* Abort the SMARTCARD DMA Rx channel : use blocking DMA Abort API (no callback) */ - if (hsmartcard->hdmarx != NULL) - { - /* Set the SMARTCARD DMA Abort callback to Null. - No call back execution at end of DMA abort procedure */ - hsmartcard->hdmarx->XferAbortCallback = NULL; - - if (HAL_DMA_Abort(hsmartcard->hdmarx) != HAL_OK) - { - if (HAL_DMA_GetError(hsmartcard->hdmarx) == HAL_DMA_ERROR_TIMEOUT) - { - /* Set error code to DMA */ - hsmartcard->ErrorCode = HAL_SMARTCARD_ERROR_DMA; - - return HAL_TIMEOUT; - } - } - } - } - - /* Reset Tx and Rx transfer counters */ - hsmartcard->TxXferCount = 0U; - hsmartcard->RxXferCount = 0U; - - /* Clear the Error flags in the ICR register */ - __HAL_SMARTCARD_CLEAR_FLAG(hsmartcard, - SMARTCARD_CLEAR_OREF | SMARTCARD_CLEAR_NEF | SMARTCARD_CLEAR_PEF | SMARTCARD_CLEAR_FEF | SMARTCARD_CLEAR_RTOF | - SMARTCARD_CLEAR_EOBF); - - /* Restore hsmartcard->gState and hsmartcard->RxState to Ready */ - hsmartcard->gState = HAL_SMARTCARD_STATE_READY; - hsmartcard->RxState = HAL_SMARTCARD_STATE_READY; - - /* Reset Handle ErrorCode to No Error */ - hsmartcard->ErrorCode = HAL_SMARTCARD_ERROR_NONE; - - return HAL_OK; -} - -/** - * @brief Abort ongoing Transmit transfer (blocking mode). - * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains - * the configuration information for the specified SMARTCARD module. - * @note This procedure could be used for aborting any ongoing Tx transfer started in Interrupt or DMA mode. - * This procedure performs following operations : - * - Disable SMARTCARD Interrupts (Tx) - * - Disable the DMA transfer in the peripheral register (if enabled) - * - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode) - * - Set handle State to READY - * @note This procedure is executed in blocking mode : when exiting function, Abort is considered as completed. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_SMARTCARD_AbortTransmit(SMARTCARD_HandleTypeDef *hsmartcard) -{ - /* Disable TXEIE and TCIE interrupts */ - CLEAR_BIT(hsmartcard->Instance->CR1, (USART_CR1_TXEIE | USART_CR1_TCIE)); - - /* Check if a receive process is ongoing or not. If not disable ERR IT */ - if (hsmartcard->RxState == HAL_SMARTCARD_STATE_READY) - { - /* Disable the SMARTCARD Error Interrupt: (Frame error) */ - CLEAR_BIT(hsmartcard->Instance->CR3, USART_CR3_EIE); - } - - /* Disable the SMARTCARD DMA Tx request if enabled */ - if (HAL_IS_BIT_SET(hsmartcard->Instance->CR3, USART_CR3_DMAT)) - { - CLEAR_BIT(hsmartcard->Instance->CR3, USART_CR3_DMAT); - - /* Abort the SMARTCARD DMA Tx channel : use blocking DMA Abort API (no callback) */ - if (hsmartcard->hdmatx != NULL) - { - /* Set the SMARTCARD DMA Abort callback to Null. - No call back execution at end of DMA abort procedure */ - hsmartcard->hdmatx->XferAbortCallback = NULL; - - if (HAL_DMA_Abort(hsmartcard->hdmatx) != HAL_OK) - { - if (HAL_DMA_GetError(hsmartcard->hdmatx) == HAL_DMA_ERROR_TIMEOUT) - { - /* Set error code to DMA */ - hsmartcard->ErrorCode = HAL_SMARTCARD_ERROR_DMA; - - return HAL_TIMEOUT; - } - } - } - } - - /* Reset Tx transfer counter */ - hsmartcard->TxXferCount = 0U; - - /* Clear the Error flags in the ICR register */ - __HAL_SMARTCARD_CLEAR_FLAG(hsmartcard, SMARTCARD_CLEAR_FEF); - - /* Restore hsmartcard->gState to Ready */ - hsmartcard->gState = HAL_SMARTCARD_STATE_READY; - - return HAL_OK; -} - -/** - * @brief Abort ongoing Receive transfer (blocking mode). - * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains - * the configuration information for the specified SMARTCARD module. - * @note This procedure could be used for aborting any ongoing Rx transfer started in Interrupt or DMA mode. - * This procedure performs following operations : - * - Disable SMARTCARD Interrupts (Rx) - * - Disable the DMA transfer in the peripheral register (if enabled) - * - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode) - * - Set handle State to READY - * @note This procedure is executed in blocking mode : when exiting function, Abort is considered as completed. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_SMARTCARD_AbortReceive(SMARTCARD_HandleTypeDef *hsmartcard) -{ - /* Disable RTOIE, EOBIE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */ - CLEAR_BIT(hsmartcard->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE | USART_CR1_RTOIE | USART_CR1_EOBIE)); - CLEAR_BIT(hsmartcard->Instance->CR3, USART_CR3_EIE); - - /* Check if a Transmit process is ongoing or not. If not disable ERR IT */ - if (hsmartcard->gState == HAL_SMARTCARD_STATE_READY) - { - /* Disable the SMARTCARD Error Interrupt: (Frame error) */ - CLEAR_BIT(hsmartcard->Instance->CR3, USART_CR3_EIE); - } - - /* Disable the SMARTCARD DMA Rx request if enabled */ - if (HAL_IS_BIT_SET(hsmartcard->Instance->CR3, USART_CR3_DMAR)) - { - CLEAR_BIT(hsmartcard->Instance->CR3, USART_CR3_DMAR); - - /* Abort the SMARTCARD DMA Rx channel : use blocking DMA Abort API (no callback) */ - if (hsmartcard->hdmarx != NULL) - { - /* Set the SMARTCARD DMA Abort callback to Null. - No call back execution at end of DMA abort procedure */ - hsmartcard->hdmarx->XferAbortCallback = NULL; - - if (HAL_DMA_Abort(hsmartcard->hdmarx) != HAL_OK) - { - if (HAL_DMA_GetError(hsmartcard->hdmarx) == HAL_DMA_ERROR_TIMEOUT) - { - /* Set error code to DMA */ - hsmartcard->ErrorCode = HAL_SMARTCARD_ERROR_DMA; - - return HAL_TIMEOUT; - } - } - } - } - - /* Reset Rx transfer counter */ - hsmartcard->RxXferCount = 0U; - - /* Clear the Error flags in the ICR register */ - __HAL_SMARTCARD_CLEAR_FLAG(hsmartcard, - SMARTCARD_CLEAR_OREF | SMARTCARD_CLEAR_NEF | SMARTCARD_CLEAR_PEF | SMARTCARD_CLEAR_FEF | SMARTCARD_CLEAR_RTOF | - SMARTCARD_CLEAR_EOBF); - - /* Restore hsmartcard->RxState to Ready */ - hsmartcard->RxState = HAL_SMARTCARD_STATE_READY; - - return HAL_OK; -} - -/** - * @brief Abort ongoing transfers (Interrupt mode). - * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains - * the configuration information for the specified SMARTCARD module. - * @note This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode. - * This procedure performs following operations : - * - Disable SMARTCARD Interrupts (Tx and Rx) - * - Disable the DMA transfer in the peripheral register (if enabled) - * - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode) - * - Set handle State to READY - * - At abort completion, call user abort complete callback - * @note This procedure is executed in Interrupt mode, meaning that abort procedure could be - * considered as completed only when user abort complete callback is executed (not when exiting function). - * @retval HAL status - */ -HAL_StatusTypeDef HAL_SMARTCARD_Abort_IT(SMARTCARD_HandleTypeDef *hsmartcard) -{ - uint32_t abortcplt = 1U; - - /* Disable RTOIE, EOBIE, TXEIE, TCIE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */ - CLEAR_BIT(hsmartcard->Instance->CR1, - (USART_CR1_RXNEIE | USART_CR1_PEIE | USART_CR1_TXEIE | USART_CR1_TCIE | USART_CR1_RTOIE | USART_CR1_EOBIE)); - CLEAR_BIT(hsmartcard->Instance->CR3, USART_CR3_EIE); - - /* If DMA Tx and/or DMA Rx Handles are associated to SMARTCARD Handle, DMA Abort complete callbacks should be initialised - before any call to DMA Abort functions */ - /* DMA Tx Handle is valid */ - if (hsmartcard->hdmatx != NULL) - { - /* Set DMA Abort Complete callback if SMARTCARD DMA Tx request if enabled. - Otherwise, set it to NULL */ - if (HAL_IS_BIT_SET(hsmartcard->Instance->CR3, USART_CR3_DMAT)) - { - hsmartcard->hdmatx->XferAbortCallback = SMARTCARD_DMATxAbortCallback; - } - else - { - hsmartcard->hdmatx->XferAbortCallback = NULL; - } - } - /* DMA Rx Handle is valid */ - if (hsmartcard->hdmarx != NULL) - { - /* Set DMA Abort Complete callback if SMARTCARD DMA Rx request if enabled. - Otherwise, set it to NULL */ - if (HAL_IS_BIT_SET(hsmartcard->Instance->CR3, USART_CR3_DMAR)) - { - hsmartcard->hdmarx->XferAbortCallback = SMARTCARD_DMARxAbortCallback; - } - else - { - hsmartcard->hdmarx->XferAbortCallback = NULL; - } - } - - /* Disable the SMARTCARD DMA Tx request if enabled */ - if (HAL_IS_BIT_SET(hsmartcard->Instance->CR3, USART_CR3_DMAT)) - { - /* Disable DMA Tx at UART level */ - CLEAR_BIT(hsmartcard->Instance->CR3, USART_CR3_DMAT); - - /* Abort the SMARTCARD DMA Tx channel : use non blocking DMA Abort API (callback) */ - if (hsmartcard->hdmatx != NULL) - { - /* SMARTCARD Tx DMA Abort callback has already been initialised : - will lead to call HAL_SMARTCARD_AbortCpltCallback() at end of DMA abort procedure */ - - /* Abort DMA TX */ - if (HAL_DMA_Abort_IT(hsmartcard->hdmatx) != HAL_OK) - { - hsmartcard->hdmatx->XferAbortCallback = NULL; - } - else - { - abortcplt = 0U; - } - } - } - - /* Disable the SMARTCARD DMA Rx request if enabled */ - if (HAL_IS_BIT_SET(hsmartcard->Instance->CR3, USART_CR3_DMAR)) - { - CLEAR_BIT(hsmartcard->Instance->CR3, USART_CR3_DMAR); - - /* Abort the SMARTCARD DMA Rx channel : use non blocking DMA Abort API (callback) */ - if (hsmartcard->hdmarx != NULL) - { - /* SMARTCARD Rx DMA Abort callback has already been initialised : - will lead to call HAL_SMARTCARD_AbortCpltCallback() at end of DMA abort procedure */ - - /* Abort DMA RX */ - if (HAL_DMA_Abort_IT(hsmartcard->hdmarx) != HAL_OK) - { - hsmartcard->hdmarx->XferAbortCallback = NULL; - abortcplt = 1U; - } - else - { - abortcplt = 0U; - } - } - } - - /* if no DMA abort complete callback execution is required => call user Abort Complete callback */ - if (abortcplt == 1U) - { - /* Reset Tx and Rx transfer counters */ - hsmartcard->TxXferCount = 0U; - hsmartcard->RxXferCount = 0U; - - /* Clear ISR function pointers */ - hsmartcard->RxISR = NULL; - hsmartcard->TxISR = NULL; - - /* Reset errorCode */ - hsmartcard->ErrorCode = HAL_SMARTCARD_ERROR_NONE; - - /* Clear the Error flags in the ICR register */ - __HAL_SMARTCARD_CLEAR_FLAG(hsmartcard, - SMARTCARD_CLEAR_OREF | SMARTCARD_CLEAR_NEF | SMARTCARD_CLEAR_PEF | SMARTCARD_CLEAR_FEF | SMARTCARD_CLEAR_RTOF | - SMARTCARD_CLEAR_EOBF); - - /* Restore hsmartcard->gState and hsmartcard->RxState to Ready */ - hsmartcard->gState = HAL_SMARTCARD_STATE_READY; - hsmartcard->RxState = HAL_SMARTCARD_STATE_READY; - - /* As no DMA to be aborted, call directly user Abort complete callback */ -#if (USE_HAL_SMARTCARD_REGISTER_CALLBACKS == 1) - /* Call registered Abort complete callback */ - hsmartcard->AbortCpltCallback(hsmartcard); -#else - /* Call legacy weak Abort complete callback */ - HAL_SMARTCARD_AbortCpltCallback(hsmartcard); -#endif /* USE_HAL_SMARTCARD_REGISTER_CALLBACK */ - } - - return HAL_OK; -} - -/** - * @brief Abort ongoing Transmit transfer (Interrupt mode). - * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains - * the configuration information for the specified SMARTCARD module. - * @note This procedure could be used for aborting any ongoing Tx transfer started in Interrupt or DMA mode. - * This procedure performs following operations : - * - Disable SMARTCARD Interrupts (Tx) - * - Disable the DMA transfer in the peripheral register (if enabled) - * - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode) - * - Set handle State to READY - * - At abort completion, call user abort complete callback - * @note This procedure is executed in Interrupt mode, meaning that abort procedure could be - * considered as completed only when user abort complete callback is executed (not when exiting function). - * @retval HAL status - */ -HAL_StatusTypeDef HAL_SMARTCARD_AbortTransmit_IT(SMARTCARD_HandleTypeDef *hsmartcard) -{ - /* Disable TXEIE and TCIE interrupts */ - CLEAR_BIT(hsmartcard->Instance->CR1, (USART_CR1_TXEIE | USART_CR1_TCIE)); - - /* Check if a receive process is ongoing or not. If not disable ERR IT */ - if (hsmartcard->RxState == HAL_SMARTCARD_STATE_READY) - { - /* Disable the SMARTCARD Error Interrupt: (Frame error) */ - CLEAR_BIT(hsmartcard->Instance->CR3, USART_CR3_EIE); - } - - /* Disable the SMARTCARD DMA Tx request if enabled */ - if (HAL_IS_BIT_SET(hsmartcard->Instance->CR3, USART_CR3_DMAT)) - { - CLEAR_BIT(hsmartcard->Instance->CR3, USART_CR3_DMAT); - - /* Abort the SMARTCARD DMA Tx channel : use non blocking DMA Abort API (callback) */ - if (hsmartcard->hdmatx != NULL) - { - /* Set the SMARTCARD DMA Abort callback : - will lead to call HAL_SMARTCARD_AbortCpltCallback() at end of DMA abort procedure */ - hsmartcard->hdmatx->XferAbortCallback = SMARTCARD_DMATxOnlyAbortCallback; - - /* Abort DMA TX */ - if (HAL_DMA_Abort_IT(hsmartcard->hdmatx) != HAL_OK) - { - /* Call Directly hsmartcard->hdmatx->XferAbortCallback function in case of error */ - hsmartcard->hdmatx->XferAbortCallback(hsmartcard->hdmatx); - } - } - else - { - /* Reset Tx transfer counter */ - hsmartcard->TxXferCount = 0U; - - /* Clear TxISR function pointers */ - hsmartcard->TxISR = NULL; - - /* Restore hsmartcard->gState to Ready */ - hsmartcard->gState = HAL_SMARTCARD_STATE_READY; - - /* As no DMA to be aborted, call directly user Abort complete callback */ -#if (USE_HAL_SMARTCARD_REGISTER_CALLBACKS == 1) - /* Call registered Abort Transmit Complete Callback */ - hsmartcard->AbortTransmitCpltCallback(hsmartcard); -#else - /* Call legacy weak Abort Transmit Complete Callback */ - HAL_SMARTCARD_AbortTransmitCpltCallback(hsmartcard); -#endif /* USE_HAL_SMARTCARD_REGISTER_CALLBACK */ - } - } - else - { - /* Reset Tx transfer counter */ - hsmartcard->TxXferCount = 0U; - - /* Clear TxISR function pointers */ - hsmartcard->TxISR = NULL; - - /* Clear the Error flags in the ICR register */ - __HAL_SMARTCARD_CLEAR_FLAG(hsmartcard, SMARTCARD_CLEAR_FEF); - - /* Restore hsmartcard->gState to Ready */ - hsmartcard->gState = HAL_SMARTCARD_STATE_READY; - - /* As no DMA to be aborted, call directly user Abort complete callback */ -#if (USE_HAL_SMARTCARD_REGISTER_CALLBACKS == 1) - /* Call registered Abort Transmit Complete Callback */ - hsmartcard->AbortTransmitCpltCallback(hsmartcard); -#else - /* Call legacy weak Abort Transmit Complete Callback */ - HAL_SMARTCARD_AbortTransmitCpltCallback(hsmartcard); -#endif /* USE_HAL_SMARTCARD_REGISTER_CALLBACK */ - } - - return HAL_OK; -} - -/** - * @brief Abort ongoing Receive transfer (Interrupt mode). - * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains - * the configuration information for the specified SMARTCARD module. - * @note This procedure could be used for aborting any ongoing Rx transfer started in Interrupt or DMA mode. - * This procedure performs following operations : - * - Disable SMARTCARD Interrupts (Rx) - * - Disable the DMA transfer in the peripheral register (if enabled) - * - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode) - * - Set handle State to READY - * - At abort completion, call user abort complete callback - * @note This procedure is executed in Interrupt mode, meaning that abort procedure could be - * considered as completed only when user abort complete callback is executed (not when exiting function). - * @retval HAL status - */ -HAL_StatusTypeDef HAL_SMARTCARD_AbortReceive_IT(SMARTCARD_HandleTypeDef *hsmartcard) -{ - /* Disable RTOIE, EOBIE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */ - CLEAR_BIT(hsmartcard->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE | USART_CR1_RTOIE | USART_CR1_EOBIE)); - CLEAR_BIT(hsmartcard->Instance->CR3, USART_CR3_EIE); - - /* Check if a Transmit process is ongoing or not. If not disable ERR IT */ - if (hsmartcard->gState == HAL_SMARTCARD_STATE_READY) - { - /* Disable the SMARTCARD Error Interrupt: (Frame error) */ - CLEAR_BIT(hsmartcard->Instance->CR3, USART_CR3_EIE); - } - - /* Disable the SMARTCARD DMA Rx request if enabled */ - if (HAL_IS_BIT_SET(hsmartcard->Instance->CR3, USART_CR3_DMAR)) - { - CLEAR_BIT(hsmartcard->Instance->CR3, USART_CR3_DMAR); - - /* Abort the SMARTCARD DMA Rx channel : use non blocking DMA Abort API (callback) */ - if (hsmartcard->hdmarx != NULL) - { - /* Set the SMARTCARD DMA Abort callback : - will lead to call HAL_SMARTCARD_AbortCpltCallback() at end of DMA abort procedure */ - hsmartcard->hdmarx->XferAbortCallback = SMARTCARD_DMARxOnlyAbortCallback; - - /* Abort DMA RX */ - if (HAL_DMA_Abort_IT(hsmartcard->hdmarx) != HAL_OK) - { - /* Call Directly hsmartcard->hdmarx->XferAbortCallback function in case of error */ - hsmartcard->hdmarx->XferAbortCallback(hsmartcard->hdmarx); - } - } - else - { - /* Reset Rx transfer counter */ - hsmartcard->RxXferCount = 0U; - - /* Clear RxISR function pointer */ - hsmartcard->RxISR = NULL; - - /* Clear the Error flags in the ICR register */ - __HAL_SMARTCARD_CLEAR_FLAG(hsmartcard, - SMARTCARD_CLEAR_OREF | SMARTCARD_CLEAR_NEF | SMARTCARD_CLEAR_PEF | SMARTCARD_CLEAR_FEF | SMARTCARD_CLEAR_RTOF | - SMARTCARD_CLEAR_EOBF); - - /* Restore hsmartcard->RxState to Ready */ - hsmartcard->RxState = HAL_SMARTCARD_STATE_READY; - - /* As no DMA to be aborted, call directly user Abort complete callback */ -#if (USE_HAL_SMARTCARD_REGISTER_CALLBACKS == 1) - /* Call registered Abort Receive Complete Callback */ - hsmartcard->AbortReceiveCpltCallback(hsmartcard); -#else - /* Call legacy weak Abort Receive Complete Callback */ - HAL_SMARTCARD_AbortReceiveCpltCallback(hsmartcard); -#endif /* USE_HAL_SMARTCARD_REGISTER_CALLBACK */ - } - } - else - { - /* Reset Rx transfer counter */ - hsmartcard->RxXferCount = 0U; - - /* Clear RxISR function pointer */ - hsmartcard->RxISR = NULL; - - /* Clear the Error flags in the ICR register */ - __HAL_SMARTCARD_CLEAR_FLAG(hsmartcard, - SMARTCARD_CLEAR_OREF | SMARTCARD_CLEAR_NEF | SMARTCARD_CLEAR_PEF | SMARTCARD_CLEAR_FEF | SMARTCARD_CLEAR_RTOF | - SMARTCARD_CLEAR_EOBF); - - /* Restore hsmartcard->RxState to Ready */ - hsmartcard->RxState = HAL_SMARTCARD_STATE_READY; - - /* As no DMA to be aborted, call directly user Abort complete callback */ -#if (USE_HAL_SMARTCARD_REGISTER_CALLBACKS == 1) - /* Call registered Abort Receive Complete Callback */ - hsmartcard->AbortReceiveCpltCallback(hsmartcard); -#else - /* Call legacy weak Abort Receive Complete Callback */ - HAL_SMARTCARD_AbortReceiveCpltCallback(hsmartcard); -#endif /* USE_HAL_SMARTCARD_REGISTER_CALLBACK */ - } - - return HAL_OK; -} - -/** - * @brief Handle SMARTCARD interrupt requests. - * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains - * the configuration information for the specified SMARTCARD module. - * @retval None - */ -void HAL_SMARTCARD_IRQHandler(SMARTCARD_HandleTypeDef *hsmartcard) -{ - uint32_t isrflags = READ_REG(hsmartcard->Instance->ISR); - uint32_t cr1its = READ_REG(hsmartcard->Instance->CR1); - uint32_t cr3its = READ_REG(hsmartcard->Instance->CR3); - uint32_t errorflags; - uint32_t errorcode; - - /* If no error occurs */ - errorflags = (isrflags & (uint32_t)(USART_ISR_PE | USART_ISR_FE | USART_ISR_ORE | USART_ISR_NE | USART_ISR_RTOF)); - if (errorflags == 0U) - { - /* SMARTCARD in mode Receiver ---------------------------------------------------*/ - if (((isrflags & USART_ISR_RXNE) != 0U) - && ((cr1its & USART_CR1_RXNEIE) != 0U)) - { - if (hsmartcard->RxISR != NULL) - { - hsmartcard->RxISR(hsmartcard); - } - return; - } - } - - /* If some errors occur */ - if ((errorflags != 0U) - && (((cr3its & USART_CR3_EIE) != 0U) - || ((cr1its & (USART_CR1_RXNEIE | USART_CR1_PEIE)) != 0U))) - { - /* SMARTCARD parity error interrupt occurred -------------------------------------*/ - if (((isrflags & USART_ISR_PE) != 0U) && ((cr1its & USART_CR1_PEIE) != 0U)) - { - __HAL_SMARTCARD_CLEAR_IT(hsmartcard, SMARTCARD_CLEAR_PEF); - - hsmartcard->ErrorCode |= HAL_SMARTCARD_ERROR_PE; - } - - /* SMARTCARD frame error interrupt occurred --------------------------------------*/ - if (((isrflags & USART_ISR_FE) != 0U) && ((cr3its & USART_CR3_EIE) != 0U)) - { - __HAL_SMARTCARD_CLEAR_IT(hsmartcard, SMARTCARD_CLEAR_FEF); - - hsmartcard->ErrorCode |= HAL_SMARTCARD_ERROR_FE; - } - - /* SMARTCARD noise error interrupt occurred --------------------------------------*/ - if (((isrflags & USART_ISR_NE) != 0U) && ((cr3its & USART_CR3_EIE) != 0U)) - { - __HAL_SMARTCARD_CLEAR_IT(hsmartcard, SMARTCARD_CLEAR_NEF); - - hsmartcard->ErrorCode |= HAL_SMARTCARD_ERROR_NE; - } - - /* SMARTCARD Over-Run interrupt occurred -----------------------------------------*/ - if (((isrflags & USART_ISR_ORE) != 0U) - && (((cr1its & USART_CR1_RXNEIE) != 0U) - || ((cr3its & USART_CR3_EIE) != 0U))) - { - __HAL_SMARTCARD_CLEAR_IT(hsmartcard, SMARTCARD_CLEAR_OREF); - - hsmartcard->ErrorCode |= HAL_SMARTCARD_ERROR_ORE; - } - - /* SMARTCARD receiver timeout interrupt occurred -----------------------------------------*/ - if (((isrflags & USART_ISR_RTOF) != 0U) && ((cr1its & USART_CR1_RTOIE) != 0U)) - { - __HAL_SMARTCARD_CLEAR_IT(hsmartcard, SMARTCARD_CLEAR_RTOF); - - hsmartcard->ErrorCode |= HAL_SMARTCARD_ERROR_RTO; - } - - /* Call SMARTCARD Error Call back function if need be --------------------------*/ - if (hsmartcard->ErrorCode != HAL_SMARTCARD_ERROR_NONE) - { - /* SMARTCARD in mode Receiver ---------------------------------------------------*/ - if (((isrflags & USART_ISR_RXNE) != 0U) - && ((cr1its & USART_CR1_RXNEIE) != 0U)) - { - if (hsmartcard->RxISR != NULL) - { - hsmartcard->RxISR(hsmartcard); - } - } - - /* If Error is to be considered as blocking : - - Receiver Timeout error in Reception - - Overrun error in Reception - - any error occurs in DMA mode reception - */ - errorcode = hsmartcard->ErrorCode; - if ((HAL_IS_BIT_SET(hsmartcard->Instance->CR3, USART_CR3_DMAR)) - || ((errorcode & (HAL_SMARTCARD_ERROR_RTO | HAL_SMARTCARD_ERROR_ORE)) != 0U)) - { - /* Blocking error : transfer is aborted - Set the SMARTCARD state ready to be able to start again the process, - Disable Rx Interrupts, and disable Rx DMA request, if ongoing */ - SMARTCARD_EndRxTransfer(hsmartcard); - - /* Disable the SMARTCARD DMA Rx request if enabled */ - if (HAL_IS_BIT_SET(hsmartcard->Instance->CR3, USART_CR3_DMAR)) - { - CLEAR_BIT(hsmartcard->Instance->CR3, USART_CR3_DMAR); - - /* Abort the SMARTCARD DMA Rx channel */ - if (hsmartcard->hdmarx != NULL) - { - /* Set the SMARTCARD DMA Abort callback : - will lead to call HAL_SMARTCARD_ErrorCallback() at end of DMA abort procedure */ - hsmartcard->hdmarx->XferAbortCallback = SMARTCARD_DMAAbortOnError; - - /* Abort DMA RX */ - if (HAL_DMA_Abort_IT(hsmartcard->hdmarx) != HAL_OK) - { - /* Call Directly hsmartcard->hdmarx->XferAbortCallback function in case of error */ - hsmartcard->hdmarx->XferAbortCallback(hsmartcard->hdmarx); - } - } - else - { -#if (USE_HAL_SMARTCARD_REGISTER_CALLBACKS == 1) - /* Call registered user error callback */ - hsmartcard->ErrorCallback(hsmartcard); -#else - /* Call legacy weak user error callback */ - HAL_SMARTCARD_ErrorCallback(hsmartcard); -#endif /* USE_HAL_SMARTCARD_REGISTER_CALLBACK */ - } - } - else - { -#if (USE_HAL_SMARTCARD_REGISTER_CALLBACKS == 1) - /* Call registered user error callback */ - hsmartcard->ErrorCallback(hsmartcard); -#else - /* Call legacy weak user error callback */ - HAL_SMARTCARD_ErrorCallback(hsmartcard); -#endif /* USE_HAL_SMARTCARD_REGISTER_CALLBACK */ - } - } - /* other error type to be considered as blocking : - - Frame error in Transmission - */ - else if ((hsmartcard->gState == HAL_SMARTCARD_STATE_BUSY_TX) - && ((errorcode & HAL_SMARTCARD_ERROR_FE) != 0U)) - { - /* Blocking error : transfer is aborted - Set the SMARTCARD state ready to be able to start again the process, - Disable Tx Interrupts, and disable Tx DMA request, if ongoing */ - SMARTCARD_EndTxTransfer(hsmartcard); - - /* Disable the SMARTCARD DMA Tx request if enabled */ - if (HAL_IS_BIT_SET(hsmartcard->Instance->CR3, USART_CR3_DMAT)) - { - CLEAR_BIT(hsmartcard->Instance->CR3, USART_CR3_DMAT); - - /* Abort the SMARTCARD DMA Tx channel */ - if (hsmartcard->hdmatx != NULL) - { - /* Set the SMARTCARD DMA Abort callback : - will lead to call HAL_SMARTCARD_ErrorCallback() at end of DMA abort procedure */ - hsmartcard->hdmatx->XferAbortCallback = SMARTCARD_DMAAbortOnError; - - /* Abort DMA TX */ - if (HAL_DMA_Abort_IT(hsmartcard->hdmatx) != HAL_OK) - { - /* Call Directly hsmartcard->hdmatx->XferAbortCallback function in case of error */ - hsmartcard->hdmatx->XferAbortCallback(hsmartcard->hdmatx); - } - } - else - { -#if (USE_HAL_SMARTCARD_REGISTER_CALLBACKS == 1) - /* Call registered user error callback */ - hsmartcard->ErrorCallback(hsmartcard); -#else - /* Call legacy weak user error callback */ - HAL_SMARTCARD_ErrorCallback(hsmartcard); -#endif /* USE_HAL_SMARTCARD_REGISTER_CALLBACK */ - } - } - else - { -#if (USE_HAL_SMARTCARD_REGISTER_CALLBACKS == 1) - /* Call registered user error callback */ - hsmartcard->ErrorCallback(hsmartcard); -#else - /* Call legacy weak user error callback */ - HAL_SMARTCARD_ErrorCallback(hsmartcard); -#endif /* USE_HAL_SMARTCARD_REGISTER_CALLBACK */ - } - } - else - { - /* Non Blocking error : transfer could go on. - Error is notified to user through user error callback */ -#if (USE_HAL_SMARTCARD_REGISTER_CALLBACKS == 1) - /* Call registered user error callback */ - hsmartcard->ErrorCallback(hsmartcard); -#else - /* Call legacy weak user error callback */ - HAL_SMARTCARD_ErrorCallback(hsmartcard); -#endif /* USE_HAL_SMARTCARD_REGISTER_CALLBACK */ - hsmartcard->ErrorCode = HAL_SMARTCARD_ERROR_NONE; - } - } - return; - - } /* End if some error occurs */ - - /* SMARTCARD in mode Receiver, end of block interruption ------------------------*/ - if (((isrflags & USART_ISR_EOBF) != 0U) && ((cr1its & USART_CR1_EOBIE) != 0U)) - { - hsmartcard->RxState = HAL_SMARTCARD_STATE_READY; - __HAL_UNLOCK(hsmartcard); -#if (USE_HAL_SMARTCARD_REGISTER_CALLBACKS == 1) - /* Call registered Rx complete callback */ - hsmartcard->RxCpltCallback(hsmartcard); -#else - /* Call legacy weak Rx complete callback */ - HAL_SMARTCARD_RxCpltCallback(hsmartcard); -#endif /* USE_HAL_SMARTCARD_REGISTER_CALLBACK */ - /* Clear EOBF interrupt after HAL_SMARTCARD_RxCpltCallback() call for the End of Block information - to be available during HAL_SMARTCARD_RxCpltCallback() processing */ - __HAL_SMARTCARD_CLEAR_IT(hsmartcard, SMARTCARD_CLEAR_EOBF); - return; - } - - /* SMARTCARD in mode Transmitter ------------------------------------------------*/ - if (((isrflags & USART_ISR_TXE) != 0U) - && ((cr1its & USART_CR1_TXEIE) != 0U)) - { - if (hsmartcard->TxISR != NULL) - { - hsmartcard->TxISR(hsmartcard); - } - return; - } - - /* SMARTCARD in mode Transmitter (transmission end) ------------------------*/ - if (__HAL_SMARTCARD_GET_IT(hsmartcard, hsmartcard->AdvancedInit.TxCompletionIndication) != RESET) - { - if (__HAL_SMARTCARD_GET_IT_SOURCE(hsmartcard, hsmartcard->AdvancedInit.TxCompletionIndication) != RESET) - { - SMARTCARD_EndTransmit_IT(hsmartcard); - return; - } - } - -} - -/** - * @brief Tx Transfer completed callback. - * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains - * the configuration information for the specified SMARTCARD module. - * @retval None - */ -__weak void HAL_SMARTCARD_TxCpltCallback(SMARTCARD_HandleTypeDef *hsmartcard) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hsmartcard); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_SMARTCARD_TxCpltCallback can be implemented in the user file. - */ -} - -/** - * @brief Rx Transfer completed callback. - * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains - * the configuration information for the specified SMARTCARD module. - * @retval None - */ -__weak void HAL_SMARTCARD_RxCpltCallback(SMARTCARD_HandleTypeDef *hsmartcard) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hsmartcard); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_SMARTCARD_RxCpltCallback can be implemented in the user file. - */ -} - -/** - * @brief SMARTCARD error callback. - * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains - * the configuration information for the specified SMARTCARD module. - * @retval None - */ -__weak void HAL_SMARTCARD_ErrorCallback(SMARTCARD_HandleTypeDef *hsmartcard) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hsmartcard); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_SMARTCARD_ErrorCallback can be implemented in the user file. - */ -} - -/** - * @brief SMARTCARD Abort Complete callback. - * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains - * the configuration information for the specified SMARTCARD module. - * @retval None - */ -__weak void HAL_SMARTCARD_AbortCpltCallback(SMARTCARD_HandleTypeDef *hsmartcard) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hsmartcard); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_SMARTCARD_AbortCpltCallback can be implemented in the user file. - */ -} - -/** - * @brief SMARTCARD Abort Complete callback. - * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains - * the configuration information for the specified SMARTCARD module. - * @retval None - */ -__weak void HAL_SMARTCARD_AbortTransmitCpltCallback(SMARTCARD_HandleTypeDef *hsmartcard) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hsmartcard); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_SMARTCARD_AbortTransmitCpltCallback can be implemented in the user file. - */ -} - -/** - * @brief SMARTCARD Abort Receive Complete callback. - * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains - * the configuration information for the specified SMARTCARD module. - * @retval None - */ -__weak void HAL_SMARTCARD_AbortReceiveCpltCallback(SMARTCARD_HandleTypeDef *hsmartcard) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hsmartcard); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_SMARTCARD_AbortReceiveCpltCallback can be implemented in the user file. - */ -} - -/** - * @} - */ - -/** @defgroup SMARTCARD_Exported_Functions_Group4 Peripheral State and Errors functions - * @brief SMARTCARD State and Errors functions - * -@verbatim - ============================================================================== - ##### Peripheral State and Errors functions ##### - ============================================================================== - [..] - This subsection provides a set of functions allowing to return the State of SmartCard - handle and also return Peripheral Errors occurred during communication process - (+) HAL_SMARTCARD_GetState() API can be helpful to check in run-time the state - of the SMARTCARD peripheral. - (+) HAL_SMARTCARD_GetError() checks in run-time errors that could occur during - communication. - -@endverbatim - * @{ - */ - -/** - * @brief Return the SMARTCARD handle state. - * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains - * the configuration information for the specified SMARTCARD module. - * @retval SMARTCARD handle state - */ -HAL_SMARTCARD_StateTypeDef HAL_SMARTCARD_GetState(SMARTCARD_HandleTypeDef *hsmartcard) -{ - /* Return SMARTCARD handle state */ - uint32_t temp1; - uint32_t temp2; - temp1 = (uint32_t)hsmartcard->gState; - temp2 = (uint32_t)hsmartcard->RxState; - - return (HAL_SMARTCARD_StateTypeDef)(temp1 | temp2); -} - -/** - * @brief Return the SMARTCARD handle error code. - * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains - * the configuration information for the specified SMARTCARD module. - * @retval SMARTCARD handle Error Code - */ -uint32_t HAL_SMARTCARD_GetError(SMARTCARD_HandleTypeDef *hsmartcard) -{ - return hsmartcard->ErrorCode; -} - -/** - * @} - */ - -/** - * @} - */ - -/** @defgroup SMARTCARD_Private_Functions SMARTCARD Private Functions - * @{ - */ - -#if (USE_HAL_SMARTCARD_REGISTER_CALLBACKS == 1) -/** - * @brief Initialize the callbacks to their default values. - * @param hsmartcard SMARTCARD handle. - * @retval none - */ -void SMARTCARD_InitCallbacksToDefault(SMARTCARD_HandleTypeDef *hsmartcard) -{ - /* Init the SMARTCARD Callback settings */ - hsmartcard->TxCpltCallback = HAL_SMARTCARD_TxCpltCallback; /* Legacy weak TxCpltCallback */ - hsmartcard->RxCpltCallback = HAL_SMARTCARD_RxCpltCallback; /* Legacy weak RxCpltCallback */ - hsmartcard->ErrorCallback = HAL_SMARTCARD_ErrorCallback; /* Legacy weak ErrorCallback */ - hsmartcard->AbortCpltCallback = HAL_SMARTCARD_AbortCpltCallback; /* Legacy weak AbortCpltCallback */ - hsmartcard->AbortTransmitCpltCallback = HAL_SMARTCARD_AbortTransmitCpltCallback; /* Legacy weak AbortTransmitCpltCallback */ - hsmartcard->AbortReceiveCpltCallback = HAL_SMARTCARD_AbortReceiveCpltCallback; /* Legacy weak AbortReceiveCpltCallback */ - -} -#endif /* USE_HAL_SMARTCARD_REGISTER_CALLBACKS */ - -/** - * @brief Configure the SMARTCARD associated USART peripheral. - * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains - * the configuration information for the specified SMARTCARD module. - * @retval HAL status - */ -static HAL_StatusTypeDef SMARTCARD_SetConfig(SMARTCARD_HandleTypeDef *hsmartcard) -{ - uint32_t tmpreg; - SMARTCARD_ClockSourceTypeDef clocksource; - HAL_StatusTypeDef ret = HAL_OK; - uint32_t pclk; - - /* Check the parameters */ - assert_param(IS_SMARTCARD_INSTANCE(hsmartcard->Instance)); - assert_param(IS_SMARTCARD_BAUDRATE(hsmartcard->Init.BaudRate)); - assert_param(IS_SMARTCARD_WORD_LENGTH(hsmartcard->Init.WordLength)); - assert_param(IS_SMARTCARD_STOPBITS(hsmartcard->Init.StopBits)); - assert_param(IS_SMARTCARD_PARITY(hsmartcard->Init.Parity)); - assert_param(IS_SMARTCARD_MODE(hsmartcard->Init.Mode)); - assert_param(IS_SMARTCARD_POLARITY(hsmartcard->Init.CLKPolarity)); - assert_param(IS_SMARTCARD_PHASE(hsmartcard->Init.CLKPhase)); - assert_param(IS_SMARTCARD_LASTBIT(hsmartcard->Init.CLKLastBit)); - assert_param(IS_SMARTCARD_ONE_BIT_SAMPLE(hsmartcard->Init.OneBitSampling)); - assert_param(IS_SMARTCARD_NACK(hsmartcard->Init.NACKEnable)); - assert_param(IS_SMARTCARD_TIMEOUT(hsmartcard->Init.TimeOutEnable)); - assert_param(IS_SMARTCARD_AUTORETRY_COUNT(hsmartcard->Init.AutoRetryCount)); - - /*-------------------------- USART CR1 Configuration -----------------------*/ - /* In SmartCard mode, M and PCE are forced to 1 (8 bits + parity). - * Oversampling is forced to 16 (OVER8 = 0). - * Configure the Parity and Mode: - * set PS bit according to hsmartcard->Init.Parity value - * set TE and RE bits according to hsmartcard->Init.Mode value */ - tmpreg = (uint32_t)(hsmartcard->Init.Parity | hsmartcard->Init.Mode | hsmartcard->Init.WordLength); - MODIFY_REG(hsmartcard->Instance->CR1, USART_CR1_FIELDS, tmpreg); - - /*-------------------------- USART CR2 Configuration -----------------------*/ - tmpreg = hsmartcard->Init.StopBits; - /* Synchronous mode is activated by default */ - tmpreg |= (uint32_t) USART_CR2_CLKEN | hsmartcard->Init.CLKPolarity; - tmpreg |= (uint32_t) hsmartcard->Init.CLKPhase | hsmartcard->Init.CLKLastBit; - tmpreg |= (uint32_t) hsmartcard->Init.TimeOutEnable; - MODIFY_REG(hsmartcard->Instance->CR2, USART_CR2_FIELDS, tmpreg); - - /*-------------------------- USART CR3 Configuration -----------------------*/ - /* Configure - * - one-bit sampling method versus three samples' majority rule - * according to hsmartcard->Init.OneBitSampling - * - NACK transmission in case of parity error according - * to hsmartcard->Init.NACKEnable - * - autoretry counter according to hsmartcard->Init.AutoRetryCount */ - - tmpreg = (uint32_t) hsmartcard->Init.OneBitSampling | hsmartcard->Init.NACKEnable; - tmpreg |= ((uint32_t)hsmartcard->Init.AutoRetryCount << USART_CR3_SCARCNT_Pos); - MODIFY_REG(hsmartcard->Instance->CR3, USART_CR3_FIELDS, tmpreg); - - - /*-------------------------- USART GTPR Configuration ----------------------*/ - tmpreg = (hsmartcard->Init.Prescaler | ((uint32_t)hsmartcard->Init.GuardTime << USART_GTPR_GT_Pos)); - MODIFY_REG(hsmartcard->Instance->GTPR, (uint16_t)(USART_GTPR_GT | USART_GTPR_PSC), (uint16_t)tmpreg); - - /*-------------------------- USART RTOR Configuration ----------------------*/ - tmpreg = ((uint32_t)hsmartcard->Init.BlockLength << USART_RTOR_BLEN_Pos); - if (hsmartcard->Init.TimeOutEnable == SMARTCARD_TIMEOUT_ENABLE) - { - assert_param(IS_SMARTCARD_TIMEOUT_VALUE(hsmartcard->Init.TimeOutValue)); - tmpreg |= (uint32_t) hsmartcard->Init.TimeOutValue; - } - MODIFY_REG(hsmartcard->Instance->RTOR, (USART_RTOR_RTO | USART_RTOR_BLEN), tmpreg); - - /*-------------------------- USART BRR Configuration -----------------------*/ - SMARTCARD_GETCLOCKSOURCE(hsmartcard, clocksource); - tmpreg = 0U; - switch (clocksource) - { - case SMARTCARD_CLOCKSOURCE_PCLK1: - pclk = HAL_RCC_GetPCLK1Freq(); - tmpreg = (uint16_t)((pclk + (hsmartcard->Init.BaudRate / 2U)) / hsmartcard->Init.BaudRate); - break; - case SMARTCARD_CLOCKSOURCE_HSI: - tmpreg = (uint16_t)((HSI_VALUE + (hsmartcard->Init.BaudRate / 2U)) / hsmartcard->Init.BaudRate); - break; - case SMARTCARD_CLOCKSOURCE_SYSCLK: - pclk = HAL_RCC_GetSysClockFreq(); - tmpreg = (uint16_t)((pclk + (hsmartcard->Init.BaudRate / 2U)) / hsmartcard->Init.BaudRate); - break; - case SMARTCARD_CLOCKSOURCE_LSE: - tmpreg = (uint16_t)((LSE_VALUE + (hsmartcard->Init.BaudRate / 2U)) / hsmartcard->Init.BaudRate); - break; - default: - ret = HAL_ERROR; - break; - } - - /* USARTDIV must be greater than or equal to 0d16 */ - if ((tmpreg >= USART_BRR_MIN) && (tmpreg <= USART_BRR_MAX)) - { - hsmartcard->Instance->BRR = tmpreg; - } - else - { - ret = HAL_ERROR; - } - - - /* Clear ISR function pointers */ - hsmartcard->RxISR = NULL; - hsmartcard->TxISR = NULL; - - return ret; -} - - -/** - * @brief Configure the SMARTCARD associated USART peripheral advanced features. - * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains - * the configuration information for the specified SMARTCARD module. - * @retval None - */ -static void SMARTCARD_AdvFeatureConfig(SMARTCARD_HandleTypeDef *hsmartcard) -{ - /* Check whether the set of advanced features to configure is properly set */ - assert_param(IS_SMARTCARD_ADVFEATURE_INIT(hsmartcard->AdvancedInit.AdvFeatureInit)); - - /* if required, configure TX pin active level inversion */ - if (HAL_IS_BIT_SET(hsmartcard->AdvancedInit.AdvFeatureInit, SMARTCARD_ADVFEATURE_TXINVERT_INIT)) - { - assert_param(IS_SMARTCARD_ADVFEATURE_TXINV(hsmartcard->AdvancedInit.TxPinLevelInvert)); - MODIFY_REG(hsmartcard->Instance->CR2, USART_CR2_TXINV, hsmartcard->AdvancedInit.TxPinLevelInvert); - } - - /* if required, configure RX pin active level inversion */ - if (HAL_IS_BIT_SET(hsmartcard->AdvancedInit.AdvFeatureInit, SMARTCARD_ADVFEATURE_RXINVERT_INIT)) - { - assert_param(IS_SMARTCARD_ADVFEATURE_RXINV(hsmartcard->AdvancedInit.RxPinLevelInvert)); - MODIFY_REG(hsmartcard->Instance->CR2, USART_CR2_RXINV, hsmartcard->AdvancedInit.RxPinLevelInvert); - } - - /* if required, configure data inversion */ - if (HAL_IS_BIT_SET(hsmartcard->AdvancedInit.AdvFeatureInit, SMARTCARD_ADVFEATURE_DATAINVERT_INIT)) - { - assert_param(IS_SMARTCARD_ADVFEATURE_DATAINV(hsmartcard->AdvancedInit.DataInvert)); - MODIFY_REG(hsmartcard->Instance->CR2, USART_CR2_DATAINV, hsmartcard->AdvancedInit.DataInvert); - } - - /* if required, configure RX/TX pins swap */ - if (HAL_IS_BIT_SET(hsmartcard->AdvancedInit.AdvFeatureInit, SMARTCARD_ADVFEATURE_SWAP_INIT)) - { - assert_param(IS_SMARTCARD_ADVFEATURE_SWAP(hsmartcard->AdvancedInit.Swap)); - MODIFY_REG(hsmartcard->Instance->CR2, USART_CR2_SWAP, hsmartcard->AdvancedInit.Swap); - } - - /* if required, configure RX overrun detection disabling */ - if (HAL_IS_BIT_SET(hsmartcard->AdvancedInit.AdvFeatureInit, SMARTCARD_ADVFEATURE_RXOVERRUNDISABLE_INIT)) - { - assert_param(IS_SMARTCARD_OVERRUN(hsmartcard->AdvancedInit.OverrunDisable)); - MODIFY_REG(hsmartcard->Instance->CR3, USART_CR3_OVRDIS, hsmartcard->AdvancedInit.OverrunDisable); - } - - /* if required, configure DMA disabling on reception error */ - if (HAL_IS_BIT_SET(hsmartcard->AdvancedInit.AdvFeatureInit, SMARTCARD_ADVFEATURE_DMADISABLEONERROR_INIT)) - { - assert_param(IS_SMARTCARD_ADVFEATURE_DMAONRXERROR(hsmartcard->AdvancedInit.DMADisableonRxError)); - MODIFY_REG(hsmartcard->Instance->CR3, USART_CR3_DDRE, hsmartcard->AdvancedInit.DMADisableonRxError); - } - - /* if required, configure MSB first on communication line */ - if (HAL_IS_BIT_SET(hsmartcard->AdvancedInit.AdvFeatureInit, SMARTCARD_ADVFEATURE_MSBFIRST_INIT)) - { - assert_param(IS_SMARTCARD_ADVFEATURE_MSBFIRST(hsmartcard->AdvancedInit.MSBFirst)); - MODIFY_REG(hsmartcard->Instance->CR2, USART_CR2_MSBFIRST, hsmartcard->AdvancedInit.MSBFirst); - } - -} - -/** - * @brief Check the SMARTCARD Idle State. - * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains - * the configuration information for the specified SMARTCARD module. - * @retval HAL status - */ -static HAL_StatusTypeDef SMARTCARD_CheckIdleState(SMARTCARD_HandleTypeDef *hsmartcard) -{ - uint32_t tickstart; - - /* Initialize the SMARTCARD ErrorCode */ - hsmartcard->ErrorCode = HAL_SMARTCARD_ERROR_NONE; - - /* Init tickstart for timeout management */ - tickstart = HAL_GetTick(); - - /* Check if the Transmitter is enabled */ - if ((hsmartcard->Instance->CR1 & USART_CR1_TE) == USART_CR1_TE) - { - /* Wait until TEACK flag is set */ - if (SMARTCARD_WaitOnFlagUntilTimeout(hsmartcard, USART_ISR_TEACK, RESET, tickstart, - SMARTCARD_TEACK_REACK_TIMEOUT) != HAL_OK) - { - /* Timeout occurred */ - return HAL_TIMEOUT; - } - } - /* Check if the Receiver is enabled */ - if ((hsmartcard->Instance->CR1 & USART_CR1_RE) == USART_CR1_RE) - { - /* Wait until REACK flag is set */ - if (SMARTCARD_WaitOnFlagUntilTimeout(hsmartcard, USART_ISR_REACK, RESET, tickstart, - SMARTCARD_TEACK_REACK_TIMEOUT) != HAL_OK) - { - /* Timeout occurred */ - return HAL_TIMEOUT; - } - } - - /* Initialize the SMARTCARD states */ - hsmartcard->gState = HAL_SMARTCARD_STATE_READY; - hsmartcard->RxState = HAL_SMARTCARD_STATE_READY; - - /* Process Unlocked */ - __HAL_UNLOCK(hsmartcard); - - return HAL_OK; -} - -/** - * @brief Handle SMARTCARD Communication Timeout. - * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains - * the configuration information for the specified SMARTCARD module. - * @param Flag Specifies the SMARTCARD flag to check. - * @param Status The new Flag status (SET or RESET). - * @param Tickstart Tick start value - * @param Timeout Timeout duration. - * @retval HAL status - */ -static HAL_StatusTypeDef SMARTCARD_WaitOnFlagUntilTimeout(SMARTCARD_HandleTypeDef *hsmartcard, uint32_t Flag, - FlagStatus Status, uint32_t Tickstart, uint32_t Timeout) -{ - /* Wait until flag is set */ - while ((__HAL_SMARTCARD_GET_FLAG(hsmartcard, Flag) ? SET : RESET) == Status) - { - /* Check for the Timeout */ - if (Timeout != HAL_MAX_DELAY) - { - if (((HAL_GetTick() - Tickstart) > Timeout) || (Timeout == 0U)) - { - /* Disable TXE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts for the interrupt process */ - CLEAR_BIT(hsmartcard->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE | USART_CR1_TXEIE)); - CLEAR_BIT(hsmartcard->Instance->CR3, USART_CR3_EIE); - - hsmartcard->gState = HAL_SMARTCARD_STATE_READY; - hsmartcard->RxState = HAL_SMARTCARD_STATE_READY; - - /* Process Unlocked */ - __HAL_UNLOCK(hsmartcard); - return HAL_TIMEOUT; - } - } - } - return HAL_OK; -} - - -/** - * @brief End ongoing Tx transfer on SMARTCARD peripheral (following error detection or Transmit completion). - * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains - * the configuration information for the specified SMARTCARD module. - * @retval None - */ -static void SMARTCARD_EndTxTransfer(SMARTCARD_HandleTypeDef *hsmartcard) -{ - /* Disable TXEIE, TCIE and ERR (Frame error, noise error, overrun error) interrupts */ - CLEAR_BIT(hsmartcard->Instance->CR1, (USART_CR1_TXEIE | USART_CR1_TCIE)); - CLEAR_BIT(hsmartcard->Instance->CR3, USART_CR3_EIE); - - /* At end of Tx process, restore hsmartcard->gState to Ready */ - hsmartcard->gState = HAL_SMARTCARD_STATE_READY; -} - - -/** - * @brief End ongoing Rx transfer on UART peripheral (following error detection or Reception completion). - * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains - * the configuration information for the specified SMARTCARD module. - * @retval None - */ -static void SMARTCARD_EndRxTransfer(SMARTCARD_HandleTypeDef *hsmartcard) -{ - /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */ - CLEAR_BIT(hsmartcard->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE)); - CLEAR_BIT(hsmartcard->Instance->CR3, USART_CR3_EIE); - - /* At end of Rx process, restore hsmartcard->RxState to Ready */ - hsmartcard->RxState = HAL_SMARTCARD_STATE_READY; -} - - -/** - * @brief DMA SMARTCARD transmit process complete callback. - * @param hdma Pointer to a DMA_HandleTypeDef structure that contains - * the configuration information for the specified DMA module. - * @retval None - */ -static void SMARTCARD_DMATransmitCplt(DMA_HandleTypeDef *hdma) -{ - SMARTCARD_HandleTypeDef *hsmartcard = (SMARTCARD_HandleTypeDef *)(hdma->Parent); - hsmartcard->TxXferCount = 0U; - - /* Disable the DMA transfer for transmit request by resetting the DMAT bit - in the SMARTCARD associated USART CR3 register */ - CLEAR_BIT(hsmartcard->Instance->CR3, USART_CR3_DMAT); - - /* Enable the SMARTCARD Transmit Complete Interrupt */ - __HAL_SMARTCARD_ENABLE_IT(hsmartcard, hsmartcard->AdvancedInit.TxCompletionIndication); -} - -/** - * @brief DMA SMARTCARD receive process complete callback. - * @param hdma Pointer to a DMA_HandleTypeDef structure that contains - * the configuration information for the specified DMA module. - * @retval None - */ -static void SMARTCARD_DMAReceiveCplt(DMA_HandleTypeDef *hdma) -{ - SMARTCARD_HandleTypeDef *hsmartcard = (SMARTCARD_HandleTypeDef *)(hdma->Parent); - hsmartcard->RxXferCount = 0U; - - /* Disable PE and ERR (Frame error, noise error, overrun error) interrupts */ - CLEAR_BIT(hsmartcard->Instance->CR1, USART_CR1_PEIE); - CLEAR_BIT(hsmartcard->Instance->CR3, USART_CR3_EIE); - - /* Disable the DMA transfer for the receiver request by resetting the DMAR bit - in the SMARTCARD associated USART CR3 register */ - CLEAR_BIT(hsmartcard->Instance->CR3, USART_CR3_DMAR); - - /* At end of Rx process, restore hsmartcard->RxState to Ready */ - hsmartcard->RxState = HAL_SMARTCARD_STATE_READY; - -#if (USE_HAL_SMARTCARD_REGISTER_CALLBACKS == 1) - /* Call registered Rx complete callback */ - hsmartcard->RxCpltCallback(hsmartcard); -#else - /* Call legacy weak Rx complete callback */ - HAL_SMARTCARD_RxCpltCallback(hsmartcard); -#endif /* USE_HAL_SMARTCARD_REGISTER_CALLBACK */ -} - -/** - * @brief DMA SMARTCARD communication error callback. - * @param hdma Pointer to a DMA_HandleTypeDef structure that contains - * the configuration information for the specified DMA module. - * @retval None - */ -static void SMARTCARD_DMAError(DMA_HandleTypeDef *hdma) -{ - SMARTCARD_HandleTypeDef *hsmartcard = (SMARTCARD_HandleTypeDef *)(hdma->Parent); - - /* Stop SMARTCARD DMA Tx request if ongoing */ - if (hsmartcard->gState == HAL_SMARTCARD_STATE_BUSY_TX) - { - if (HAL_IS_BIT_SET(hsmartcard->Instance->CR3, USART_CR3_DMAT)) - { - hsmartcard->TxXferCount = 0U; - SMARTCARD_EndTxTransfer(hsmartcard); - } - } - - /* Stop SMARTCARD DMA Rx request if ongoing */ - if (hsmartcard->RxState == HAL_SMARTCARD_STATE_BUSY_RX) - { - if (HAL_IS_BIT_SET(hsmartcard->Instance->CR3, USART_CR3_DMAR)) - { - hsmartcard->RxXferCount = 0U; - SMARTCARD_EndRxTransfer(hsmartcard); - } - } - - hsmartcard->ErrorCode |= HAL_SMARTCARD_ERROR_DMA; -#if (USE_HAL_SMARTCARD_REGISTER_CALLBACKS == 1) - /* Call registered user error callback */ - hsmartcard->ErrorCallback(hsmartcard); -#else - /* Call legacy weak user error callback */ - HAL_SMARTCARD_ErrorCallback(hsmartcard); -#endif /* USE_HAL_SMARTCARD_REGISTER_CALLBACK */ -} - -/** - * @brief DMA SMARTCARD communication abort callback, when initiated by HAL services on Error - * (To be called at end of DMA Abort procedure following error occurrence). - * @param hdma DMA handle. - * @retval None - */ -static void SMARTCARD_DMAAbortOnError(DMA_HandleTypeDef *hdma) -{ - SMARTCARD_HandleTypeDef *hsmartcard = (SMARTCARD_HandleTypeDef *)(hdma->Parent); - hsmartcard->RxXferCount = 0U; - hsmartcard->TxXferCount = 0U; - -#if (USE_HAL_SMARTCARD_REGISTER_CALLBACKS == 1) - /* Call registered user error callback */ - hsmartcard->ErrorCallback(hsmartcard); -#else - /* Call legacy weak user error callback */ - HAL_SMARTCARD_ErrorCallback(hsmartcard); -#endif /* USE_HAL_SMARTCARD_REGISTER_CALLBACK */ -} - -/** - * @brief DMA SMARTCARD Tx communication abort callback, when initiated by user - * (To be called at end of DMA Tx Abort procedure following user abort request). - * @note When this callback is executed, User Abort complete call back is called only if no - * Abort still ongoing for Rx DMA Handle. - * @param hdma DMA handle. - * @retval None - */ -static void SMARTCARD_DMATxAbortCallback(DMA_HandleTypeDef *hdma) -{ - SMARTCARD_HandleTypeDef *hsmartcard = (SMARTCARD_HandleTypeDef *)(hdma->Parent); - - hsmartcard->hdmatx->XferAbortCallback = NULL; - - /* Check if an Abort process is still ongoing */ - if (hsmartcard->hdmarx != NULL) - { - if (hsmartcard->hdmarx->XferAbortCallback != NULL) - { - return; - } - } - - /* No Abort process still ongoing : All DMA channels are aborted, call user Abort Complete callback */ - hsmartcard->TxXferCount = 0U; - hsmartcard->RxXferCount = 0U; - - /* Reset errorCode */ - hsmartcard->ErrorCode = HAL_SMARTCARD_ERROR_NONE; - - /* Clear the Error flags in the ICR register */ - __HAL_SMARTCARD_CLEAR_FLAG(hsmartcard, - SMARTCARD_CLEAR_OREF | SMARTCARD_CLEAR_NEF | SMARTCARD_CLEAR_PEF | SMARTCARD_CLEAR_FEF | SMARTCARD_CLEAR_RTOF | - SMARTCARD_CLEAR_EOBF); - - /* Restore hsmartcard->gState and hsmartcard->RxState to Ready */ - hsmartcard->gState = HAL_SMARTCARD_STATE_READY; - hsmartcard->RxState = HAL_SMARTCARD_STATE_READY; - -#if (USE_HAL_SMARTCARD_REGISTER_CALLBACKS == 1) - /* Call registered Abort complete callback */ - hsmartcard->AbortCpltCallback(hsmartcard); -#else - /* Call legacy weak Abort complete callback */ - HAL_SMARTCARD_AbortCpltCallback(hsmartcard); -#endif /* USE_HAL_SMARTCARD_REGISTER_CALLBACK */ -} - - -/** - * @brief DMA SMARTCARD Rx communication abort callback, when initiated by user - * (To be called at end of DMA Rx Abort procedure following user abort request). - * @note When this callback is executed, User Abort complete call back is called only if no - * Abort still ongoing for Tx DMA Handle. - * @param hdma DMA handle. - * @retval None - */ -static void SMARTCARD_DMARxAbortCallback(DMA_HandleTypeDef *hdma) -{ - SMARTCARD_HandleTypeDef *hsmartcard = (SMARTCARD_HandleTypeDef *)(hdma->Parent); - - hsmartcard->hdmarx->XferAbortCallback = NULL; - - /* Check if an Abort process is still ongoing */ - if (hsmartcard->hdmatx != NULL) - { - if (hsmartcard->hdmatx->XferAbortCallback != NULL) - { - return; - } - } - - /* No Abort process still ongoing : All DMA channels are aborted, call user Abort Complete callback */ - hsmartcard->TxXferCount = 0U; - hsmartcard->RxXferCount = 0U; - - /* Reset errorCode */ - hsmartcard->ErrorCode = HAL_SMARTCARD_ERROR_NONE; - - /* Clear the Error flags in the ICR register */ - __HAL_SMARTCARD_CLEAR_FLAG(hsmartcard, - SMARTCARD_CLEAR_OREF | SMARTCARD_CLEAR_NEF | SMARTCARD_CLEAR_PEF | SMARTCARD_CLEAR_FEF | SMARTCARD_CLEAR_RTOF | - SMARTCARD_CLEAR_EOBF); - - /* Restore hsmartcard->gState and hsmartcard->RxState to Ready */ - hsmartcard->gState = HAL_SMARTCARD_STATE_READY; - hsmartcard->RxState = HAL_SMARTCARD_STATE_READY; - -#if (USE_HAL_SMARTCARD_REGISTER_CALLBACKS == 1) - /* Call registered Abort complete callback */ - hsmartcard->AbortCpltCallback(hsmartcard); -#else - /* Call legacy weak Abort complete callback */ - HAL_SMARTCARD_AbortCpltCallback(hsmartcard); -#endif /* USE_HAL_SMARTCARD_REGISTER_CALLBACK */ -} - - -/** - * @brief DMA SMARTCARD Tx communication abort callback, when initiated by user by a call to - * HAL_SMARTCARD_AbortTransmit_IT API (Abort only Tx transfer) - * (This callback is executed at end of DMA Tx Abort procedure following user abort request, - * and leads to user Tx Abort Complete callback execution). - * @param hdma DMA handle. - * @retval None - */ -static void SMARTCARD_DMATxOnlyAbortCallback(DMA_HandleTypeDef *hdma) -{ - SMARTCARD_HandleTypeDef *hsmartcard = (SMARTCARD_HandleTypeDef *)(hdma->Parent); - - hsmartcard->TxXferCount = 0U; - - /* Clear the Error flags in the ICR register */ - __HAL_SMARTCARD_CLEAR_FLAG(hsmartcard, SMARTCARD_CLEAR_FEF); - - /* Restore hsmartcard->gState to Ready */ - hsmartcard->gState = HAL_SMARTCARD_STATE_READY; - -#if (USE_HAL_SMARTCARD_REGISTER_CALLBACKS == 1) - /* Call registered Abort Transmit Complete Callback */ - hsmartcard->AbortTransmitCpltCallback(hsmartcard); -#else - /* Call legacy weak Abort Transmit Complete Callback */ - HAL_SMARTCARD_AbortTransmitCpltCallback(hsmartcard); -#endif /* USE_HAL_SMARTCARD_REGISTER_CALLBACK */ -} - -/** - * @brief DMA SMARTCARD Rx communication abort callback, when initiated by user by a call to - * HAL_SMARTCARD_AbortReceive_IT API (Abort only Rx transfer) - * (This callback is executed at end of DMA Rx Abort procedure following user abort request, - * and leads to user Rx Abort Complete callback execution). - * @param hdma DMA handle. - * @retval None - */ -static void SMARTCARD_DMARxOnlyAbortCallback(DMA_HandleTypeDef *hdma) -{ - SMARTCARD_HandleTypeDef *hsmartcard = (SMARTCARD_HandleTypeDef *)(hdma->Parent); - - hsmartcard->RxXferCount = 0U; - - /* Clear the Error flags in the ICR register */ - __HAL_SMARTCARD_CLEAR_FLAG(hsmartcard, - SMARTCARD_CLEAR_OREF | SMARTCARD_CLEAR_NEF | SMARTCARD_CLEAR_PEF | SMARTCARD_CLEAR_FEF | SMARTCARD_CLEAR_RTOF | - SMARTCARD_CLEAR_EOBF); - - /* Restore hsmartcard->RxState to Ready */ - hsmartcard->RxState = HAL_SMARTCARD_STATE_READY; - -#if (USE_HAL_SMARTCARD_REGISTER_CALLBACKS == 1) - /* Call registered Abort Receive Complete Callback */ - hsmartcard->AbortReceiveCpltCallback(hsmartcard); -#else - /* Call legacy weak Abort Receive Complete Callback */ - HAL_SMARTCARD_AbortReceiveCpltCallback(hsmartcard); -#endif /* USE_HAL_SMARTCARD_REGISTER_CALLBACK */ -} - -/** - * @brief Send an amount of data in non-blocking mode. - * @note Function called under interruption only, once - * interruptions have been enabled by HAL_SMARTCARD_Transmit_IT(). - * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains - * the configuration information for the specified SMARTCARD module. - * @retval None - */ -static void SMARTCARD_TxISR(SMARTCARD_HandleTypeDef *hsmartcard) -{ - /* Check that a Tx process is ongoing */ - if (hsmartcard->gState == HAL_SMARTCARD_STATE_BUSY_TX) - { - if (hsmartcard->TxXferCount == 0U) - { - /* Disable the SMARTCARD Transmit Data Register Empty Interrupt */ - CLEAR_BIT(hsmartcard->Instance->CR1, USART_CR1_TXEIE); - - /* Enable the SMARTCARD Transmit Complete Interrupt */ - __HAL_SMARTCARD_ENABLE_IT(hsmartcard, hsmartcard->AdvancedInit.TxCompletionIndication); - } - else - { - hsmartcard->Instance->TDR = (uint8_t)(*hsmartcard->pTxBuffPtr & 0xFFU); - hsmartcard->pTxBuffPtr++; - hsmartcard->TxXferCount--; - } - } -} - -/** - * @brief Wrap up transmission in non-blocking mode. - * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains - * the configuration information for the specified SMARTCARD module. - * @retval None - */ -static void SMARTCARD_EndTransmit_IT(SMARTCARD_HandleTypeDef *hsmartcard) -{ - /* Disable the SMARTCARD Transmit Complete Interrupt */ - __HAL_SMARTCARD_DISABLE_IT(hsmartcard, hsmartcard->AdvancedInit.TxCompletionIndication); - - /* Check if a receive process is ongoing or not. If not disable ERR IT */ - if (hsmartcard->RxState == HAL_SMARTCARD_STATE_READY) - { - /* Disable the SMARTCARD Error Interrupt: (Frame error) */ - CLEAR_BIT(hsmartcard->Instance->CR3, USART_CR3_EIE); - } - - /* Re-enable Rx at end of transmission if initial mode is Rx/Tx */ - if (hsmartcard->Init.Mode == SMARTCARD_MODE_TX_RX) - { - /* Disable the Peripheral first to update modes */ - CLEAR_BIT(hsmartcard->Instance->CR1, USART_CR1_UE); - SET_BIT(hsmartcard->Instance->CR1, USART_CR1_RE); - /* Enable the Peripheral */ - SET_BIT(hsmartcard->Instance->CR1, USART_CR1_UE); - } - - /* Tx process is ended, restore hsmartcard->gState to Ready */ - hsmartcard->gState = HAL_SMARTCARD_STATE_READY; - - /* Clear TxISR function pointer */ - hsmartcard->TxISR = NULL; - -#if (USE_HAL_SMARTCARD_REGISTER_CALLBACKS == 1) - /* Call registered Tx complete callback */ - hsmartcard->TxCpltCallback(hsmartcard); -#else - /* Call legacy weak Tx complete callback */ - HAL_SMARTCARD_TxCpltCallback(hsmartcard); -#endif /* USE_HAL_SMARTCARD_REGISTER_CALLBACK */ -} - -/** - * @brief Receive an amount of data in non-blocking mode. - * @note Function called under interruption only, once - * interruptions have been enabled by HAL_SMARTCARD_Receive_IT(). - * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains - * the configuration information for the specified SMARTCARD module. - * @retval None - */ -static void SMARTCARD_RxISR(SMARTCARD_HandleTypeDef *hsmartcard) -{ - /* Check that a Rx process is ongoing */ - if (hsmartcard->RxState == HAL_SMARTCARD_STATE_BUSY_RX) - { - *hsmartcard->pRxBuffPtr = (uint8_t)(hsmartcard->Instance->RDR & (uint8_t)0xFF); - hsmartcard->pRxBuffPtr++; - - hsmartcard->RxXferCount--; - if (hsmartcard->RxXferCount == 0U) - { - CLEAR_BIT(hsmartcard->Instance->CR1, USART_CR1_RXNEIE); - - /* Check if a transmit process is ongoing or not. If not disable ERR IT */ - if (hsmartcard->gState == HAL_SMARTCARD_STATE_READY) - { - /* Disable the SMARTCARD Error Interrupt: (Frame error, noise error, overrun error) */ - CLEAR_BIT(hsmartcard->Instance->CR3, USART_CR3_EIE); - } - - /* Disable the SMARTCARD Parity Error Interrupt */ - CLEAR_BIT(hsmartcard->Instance->CR1, USART_CR1_PEIE); - - hsmartcard->RxState = HAL_SMARTCARD_STATE_READY; - - /* Clear RxISR function pointer */ - hsmartcard->RxISR = NULL; - -#if (USE_HAL_SMARTCARD_REGISTER_CALLBACKS == 1) - /* Call registered Rx complete callback */ - hsmartcard->RxCpltCallback(hsmartcard); -#else - /* Call legacy weak Rx complete callback */ - HAL_SMARTCARD_RxCpltCallback(hsmartcard); -#endif /* USE_HAL_SMARTCARD_REGISTER_CALLBACK */ - } - } - else - { - /* Clear RXNE interrupt flag */ - __HAL_SMARTCARD_SEND_REQ(hsmartcard, SMARTCARD_RXDATA_FLUSH_REQUEST); - } -} - -/** - * @} - */ - -#endif /* HAL_SMARTCARD_MODULE_ENABLED */ -/** - * @} - */ - -/** - * @} - */ -#endif /* !defined(STM32F030x6) && !defined(STM32F030x8) && !defined(STM32F070x6) && !defined(STM32F070xB) && !defined(STM32F030xC) */ -/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_smartcard_ex.c b/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_smartcard_ex.c deleted file mode 100644 index 8f60497..0000000 --- a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_smartcard_ex.c +++ /dev/null @@ -1,204 +0,0 @@ -/** - ****************************************************************************** - * @file stm32f0xx_hal_smartcard_ex.c - * @author MCD Application Team - * @brief SMARTCARD HAL module driver. - * This file provides extended firmware functions to manage the following - * functionalities of the SmartCard. - * + Initialization and de-initialization functions - * + Peripheral Control functions - * - @verbatim - ============================================================================= - ##### SMARTCARD peripheral extended features ##### - ============================================================================= - [..] - The Extended SMARTCARD HAL driver can be used as follows: - - (#) After having configured the SMARTCARD basic features with HAL_SMARTCARD_Init(), - then program SMARTCARD advanced features if required (TX/RX pins swap, TimeOut, - auto-retry counter,...) in the hsmartcard AdvancedInit structure. - @endverbatim - ****************************************************************************** - * @attention - * - *

© Copyright (c) 2016 STMicroelectronics. - * All rights reserved.

- * - * This software component is licensed by ST under BSD 3-Clause license, - * the "License"; You may not use this file except in compliance with the - * License. You may obtain a copy of the License at: - * opensource.org/licenses/BSD-3-Clause - * - ****************************************************************************** - */ -#if !defined(STM32F030x6) && !defined(STM32F030x8) && !defined(STM32F070x6) && !defined(STM32F070xB) && !defined(STM32F030xC) -/* Includes ------------------------------------------------------------------*/ -#include "stm32f0xx_hal.h" - -/** @addtogroup STM32F0xx_HAL_Driver - * @{ - */ - -/** @defgroup SMARTCARDEx SMARTCARDEx - * @brief SMARTCARD Extended HAL module driver - * @{ - */ -#ifdef HAL_SMARTCARD_MODULE_ENABLED - -/* Private typedef -----------------------------------------------------------*/ -/* Private define ------------------------------------------------------------*/ -/* Private macros ------------------------------------------------------------*/ -/* Private variables ---------------------------------------------------------*/ -/* Private function prototypes -----------------------------------------------*/ -/* Exported functions --------------------------------------------------------*/ -/** @defgroup SMARTCARDEx_Exported_Functions SMARTCARD Extended Exported Functions - * @{ - */ - -/** @defgroup SMARTCARDEx_Exported_Functions_Group1 Extended Peripheral Control functions - * @brief Extended control functions - * -@verbatim - =============================================================================== - ##### Peripheral Control functions ##### - =============================================================================== - [..] - This subsection provides a set of functions allowing to initialize the SMARTCARD. - (+) HAL_SMARTCARDEx_BlockLength_Config() API allows to configure the Block Length on the fly - (+) HAL_SMARTCARDEx_TimeOut_Config() API allows to configure the receiver timeout value on the fly - (+) HAL_SMARTCARDEx_EnableReceiverTimeOut() API enables the receiver timeout feature - (+) HAL_SMARTCARDEx_DisableReceiverTimeOut() API disables the receiver timeout feature - -@endverbatim - * @{ - */ - -/** @brief Update on the fly the SMARTCARD block length in RTOR register. - * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains - * the configuration information for the specified SMARTCARD module. - * @param BlockLength SMARTCARD block length (8-bit long at most) - * @retval None - */ -void HAL_SMARTCARDEx_BlockLength_Config(SMARTCARD_HandleTypeDef *hsmartcard, uint8_t BlockLength) -{ - MODIFY_REG(hsmartcard->Instance->RTOR, USART_RTOR_BLEN, ((uint32_t)BlockLength << USART_RTOR_BLEN_Pos)); -} - -/** @brief Update on the fly the receiver timeout value in RTOR register. - * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains - * the configuration information for the specified SMARTCARD module. - * @param TimeOutValue receiver timeout value in number of baud blocks. The timeout - * value must be less or equal to 0x0FFFFFFFF. - * @retval None - */ -void HAL_SMARTCARDEx_TimeOut_Config(SMARTCARD_HandleTypeDef *hsmartcard, uint32_t TimeOutValue) -{ - assert_param(IS_SMARTCARD_TIMEOUT_VALUE(hsmartcard->Init.TimeOutValue)); - MODIFY_REG(hsmartcard->Instance->RTOR, USART_RTOR_RTO, TimeOutValue); -} - -/** @brief Enable the SMARTCARD receiver timeout feature. - * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains - * the configuration information for the specified SMARTCARD module. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_SMARTCARDEx_EnableReceiverTimeOut(SMARTCARD_HandleTypeDef *hsmartcard) -{ - if (hsmartcard->gState == HAL_SMARTCARD_STATE_READY) - { - /* Process Locked */ - __HAL_LOCK(hsmartcard); - - hsmartcard->gState = HAL_SMARTCARD_STATE_BUSY; - - /* Set the USART RTOEN bit */ - SET_BIT(hsmartcard->Instance->CR2, USART_CR2_RTOEN); - - hsmartcard->gState = HAL_SMARTCARD_STATE_READY; - - /* Process Unlocked */ - __HAL_UNLOCK(hsmartcard); - - return HAL_OK; - } - else - { - return HAL_BUSY; - } -} - -/** @brief Disable the SMARTCARD receiver timeout feature. - * @param hsmartcard Pointer to a SMARTCARD_HandleTypeDef structure that contains - * the configuration information for the specified SMARTCARD module. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_SMARTCARDEx_DisableReceiverTimeOut(SMARTCARD_HandleTypeDef *hsmartcard) -{ - if (hsmartcard->gState == HAL_SMARTCARD_STATE_READY) - { - /* Process Locked */ - __HAL_LOCK(hsmartcard); - - hsmartcard->gState = HAL_SMARTCARD_STATE_BUSY; - - /* Clear the USART RTOEN bit */ - CLEAR_BIT(hsmartcard->Instance->CR2, USART_CR2_RTOEN); - - hsmartcard->gState = HAL_SMARTCARD_STATE_READY; - - /* Process Unlocked */ - __HAL_UNLOCK(hsmartcard); - - return HAL_OK; - } - else - { - return HAL_BUSY; - } -} - -/** - * @} - */ - -/** @defgroup SMARTCARDEx_Exported_Functions_Group2 Extended Peripheral IO operation functions - * @brief SMARTCARD Transmit and Receive functions - * -@verbatim - =============================================================================== - ##### IO operation functions ##### - =============================================================================== - [..] -@endverbatim - * @{ - */ - -/** - * @} - */ - - -/** - * @} - */ - -/** @defgroup SMARTCARDEx_Private_Functions SMARTCARD Extended Private Functions - * @{ - */ - -/** - * @} - */ - -#endif /* HAL_SMARTCARD_MODULE_ENABLED */ - -/** - * @} - */ - -/** - * @} - */ -#endif /* !defined(STM32F030x6) && !defined(STM32F030x8) && !defined(STM32F070x6) && !defined(STM32F070xB) && !defined(STM32F030xC) */ -/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_smbus.c b/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_smbus.c deleted file mode 100644 index cbf6689..0000000 --- a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_smbus.c +++ /dev/null @@ -1,2673 +0,0 @@ -/** - ****************************************************************************** - * @file stm32f0xx_hal_smbus.c - * @author MCD Application Team - * @brief SMBUS HAL module driver. - * This file provides firmware functions to manage the following - * functionalities of the System Management Bus (SMBus) peripheral, - * based on I2C principles of operation : - * + Initialization and de-initialization functions - * + IO operation functions - * + Peripheral State and Errors functions - * - @verbatim - ============================================================================== - ##### How to use this driver ##### - ============================================================================== - [..] - The SMBUS HAL driver can be used as follows: - - (#) Declare a SMBUS_HandleTypeDef handle structure, for example: - SMBUS_HandleTypeDef hsmbus; - - (#)Initialize the SMBUS low level resources by implementing the @ref HAL_SMBUS_MspInit() API: - (##) Enable the SMBUSx interface clock - (##) SMBUS pins configuration - (+++) Enable the clock for the SMBUS GPIOs - (+++) Configure SMBUS pins as alternate function open-drain - (##) NVIC configuration if you need to use interrupt process - (+++) Configure the SMBUSx interrupt priority - (+++) Enable the NVIC SMBUS IRQ Channel - - (#) Configure the Communication Clock Timing, Bus Timeout, Own Address1, Master Addressing mode, - Dual Addressing mode, Own Address2, Own Address2 Mask, General call, Nostretch mode, - Peripheral mode and Packet Error Check mode in the hsmbus Init structure. - - (#) Initialize the SMBUS registers by calling the @ref HAL_SMBUS_Init() API: - (++) These API's configures also the low level Hardware GPIO, CLOCK, CORTEX...etc) - by calling the customized @ref HAL_SMBUS_MspInit(&hsmbus) API. - - (#) To check if target device is ready for communication, use the function @ref HAL_SMBUS_IsDeviceReady() - - (#) For SMBUS IO operations, only one mode of operations is available within this driver - - *** Interrupt mode IO operation *** - =================================== - [..] - (+) Transmit in master/host SMBUS mode an amount of data in non-blocking mode using @ref HAL_SMBUS_Master_Transmit_IT() - (++) At transmission end of transfer @ref HAL_SMBUS_MasterTxCpltCallback() is executed and user can - add his own code by customization of function pointer @ref HAL_SMBUS_MasterTxCpltCallback() - (+) Receive in master/host SMBUS mode an amount of data in non-blocking mode using @ref HAL_SMBUS_Master_Receive_IT() - (++) At reception end of transfer @ref HAL_SMBUS_MasterRxCpltCallback() is executed and user can - add his own code by customization of function pointer @ref HAL_SMBUS_MasterRxCpltCallback() - (+) Abort a master/host SMBUS process communication with Interrupt using @ref HAL_SMBUS_Master_Abort_IT() - (++) The associated previous transfer callback is called at the end of abort process - (++) mean @ref HAL_SMBUS_MasterTxCpltCallback() in case of previous state was master transmit - (++) mean @ref HAL_SMBUS_MasterRxCpltCallback() in case of previous state was master receive - (+) Enable/disable the Address listen mode in slave/device or host/slave SMBUS mode - using @ref HAL_SMBUS_EnableListen_IT() @ref HAL_SMBUS_DisableListen_IT() - (++) When address slave/device SMBUS match, @ref HAL_SMBUS_AddrCallback() is executed and user can - add his own code to check the Address Match Code and the transmission direction request by master/host (Write/Read). - (++) At Listen mode end @ref HAL_SMBUS_ListenCpltCallback() is executed and user can - add his own code by customization of function pointer @ref HAL_SMBUS_ListenCpltCallback() - (+) Transmit in slave/device SMBUS mode an amount of data in non-blocking mode using @ref HAL_SMBUS_Slave_Transmit_IT() - (++) At transmission end of transfer @ref HAL_SMBUS_SlaveTxCpltCallback() is executed and user can - add his own code by customization of function pointer @ref HAL_SMBUS_SlaveTxCpltCallback() - (+) Receive in slave/device SMBUS mode an amount of data in non-blocking mode using @ref HAL_SMBUS_Slave_Receive_IT() - (++) At reception end of transfer @ref HAL_SMBUS_SlaveRxCpltCallback() is executed and user can - add his own code by customization of function pointer @ref HAL_SMBUS_SlaveRxCpltCallback() - (+) Enable/Disable the SMBUS alert mode using @ref HAL_SMBUS_EnableAlert_IT() @ref HAL_SMBUS_DisableAlert_IT() - (++) When SMBUS Alert is generated @ref HAL_SMBUS_ErrorCallback() is executed and user can - add his own code by customization of function pointer @ref HAL_SMBUS_ErrorCallback() - to check the Alert Error Code using function @ref HAL_SMBUS_GetError() - (+) Get HAL state machine or error values using @ref HAL_SMBUS_GetState() or @ref HAL_SMBUS_GetError() - (+) In case of transfer Error, @ref HAL_SMBUS_ErrorCallback() function is executed and user can - add his own code by customization of function pointer @ref HAL_SMBUS_ErrorCallback() - to check the Error Code using function @ref HAL_SMBUS_GetError() - - *** SMBUS HAL driver macros list *** - ================================== - [..] - Below the list of most used macros in SMBUS HAL driver. - - (+) @ref __HAL_SMBUS_ENABLE: Enable the SMBUS peripheral - (+) @ref __HAL_SMBUS_DISABLE: Disable the SMBUS peripheral - (+) @ref __HAL_SMBUS_GET_FLAG: Check whether the specified SMBUS flag is set or not - (+) @ref __HAL_SMBUS_CLEAR_FLAG: Clear the specified SMBUS pending flag - (+) @ref __HAL_SMBUS_ENABLE_IT: Enable the specified SMBUS interrupt - (+) @ref __HAL_SMBUS_DISABLE_IT: Disable the specified SMBUS interrupt - - *** Callback registration *** - ============================================= - [..] - The compilation flag USE_HAL_SMBUS_REGISTER_CALLBACKS when set to 1 - allows the user to configure dynamically the driver callbacks. - Use Functions @ref HAL_SMBUS_RegisterCallback() or @ref HAL_SMBUS_RegisterAddrCallback() - to register an interrupt callback. - [..] - Function @ref HAL_SMBUS_RegisterCallback() allows to register following callbacks: - (+) MasterTxCpltCallback : callback for Master transmission end of transfer. - (+) MasterRxCpltCallback : callback for Master reception end of transfer. - (+) SlaveTxCpltCallback : callback for Slave transmission end of transfer. - (+) SlaveRxCpltCallback : callback for Slave reception end of transfer. - (+) ListenCpltCallback : callback for end of listen mode. - (+) ErrorCallback : callback for error detection. - (+) MspInitCallback : callback for Msp Init. - (+) MspDeInitCallback : callback for Msp DeInit. - This function takes as parameters the HAL peripheral handle, the Callback ID - and a pointer to the user callback function. - [..] - For specific callback AddrCallback use dedicated register callbacks : @ref HAL_SMBUS_RegisterAddrCallback. - [..] - Use function @ref HAL_SMBUS_UnRegisterCallback to reset a callback to the default - weak function. - @ref HAL_SMBUS_UnRegisterCallback takes as parameters the HAL peripheral handle, - and the Callback ID. - This function allows to reset following callbacks: - (+) MasterTxCpltCallback : callback for Master transmission end of transfer. - (+) MasterRxCpltCallback : callback for Master reception end of transfer. - (+) SlaveTxCpltCallback : callback for Slave transmission end of transfer. - (+) SlaveRxCpltCallback : callback for Slave reception end of transfer. - (+) ListenCpltCallback : callback for end of listen mode. - (+) ErrorCallback : callback for error detection. - (+) MspInitCallback : callback for Msp Init. - (+) MspDeInitCallback : callback for Msp DeInit. - [..] - For callback AddrCallback use dedicated register callbacks : @ref HAL_SMBUS_UnRegisterAddrCallback. - [..] - By default, after the @ref HAL_SMBUS_Init() and when the state is @ref HAL_I2C_STATE_RESET - all callbacks are set to the corresponding weak functions: - examples @ref HAL_SMBUS_MasterTxCpltCallback(), @ref HAL_SMBUS_MasterRxCpltCallback(). - Exception done for MspInit and MspDeInit functions that are - reset to the legacy weak functions in the @ref HAL_SMBUS_Init()/ @ref HAL_SMBUS_DeInit() only when - these callbacks are null (not registered beforehand). - If MspInit or MspDeInit are not null, the @ref HAL_SMBUS_Init()/ @ref HAL_SMBUS_DeInit() - keep and use the user MspInit/MspDeInit callbacks (registered beforehand) whatever the state. - [..] - Callbacks can be registered/unregistered in @ref HAL_I2C_STATE_READY state only. - Exception done MspInit/MspDeInit functions that can be registered/unregistered - in @ref HAL_I2C_STATE_READY or @ref HAL_I2C_STATE_RESET state, - thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit. - Then, the user first registers the MspInit/MspDeInit user callbacks - using @ref HAL_SMBUS_RegisterCallback() before calling @ref HAL_SMBUS_DeInit() - or @ref HAL_SMBUS_Init() function. - [..] - When the compilation flag USE_HAL_SMBUS_REGISTER_CALLBACKS is set to 0 or - not defined, the callback registration feature is not available and all callbacks - are set to the corresponding weak functions. - - [..] - (@) You can refer to the SMBUS HAL driver header file for more useful macros - - @endverbatim - ****************************************************************************** - * @attention - * - *

© Copyright (c) 2016 STMicroelectronics. - * All rights reserved.

- * - * This software component is licensed by ST under BSD 3-Clause license, - * the "License"; You may not use this file except in compliance with the - * License. You may obtain a copy of the License at: - * opensource.org/licenses/BSD-3-Clause - * - ****************************************************************************** - */ - -/* Includes ------------------------------------------------------------------*/ -#include "stm32f0xx_hal.h" - -/** @addtogroup STM32F0xx_HAL_Driver - * @{ - */ - -/** @defgroup SMBUS SMBUS - * @brief SMBUS HAL module driver - * @{ - */ - -#ifdef HAL_SMBUS_MODULE_ENABLED - -/* Private typedef -----------------------------------------------------------*/ -/* Private constants ---------------------------------------------------------*/ -/** @defgroup SMBUS_Private_Define SMBUS Private Constants - * @{ - */ -#define TIMING_CLEAR_MASK (0xF0FFFFFFUL) /*!< SMBUS TIMING clear register Mask */ -#define HAL_TIMEOUT_ADDR (10000U) /*!< 10 s */ -#define HAL_TIMEOUT_BUSY (25U) /*!< 25 ms */ -#define HAL_TIMEOUT_DIR (25U) /*!< 25 ms */ -#define HAL_TIMEOUT_RXNE (25U) /*!< 25 ms */ -#define HAL_TIMEOUT_STOPF (25U) /*!< 25 ms */ -#define HAL_TIMEOUT_TC (25U) /*!< 25 ms */ -#define HAL_TIMEOUT_TCR (25U) /*!< 25 ms */ -#define HAL_TIMEOUT_TXIS (25U) /*!< 25 ms */ -#define MAX_NBYTE_SIZE 255U -/** - * @} - */ - -/* Private macro -------------------------------------------------------------*/ -/* Private variables ---------------------------------------------------------*/ -/* Private function prototypes -----------------------------------------------*/ -/** @addtogroup SMBUS_Private_Functions SMBUS Private Functions - * @{ - */ -static HAL_StatusTypeDef SMBUS_WaitOnFlagUntilTimeout(struct __SMBUS_HandleTypeDef *hsmbus, uint32_t Flag, FlagStatus Status, uint32_t Timeout); - -static void SMBUS_Enable_IRQ(struct __SMBUS_HandleTypeDef *hsmbus, uint32_t InterruptRequest); -static void SMBUS_Disable_IRQ(struct __SMBUS_HandleTypeDef *hsmbus, uint32_t InterruptRequest); -static HAL_StatusTypeDef SMBUS_Master_ISR(struct __SMBUS_HandleTypeDef *hsmbus, uint32_t StatusFlags); -static HAL_StatusTypeDef SMBUS_Slave_ISR(struct __SMBUS_HandleTypeDef *hsmbus, uint32_t StatusFlags); - -static void SMBUS_ConvertOtherXferOptions(struct __SMBUS_HandleTypeDef *hsmbus); - -static void SMBUS_ITErrorHandler(struct __SMBUS_HandleTypeDef *hsmbus); - -static void SMBUS_TransferConfig(struct __SMBUS_HandleTypeDef *hsmbus, uint16_t DevAddress, uint8_t Size, uint32_t Mode, uint32_t Request); -/** - * @} - */ - -/* Exported functions --------------------------------------------------------*/ - -/** @defgroup SMBUS_Exported_Functions SMBUS Exported Functions - * @{ - */ - -/** @defgroup SMBUS_Exported_Functions_Group1 Initialization and de-initialization functions - * @brief Initialization and Configuration functions - * -@verbatim - =============================================================================== - ##### Initialization and de-initialization functions ##### - =============================================================================== - [..] This subsection provides a set of functions allowing to initialize and - deinitialize the SMBUSx peripheral: - - (+) User must Implement HAL_SMBUS_MspInit() function in which he configures - all related peripherals resources (CLOCK, GPIO, IT and NVIC ). - - (+) Call the function HAL_SMBUS_Init() to configure the selected device with - the selected configuration: - (++) Clock Timing - (++) Bus Timeout - (++) Analog Filer mode - (++) Own Address 1 - (++) Addressing mode (Master, Slave) - (++) Dual Addressing mode - (++) Own Address 2 - (++) Own Address 2 Mask - (++) General call mode - (++) Nostretch mode - (++) Packet Error Check mode - (++) Peripheral mode - - - (+) Call the function HAL_SMBUS_DeInit() to restore the default configuration - of the selected SMBUSx peripheral. - - (+) Enable/Disable Analog/Digital filters with HAL_SMBUS_ConfigAnalogFilter() and - HAL_SMBUS_ConfigDigitalFilter(). - -@endverbatim - * @{ - */ - -/** - * @brief Initialize the SMBUS according to the specified parameters - * in the SMBUS_InitTypeDef and initialize the associated handle. - * @param hsmbus Pointer to a SMBUS_HandleTypeDef structure that contains - * the configuration information for the specified SMBUS. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_SMBUS_Init(SMBUS_HandleTypeDef *hsmbus) -{ - /* Check the SMBUS handle allocation */ - if (hsmbus == NULL) - { - return HAL_ERROR; - } - - /* Check the parameters */ - assert_param(IS_SMBUS_ALL_INSTANCE(hsmbus->Instance)); - assert_param(IS_SMBUS_ANALOG_FILTER(hsmbus->Init.AnalogFilter)); - assert_param(IS_SMBUS_OWN_ADDRESS1(hsmbus->Init.OwnAddress1)); - assert_param(IS_SMBUS_ADDRESSING_MODE(hsmbus->Init.AddressingMode)); - assert_param(IS_SMBUS_DUAL_ADDRESS(hsmbus->Init.DualAddressMode)); - assert_param(IS_SMBUS_OWN_ADDRESS2(hsmbus->Init.OwnAddress2)); - assert_param(IS_SMBUS_OWN_ADDRESS2_MASK(hsmbus->Init.OwnAddress2Masks)); - assert_param(IS_SMBUS_GENERAL_CALL(hsmbus->Init.GeneralCallMode)); - assert_param(IS_SMBUS_NO_STRETCH(hsmbus->Init.NoStretchMode)); - assert_param(IS_SMBUS_PEC(hsmbus->Init.PacketErrorCheckMode)); - assert_param(IS_SMBUS_PERIPHERAL_MODE(hsmbus->Init.PeripheralMode)); - - if (hsmbus->State == HAL_SMBUS_STATE_RESET) - { - /* Allocate lock resource and initialize it */ - hsmbus->Lock = HAL_UNLOCKED; - -#if (USE_HAL_SMBUS_REGISTER_CALLBACKS == 1) - hsmbus->MasterTxCpltCallback = HAL_SMBUS_MasterTxCpltCallback; /* Legacy weak MasterTxCpltCallback */ - hsmbus->MasterRxCpltCallback = HAL_SMBUS_MasterRxCpltCallback; /* Legacy weak MasterRxCpltCallback */ - hsmbus->SlaveTxCpltCallback = HAL_SMBUS_SlaveTxCpltCallback; /* Legacy weak SlaveTxCpltCallback */ - hsmbus->SlaveRxCpltCallback = HAL_SMBUS_SlaveRxCpltCallback; /* Legacy weak SlaveRxCpltCallback */ - hsmbus->ListenCpltCallback = HAL_SMBUS_ListenCpltCallback; /* Legacy weak ListenCpltCallback */ - hsmbus->ErrorCallback = HAL_SMBUS_ErrorCallback; /* Legacy weak ErrorCallback */ - hsmbus->AddrCallback = HAL_SMBUS_AddrCallback; /* Legacy weak AddrCallback */ - - if (hsmbus->MspInitCallback == NULL) - { - hsmbus->MspInitCallback = HAL_SMBUS_MspInit; /* Legacy weak MspInit */ - } - - /* Init the low level hardware : GPIO, CLOCK, CORTEX...etc */ - hsmbus->MspInitCallback(hsmbus); -#else - /* Init the low level hardware : GPIO, CLOCK, NVIC */ - HAL_SMBUS_MspInit(hsmbus); -#endif /* USE_HAL_SMBUS_REGISTER_CALLBACKS */ - } - - hsmbus->State = HAL_SMBUS_STATE_BUSY; - - /* Disable the selected SMBUS peripheral */ - __HAL_SMBUS_DISABLE(hsmbus); - - /*---------------------------- SMBUSx TIMINGR Configuration ------------------------*/ - /* Configure SMBUSx: Frequency range */ - hsmbus->Instance->TIMINGR = hsmbus->Init.Timing & TIMING_CLEAR_MASK; - - /*---------------------------- SMBUSx TIMEOUTR Configuration ------------------------*/ - /* Configure SMBUSx: Bus Timeout */ - hsmbus->Instance->TIMEOUTR &= ~I2C_TIMEOUTR_TIMOUTEN; - hsmbus->Instance->TIMEOUTR &= ~I2C_TIMEOUTR_TEXTEN; - hsmbus->Instance->TIMEOUTR = hsmbus->Init.SMBusTimeout; - - /*---------------------------- SMBUSx OAR1 Configuration -----------------------*/ - /* Configure SMBUSx: Own Address1 and ack own address1 mode */ - hsmbus->Instance->OAR1 &= ~I2C_OAR1_OA1EN; - - if (hsmbus->Init.OwnAddress1 != 0UL) - { - if (hsmbus->Init.AddressingMode == SMBUS_ADDRESSINGMODE_7BIT) - { - hsmbus->Instance->OAR1 = (I2C_OAR1_OA1EN | hsmbus->Init.OwnAddress1); - } - else /* SMBUS_ADDRESSINGMODE_10BIT */ - { - hsmbus->Instance->OAR1 = (I2C_OAR1_OA1EN | I2C_OAR1_OA1MODE | hsmbus->Init.OwnAddress1); - } - } - - /*---------------------------- SMBUSx CR2 Configuration ------------------------*/ - /* Configure SMBUSx: Addressing Master mode */ - if (hsmbus->Init.AddressingMode == SMBUS_ADDRESSINGMODE_10BIT) - { - hsmbus->Instance->CR2 = (I2C_CR2_ADD10); - } - /* Enable the AUTOEND by default, and enable NACK (should be disable only during Slave process) */ - /* AUTOEND and NACK bit will be manage during Transfer process */ - hsmbus->Instance->CR2 |= (I2C_CR2_AUTOEND | I2C_CR2_NACK); - - /*---------------------------- SMBUSx OAR2 Configuration -----------------------*/ - /* Configure SMBUSx: Dual mode and Own Address2 */ - hsmbus->Instance->OAR2 = (hsmbus->Init.DualAddressMode | hsmbus->Init.OwnAddress2 | (hsmbus->Init.OwnAddress2Masks << 8U)); - - /*---------------------------- SMBUSx CR1 Configuration ------------------------*/ - /* Configure SMBUSx: Generalcall and NoStretch mode */ - hsmbus->Instance->CR1 = (hsmbus->Init.GeneralCallMode | hsmbus->Init.NoStretchMode | hsmbus->Init.PacketErrorCheckMode | hsmbus->Init.PeripheralMode | hsmbus->Init.AnalogFilter); - - /* Enable Slave Byte Control only in case of Packet Error Check is enabled and SMBUS Peripheral is set in Slave mode */ - if ((hsmbus->Init.PacketErrorCheckMode == SMBUS_PEC_ENABLE) - && ((hsmbus->Init.PeripheralMode == SMBUS_PERIPHERAL_MODE_SMBUS_SLAVE) || (hsmbus->Init.PeripheralMode == SMBUS_PERIPHERAL_MODE_SMBUS_SLAVE_ARP))) - { - hsmbus->Instance->CR1 |= I2C_CR1_SBC; - } - - /* Enable the selected SMBUS peripheral */ - __HAL_SMBUS_ENABLE(hsmbus); - - hsmbus->ErrorCode = HAL_SMBUS_ERROR_NONE; - hsmbus->PreviousState = HAL_SMBUS_STATE_READY; - hsmbus->State = HAL_SMBUS_STATE_READY; - - return HAL_OK; -} - -/** - * @brief DeInitialize the SMBUS peripheral. - * @param hsmbus Pointer to a SMBUS_HandleTypeDef structure that contains - * the configuration information for the specified SMBUS. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_SMBUS_DeInit(SMBUS_HandleTypeDef *hsmbus) -{ - /* Check the SMBUS handle allocation */ - if (hsmbus == NULL) - { - return HAL_ERROR; - } - - /* Check the parameters */ - assert_param(IS_SMBUS_ALL_INSTANCE(hsmbus->Instance)); - - hsmbus->State = HAL_SMBUS_STATE_BUSY; - - /* Disable the SMBUS Peripheral Clock */ - __HAL_SMBUS_DISABLE(hsmbus); - -#if (USE_HAL_SMBUS_REGISTER_CALLBACKS == 1) - if (hsmbus->MspDeInitCallback == NULL) - { - hsmbus->MspDeInitCallback = HAL_SMBUS_MspDeInit; /* Legacy weak MspDeInit */ - } - - /* DeInit the low level hardware: GPIO, CLOCK, NVIC */ - hsmbus->MspDeInitCallback(hsmbus); -#else - /* DeInit the low level hardware: GPIO, CLOCK, NVIC */ - HAL_SMBUS_MspDeInit(hsmbus); -#endif /* USE_HAL_SMBUS_REGISTER_CALLBACKS */ - - hsmbus->ErrorCode = HAL_SMBUS_ERROR_NONE; - hsmbus->PreviousState = HAL_SMBUS_STATE_RESET; - hsmbus->State = HAL_SMBUS_STATE_RESET; - - /* Release Lock */ - __HAL_UNLOCK(hsmbus); - - return HAL_OK; -} - -/** - * @brief Initialize the SMBUS MSP. - * @param hsmbus Pointer to a SMBUS_HandleTypeDef structure that contains - * the configuration information for the specified SMBUS. - * @retval None - */ -__weak void HAL_SMBUS_MspInit(SMBUS_HandleTypeDef *hsmbus) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hsmbus); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_SMBUS_MspInit could be implemented in the user file - */ -} - -/** - * @brief DeInitialize the SMBUS MSP. - * @param hsmbus Pointer to a SMBUS_HandleTypeDef structure that contains - * the configuration information for the specified SMBUS. - * @retval None - */ -__weak void HAL_SMBUS_MspDeInit(SMBUS_HandleTypeDef *hsmbus) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hsmbus); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_SMBUS_MspDeInit could be implemented in the user file - */ -} - -/** - * @brief Configure Analog noise filter. - * @param hsmbus Pointer to a SMBUS_HandleTypeDef structure that contains - * the configuration information for the specified SMBUS. - * @param AnalogFilter This parameter can be one of the following values: - * @arg @ref SMBUS_ANALOGFILTER_ENABLE - * @arg @ref SMBUS_ANALOGFILTER_DISABLE - * @retval HAL status - */ -HAL_StatusTypeDef HAL_SMBUS_ConfigAnalogFilter(SMBUS_HandleTypeDef *hsmbus, uint32_t AnalogFilter) -{ - /* Check the parameters */ - assert_param(IS_SMBUS_ALL_INSTANCE(hsmbus->Instance)); - assert_param(IS_SMBUS_ANALOG_FILTER(AnalogFilter)); - - if (hsmbus->State == HAL_SMBUS_STATE_READY) - { - /* Process Locked */ - __HAL_LOCK(hsmbus); - - hsmbus->State = HAL_SMBUS_STATE_BUSY; - - /* Disable the selected SMBUS peripheral */ - __HAL_SMBUS_DISABLE(hsmbus); - - /* Reset ANOFF bit */ - hsmbus->Instance->CR1 &= ~(I2C_CR1_ANFOFF); - - /* Set analog filter bit*/ - hsmbus->Instance->CR1 |= AnalogFilter; - - __HAL_SMBUS_ENABLE(hsmbus); - - hsmbus->State = HAL_SMBUS_STATE_READY; - - /* Process Unlocked */ - __HAL_UNLOCK(hsmbus); - - return HAL_OK; - } - else - { - return HAL_BUSY; - } -} - -/** - * @brief Configure Digital noise filter. - * @param hsmbus Pointer to a SMBUS_HandleTypeDef structure that contains - * the configuration information for the specified SMBUS. - * @param DigitalFilter Coefficient of digital noise filter between Min_Data=0x00 and Max_Data=0x0F. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_SMBUS_ConfigDigitalFilter(SMBUS_HandleTypeDef *hsmbus, uint32_t DigitalFilter) -{ - uint32_t tmpreg; - - /* Check the parameters */ - assert_param(IS_SMBUS_ALL_INSTANCE(hsmbus->Instance)); - assert_param(IS_SMBUS_DIGITAL_FILTER(DigitalFilter)); - - if (hsmbus->State == HAL_SMBUS_STATE_READY) - { - /* Process Locked */ - __HAL_LOCK(hsmbus); - - hsmbus->State = HAL_SMBUS_STATE_BUSY; - - /* Disable the selected SMBUS peripheral */ - __HAL_SMBUS_DISABLE(hsmbus); - - /* Get the old register value */ - tmpreg = hsmbus->Instance->CR1; - - /* Reset I2C DNF bits [11:8] */ - tmpreg &= ~(I2C_CR1_DNF); - - /* Set I2Cx DNF coefficient */ - tmpreg |= DigitalFilter << I2C_CR1_DNF_Pos; - - /* Store the new register value */ - hsmbus->Instance->CR1 = tmpreg; - - __HAL_SMBUS_ENABLE(hsmbus); - - hsmbus->State = HAL_SMBUS_STATE_READY; - - /* Process Unlocked */ - __HAL_UNLOCK(hsmbus); - - return HAL_OK; - } - else - { - return HAL_BUSY; - } -} - -#if (USE_HAL_SMBUS_REGISTER_CALLBACKS == 1) -/** - * @brief Register a User SMBUS Callback - * To be used instead of the weak predefined callback - * @param hsmbus Pointer to a SMBUS_HandleTypeDef structure that contains - * the configuration information for the specified SMBUS. - * @param CallbackID ID of the callback to be registered - * This parameter can be one of the following values: - * @arg @ref HAL_SMBUS_MASTER_TX_COMPLETE_CB_ID Master Tx Transfer completed callback ID - * @arg @ref HAL_SMBUS_MASTER_RX_COMPLETE_CB_ID Master Rx Transfer completed callback ID - * @arg @ref HAL_SMBUS_SLAVE_TX_COMPLETE_CB_ID Slave Tx Transfer completed callback ID - * @arg @ref HAL_SMBUS_SLAVE_RX_COMPLETE_CB_ID Slave Rx Transfer completed callback ID - * @arg @ref HAL_SMBUS_LISTEN_COMPLETE_CB_ID Listen Complete callback ID - * @arg @ref HAL_SMBUS_ERROR_CB_ID Error callback ID - * @arg @ref HAL_SMBUS_MSPINIT_CB_ID MspInit callback ID - * @arg @ref HAL_SMBUS_MSPDEINIT_CB_ID MspDeInit callback ID - * @param pCallback pointer to the Callback function - * @retval HAL status - */ -HAL_StatusTypeDef HAL_SMBUS_RegisterCallback(SMBUS_HandleTypeDef *hsmbus, HAL_SMBUS_CallbackIDTypeDef CallbackID, pSMBUS_CallbackTypeDef pCallback) -{ - HAL_StatusTypeDef status = HAL_OK; - - if (pCallback == NULL) - { - /* Update the error code */ - hsmbus->ErrorCode |= HAL_SMBUS_ERROR_INVALID_CALLBACK; - - return HAL_ERROR; - } - - /* Process locked */ - __HAL_LOCK(hsmbus); - - if (HAL_SMBUS_STATE_READY == hsmbus->State) - { - switch (CallbackID) - { - case HAL_SMBUS_MASTER_TX_COMPLETE_CB_ID : - hsmbus->MasterTxCpltCallback = pCallback; - break; - - case HAL_SMBUS_MASTER_RX_COMPLETE_CB_ID : - hsmbus->MasterRxCpltCallback = pCallback; - break; - - case HAL_SMBUS_SLAVE_TX_COMPLETE_CB_ID : - hsmbus->SlaveTxCpltCallback = pCallback; - break; - - case HAL_SMBUS_SLAVE_RX_COMPLETE_CB_ID : - hsmbus->SlaveRxCpltCallback = pCallback; - break; - - case HAL_SMBUS_LISTEN_COMPLETE_CB_ID : - hsmbus->ListenCpltCallback = pCallback; - break; - - case HAL_SMBUS_ERROR_CB_ID : - hsmbus->ErrorCallback = pCallback; - break; - - case HAL_SMBUS_MSPINIT_CB_ID : - hsmbus->MspInitCallback = pCallback; - break; - - case HAL_SMBUS_MSPDEINIT_CB_ID : - hsmbus->MspDeInitCallback = pCallback; - break; - - default : - /* Update the error code */ - hsmbus->ErrorCode |= HAL_SMBUS_ERROR_INVALID_CALLBACK; - - /* Return error status */ - status = HAL_ERROR; - break; - } - } - else if (HAL_SMBUS_STATE_RESET == hsmbus->State) - { - switch (CallbackID) - { - case HAL_SMBUS_MSPINIT_CB_ID : - hsmbus->MspInitCallback = pCallback; - break; - - case HAL_SMBUS_MSPDEINIT_CB_ID : - hsmbus->MspDeInitCallback = pCallback; - break; - - default : - /* Update the error code */ - hsmbus->ErrorCode |= HAL_SMBUS_ERROR_INVALID_CALLBACK; - - /* Return error status */ - status = HAL_ERROR; - break; - } - } - else - { - /* Update the error code */ - hsmbus->ErrorCode |= HAL_SMBUS_ERROR_INVALID_CALLBACK; - - /* Return error status */ - status = HAL_ERROR; - } - - /* Release Lock */ - __HAL_UNLOCK(hsmbus); - return status; -} - -/** - * @brief Unregister an SMBUS Callback - * SMBUS callback is redirected to the weak predefined callback - * @param hsmbus Pointer to a SMBUS_HandleTypeDef structure that contains - * the configuration information for the specified SMBUS. - * @param CallbackID ID of the callback to be unregistered - * This parameter can be one of the following values: - * This parameter can be one of the following values: - * @arg @ref HAL_SMBUS_MASTER_TX_COMPLETE_CB_ID Master Tx Transfer completed callback ID - * @arg @ref HAL_SMBUS_MASTER_RX_COMPLETE_CB_ID Master Rx Transfer completed callback ID - * @arg @ref HAL_SMBUS_SLAVE_TX_COMPLETE_CB_ID Slave Tx Transfer completed callback ID - * @arg @ref HAL_SMBUS_SLAVE_RX_COMPLETE_CB_ID Slave Rx Transfer completed callback ID - * @arg @ref HAL_SMBUS_LISTEN_COMPLETE_CB_ID Listen Complete callback ID - * @arg @ref HAL_SMBUS_ERROR_CB_ID Error callback ID - * @arg @ref HAL_SMBUS_MSPINIT_CB_ID MspInit callback ID - * @arg @ref HAL_SMBUS_MSPDEINIT_CB_ID MspDeInit callback ID - * @retval HAL status - */ -HAL_StatusTypeDef HAL_SMBUS_UnRegisterCallback(SMBUS_HandleTypeDef *hsmbus, HAL_SMBUS_CallbackIDTypeDef CallbackID) -{ - HAL_StatusTypeDef status = HAL_OK; - - /* Process locked */ - __HAL_LOCK(hsmbus); - - if (HAL_SMBUS_STATE_READY == hsmbus->State) - { - switch (CallbackID) - { - case HAL_SMBUS_MASTER_TX_COMPLETE_CB_ID : - hsmbus->MasterTxCpltCallback = HAL_SMBUS_MasterTxCpltCallback; /* Legacy weak MasterTxCpltCallback */ - break; - - case HAL_SMBUS_MASTER_RX_COMPLETE_CB_ID : - hsmbus->MasterRxCpltCallback = HAL_SMBUS_MasterRxCpltCallback; /* Legacy weak MasterRxCpltCallback */ - break; - - case HAL_SMBUS_SLAVE_TX_COMPLETE_CB_ID : - hsmbus->SlaveTxCpltCallback = HAL_SMBUS_SlaveTxCpltCallback; /* Legacy weak SlaveTxCpltCallback */ - break; - - case HAL_SMBUS_SLAVE_RX_COMPLETE_CB_ID : - hsmbus->SlaveRxCpltCallback = HAL_SMBUS_SlaveRxCpltCallback; /* Legacy weak SlaveRxCpltCallback */ - break; - - case HAL_SMBUS_LISTEN_COMPLETE_CB_ID : - hsmbus->ListenCpltCallback = HAL_SMBUS_ListenCpltCallback; /* Legacy weak ListenCpltCallback */ - break; - - case HAL_SMBUS_ERROR_CB_ID : - hsmbus->ErrorCallback = HAL_SMBUS_ErrorCallback; /* Legacy weak ErrorCallback */ - break; - - case HAL_SMBUS_MSPINIT_CB_ID : - hsmbus->MspInitCallback = HAL_SMBUS_MspInit; /* Legacy weak MspInit */ - break; - - case HAL_SMBUS_MSPDEINIT_CB_ID : - hsmbus->MspDeInitCallback = HAL_SMBUS_MspDeInit; /* Legacy weak MspDeInit */ - break; - - default : - /* Update the error code */ - hsmbus->ErrorCode |= HAL_SMBUS_ERROR_INVALID_CALLBACK; - - /* Return error status */ - status = HAL_ERROR; - break; - } - } - else if (HAL_SMBUS_STATE_RESET == hsmbus->State) - { - switch (CallbackID) - { - case HAL_SMBUS_MSPINIT_CB_ID : - hsmbus->MspInitCallback = HAL_SMBUS_MspInit; /* Legacy weak MspInit */ - break; - - case HAL_SMBUS_MSPDEINIT_CB_ID : - hsmbus->MspDeInitCallback = HAL_SMBUS_MspDeInit; /* Legacy weak MspDeInit */ - break; - - default : - /* Update the error code */ - hsmbus->ErrorCode |= HAL_SMBUS_ERROR_INVALID_CALLBACK; - - /* Return error status */ - status = HAL_ERROR; - break; - } - } - else - { - /* Update the error code */ - hsmbus->ErrorCode |= HAL_SMBUS_ERROR_INVALID_CALLBACK; - - /* Return error status */ - status = HAL_ERROR; - } - - /* Release Lock */ - __HAL_UNLOCK(hsmbus); - return status; -} - -/** - * @brief Register the Slave Address Match SMBUS Callback - * To be used instead of the weak HAL_SMBUS_AddrCallback() predefined callback - * @param hsmbus Pointer to a SMBUS_HandleTypeDef structure that contains - * the configuration information for the specified SMBUS. - * @param pCallback pointer to the Address Match Callback function - * @retval HAL status - */ -HAL_StatusTypeDef HAL_SMBUS_RegisterAddrCallback(SMBUS_HandleTypeDef *hsmbus, pSMBUS_AddrCallbackTypeDef pCallback) -{ - HAL_StatusTypeDef status = HAL_OK; - - if (pCallback == NULL) - { - /* Update the error code */ - hsmbus->ErrorCode |= HAL_SMBUS_ERROR_INVALID_CALLBACK; - - return HAL_ERROR; - } - /* Process locked */ - __HAL_LOCK(hsmbus); - - if (HAL_SMBUS_STATE_READY == hsmbus->State) - { - hsmbus->AddrCallback = pCallback; - } - else - { - /* Update the error code */ - hsmbus->ErrorCode |= HAL_SMBUS_ERROR_INVALID_CALLBACK; - - /* Return error status */ - status = HAL_ERROR; - } - - /* Release Lock */ - __HAL_UNLOCK(hsmbus); - return status; -} - -/** - * @brief UnRegister the Slave Address Match SMBUS Callback - * Info Ready SMBUS Callback is redirected to the weak HAL_SMBUS_AddrCallback() predefined callback - * @param hsmbus Pointer to a SMBUS_HandleTypeDef structure that contains - * the configuration information for the specified SMBUS. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_SMBUS_UnRegisterAddrCallback(SMBUS_HandleTypeDef *hsmbus) -{ - HAL_StatusTypeDef status = HAL_OK; - - /* Process locked */ - __HAL_LOCK(hsmbus); - - if (HAL_SMBUS_STATE_READY == hsmbus->State) - { - hsmbus->AddrCallback = HAL_SMBUS_AddrCallback; /* Legacy weak AddrCallback */ - } - else - { - /* Update the error code */ - hsmbus->ErrorCode |= HAL_SMBUS_ERROR_INVALID_CALLBACK; - - /* Return error status */ - status = HAL_ERROR; - } - - /* Release Lock */ - __HAL_UNLOCK(hsmbus); - return status; -} - -#endif /* USE_HAL_SMBUS_REGISTER_CALLBACKS */ - -/** - * @} - */ - -/** @defgroup SMBUS_Exported_Functions_Group2 Input and Output operation functions - * @brief Data transfers functions - * -@verbatim - =============================================================================== - ##### IO operation functions ##### - =============================================================================== - [..] - This subsection provides a set of functions allowing to manage the SMBUS data - transfers. - - (#) Blocking mode function to check if device is ready for usage is : - (++) HAL_SMBUS_IsDeviceReady() - - (#) There is only one mode of transfer: - (++) Non-Blocking mode : The communication is performed using Interrupts. - These functions return the status of the transfer startup. - The end of the data processing will be indicated through the - dedicated SMBUS IRQ when using Interrupt mode. - - (#) Non-Blocking mode functions with Interrupt are : - (++) HAL_SMBUS_Master_Transmit_IT() - (++) HAL_SMBUS_Master_Receive_IT() - (++) HAL_SMBUS_Slave_Transmit_IT() - (++) HAL_SMBUS_Slave_Receive_IT() - (++) HAL_SMBUS_EnableListen_IT() or alias HAL_SMBUS_EnableListen_IT() - (++) HAL_SMBUS_DisableListen_IT() - (++) HAL_SMBUS_EnableAlert_IT() - (++) HAL_SMBUS_DisableAlert_IT() - - (#) A set of Transfer Complete Callbacks are provided in non-Blocking mode: - (++) HAL_SMBUS_MasterTxCpltCallback() - (++) HAL_SMBUS_MasterRxCpltCallback() - (++) HAL_SMBUS_SlaveTxCpltCallback() - (++) HAL_SMBUS_SlaveRxCpltCallback() - (++) HAL_SMBUS_AddrCallback() - (++) HAL_SMBUS_ListenCpltCallback() - (++) HAL_SMBUS_ErrorCallback() - -@endverbatim - * @{ - */ - -/** - * @brief Transmit in master/host SMBUS mode an amount of data in non-blocking mode with Interrupt. - * @param hsmbus Pointer to a SMBUS_HandleTypeDef structure that contains - * the configuration information for the specified SMBUS. - * @param DevAddress Target device address: The device 7 bits address value - * in datasheet must be shifted to the left before calling the interface - * @param pData Pointer to data buffer - * @param Size Amount of data to be sent - * @param XferOptions Options of Transfer, value of @ref SMBUS_XferOptions_definition - * @retval HAL status - */ -HAL_StatusTypeDef HAL_SMBUS_Master_Transmit_IT(SMBUS_HandleTypeDef *hsmbus, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t XferOptions) -{ - uint32_t tmp; - - /* Check the parameters */ - assert_param(IS_SMBUS_TRANSFER_OPTIONS_REQUEST(XferOptions)); - - if (hsmbus->State == HAL_SMBUS_STATE_READY) - { - /* Process Locked */ - __HAL_LOCK(hsmbus); - - hsmbus->State = HAL_SMBUS_STATE_MASTER_BUSY_TX; - hsmbus->ErrorCode = HAL_SMBUS_ERROR_NONE; - /* Prepare transfer parameters */ - hsmbus->pBuffPtr = pData; - hsmbus->XferCount = Size; - hsmbus->XferOptions = XferOptions; - - /* In case of Quick command, remove autoend mode */ - /* Manage the stop generation by software */ - if (hsmbus->pBuffPtr == NULL) - { - hsmbus->XferOptions &= ~SMBUS_AUTOEND_MODE; - } - - if (Size > MAX_NBYTE_SIZE) - { - hsmbus->XferSize = MAX_NBYTE_SIZE; - } - else - { - hsmbus->XferSize = Size; - } - - /* Send Slave Address */ - /* Set NBYTES to write and reload if size > MAX_NBYTE_SIZE and generate RESTART */ - if ((hsmbus->XferSize < hsmbus->XferCount) && (hsmbus->XferSize == MAX_NBYTE_SIZE)) - { - SMBUS_TransferConfig(hsmbus, DevAddress, (uint8_t)hsmbus->XferSize, SMBUS_RELOAD_MODE | (hsmbus->XferOptions & SMBUS_SENDPEC_MODE), SMBUS_GENERATE_START_WRITE); - } - else - { - /* If transfer direction not change, do not generate Restart Condition */ - /* Mean Previous state is same as current state */ - - /* Store current volatile XferOptions, misra rule */ - tmp = hsmbus->XferOptions; - - if ((hsmbus->PreviousState == HAL_SMBUS_STATE_MASTER_BUSY_TX) && (IS_SMBUS_TRANSFER_OTHER_OPTIONS_REQUEST(tmp) == 0)) - { - SMBUS_TransferConfig(hsmbus, DevAddress, (uint8_t)hsmbus->XferSize, hsmbus->XferOptions, SMBUS_NO_STARTSTOP); - } - /* Else transfer direction change, so generate Restart with new transfer direction */ - else - { - /* Convert OTHER_xxx XferOptions if any */ - SMBUS_ConvertOtherXferOptions(hsmbus); - - /* Handle Transfer */ - SMBUS_TransferConfig(hsmbus, DevAddress, (uint8_t)hsmbus->XferSize, hsmbus->XferOptions, SMBUS_GENERATE_START_WRITE); - } - - /* If PEC mode is enable, size to transmit manage by SW part should be Size-1 byte, corresponding to PEC byte */ - /* PEC byte is automatically sent by HW block, no need to manage it in Transmit process */ - if (SMBUS_GET_PEC_MODE(hsmbus) != 0UL) - { - hsmbus->XferSize--; - hsmbus->XferCount--; - } - } - - /* Process Unlocked */ - __HAL_UNLOCK(hsmbus); - - /* Note : The SMBUS interrupts must be enabled after unlocking current process - to avoid the risk of SMBUS interrupt handle execution before current - process unlock */ - SMBUS_Enable_IRQ(hsmbus, SMBUS_IT_TX); - - return HAL_OK; - } - else - { - return HAL_BUSY; - } -} - -/** - * @brief Receive in master/host SMBUS mode an amount of data in non-blocking mode with Interrupt. - * @param hsmbus Pointer to a SMBUS_HandleTypeDef structure that contains - * the configuration information for the specified SMBUS. - * @param DevAddress Target device address: The device 7 bits address value - * in datasheet must be shifted to the left before calling the interface - * @param pData Pointer to data buffer - * @param Size Amount of data to be sent - * @param XferOptions Options of Transfer, value of @ref SMBUS_XferOptions_definition - * @retval HAL status - */ -HAL_StatusTypeDef HAL_SMBUS_Master_Receive_IT(SMBUS_HandleTypeDef *hsmbus, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t XferOptions) -{ - uint32_t tmp; - - /* Check the parameters */ - assert_param(IS_SMBUS_TRANSFER_OPTIONS_REQUEST(XferOptions)); - - if (hsmbus->State == HAL_SMBUS_STATE_READY) - { - /* Process Locked */ - __HAL_LOCK(hsmbus); - - hsmbus->State = HAL_SMBUS_STATE_MASTER_BUSY_RX; - hsmbus->ErrorCode = HAL_SMBUS_ERROR_NONE; - - /* Prepare transfer parameters */ - hsmbus->pBuffPtr = pData; - hsmbus->XferCount = Size; - hsmbus->XferOptions = XferOptions; - - /* In case of Quick command, remove autoend mode */ - /* Manage the stop generation by software */ - if (hsmbus->pBuffPtr == NULL) - { - hsmbus->XferOptions &= ~SMBUS_AUTOEND_MODE; - } - - if (Size > MAX_NBYTE_SIZE) - { - hsmbus->XferSize = MAX_NBYTE_SIZE; - } - else - { - hsmbus->XferSize = Size; - } - - /* Send Slave Address */ - /* Set NBYTES to write and reload if size > MAX_NBYTE_SIZE and generate RESTART */ - if ((hsmbus->XferSize < hsmbus->XferCount) && (hsmbus->XferSize == MAX_NBYTE_SIZE)) - { - SMBUS_TransferConfig(hsmbus, DevAddress, (uint8_t)hsmbus->XferSize, SMBUS_RELOAD_MODE | (hsmbus->XferOptions & SMBUS_SENDPEC_MODE), SMBUS_GENERATE_START_READ); - } - else - { - /* If transfer direction not change, do not generate Restart Condition */ - /* Mean Previous state is same as current state */ - - /* Store current volatile XferOptions, Misra rule */ - tmp = hsmbus->XferOptions; - - if ((hsmbus->PreviousState == HAL_SMBUS_STATE_MASTER_BUSY_RX) && (IS_SMBUS_TRANSFER_OTHER_OPTIONS_REQUEST(tmp) == 0)) - { - SMBUS_TransferConfig(hsmbus, DevAddress, (uint8_t)hsmbus->XferSize, hsmbus->XferOptions, SMBUS_NO_STARTSTOP); - } - /* Else transfer direction change, so generate Restart with new transfer direction */ - else - { - /* Convert OTHER_xxx XferOptions if any */ - SMBUS_ConvertOtherXferOptions(hsmbus); - - /* Handle Transfer */ - SMBUS_TransferConfig(hsmbus, DevAddress, (uint8_t)hsmbus->XferSize, hsmbus->XferOptions, SMBUS_GENERATE_START_READ); - } - } - - /* Process Unlocked */ - __HAL_UNLOCK(hsmbus); - - /* Note : The SMBUS interrupts must be enabled after unlocking current process - to avoid the risk of SMBUS interrupt handle execution before current - process unlock */ - SMBUS_Enable_IRQ(hsmbus, SMBUS_IT_RX); - - return HAL_OK; - } - else - { - return HAL_BUSY; - } -} - -/** - * @brief Abort a master/host SMBUS process communication with Interrupt. - * @note This abort can be called only if state is ready - * @param hsmbus Pointer to a SMBUS_HandleTypeDef structure that contains - * the configuration information for the specified SMBUS. - * @param DevAddress Target device address: The device 7 bits address value - * in datasheet must be shifted to the left before calling the interface - * @retval HAL status - */ -HAL_StatusTypeDef HAL_SMBUS_Master_Abort_IT(SMBUS_HandleTypeDef *hsmbus, uint16_t DevAddress) -{ - if (hsmbus->State == HAL_SMBUS_STATE_READY) - { - /* Process Locked */ - __HAL_LOCK(hsmbus); - - /* Keep the same state as previous */ - /* to perform as well the call of the corresponding end of transfer callback */ - if (hsmbus->PreviousState == HAL_SMBUS_STATE_MASTER_BUSY_TX) - { - hsmbus->State = HAL_SMBUS_STATE_MASTER_BUSY_TX; - } - else if (hsmbus->PreviousState == HAL_SMBUS_STATE_MASTER_BUSY_RX) - { - hsmbus->State = HAL_SMBUS_STATE_MASTER_BUSY_RX; - } - else - { - /* Wrong usage of abort function */ - /* This function should be used only in case of abort monitored by master device */ - return HAL_ERROR; - } - hsmbus->ErrorCode = HAL_SMBUS_ERROR_NONE; - - /* Set NBYTES to 1 to generate a dummy read on SMBUS peripheral */ - /* Set AUTOEND mode, this will generate a NACK then STOP condition to abort the current transfer */ - SMBUS_TransferConfig(hsmbus, DevAddress, 1, SMBUS_AUTOEND_MODE, SMBUS_NO_STARTSTOP); - - /* Process Unlocked */ - __HAL_UNLOCK(hsmbus); - - /* Note : The SMBUS interrupts must be enabled after unlocking current process - to avoid the risk of SMBUS interrupt handle execution before current - process unlock */ - if (hsmbus->State == HAL_SMBUS_STATE_MASTER_BUSY_TX) - { - SMBUS_Enable_IRQ(hsmbus, SMBUS_IT_TX); - } - else if (hsmbus->State == HAL_SMBUS_STATE_MASTER_BUSY_RX) - { - SMBUS_Enable_IRQ(hsmbus, SMBUS_IT_RX); - } - else - { - /* Nothing to do */ - } - - return HAL_OK; - } - else - { - return HAL_BUSY; - } -} - -/** - * @brief Transmit in slave/device SMBUS mode an amount of data in non-blocking mode with Interrupt. - * @param hsmbus Pointer to a SMBUS_HandleTypeDef structure that contains - * the configuration information for the specified SMBUS. - * @param pData Pointer to data buffer - * @param Size Amount of data to be sent - * @param XferOptions Options of Transfer, value of @ref SMBUS_XferOptions_definition - * @retval HAL status - */ -HAL_StatusTypeDef HAL_SMBUS_Slave_Transmit_IT(SMBUS_HandleTypeDef *hsmbus, uint8_t *pData, uint16_t Size, uint32_t XferOptions) -{ - /* Check the parameters */ - assert_param(IS_SMBUS_TRANSFER_OPTIONS_REQUEST(XferOptions)); - - if ((hsmbus->State & HAL_SMBUS_STATE_LISTEN) == HAL_SMBUS_STATE_LISTEN) - { - if ((pData == NULL) || (Size == 0UL)) - { - hsmbus->ErrorCode = HAL_SMBUS_ERROR_INVALID_PARAM; - return HAL_ERROR; - } - - /* Disable Interrupts, to prevent preemption during treatment in case of multicall */ - SMBUS_Disable_IRQ(hsmbus, SMBUS_IT_ADDR | SMBUS_IT_TX); - - /* Process Locked */ - __HAL_LOCK(hsmbus); - - hsmbus->State = (HAL_SMBUS_STATE_SLAVE_BUSY_TX | HAL_SMBUS_STATE_LISTEN); - hsmbus->ErrorCode = HAL_SMBUS_ERROR_NONE; - - /* Set SBC bit to manage Acknowledge at each bit */ - hsmbus->Instance->CR1 |= I2C_CR1_SBC; - - /* Enable Address Acknowledge */ - hsmbus->Instance->CR2 &= ~I2C_CR2_NACK; - - /* Prepare transfer parameters */ - hsmbus->pBuffPtr = pData; - hsmbus->XferCount = Size; - hsmbus->XferOptions = XferOptions; - - /* Convert OTHER_xxx XferOptions if any */ - SMBUS_ConvertOtherXferOptions(hsmbus); - - if (Size > MAX_NBYTE_SIZE) - { - hsmbus->XferSize = MAX_NBYTE_SIZE; - } - else - { - hsmbus->XferSize = Size; - } - - /* Set NBYTES to write and reload if size > MAX_NBYTE_SIZE and generate RESTART */ - if ((hsmbus->XferSize < hsmbus->XferCount) && (hsmbus->XferSize == MAX_NBYTE_SIZE)) - { - SMBUS_TransferConfig(hsmbus, 0, (uint8_t)hsmbus->XferSize, SMBUS_RELOAD_MODE | (hsmbus->XferOptions & SMBUS_SENDPEC_MODE), SMBUS_NO_STARTSTOP); - } - else - { - /* Set NBYTE to transmit */ - SMBUS_TransferConfig(hsmbus, 0, (uint8_t)hsmbus->XferSize, hsmbus->XferOptions, SMBUS_NO_STARTSTOP); - - /* If PEC mode is enable, size to transmit should be Size-1 byte, corresponding to PEC byte */ - /* PEC byte is automatically sent by HW block, no need to manage it in Transmit process */ - if (SMBUS_GET_PEC_MODE(hsmbus) != 0UL) - { - hsmbus->XferSize--; - hsmbus->XferCount--; - } - } - - /* Clear ADDR flag after prepare the transfer parameters */ - /* This action will generate an acknowledge to the HOST */ - __HAL_SMBUS_CLEAR_FLAG(hsmbus, SMBUS_FLAG_ADDR); - - /* Process Unlocked */ - __HAL_UNLOCK(hsmbus); - - /* Note : The SMBUS interrupts must be enabled after unlocking current process - to avoid the risk of SMBUS interrupt handle execution before current - process unlock */ - /* REnable ADDR interrupt */ - SMBUS_Enable_IRQ(hsmbus, SMBUS_IT_TX | SMBUS_IT_ADDR); - - return HAL_OK; - } - else - { - return HAL_BUSY; - } -} - -/** - * @brief Receive in slave/device SMBUS mode an amount of data in non-blocking mode with Interrupt. - * @param hsmbus Pointer to a SMBUS_HandleTypeDef structure that contains - * the configuration information for the specified SMBUS. - * @param pData Pointer to data buffer - * @param Size Amount of data to be sent - * @param XferOptions Options of Transfer, value of @ref SMBUS_XferOptions_definition - * @retval HAL status - */ -HAL_StatusTypeDef HAL_SMBUS_Slave_Receive_IT(SMBUS_HandleTypeDef *hsmbus, uint8_t *pData, uint16_t Size, uint32_t XferOptions) -{ - /* Check the parameters */ - assert_param(IS_SMBUS_TRANSFER_OPTIONS_REQUEST(XferOptions)); - - if ((hsmbus->State & HAL_SMBUS_STATE_LISTEN) == HAL_SMBUS_STATE_LISTEN) - { - if ((pData == NULL) || (Size == 0UL)) - { - hsmbus->ErrorCode = HAL_SMBUS_ERROR_INVALID_PARAM; - return HAL_ERROR; - } - - /* Disable Interrupts, to prevent preemption during treatment in case of multicall */ - SMBUS_Disable_IRQ(hsmbus, SMBUS_IT_ADDR | SMBUS_IT_RX); - - /* Process Locked */ - __HAL_LOCK(hsmbus); - - hsmbus->State = (HAL_SMBUS_STATE_SLAVE_BUSY_RX | HAL_SMBUS_STATE_LISTEN); - hsmbus->ErrorCode = HAL_SMBUS_ERROR_NONE; - - /* Set SBC bit to manage Acknowledge at each bit */ - hsmbus->Instance->CR1 |= I2C_CR1_SBC; - - /* Enable Address Acknowledge */ - hsmbus->Instance->CR2 &= ~I2C_CR2_NACK; - - /* Prepare transfer parameters */ - hsmbus->pBuffPtr = pData; - hsmbus->XferSize = Size; - hsmbus->XferCount = Size; - hsmbus->XferOptions = XferOptions; - - /* Convert OTHER_xxx XferOptions if any */ - SMBUS_ConvertOtherXferOptions(hsmbus); - - /* Set NBYTE to receive */ - /* If XferSize equal "1", or XferSize equal "2" with PEC requested (mean 1 data byte + 1 PEC byte */ - /* no need to set RELOAD bit mode, a ACK will be automatically generated in that case */ - /* else need to set RELOAD bit mode to generate an automatic ACK at each byte Received */ - /* This RELOAD bit will be reset for last BYTE to be receive in SMBUS_Slave_ISR */ - if (((SMBUS_GET_PEC_MODE(hsmbus) != 0UL) && (hsmbus->XferSize == 2U)) || (hsmbus->XferSize == 1U)) - { - SMBUS_TransferConfig(hsmbus, 0, (uint8_t)hsmbus->XferSize, hsmbus->XferOptions, SMBUS_NO_STARTSTOP); - } - else - { - SMBUS_TransferConfig(hsmbus, 0, 1, hsmbus->XferOptions | SMBUS_RELOAD_MODE, SMBUS_NO_STARTSTOP); - } - - /* Clear ADDR flag after prepare the transfer parameters */ - /* This action will generate an acknowledge to the HOST */ - __HAL_SMBUS_CLEAR_FLAG(hsmbus, SMBUS_FLAG_ADDR); - - /* Process Unlocked */ - __HAL_UNLOCK(hsmbus); - - /* Note : The SMBUS interrupts must be enabled after unlocking current process - to avoid the risk of SMBUS interrupt handle execution before current - process unlock */ - /* REnable ADDR interrupt */ - SMBUS_Enable_IRQ(hsmbus, SMBUS_IT_RX | SMBUS_IT_ADDR); - - return HAL_OK; - } - else - { - return HAL_BUSY; - } -} - -/** - * @brief Enable the Address listen mode with Interrupt. - * @param hsmbus Pointer to a SMBUS_HandleTypeDef structure that contains - * the configuration information for the specified SMBUS. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_SMBUS_EnableListen_IT(SMBUS_HandleTypeDef *hsmbus) -{ - hsmbus->State = HAL_SMBUS_STATE_LISTEN; - - /* Enable the Address Match interrupt */ - SMBUS_Enable_IRQ(hsmbus, SMBUS_IT_ADDR); - - return HAL_OK; -} - -/** - * @brief Disable the Address listen mode with Interrupt. - * @param hsmbus Pointer to a SMBUS_HandleTypeDef structure that contains - * the configuration information for the specified SMBUS. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_SMBUS_DisableListen_IT(SMBUS_HandleTypeDef *hsmbus) -{ - /* Disable Address listen mode only if a transfer is not ongoing */ - if (hsmbus->State == HAL_SMBUS_STATE_LISTEN) - { - hsmbus->State = HAL_SMBUS_STATE_READY; - - /* Disable the Address Match interrupt */ - SMBUS_Disable_IRQ(hsmbus, SMBUS_IT_ADDR); - - return HAL_OK; - } - else - { - return HAL_BUSY; - } -} - -/** - * @brief Enable the SMBUS alert mode with Interrupt. - * @param hsmbus Pointer to a SMBUS_HandleTypeDef structure that contains - * the configuration information for the specified SMBUSx peripheral. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_SMBUS_EnableAlert_IT(SMBUS_HandleTypeDef *hsmbus) -{ - /* Enable SMBus alert */ - hsmbus->Instance->CR1 |= I2C_CR1_ALERTEN; - - /* Clear ALERT flag */ - __HAL_SMBUS_CLEAR_FLAG(hsmbus, SMBUS_FLAG_ALERT); - - /* Enable Alert Interrupt */ - SMBUS_Enable_IRQ(hsmbus, SMBUS_IT_ALERT); - - return HAL_OK; -} -/** - * @brief Disable the SMBUS alert mode with Interrupt. - * @param hsmbus Pointer to a SMBUS_HandleTypeDef structure that contains - * the configuration information for the specified SMBUSx peripheral. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_SMBUS_DisableAlert_IT(SMBUS_HandleTypeDef *hsmbus) -{ - /* Enable SMBus alert */ - hsmbus->Instance->CR1 &= ~I2C_CR1_ALERTEN; - - /* Disable Alert Interrupt */ - SMBUS_Disable_IRQ(hsmbus, SMBUS_IT_ALERT); - - return HAL_OK; -} - -/** - * @brief Check if target device is ready for communication. - * @param hsmbus Pointer to a SMBUS_HandleTypeDef structure that contains - * the configuration information for the specified SMBUS. - * @param DevAddress Target device address: The device 7 bits address value - * in datasheet must be shifted to the left before calling the interface - * @param Trials Number of trials - * @param Timeout Timeout duration - * @retval HAL status - */ -HAL_StatusTypeDef HAL_SMBUS_IsDeviceReady(SMBUS_HandleTypeDef *hsmbus, uint16_t DevAddress, uint32_t Trials, uint32_t Timeout) -{ - uint32_t tickstart; - - __IO uint32_t SMBUS_Trials = 0UL; - - FlagStatus tmp1; - FlagStatus tmp2; - - if (hsmbus->State == HAL_SMBUS_STATE_READY) - { - if (__HAL_SMBUS_GET_FLAG(hsmbus, SMBUS_FLAG_BUSY) != RESET) - { - return HAL_BUSY; - } - - /* Process Locked */ - __HAL_LOCK(hsmbus); - - hsmbus->State = HAL_SMBUS_STATE_BUSY; - hsmbus->ErrorCode = HAL_SMBUS_ERROR_NONE; - - do - { - /* Generate Start */ - hsmbus->Instance->CR2 = SMBUS_GENERATE_START(hsmbus->Init.AddressingMode, DevAddress); - - /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */ - /* Wait until STOPF flag is set or a NACK flag is set*/ - tickstart = HAL_GetTick(); - - tmp1 = __HAL_SMBUS_GET_FLAG(hsmbus, SMBUS_FLAG_STOPF); - tmp2 = __HAL_SMBUS_GET_FLAG(hsmbus, SMBUS_FLAG_AF); - - while ((tmp1 == RESET) && (tmp2 == RESET)) - { - if (Timeout != HAL_MAX_DELAY) - { - if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0UL)) - { - /* Device is ready */ - hsmbus->State = HAL_SMBUS_STATE_READY; - - /* Update SMBUS error code */ - hsmbus->ErrorCode |= HAL_SMBUS_ERROR_HALTIMEOUT; - - /* Process Unlocked */ - __HAL_UNLOCK(hsmbus); - return HAL_ERROR; - } - } - - tmp1 = __HAL_SMBUS_GET_FLAG(hsmbus, SMBUS_FLAG_STOPF); - tmp2 = __HAL_SMBUS_GET_FLAG(hsmbus, SMBUS_FLAG_AF); - } - - /* Check if the NACKF flag has not been set */ - if (__HAL_SMBUS_GET_FLAG(hsmbus, SMBUS_FLAG_AF) == RESET) - { - /* Wait until STOPF flag is reset */ - if (SMBUS_WaitOnFlagUntilTimeout(hsmbus, SMBUS_FLAG_STOPF, RESET, Timeout) != HAL_OK) - { - return HAL_ERROR; - } - - /* Clear STOP Flag */ - __HAL_SMBUS_CLEAR_FLAG(hsmbus, SMBUS_FLAG_STOPF); - - /* Device is ready */ - hsmbus->State = HAL_SMBUS_STATE_READY; - - /* Process Unlocked */ - __HAL_UNLOCK(hsmbus); - - return HAL_OK; - } - else - { - /* Wait until STOPF flag is reset */ - if (SMBUS_WaitOnFlagUntilTimeout(hsmbus, SMBUS_FLAG_STOPF, RESET, Timeout) != HAL_OK) - { - return HAL_ERROR; - } - - /* Clear NACK Flag */ - __HAL_SMBUS_CLEAR_FLAG(hsmbus, SMBUS_FLAG_AF); - - /* Clear STOP Flag, auto generated with autoend*/ - __HAL_SMBUS_CLEAR_FLAG(hsmbus, SMBUS_FLAG_STOPF); - } - - /* Check if the maximum allowed number of trials has been reached */ - if (SMBUS_Trials == Trials) - { - /* Generate Stop */ - hsmbus->Instance->CR2 |= I2C_CR2_STOP; - - /* Wait until STOPF flag is reset */ - if (SMBUS_WaitOnFlagUntilTimeout(hsmbus, SMBUS_FLAG_STOPF, RESET, Timeout) != HAL_OK) - { - return HAL_ERROR; - } - - /* Clear STOP Flag */ - __HAL_SMBUS_CLEAR_FLAG(hsmbus, SMBUS_FLAG_STOPF); - } - - /* Increment Trials */ - SMBUS_Trials++; - } - while (SMBUS_Trials < Trials); - - hsmbus->State = HAL_SMBUS_STATE_READY; - - /* Update SMBUS error code */ - hsmbus->ErrorCode |= HAL_SMBUS_ERROR_HALTIMEOUT; - - /* Process Unlocked */ - __HAL_UNLOCK(hsmbus); - - return HAL_ERROR; - } - else - { - return HAL_BUSY; - } -} -/** - * @} - */ - -/** @defgroup SMBUS_IRQ_Handler_and_Callbacks IRQ Handler and Callbacks - * @{ - */ - -/** - * @brief Handle SMBUS event interrupt request. - * @param hsmbus Pointer to a SMBUS_HandleTypeDef structure that contains - * the configuration information for the specified SMBUS. - * @retval None - */ -void HAL_SMBUS_EV_IRQHandler(SMBUS_HandleTypeDef *hsmbus) -{ - /* Use a local variable to store the current ISR flags */ - /* This action will avoid a wrong treatment due to ISR flags change during interrupt handler */ - uint32_t tmpisrvalue = READ_REG(hsmbus->Instance->ISR); - uint32_t tmpcr1value = READ_REG(hsmbus->Instance->CR1); - - /* SMBUS in mode Transmitter ---------------------------------------------------*/ - if ((SMBUS_CHECK_IT_SOURCE(tmpcr1value, (SMBUS_IT_TCI | SMBUS_IT_STOPI | SMBUS_IT_NACKI | SMBUS_IT_TXI)) != RESET) && ((SMBUS_CHECK_FLAG(tmpisrvalue, SMBUS_FLAG_TXIS) != RESET) || (SMBUS_CHECK_FLAG(tmpisrvalue, SMBUS_FLAG_TCR) != RESET) || (SMBUS_CHECK_FLAG(tmpisrvalue, SMBUS_FLAG_TC) != RESET) || (SMBUS_CHECK_FLAG(tmpisrvalue, SMBUS_FLAG_STOPF) != RESET) || (SMBUS_CHECK_FLAG(tmpisrvalue, SMBUS_FLAG_AF) != RESET))) - { - /* Slave mode selected */ - if ((hsmbus->State & HAL_SMBUS_STATE_SLAVE_BUSY_TX) == HAL_SMBUS_STATE_SLAVE_BUSY_TX) - { - (void)SMBUS_Slave_ISR(hsmbus, tmpisrvalue); - } - /* Master mode selected */ - else if ((hsmbus->State & HAL_SMBUS_STATE_MASTER_BUSY_TX) == HAL_SMBUS_STATE_MASTER_BUSY_TX) - { - (void)SMBUS_Master_ISR(hsmbus, tmpisrvalue); - } - else - { - /* Nothing to do */ - } - } - - /* SMBUS in mode Receiver ----------------------------------------------------*/ - if ((SMBUS_CHECK_IT_SOURCE(tmpcr1value, (SMBUS_IT_TCI | SMBUS_IT_STOPI | SMBUS_IT_NACKI | SMBUS_IT_RXI)) != RESET) && ((SMBUS_CHECK_FLAG(tmpisrvalue, SMBUS_FLAG_RXNE) != RESET) || (SMBUS_CHECK_FLAG(tmpisrvalue, SMBUS_FLAG_TCR) != RESET) || (SMBUS_CHECK_FLAG(tmpisrvalue, SMBUS_FLAG_TC) != RESET) || (SMBUS_CHECK_FLAG(tmpisrvalue, SMBUS_FLAG_STOPF) != RESET) || (SMBUS_CHECK_FLAG(tmpisrvalue, SMBUS_FLAG_AF) != RESET))) - { - /* Slave mode selected */ - if ((hsmbus->State & HAL_SMBUS_STATE_SLAVE_BUSY_RX) == HAL_SMBUS_STATE_SLAVE_BUSY_RX) - { - (void)SMBUS_Slave_ISR(hsmbus, tmpisrvalue); - } - /* Master mode selected */ - else if ((hsmbus->State & HAL_SMBUS_STATE_MASTER_BUSY_RX) == HAL_SMBUS_STATE_MASTER_BUSY_RX) - { - (void)SMBUS_Master_ISR(hsmbus, tmpisrvalue); - } - else - { - /* Nothing to do */ - } - } - - /* SMBUS in mode Listener Only --------------------------------------------------*/ - if (((SMBUS_CHECK_IT_SOURCE(tmpcr1value, SMBUS_IT_ADDRI) != RESET) || (SMBUS_CHECK_IT_SOURCE(tmpcr1value, SMBUS_IT_STOPI) != RESET) || (SMBUS_CHECK_IT_SOURCE(tmpcr1value, SMBUS_IT_NACKI) != RESET)) && ((SMBUS_CHECK_FLAG(tmpisrvalue, SMBUS_FLAG_ADDR) != RESET) || (SMBUS_CHECK_FLAG(tmpisrvalue, SMBUS_FLAG_STOPF) != RESET) || (SMBUS_CHECK_FLAG(tmpisrvalue, SMBUS_FLAG_AF) != RESET))) - { - if ((hsmbus->State & HAL_SMBUS_STATE_LISTEN) == HAL_SMBUS_STATE_LISTEN) - { - (void)SMBUS_Slave_ISR(hsmbus, tmpisrvalue); - } - } -} - -/** - * @brief Handle SMBUS error interrupt request. - * @param hsmbus Pointer to a SMBUS_HandleTypeDef structure that contains - * the configuration information for the specified SMBUS. - * @retval None - */ -void HAL_SMBUS_ER_IRQHandler(SMBUS_HandleTypeDef *hsmbus) -{ - SMBUS_ITErrorHandler(hsmbus); -} - -/** - * @brief Master Tx Transfer completed callback. - * @param hsmbus Pointer to a SMBUS_HandleTypeDef structure that contains - * the configuration information for the specified SMBUS. - * @retval None - */ -__weak void HAL_SMBUS_MasterTxCpltCallback(SMBUS_HandleTypeDef *hsmbus) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hsmbus); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_SMBUS_MasterTxCpltCallback() could be implemented in the user file - */ -} - -/** - * @brief Master Rx Transfer completed callback. - * @param hsmbus Pointer to a SMBUS_HandleTypeDef structure that contains - * the configuration information for the specified SMBUS. - * @retval None - */ -__weak void HAL_SMBUS_MasterRxCpltCallback(SMBUS_HandleTypeDef *hsmbus) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hsmbus); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_SMBUS_MasterRxCpltCallback() could be implemented in the user file - */ -} - -/** @brief Slave Tx Transfer completed callback. - * @param hsmbus Pointer to a SMBUS_HandleTypeDef structure that contains - * the configuration information for the specified SMBUS. - * @retval None - */ -__weak void HAL_SMBUS_SlaveTxCpltCallback(SMBUS_HandleTypeDef *hsmbus) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hsmbus); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_SMBUS_SlaveTxCpltCallback() could be implemented in the user file - */ -} - -/** - * @brief Slave Rx Transfer completed callback. - * @param hsmbus Pointer to a SMBUS_HandleTypeDef structure that contains - * the configuration information for the specified SMBUS. - * @retval None - */ -__weak void HAL_SMBUS_SlaveRxCpltCallback(SMBUS_HandleTypeDef *hsmbus) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hsmbus); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_SMBUS_SlaveRxCpltCallback() could be implemented in the user file - */ -} - -/** - * @brief Slave Address Match callback. - * @param hsmbus Pointer to a SMBUS_HandleTypeDef structure that contains - * the configuration information for the specified SMBUS. - * @param TransferDirection Master request Transfer Direction (Write/Read) - * @param AddrMatchCode Address Match Code - * @retval None - */ -__weak void HAL_SMBUS_AddrCallback(SMBUS_HandleTypeDef *hsmbus, uint8_t TransferDirection, uint16_t AddrMatchCode) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hsmbus); - UNUSED(TransferDirection); - UNUSED(AddrMatchCode); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_SMBUS_AddrCallback() could be implemented in the user file - */ -} - -/** - * @brief Listen Complete callback. - * @param hsmbus Pointer to a SMBUS_HandleTypeDef structure that contains - * the configuration information for the specified SMBUS. - * @retval None - */ -__weak void HAL_SMBUS_ListenCpltCallback(SMBUS_HandleTypeDef *hsmbus) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hsmbus); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_SMBUS_ListenCpltCallback() could be implemented in the user file - */ -} - -/** - * @brief SMBUS error callback. - * @param hsmbus Pointer to a SMBUS_HandleTypeDef structure that contains - * the configuration information for the specified SMBUS. - * @retval None - */ -__weak void HAL_SMBUS_ErrorCallback(SMBUS_HandleTypeDef *hsmbus) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hsmbus); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_SMBUS_ErrorCallback() could be implemented in the user file - */ -} - -/** - * @} - */ - -/** @defgroup SMBUS_Exported_Functions_Group3 Peripheral State and Errors functions - * @brief Peripheral State and Errors functions - * -@verbatim - =============================================================================== - ##### Peripheral State and Errors functions ##### - =============================================================================== - [..] - This subsection permits to get in run-time the status of the peripheral - and the data flow. - -@endverbatim - * @{ - */ - -/** - * @brief Return the SMBUS handle state. - * @param hsmbus Pointer to a SMBUS_HandleTypeDef structure that contains - * the configuration information for the specified SMBUS. - * @retval HAL state - */ -uint32_t HAL_SMBUS_GetState(SMBUS_HandleTypeDef *hsmbus) -{ - /* Return SMBUS handle state */ - return hsmbus->State; -} - -/** -* @brief Return the SMBUS error code. - * @param hsmbus Pointer to a SMBUS_HandleTypeDef structure that contains - * the configuration information for the specified SMBUS. -* @retval SMBUS Error Code -*/ -uint32_t HAL_SMBUS_GetError(SMBUS_HandleTypeDef *hsmbus) -{ - return hsmbus->ErrorCode; -} - -/** - * @} - */ - -/** - * @} - */ - -/** @addtogroup SMBUS_Private_Functions SMBUS Private Functions - * @brief Data transfers Private functions - * @{ - */ - -/** - * @brief Interrupt Sub-Routine which handle the Interrupt Flags Master Mode. - * @param hsmbus Pointer to a SMBUS_HandleTypeDef structure that contains - * the configuration information for the specified SMBUS. - * @param StatusFlags Value of Interrupt Flags. - * @retval HAL status - */ -static HAL_StatusTypeDef SMBUS_Master_ISR(struct __SMBUS_HandleTypeDef *hsmbus, uint32_t StatusFlags) -{ - uint16_t DevAddress; - - /* Process Locked */ - __HAL_LOCK(hsmbus); - - if (SMBUS_CHECK_FLAG(StatusFlags, SMBUS_FLAG_AF) != RESET) - { - /* Clear NACK Flag */ - __HAL_SMBUS_CLEAR_FLAG(hsmbus, SMBUS_FLAG_AF); - - /* Set corresponding Error Code */ - /* No need to generate STOP, it is automatically done */ - hsmbus->ErrorCode |= HAL_SMBUS_ERROR_ACKF; - - /* Process Unlocked */ - __HAL_UNLOCK(hsmbus); - - /* Call the Error callback to inform upper layer */ -#if (USE_HAL_SMBUS_REGISTER_CALLBACKS == 1) - hsmbus->ErrorCallback(hsmbus); -#else - HAL_SMBUS_ErrorCallback(hsmbus); -#endif /* USE_HAL_SMBUS_REGISTER_CALLBACKS */ - } - else if (SMBUS_CHECK_FLAG(StatusFlags, SMBUS_FLAG_STOPF) != RESET) - { - /* Check and treat errors if errors occurs during STOP process */ - SMBUS_ITErrorHandler(hsmbus); - - /* Call the corresponding callback to inform upper layer of End of Transfer */ - if (hsmbus->State == HAL_SMBUS_STATE_MASTER_BUSY_TX) - { - /* Disable Interrupt */ - SMBUS_Disable_IRQ(hsmbus, SMBUS_IT_TX); - - /* Clear STOP Flag */ - __HAL_SMBUS_CLEAR_FLAG(hsmbus, SMBUS_FLAG_STOPF); - - /* Clear Configuration Register 2 */ - SMBUS_RESET_CR2(hsmbus); - - /* Flush remaining data in Fifo register in case of error occurs before TXEmpty */ - /* Disable the selected SMBUS peripheral */ - __HAL_SMBUS_DISABLE(hsmbus); - - hsmbus->PreviousState = HAL_SMBUS_STATE_READY; - hsmbus->State = HAL_SMBUS_STATE_READY; - - /* Process Unlocked */ - __HAL_UNLOCK(hsmbus); - - /* REenable the selected SMBUS peripheral */ - __HAL_SMBUS_ENABLE(hsmbus); - - /* Call the corresponding callback to inform upper layer of End of Transfer */ -#if (USE_HAL_SMBUS_REGISTER_CALLBACKS == 1) - hsmbus->MasterTxCpltCallback(hsmbus); -#else - HAL_SMBUS_MasterTxCpltCallback(hsmbus); -#endif /* USE_HAL_SMBUS_REGISTER_CALLBACKS */ - } - else if (hsmbus->State == HAL_SMBUS_STATE_MASTER_BUSY_RX) - { - /* Store Last receive data if any */ - if (SMBUS_CHECK_FLAG(StatusFlags, SMBUS_FLAG_RXNE) != RESET) - { - /* Read data from RXDR */ - *hsmbus->pBuffPtr = (uint8_t)(hsmbus->Instance->RXDR); - - /* Increment Buffer pointer */ - hsmbus->pBuffPtr++; - - if ((hsmbus->XferSize > 0U)) - { - hsmbus->XferSize--; - hsmbus->XferCount--; - } - } - - /* Disable Interrupt */ - SMBUS_Disable_IRQ(hsmbus, SMBUS_IT_RX); - - /* Clear STOP Flag */ - __HAL_SMBUS_CLEAR_FLAG(hsmbus, SMBUS_FLAG_STOPF); - - /* Clear Configuration Register 2 */ - SMBUS_RESET_CR2(hsmbus); - - hsmbus->PreviousState = HAL_SMBUS_STATE_READY; - hsmbus->State = HAL_SMBUS_STATE_READY; - - /* Process Unlocked */ - __HAL_UNLOCK(hsmbus); - - /* Call the corresponding callback to inform upper layer of End of Transfer */ -#if (USE_HAL_SMBUS_REGISTER_CALLBACKS == 1) - hsmbus->MasterRxCpltCallback(hsmbus); -#else - HAL_SMBUS_MasterRxCpltCallback(hsmbus); -#endif /* USE_HAL_SMBUS_REGISTER_CALLBACKS */ - } - else - { - /* Nothing to do */ - } - } - else if (SMBUS_CHECK_FLAG(StatusFlags, SMBUS_FLAG_RXNE) != RESET) - { - /* Read data from RXDR */ - *hsmbus->pBuffPtr = (uint8_t)(hsmbus->Instance->RXDR); - - /* Increment Buffer pointer */ - hsmbus->pBuffPtr++; - - /* Increment Size counter */ - hsmbus->XferSize--; - hsmbus->XferCount--; - } - else if (SMBUS_CHECK_FLAG(StatusFlags, SMBUS_FLAG_TXIS) != RESET) - { - /* Write data to TXDR */ - hsmbus->Instance->TXDR = *hsmbus->pBuffPtr; - - /* Increment Buffer pointer */ - hsmbus->pBuffPtr++; - - /* Increment Size counter */ - hsmbus->XferSize--; - hsmbus->XferCount--; - } - else if (SMBUS_CHECK_FLAG(StatusFlags, SMBUS_FLAG_TCR) != RESET) - { - if ((hsmbus->XferCount != 0U) && (hsmbus->XferSize == 0U)) - { - DevAddress = (uint16_t)(hsmbus->Instance->CR2 & I2C_CR2_SADD); - - if (hsmbus->XferCount > MAX_NBYTE_SIZE) - { - SMBUS_TransferConfig(hsmbus, DevAddress, MAX_NBYTE_SIZE, (SMBUS_RELOAD_MODE | (hsmbus->XferOptions & SMBUS_SENDPEC_MODE)), SMBUS_NO_STARTSTOP); - hsmbus->XferSize = MAX_NBYTE_SIZE; - } - else - { - hsmbus->XferSize = hsmbus->XferCount; - SMBUS_TransferConfig(hsmbus, DevAddress, (uint8_t)hsmbus->XferSize, hsmbus->XferOptions, SMBUS_NO_STARTSTOP); - /* If PEC mode is enable, size to transmit should be Size-1 byte, corresponding to PEC byte */ - /* PEC byte is automatically sent by HW block, no need to manage it in Transmit process */ - if (SMBUS_GET_PEC_MODE(hsmbus) != 0UL) - { - hsmbus->XferSize--; - hsmbus->XferCount--; - } - } - } - else if ((hsmbus->XferCount == 0U) && (hsmbus->XferSize == 0U)) - { - /* Call TxCpltCallback() if no stop mode is set */ - if (SMBUS_GET_STOP_MODE(hsmbus) != SMBUS_AUTOEND_MODE) - { - /* Call the corresponding callback to inform upper layer of End of Transfer */ - if (hsmbus->State == HAL_SMBUS_STATE_MASTER_BUSY_TX) - { - /* Disable Interrupt */ - SMBUS_Disable_IRQ(hsmbus, SMBUS_IT_TX); - hsmbus->PreviousState = hsmbus->State; - hsmbus->State = HAL_SMBUS_STATE_READY; - - /* Process Unlocked */ - __HAL_UNLOCK(hsmbus); - - /* Call the corresponding callback to inform upper layer of End of Transfer */ -#if (USE_HAL_SMBUS_REGISTER_CALLBACKS == 1) - hsmbus->MasterTxCpltCallback(hsmbus); -#else - HAL_SMBUS_MasterTxCpltCallback(hsmbus); -#endif /* USE_HAL_SMBUS_REGISTER_CALLBACKS */ - } - else if (hsmbus->State == HAL_SMBUS_STATE_MASTER_BUSY_RX) - { - SMBUS_Disable_IRQ(hsmbus, SMBUS_IT_RX); - hsmbus->PreviousState = hsmbus->State; - hsmbus->State = HAL_SMBUS_STATE_READY; - - /* Process Unlocked */ - __HAL_UNLOCK(hsmbus); - - /* Call the corresponding callback to inform upper layer of End of Transfer */ -#if (USE_HAL_SMBUS_REGISTER_CALLBACKS == 1) - hsmbus->MasterRxCpltCallback(hsmbus); -#else - HAL_SMBUS_MasterRxCpltCallback(hsmbus); -#endif /* USE_HAL_SMBUS_REGISTER_CALLBACKS */ - } - else - { - /* Nothing to do */ - } - } - } - else - { - /* Nothing to do */ - } - } - else if (SMBUS_CHECK_FLAG(StatusFlags, SMBUS_FLAG_TC) != RESET) - { - if (hsmbus->XferCount == 0U) - { - /* Specific use case for Quick command */ - if (hsmbus->pBuffPtr == NULL) - { - /* Generate a Stop command */ - hsmbus->Instance->CR2 |= I2C_CR2_STOP; - } - /* Call TxCpltCallback() if no stop mode is set */ - else if (SMBUS_GET_STOP_MODE(hsmbus) != SMBUS_AUTOEND_MODE) - { - /* No Generate Stop, to permit restart mode */ - /* The stop will be done at the end of transfer, when SMBUS_AUTOEND_MODE enable */ - - /* Call the corresponding callback to inform upper layer of End of Transfer */ - if (hsmbus->State == HAL_SMBUS_STATE_MASTER_BUSY_TX) - { - /* Disable Interrupt */ - SMBUS_Disable_IRQ(hsmbus, SMBUS_IT_TX); - hsmbus->PreviousState = hsmbus->State; - hsmbus->State = HAL_SMBUS_STATE_READY; - - /* Process Unlocked */ - __HAL_UNLOCK(hsmbus); - - /* Call the corresponding callback to inform upper layer of End of Transfer */ -#if (USE_HAL_SMBUS_REGISTER_CALLBACKS == 1) - hsmbus->MasterTxCpltCallback(hsmbus); -#else - HAL_SMBUS_MasterTxCpltCallback(hsmbus); -#endif /* USE_HAL_SMBUS_REGISTER_CALLBACKS */ - } - else if (hsmbus->State == HAL_SMBUS_STATE_MASTER_BUSY_RX) - { - SMBUS_Disable_IRQ(hsmbus, SMBUS_IT_RX); - hsmbus->PreviousState = hsmbus->State; - hsmbus->State = HAL_SMBUS_STATE_READY; - - /* Process Unlocked */ - __HAL_UNLOCK(hsmbus); - - /* Call the corresponding callback to inform upper layer of End of Transfer */ -#if (USE_HAL_SMBUS_REGISTER_CALLBACKS == 1) - hsmbus->MasterRxCpltCallback(hsmbus); -#else - HAL_SMBUS_MasterRxCpltCallback(hsmbus); -#endif /* USE_HAL_SMBUS_REGISTER_CALLBACKS */ - } - else - { - /* Nothing to do */ - } - } - else - { - /* Nothing to do */ - } - } - } - else - { - /* Nothing to do */ - } - - /* Process Unlocked */ - __HAL_UNLOCK(hsmbus); - - return HAL_OK; -} -/** - * @brief Interrupt Sub-Routine which handle the Interrupt Flags Slave Mode. - * @param hsmbus Pointer to a SMBUS_HandleTypeDef structure that contains - * the configuration information for the specified SMBUS. - * @param StatusFlags Value of Interrupt Flags. - * @retval HAL status - */ -static HAL_StatusTypeDef SMBUS_Slave_ISR(struct __SMBUS_HandleTypeDef *hsmbus, uint32_t StatusFlags) -{ - uint8_t TransferDirection; - uint16_t SlaveAddrCode; - - /* Process Locked */ - __HAL_LOCK(hsmbus); - - if (SMBUS_CHECK_FLAG(StatusFlags, SMBUS_FLAG_AF) != RESET) - { - /* Check that SMBUS transfer finished */ - /* if yes, normal usecase, a NACK is sent by the HOST when Transfer is finished */ - /* Mean XferCount == 0*/ - /* So clear Flag NACKF only */ - if (hsmbus->XferCount == 0U) - { - /* Clear NACK Flag */ - __HAL_SMBUS_CLEAR_FLAG(hsmbus, SMBUS_FLAG_AF); - - /* Process Unlocked */ - __HAL_UNLOCK(hsmbus); - } - else - { - /* if no, error usecase, a Non-Acknowledge of last Data is generated by the HOST*/ - /* Clear NACK Flag */ - __HAL_SMBUS_CLEAR_FLAG(hsmbus, SMBUS_FLAG_AF); - - /* Set HAL State to "Idle" State, mean to LISTEN state */ - /* So reset Slave Busy state */ - hsmbus->PreviousState = hsmbus->State; - hsmbus->State &= ~((uint32_t)HAL_SMBUS_STATE_SLAVE_BUSY_TX); - hsmbus->State &= ~((uint32_t)HAL_SMBUS_STATE_SLAVE_BUSY_RX); - - /* Disable RX/TX Interrupts, keep only ADDR Interrupt */ - SMBUS_Disable_IRQ(hsmbus, SMBUS_IT_RX | SMBUS_IT_TX); - - /* Set ErrorCode corresponding to a Non-Acknowledge */ - hsmbus->ErrorCode |= HAL_SMBUS_ERROR_ACKF; - - /* Process Unlocked */ - __HAL_UNLOCK(hsmbus); - - /* Call the Error callback to inform upper layer */ -#if (USE_HAL_SMBUS_REGISTER_CALLBACKS == 1) - hsmbus->ErrorCallback(hsmbus); -#else - HAL_SMBUS_ErrorCallback(hsmbus); -#endif /* USE_HAL_SMBUS_REGISTER_CALLBACKS */ - } - } - else if (SMBUS_CHECK_FLAG(StatusFlags, SMBUS_FLAG_ADDR) != RESET) - { - TransferDirection = (uint8_t)(SMBUS_GET_DIR(hsmbus)); - SlaveAddrCode = (uint16_t)(SMBUS_GET_ADDR_MATCH(hsmbus)); - - /* Disable ADDR interrupt to prevent multiple ADDRInterrupt*/ - /* Other ADDRInterrupt will be treat in next Listen usecase */ - __HAL_SMBUS_DISABLE_IT(hsmbus, SMBUS_IT_ADDRI); - - /* Process Unlocked */ - __HAL_UNLOCK(hsmbus); - - /* Call Slave Addr callback */ -#if (USE_HAL_SMBUS_REGISTER_CALLBACKS == 1) - hsmbus->AddrCallback(hsmbus, TransferDirection, SlaveAddrCode); -#else - HAL_SMBUS_AddrCallback(hsmbus, TransferDirection, SlaveAddrCode); -#endif /* USE_HAL_SMBUS_REGISTER_CALLBACKS */ - } - else if ((SMBUS_CHECK_FLAG(StatusFlags, SMBUS_FLAG_RXNE) != RESET) || (SMBUS_CHECK_FLAG(StatusFlags, SMBUS_FLAG_TCR) != RESET)) - { - if ((hsmbus->State & HAL_SMBUS_STATE_SLAVE_BUSY_RX) == HAL_SMBUS_STATE_SLAVE_BUSY_RX) - { - /* Read data from RXDR */ - *hsmbus->pBuffPtr = (uint8_t)(hsmbus->Instance->RXDR); - - /* Increment Buffer pointer */ - hsmbus->pBuffPtr++; - - hsmbus->XferSize--; - hsmbus->XferCount--; - - if (hsmbus->XferCount == 1U) - { - /* Receive last Byte, can be PEC byte in case of PEC BYTE enabled */ - /* or only the last Byte of Transfer */ - /* So reset the RELOAD bit mode */ - hsmbus->XferOptions &= ~SMBUS_RELOAD_MODE; - SMBUS_TransferConfig(hsmbus, 0, 1, hsmbus->XferOptions, SMBUS_NO_STARTSTOP); - } - else if (hsmbus->XferCount == 0U) - { - /* Last Byte is received, disable Interrupt */ - SMBUS_Disable_IRQ(hsmbus, SMBUS_IT_RX); - - /* Remove HAL_SMBUS_STATE_SLAVE_BUSY_RX, keep only HAL_SMBUS_STATE_LISTEN */ - hsmbus->PreviousState = hsmbus->State; - hsmbus->State &= ~((uint32_t)HAL_SMBUS_STATE_SLAVE_BUSY_RX); - - /* Process Unlocked */ - __HAL_UNLOCK(hsmbus); - - /* Call the corresponding callback to inform upper layer of End of Transfer */ -#if (USE_HAL_SMBUS_REGISTER_CALLBACKS == 1) - hsmbus->SlaveRxCpltCallback(hsmbus); -#else - HAL_SMBUS_SlaveRxCpltCallback(hsmbus); -#endif /* USE_HAL_SMBUS_REGISTER_CALLBACKS */ - } - else - { - /* Set Reload for next Bytes */ - SMBUS_TransferConfig(hsmbus, 0, 1, SMBUS_RELOAD_MODE | (hsmbus->XferOptions & SMBUS_SENDPEC_MODE), SMBUS_NO_STARTSTOP); - - /* Ack last Byte Read */ - hsmbus->Instance->CR2 &= ~I2C_CR2_NACK; - } - } - else if ((hsmbus->State & HAL_SMBUS_STATE_SLAVE_BUSY_TX) == HAL_SMBUS_STATE_SLAVE_BUSY_TX) - { - if ((hsmbus->XferCount != 0U) && (hsmbus->XferSize == 0U)) - { - if (hsmbus->XferCount > MAX_NBYTE_SIZE) - { - SMBUS_TransferConfig(hsmbus, 0, MAX_NBYTE_SIZE, (SMBUS_RELOAD_MODE | (hsmbus->XferOptions & SMBUS_SENDPEC_MODE)), SMBUS_NO_STARTSTOP); - hsmbus->XferSize = MAX_NBYTE_SIZE; - } - else - { - hsmbus->XferSize = hsmbus->XferCount; - SMBUS_TransferConfig(hsmbus, 0, (uint8_t)hsmbus->XferSize, hsmbus->XferOptions, SMBUS_NO_STARTSTOP); - /* If PEC mode is enable, size to transmit should be Size-1 byte, corresponding to PEC byte */ - /* PEC byte is automatically sent by HW block, no need to manage it in Transmit process */ - if (SMBUS_GET_PEC_MODE(hsmbus) != 0UL) - { - hsmbus->XferSize--; - hsmbus->XferCount--; - } - } - } - } - else - { - /* Nothing to do */ - } - } - else if (SMBUS_CHECK_FLAG(StatusFlags, SMBUS_FLAG_TXIS) != RESET) - { - /* Write data to TXDR only if XferCount not reach "0" */ - /* A TXIS flag can be set, during STOP treatment */ - /* Check if all Data have already been sent */ - /* If it is the case, this last write in TXDR is not sent, correspond to a dummy TXIS event */ - if (hsmbus->XferCount > 0U) - { - /* Write data to TXDR */ - hsmbus->Instance->TXDR = *hsmbus->pBuffPtr; - - /* Increment Buffer pointer */ - hsmbus->pBuffPtr++; - - hsmbus->XferCount--; - hsmbus->XferSize--; - } - - if (hsmbus->XferCount == 0U) - { - /* Last Byte is Transmitted */ - /* Remove HAL_SMBUS_STATE_SLAVE_BUSY_TX, keep only HAL_SMBUS_STATE_LISTEN */ - SMBUS_Disable_IRQ(hsmbus, SMBUS_IT_TX); - hsmbus->PreviousState = hsmbus->State; - hsmbus->State &= ~((uint32_t)HAL_SMBUS_STATE_SLAVE_BUSY_TX); - - /* Process Unlocked */ - __HAL_UNLOCK(hsmbus); - - /* Call the corresponding callback to inform upper layer of End of Transfer */ -#if (USE_HAL_SMBUS_REGISTER_CALLBACKS == 1) - hsmbus->SlaveTxCpltCallback(hsmbus); -#else - HAL_SMBUS_SlaveTxCpltCallback(hsmbus); -#endif /* USE_HAL_SMBUS_REGISTER_CALLBACKS */ - } - } - else - { - /* Nothing to do */ - } - - /* Check if STOPF is set */ - if (SMBUS_CHECK_FLAG(StatusFlags, SMBUS_FLAG_STOPF) != RESET) - { - if ((hsmbus->State & HAL_SMBUS_STATE_LISTEN) == HAL_SMBUS_STATE_LISTEN) - { - /* Store Last receive data if any */ - if (__HAL_SMBUS_GET_FLAG(hsmbus, SMBUS_FLAG_RXNE) != RESET) - { - /* Read data from RXDR */ - *hsmbus->pBuffPtr = (uint8_t)(hsmbus->Instance->RXDR); - - /* Increment Buffer pointer */ - hsmbus->pBuffPtr++; - - if ((hsmbus->XferSize > 0U)) - { - hsmbus->XferSize--; - hsmbus->XferCount--; - } - } - - /* Disable RX and TX Interrupts */ - SMBUS_Disable_IRQ(hsmbus, SMBUS_IT_RX | SMBUS_IT_TX); - - /* Disable ADDR Interrupt */ - SMBUS_Disable_IRQ(hsmbus, SMBUS_IT_ADDR); - - /* Disable Address Acknowledge */ - hsmbus->Instance->CR2 |= I2C_CR2_NACK; - - /* Clear Configuration Register 2 */ - SMBUS_RESET_CR2(hsmbus); - - /* Clear STOP Flag */ - __HAL_SMBUS_CLEAR_FLAG(hsmbus, SMBUS_FLAG_STOPF); - - /* Clear ADDR flag */ - __HAL_SMBUS_CLEAR_FLAG(hsmbus, SMBUS_FLAG_ADDR); - - hsmbus->XferOptions = 0; - hsmbus->PreviousState = hsmbus->State; - hsmbus->State = HAL_SMBUS_STATE_READY; - - /* Process Unlocked */ - __HAL_UNLOCK(hsmbus); - - /* Call the Listen Complete callback, to inform upper layer of the end of Listen usecase */ -#if (USE_HAL_SMBUS_REGISTER_CALLBACKS == 1) - hsmbus->ListenCpltCallback(hsmbus); -#else - HAL_SMBUS_ListenCpltCallback(hsmbus); -#endif /* USE_HAL_SMBUS_REGISTER_CALLBACKS */ - } - } - - /* Process Unlocked */ - __HAL_UNLOCK(hsmbus); - - return HAL_OK; -} -/** - * @brief Manage the enabling of Interrupts. - * @param hsmbus Pointer to a SMBUS_HandleTypeDef structure that contains - * the configuration information for the specified SMBUS. - * @param InterruptRequest Value of @ref SMBUS_Interrupt_configuration_definition. - * @retval HAL status - */ -static void SMBUS_Enable_IRQ(struct __SMBUS_HandleTypeDef *hsmbus, uint32_t InterruptRequest) -{ - uint32_t tmpisr = 0UL; - - if ((InterruptRequest & SMBUS_IT_ALERT) == SMBUS_IT_ALERT) - { - /* Enable ERR interrupt */ - tmpisr |= SMBUS_IT_ERRI; - } - - if ((InterruptRequest & SMBUS_IT_ADDR) == SMBUS_IT_ADDR) - { - /* Enable ADDR, STOP interrupt */ - tmpisr |= SMBUS_IT_ADDRI | SMBUS_IT_STOPI | SMBUS_IT_NACKI | SMBUS_IT_ERRI; - } - - if ((InterruptRequest & SMBUS_IT_TX) == SMBUS_IT_TX) - { - /* Enable ERR, TC, STOP, NACK, RXI interrupt */ - tmpisr |= SMBUS_IT_ERRI | SMBUS_IT_TCI | SMBUS_IT_STOPI | SMBUS_IT_NACKI | SMBUS_IT_TXI; - } - - if ((InterruptRequest & SMBUS_IT_RX) == SMBUS_IT_RX) - { - /* Enable ERR, TC, STOP, NACK, TXI interrupt */ - tmpisr |= SMBUS_IT_ERRI | SMBUS_IT_TCI | SMBUS_IT_STOPI | SMBUS_IT_NACKI | SMBUS_IT_RXI; - } - - /* Enable interrupts only at the end */ - /* to avoid the risk of SMBUS interrupt handle execution before */ - /* all interrupts requested done */ - __HAL_SMBUS_ENABLE_IT(hsmbus, tmpisr); -} -/** - * @brief Manage the disabling of Interrupts. - * @param hsmbus Pointer to a SMBUS_HandleTypeDef structure that contains - * the configuration information for the specified SMBUS. - * @param InterruptRequest Value of @ref SMBUS_Interrupt_configuration_definition. - * @retval HAL status - */ -static void SMBUS_Disable_IRQ(struct __SMBUS_HandleTypeDef *hsmbus, uint32_t InterruptRequest) -{ - uint32_t tmpisr = 0UL; - uint32_t tmpstate = hsmbus->State; - - if ((tmpstate == HAL_SMBUS_STATE_READY) && ((InterruptRequest & SMBUS_IT_ALERT) == SMBUS_IT_ALERT)) - { - /* Disable ERR interrupt */ - tmpisr |= SMBUS_IT_ERRI; - } - - if ((InterruptRequest & SMBUS_IT_TX) == SMBUS_IT_TX) - { - /* Disable TC, STOP, NACK and TXI interrupt */ - tmpisr |= SMBUS_IT_TCI | SMBUS_IT_TXI; - - if ((SMBUS_GET_ALERT_ENABLED(hsmbus) == 0UL) - && ((tmpstate & HAL_SMBUS_STATE_LISTEN) != HAL_SMBUS_STATE_LISTEN)) - { - /* Disable ERR interrupt */ - tmpisr |= SMBUS_IT_ERRI; - } - - if ((tmpstate & HAL_SMBUS_STATE_LISTEN) != HAL_SMBUS_STATE_LISTEN) - { - /* Disable STOP and NACK interrupt */ - tmpisr |= SMBUS_IT_STOPI | SMBUS_IT_NACKI; - } - } - - if ((InterruptRequest & SMBUS_IT_RX) == SMBUS_IT_RX) - { - /* Disable TC, STOP, NACK and RXI interrupt */ - tmpisr |= SMBUS_IT_TCI | SMBUS_IT_RXI; - - if ((SMBUS_GET_ALERT_ENABLED(hsmbus) == 0UL) - && ((tmpstate & HAL_SMBUS_STATE_LISTEN) != HAL_SMBUS_STATE_LISTEN)) - { - /* Disable ERR interrupt */ - tmpisr |= SMBUS_IT_ERRI; - } - - if ((tmpstate & HAL_SMBUS_STATE_LISTEN) != HAL_SMBUS_STATE_LISTEN) - { - /* Disable STOP and NACK interrupt */ - tmpisr |= SMBUS_IT_STOPI | SMBUS_IT_NACKI; - } - } - - if ((InterruptRequest & SMBUS_IT_ADDR) == SMBUS_IT_ADDR) - { - /* Disable ADDR, STOP and NACK interrupt */ - tmpisr |= SMBUS_IT_ADDRI | SMBUS_IT_STOPI | SMBUS_IT_NACKI; - - if (SMBUS_GET_ALERT_ENABLED(hsmbus) == 0UL) - { - /* Disable ERR interrupt */ - tmpisr |= SMBUS_IT_ERRI; - } - } - - /* Disable interrupts only at the end */ - /* to avoid a breaking situation like at "t" time */ - /* all disable interrupts request are not done */ - __HAL_SMBUS_DISABLE_IT(hsmbus, tmpisr); -} - -/** - * @brief SMBUS interrupts error handler. - * @param hsmbus SMBUS handle. - * @retval None - */ -static void SMBUS_ITErrorHandler(struct __SMBUS_HandleTypeDef *hsmbus) -{ - uint32_t itflags = READ_REG(hsmbus->Instance->ISR); - uint32_t itsources = READ_REG(hsmbus->Instance->CR1); - uint32_t tmpstate; - uint32_t tmperror; - - /* SMBUS Bus error interrupt occurred ------------------------------------*/ - if (((itflags & SMBUS_FLAG_BERR) == SMBUS_FLAG_BERR) && ((itsources & SMBUS_IT_ERRI) == SMBUS_IT_ERRI)) - { - hsmbus->ErrorCode |= HAL_SMBUS_ERROR_BERR; - - /* Clear BERR flag */ - __HAL_SMBUS_CLEAR_FLAG(hsmbus, SMBUS_FLAG_BERR); - } - - /* SMBUS Over-Run/Under-Run interrupt occurred ----------------------------------------*/ - if (((itflags & SMBUS_FLAG_OVR) == SMBUS_FLAG_OVR) && ((itsources & SMBUS_IT_ERRI) == SMBUS_IT_ERRI)) - { - hsmbus->ErrorCode |= HAL_SMBUS_ERROR_OVR; - - /* Clear OVR flag */ - __HAL_SMBUS_CLEAR_FLAG(hsmbus, SMBUS_FLAG_OVR); - } - - /* SMBUS Arbitration Loss error interrupt occurred ------------------------------------*/ - if (((itflags & SMBUS_FLAG_ARLO) == SMBUS_FLAG_ARLO) && ((itsources & SMBUS_IT_ERRI) == SMBUS_IT_ERRI)) - { - hsmbus->ErrorCode |= HAL_SMBUS_ERROR_ARLO; - - /* Clear ARLO flag */ - __HAL_SMBUS_CLEAR_FLAG(hsmbus, SMBUS_FLAG_ARLO); - } - - /* SMBUS Timeout error interrupt occurred ---------------------------------------------*/ - if (((itflags & SMBUS_FLAG_TIMEOUT) == SMBUS_FLAG_TIMEOUT) && ((itsources & SMBUS_IT_ERRI) == SMBUS_IT_ERRI)) - { - hsmbus->ErrorCode |= HAL_SMBUS_ERROR_BUSTIMEOUT; - - /* Clear TIMEOUT flag */ - __HAL_SMBUS_CLEAR_FLAG(hsmbus, SMBUS_FLAG_TIMEOUT); - } - - /* SMBUS Alert error interrupt occurred -----------------------------------------------*/ - if (((itflags & SMBUS_FLAG_ALERT) == SMBUS_FLAG_ALERT) && ((itsources & SMBUS_IT_ERRI) == SMBUS_IT_ERRI)) - { - hsmbus->ErrorCode |= HAL_SMBUS_ERROR_ALERT; - - /* Clear ALERT flag */ - __HAL_SMBUS_CLEAR_FLAG(hsmbus, SMBUS_FLAG_ALERT); - } - - /* SMBUS Packet Error Check error interrupt occurred ----------------------------------*/ - if (((itflags & SMBUS_FLAG_PECERR) == SMBUS_FLAG_PECERR) && ((itsources & SMBUS_IT_ERRI) == SMBUS_IT_ERRI)) - { - hsmbus->ErrorCode |= HAL_SMBUS_ERROR_PECERR; - - /* Clear PEC error flag */ - __HAL_SMBUS_CLEAR_FLAG(hsmbus, SMBUS_FLAG_PECERR); - } - - /* Store current volatile hsmbus->State, misra rule */ - tmperror = hsmbus->ErrorCode; - - /* Call the Error Callback in case of Error detected */ - if ((tmperror != HAL_SMBUS_ERROR_NONE) && (tmperror != HAL_SMBUS_ERROR_ACKF)) - { - /* Do not Reset the HAL state in case of ALERT error */ - if ((tmperror & HAL_SMBUS_ERROR_ALERT) != HAL_SMBUS_ERROR_ALERT) - { - /* Store current volatile hsmbus->State, misra rule */ - tmpstate = hsmbus->State; - - if (((tmpstate & HAL_SMBUS_STATE_SLAVE_BUSY_TX) == HAL_SMBUS_STATE_SLAVE_BUSY_TX) - || ((tmpstate & HAL_SMBUS_STATE_SLAVE_BUSY_RX) == HAL_SMBUS_STATE_SLAVE_BUSY_RX)) - { - /* Reset only HAL_SMBUS_STATE_SLAVE_BUSY_XX */ - /* keep HAL_SMBUS_STATE_LISTEN if set */ - hsmbus->PreviousState = HAL_SMBUS_STATE_READY; - hsmbus->State = HAL_SMBUS_STATE_LISTEN; - } - } - - /* Call the Error callback to inform upper layer */ -#if (USE_HAL_SMBUS_REGISTER_CALLBACKS == 1) - hsmbus->ErrorCallback(hsmbus); -#else - HAL_SMBUS_ErrorCallback(hsmbus); -#endif /* USE_HAL_SMBUS_REGISTER_CALLBACKS */ - } -} - -/** - * @brief Handle SMBUS Communication Timeout. - * @param hsmbus Pointer to a SMBUS_HandleTypeDef structure that contains - * the configuration information for the specified SMBUS. - * @param Flag Specifies the SMBUS flag to check. - * @param Status The new Flag status (SET or RESET). - * @param Timeout Timeout duration - * @retval HAL status - */ -static HAL_StatusTypeDef SMBUS_WaitOnFlagUntilTimeout(struct __SMBUS_HandleTypeDef *hsmbus, uint32_t Flag, FlagStatus Status, uint32_t Timeout) -{ - uint32_t tickstart = HAL_GetTick(); - - /* Wait until flag is set */ - while ((FlagStatus)(__HAL_SMBUS_GET_FLAG(hsmbus, Flag)) == Status) - { - /* Check for the Timeout */ - if (Timeout != HAL_MAX_DELAY) - { - if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0UL)) - { - hsmbus->PreviousState = hsmbus->State; - hsmbus->State = HAL_SMBUS_STATE_READY; - - /* Update SMBUS error code */ - hsmbus->ErrorCode |= HAL_SMBUS_ERROR_HALTIMEOUT; - - /* Process Unlocked */ - __HAL_UNLOCK(hsmbus); - - return HAL_ERROR; - } - } - } - - return HAL_OK; -} - -/** - * @brief Handle SMBUSx communication when starting transfer or during transfer (TC or TCR flag are set). - * @param hsmbus SMBUS handle. - * @param DevAddress specifies the slave address to be programmed. - * @param Size specifies the number of bytes to be programmed. - * This parameter must be a value between 0 and 255. - * @param Mode New state of the SMBUS START condition generation. - * This parameter can be one or a combination of the following values: - * @arg @ref SMBUS_RELOAD_MODE Enable Reload mode. - * @arg @ref SMBUS_AUTOEND_MODE Enable Automatic end mode. - * @arg @ref SMBUS_SOFTEND_MODE Enable Software end mode and Reload mode. - * @arg @ref SMBUS_SENDPEC_MODE Enable Packet Error Calculation mode. - * @param Request New state of the SMBUS START condition generation. - * This parameter can be one of the following values: - * @arg @ref SMBUS_NO_STARTSTOP Don't Generate stop and start condition. - * @arg @ref SMBUS_GENERATE_STOP Generate stop condition (Size should be set to 0). - * @arg @ref SMBUS_GENERATE_START_READ Generate Restart for read request. - * @arg @ref SMBUS_GENERATE_START_WRITE Generate Restart for write request. - * @retval None - */ -static void SMBUS_TransferConfig(struct __SMBUS_HandleTypeDef *hsmbus, uint16_t DevAddress, uint8_t Size, uint32_t Mode, uint32_t Request) -{ - /* Check the parameters */ - assert_param(IS_SMBUS_ALL_INSTANCE(hsmbus->Instance)); - assert_param(IS_SMBUS_TRANSFER_MODE(Mode)); - assert_param(IS_SMBUS_TRANSFER_REQUEST(Request)); - - /* update CR2 register */ - MODIFY_REG(hsmbus->Instance->CR2, ((I2C_CR2_SADD | I2C_CR2_NBYTES | I2C_CR2_RELOAD | I2C_CR2_AUTOEND | (I2C_CR2_RD_WRN & (uint32_t)(Request >> (31UL - I2C_CR2_RD_WRN_Pos))) | I2C_CR2_START | I2C_CR2_STOP | I2C_CR2_PECBYTE)), \ - (uint32_t)(((uint32_t)DevAddress & I2C_CR2_SADD) | (((uint32_t)Size << I2C_CR2_NBYTES_Pos) & I2C_CR2_NBYTES) | (uint32_t)Mode | (uint32_t)Request)); -} - -/** - * @brief Convert SMBUSx OTHER_xxx XferOptions to functionnal XferOptions. - * @param hsmbus SMBUS handle. - * @retval None - */ -static void SMBUS_ConvertOtherXferOptions(struct __SMBUS_HandleTypeDef *hsmbus) -{ - /* if user set XferOptions to SMBUS_OTHER_FRAME_NO_PEC */ - /* it request implicitly to generate a restart condition */ - /* set XferOptions to SMBUS_FIRST_FRAME */ - if (hsmbus->XferOptions == SMBUS_OTHER_FRAME_NO_PEC) - { - hsmbus->XferOptions = SMBUS_FIRST_FRAME; - } - /* else if user set XferOptions to SMBUS_OTHER_FRAME_WITH_PEC */ - /* it request implicitly to generate a restart condition */ - /* set XferOptions to SMBUS_FIRST_FRAME | SMBUS_SENDPEC_MODE */ - else if (hsmbus->XferOptions == SMBUS_OTHER_FRAME_WITH_PEC) - { - hsmbus->XferOptions = SMBUS_FIRST_FRAME | SMBUS_SENDPEC_MODE; - } - /* else if user set XferOptions to SMBUS_OTHER_AND_LAST_FRAME_NO_PEC */ - /* it request implicitly to generate a restart condition */ - /* then generate a stop condition at the end of transfer */ - /* set XferOptions to SMBUS_FIRST_AND_LAST_FRAME_NO_PEC */ - else if (hsmbus->XferOptions == SMBUS_OTHER_AND_LAST_FRAME_NO_PEC) - { - hsmbus->XferOptions = SMBUS_FIRST_AND_LAST_FRAME_NO_PEC; - } - /* else if user set XferOptions to SMBUS_OTHER_AND_LAST_FRAME_WITH_PEC */ - /* it request implicitly to generate a restart condition */ - /* then generate a stop condition at the end of transfer */ - /* set XferOptions to SMBUS_FIRST_AND_LAST_FRAME_WITH_PEC */ - else if (hsmbus->XferOptions == SMBUS_OTHER_AND_LAST_FRAME_WITH_PEC) - { - hsmbus->XferOptions = SMBUS_FIRST_AND_LAST_FRAME_WITH_PEC; - } - else - { - /* Nothing to do */ - } -} -/** - * @} - */ - -#endif /* HAL_SMBUS_MODULE_ENABLED */ -/** - * @} - */ - -/** - * @} - */ - -/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_spi.c b/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_spi.c deleted file mode 100644 index 2c156b3..0000000 --- a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_spi.c +++ /dev/null @@ -1,4349 +0,0 @@ -/** - ****************************************************************************** - * @file stm32f0xx_hal_spi.c - * @author MCD Application Team - * @brief SPI HAL module driver. - * This file provides firmware functions to manage the following - * functionalities of the Serial Peripheral Interface (SPI) peripheral: - * + Initialization and de-initialization functions - * + IO operation functions - * + Peripheral Control functions - * + Peripheral State functions - * - @verbatim - ============================================================================== - ##### How to use this driver ##### - ============================================================================== - [..] - The SPI HAL driver can be used as follows: - - (#) Declare a SPI_HandleTypeDef handle structure, for example: - SPI_HandleTypeDef hspi; - - (#)Initialize the SPI low level resources by implementing the HAL_SPI_MspInit() API: - (##) Enable the SPIx interface clock - (##) SPI pins configuration - (+++) Enable the clock for the SPI GPIOs - (+++) Configure these SPI pins as alternate function push-pull - (##) NVIC configuration if you need to use interrupt process - (+++) Configure the SPIx interrupt priority - (+++) Enable the NVIC SPI IRQ handle - (##) DMA Configuration if you need to use DMA process - (+++) Declare a DMA_HandleTypeDef handle structure for the transmit or receive Stream/Channel - (+++) Enable the DMAx clock - (+++) Configure the DMA handle parameters - (+++) Configure the DMA Tx or Rx Stream/Channel - (+++) Associate the initialized hdma_tx(or _rx) handle to the hspi DMA Tx or Rx handle - (+++) Configure the priority and enable the NVIC for the transfer complete interrupt on the DMA Tx or Rx Stream/Channel - - (#) Program the Mode, BidirectionalMode , Data size, Baudrate Prescaler, NSS - management, Clock polarity and phase, FirstBit and CRC configuration in the hspi Init structure. - - (#) Initialize the SPI registers by calling the HAL_SPI_Init() API: - (++) This API configures also the low level Hardware GPIO, CLOCK, CORTEX...etc) - by calling the customized HAL_SPI_MspInit() API. - [..] - Circular mode restriction: - (#) The DMA circular mode cannot be used when the SPI is configured in these modes: - (##) Master 2Lines RxOnly - (##) Master 1Line Rx - (#) The CRC feature is not managed when the DMA circular mode is enabled - (#) When the SPI DMA Pause/Stop features are used, we must use the following APIs - the HAL_SPI_DMAPause()/ HAL_SPI_DMAStop() only under the SPI callbacks - [..] - Master Receive mode restriction: - (#) In Master unidirectional receive-only mode (MSTR =1, BIDIMODE=0, RXONLY=1) or - bidirectional receive mode (MSTR=1, BIDIMODE=1, BIDIOE=0), to ensure that the SPI - does not initiate a new transfer the following procedure has to be respected: - (##) HAL_SPI_DeInit() - (##) HAL_SPI_Init() - [..] - Data buffer address alignment restriction: - (#) In case more than 1 byte is requested to be transferred, the HAL SPI uses 16-bit access for data buffer. - But there is no support for unaligned accesses on the Cortex-M0 processor. - So, if the user wants to transfer more than 1 byte, it shall ensure that 16-bit aligned address is used for: - (##) pData parameter in HAL_SPI_Transmit(), HAL_SPI_Transmit_IT(), HAL_SPI_Receive() and HAL_SPI_Receive_IT() - (##) pTxData and pRxData parameters in HAL_SPI_TransmitReceive() and HAL_SPI_TransmitReceive_IT() - (#) There is no such restriction when going through DMA by using HAL_SPI_Transmit_DMA(), HAL_SPI_Receive_DMA() - and HAL_SPI_TransmitReceive_DMA(). - [..] - Callback registration: - - (#) The compilation flag USE_HAL_SPI_REGISTER_CALLBACKS when set to 1U - allows the user to configure dynamically the driver callbacks. - Use Functions HAL_SPI_RegisterCallback() to register an interrupt callback. - - Function HAL_SPI_RegisterCallback() allows to register following callbacks: - (++) TxCpltCallback : SPI Tx Completed callback - (++) RxCpltCallback : SPI Rx Completed callback - (++) TxRxCpltCallback : SPI TxRx Completed callback - (++) TxHalfCpltCallback : SPI Tx Half Completed callback - (++) RxHalfCpltCallback : SPI Rx Half Completed callback - (++) TxRxHalfCpltCallback : SPI TxRx Half Completed callback - (++) ErrorCallback : SPI Error callback - (++) AbortCpltCallback : SPI Abort callback - (++) MspInitCallback : SPI Msp Init callback - (++) MspDeInitCallback : SPI Msp DeInit callback - This function takes as parameters the HAL peripheral handle, the Callback ID - and a pointer to the user callback function. - - - (#) Use function HAL_SPI_UnRegisterCallback to reset a callback to the default - weak function. - HAL_SPI_UnRegisterCallback takes as parameters the HAL peripheral handle, - and the Callback ID. - This function allows to reset following callbacks: - (++) TxCpltCallback : SPI Tx Completed callback - (++) RxCpltCallback : SPI Rx Completed callback - (++) TxRxCpltCallback : SPI TxRx Completed callback - (++) TxHalfCpltCallback : SPI Tx Half Completed callback - (++) RxHalfCpltCallback : SPI Rx Half Completed callback - (++) TxRxHalfCpltCallback : SPI TxRx Half Completed callback - (++) ErrorCallback : SPI Error callback - (++) AbortCpltCallback : SPI Abort callback - (++) MspInitCallback : SPI Msp Init callback - (++) MspDeInitCallback : SPI Msp DeInit callback - - [..] - By default, after the HAL_SPI_Init() and when the state is HAL_SPI_STATE_RESET - all callbacks are set to the corresponding weak functions: - examples HAL_SPI_MasterTxCpltCallback(), HAL_SPI_MasterRxCpltCallback(). - Exception done for MspInit and MspDeInit functions that are - reset to the legacy weak functions in the HAL_SPI_Init()/ HAL_SPI_DeInit() only when - these callbacks are null (not registered beforehand). - If MspInit or MspDeInit are not null, the HAL_SPI_Init()/ HAL_SPI_DeInit() - keep and use the user MspInit/MspDeInit callbacks (registered beforehand) whatever the state. - - [..] - Callbacks can be registered/unregistered in HAL_SPI_STATE_READY state only. - Exception done MspInit/MspDeInit functions that can be registered/unregistered - in HAL_SPI_STATE_READY or HAL_SPI_STATE_RESET state, - thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit. - Then, the user first registers the MspInit/MspDeInit user callbacks - using HAL_SPI_RegisterCallback() before calling HAL_SPI_DeInit() - or HAL_SPI_Init() function. - - [..] - When the compilation define USE_HAL_PPP_REGISTER_CALLBACKS is set to 0 or - not defined, the callback registering feature is not available - and weak (surcharged) callbacks are used. - - [..] - Using the HAL it is not possible to reach all supported SPI frequency with the different SPI Modes, - the following table resume the max SPI frequency reached with data size 8bits/16bits, - according to frequency of the APBx Peripheral Clock (fPCLK) used by the SPI instance. - - @endverbatim - - Additional table : - - DataSize = SPI_DATASIZE_8BIT: - +----------------------------------------------------------------------------------------------+ - | | | 2Lines Fullduplex | 2Lines RxOnly | 1Line | - | Process | Tranfert mode |---------------------|----------------------|----------------------| - | | | Master | Slave | Master | Slave | Master | Slave | - |==============================================================================================| - | T | Polling | Fpclk/4 | Fpclk/8 | NA | NA | NA | NA | - | X |----------------|----------|----------|-----------|----------|-----------|----------| - | / | Interrupt | Fpclk/4 | Fpclk/16 | NA | NA | NA | NA | - | R |----------------|----------|----------|-----------|----------|-----------|----------| - | X | DMA | Fpclk/2 | Fpclk/2 | NA | NA | NA | NA | - |=========|================|==========|==========|===========|==========|===========|==========| - | | Polling | Fpclk/4 | Fpclk/8 | Fpclk/16 | Fpclk/8 | Fpclk/8 | Fpclk/8 | - | |----------------|----------|----------|-----------|----------|-----------|----------| - | R | Interrupt | Fpclk/8 | Fpclk/16 | Fpclk/8 | Fpclk/8 | Fpclk/8 | Fpclk/4 | - | X |----------------|----------|----------|-----------|----------|-----------|----------| - | | DMA | Fpclk/4 | Fpclk/2 | Fpclk/2 | Fpclk/16 | Fpclk/2 | Fpclk/16 | - |=========|================|==========|==========|===========|==========|===========|==========| - | | Polling | Fpclk/8 | Fpclk/2 | NA | NA | Fpclk/8 | Fpclk/8 | - | |----------------|----------|----------|-----------|----------|-----------|----------| - | T | Interrupt | Fpclk/2 | Fpclk/4 | NA | NA | Fpclk/16 | Fpclk/8 | - | X |----------------|----------|----------|-----------|----------|-----------|----------| - | | DMA | Fpclk/2 | Fpclk/2 | NA | NA | Fpclk/8 | Fpclk/16 | - +----------------------------------------------------------------------------------------------+ - - DataSize = SPI_DATASIZE_16BIT: - +----------------------------------------------------------------------------------------------+ - | | | 2Lines Fullduplex | 2Lines RxOnly | 1Line | - | Process | Tranfert mode |---------------------|----------------------|----------------------| - | | | Master | Slave | Master | Slave | Master | Slave | - |==============================================================================================| - | T | Polling | Fpclk/4 | Fpclk/8 | NA | NA | NA | NA | - | X |----------------|----------|----------|-----------|----------|-----------|----------| - | / | Interrupt | Fpclk/4 | Fpclk/16 | NA | NA | NA | NA | - | R |----------------|----------|----------|-----------|----------|-----------|----------| - | X | DMA | Fpclk/2 | Fpclk/2 | NA | NA | NA | NA | - |=========|================|==========|==========|===========|==========|===========|==========| - | | Polling | Fpclk/4 | Fpclk/8 | Fpclk/16 | Fpclk/8 | Fpclk/8 | Fpclk/8 | - | |----------------|----------|----------|-----------|----------|-----------|----------| - | R | Interrupt | Fpclk/8 | Fpclk/16 | Fpclk/8 | Fpclk/8 | Fpclk/8 | Fpclk/4 | - | X |----------------|----------|----------|-----------|----------|-----------|----------| - | | DMA | Fpclk/4 | Fpclk/2 | Fpclk/2 | Fpclk/16 | Fpclk/2 | Fpclk/16 | - |=========|================|==========|==========|===========|==========|===========|==========| - | | Polling | Fpclk/8 | Fpclk/2 | NA | NA | Fpclk/8 | Fpclk/8 | - | |----------------|----------|----------|-----------|----------|-----------|----------| - | T | Interrupt | Fpclk/2 | Fpclk/4 | NA | NA | Fpclk/16 | Fpclk/8 | - | X |----------------|----------|----------|-----------|----------|-----------|----------| - | | DMA | Fpclk/2 | Fpclk/2 | NA | NA | Fpclk/8 | Fpclk/16 | - +----------------------------------------------------------------------------------------------+ - @note The max SPI frequency depend on SPI data size (4bits, 5bits,..., 8bits,...15bits, 16bits), - SPI mode(2 Lines fullduplex, 2 lines RxOnly, 1 line TX/RX) and Process mode (Polling, IT, DMA). - @note - (#) TX/RX processes are HAL_SPI_TransmitReceive(), HAL_SPI_TransmitReceive_IT() and HAL_SPI_TransmitReceive_DMA() - (#) RX processes are HAL_SPI_Receive(), HAL_SPI_Receive_IT() and HAL_SPI_Receive_DMA() - (#) TX processes are HAL_SPI_Transmit(), HAL_SPI_Transmit_IT() and HAL_SPI_Transmit_DMA() - - ****************************************************************************** - * @attention - * - *

© Copyright (c) 2016 STMicroelectronics. - * All rights reserved.

- * - * This software component is licensed by ST under BSD 3-Clause license, - * the "License"; You may not use this file except in compliance with the - * License. You may obtain a copy of the License at: - * opensource.org/licenses/BSD-3-Clause - * - ****************************************************************************** - */ - -/* Includes ------------------------------------------------------------------*/ -#include "stm32f0xx_hal.h" - -/** @addtogroup STM32F0xx_HAL_Driver - * @{ - */ - -/** @defgroup SPI SPI - * @brief SPI HAL module driver - * @{ - */ -#ifdef HAL_SPI_MODULE_ENABLED - -/* Private typedef -----------------------------------------------------------*/ -/* Private defines -----------------------------------------------------------*/ -/** @defgroup SPI_Private_Constants SPI Private Constants - * @{ - */ -#define SPI_DEFAULT_TIMEOUT 100U -/** - * @} - */ - -/* Private macros ------------------------------------------------------------*/ -/* Private variables ---------------------------------------------------------*/ -/* Private function prototypes -----------------------------------------------*/ -/** @defgroup SPI_Private_Functions SPI Private Functions - * @{ - */ -static void SPI_DMATransmitCplt(DMA_HandleTypeDef *hdma); -static void SPI_DMAReceiveCplt(DMA_HandleTypeDef *hdma); -static void SPI_DMATransmitReceiveCplt(DMA_HandleTypeDef *hdma); -static void SPI_DMAHalfTransmitCplt(DMA_HandleTypeDef *hdma); -static void SPI_DMAHalfReceiveCplt(DMA_HandleTypeDef *hdma); -static void SPI_DMAHalfTransmitReceiveCplt(DMA_HandleTypeDef *hdma); -static void SPI_DMAError(DMA_HandleTypeDef *hdma); -static void SPI_DMAAbortOnError(DMA_HandleTypeDef *hdma); -static void SPI_DMATxAbortCallback(DMA_HandleTypeDef *hdma); -static void SPI_DMARxAbortCallback(DMA_HandleTypeDef *hdma); -static HAL_StatusTypeDef SPI_WaitFlagStateUntilTimeout(SPI_HandleTypeDef *hspi, uint32_t Flag, FlagStatus State, - uint32_t Timeout, uint32_t Tickstart); -static HAL_StatusTypeDef SPI_WaitFifoStateUntilTimeout(SPI_HandleTypeDef *hspi, uint32_t Fifo, uint32_t State, - uint32_t Timeout, uint32_t Tickstart); -static void SPI_TxISR_8BIT(struct __SPI_HandleTypeDef *hspi); -static void SPI_TxISR_16BIT(struct __SPI_HandleTypeDef *hspi); -static void SPI_RxISR_8BIT(struct __SPI_HandleTypeDef *hspi); -static void SPI_RxISR_16BIT(struct __SPI_HandleTypeDef *hspi); -static void SPI_2linesRxISR_8BIT(struct __SPI_HandleTypeDef *hspi); -static void SPI_2linesTxISR_8BIT(struct __SPI_HandleTypeDef *hspi); -static void SPI_2linesTxISR_16BIT(struct __SPI_HandleTypeDef *hspi); -static void SPI_2linesRxISR_16BIT(struct __SPI_HandleTypeDef *hspi); -#if (USE_SPI_CRC != 0U) -static void SPI_RxISR_8BITCRC(struct __SPI_HandleTypeDef *hspi); -static void SPI_RxISR_16BITCRC(struct __SPI_HandleTypeDef *hspi); -static void SPI_2linesRxISR_8BITCRC(struct __SPI_HandleTypeDef *hspi); -static void SPI_2linesRxISR_16BITCRC(struct __SPI_HandleTypeDef *hspi); -#endif /* USE_SPI_CRC */ -static void SPI_AbortRx_ISR(SPI_HandleTypeDef *hspi); -static void SPI_AbortTx_ISR(SPI_HandleTypeDef *hspi); -static void SPI_CloseRxTx_ISR(SPI_HandleTypeDef *hspi); -static void SPI_CloseRx_ISR(SPI_HandleTypeDef *hspi); -static void SPI_CloseTx_ISR(SPI_HandleTypeDef *hspi); -static HAL_StatusTypeDef SPI_EndRxTransaction(SPI_HandleTypeDef *hspi, uint32_t Timeout, uint32_t Tickstart); -static HAL_StatusTypeDef SPI_EndRxTxTransaction(SPI_HandleTypeDef *hspi, uint32_t Timeout, uint32_t Tickstart); -/** - * @} - */ - -/* Exported functions --------------------------------------------------------*/ -/** @defgroup SPI_Exported_Functions SPI Exported Functions - * @{ - */ - -/** @defgroup SPI_Exported_Functions_Group1 Initialization and de-initialization functions - * @brief Initialization and Configuration functions - * -@verbatim - =============================================================================== - ##### Initialization and de-initialization functions ##### - =============================================================================== - [..] This subsection provides a set of functions allowing to initialize and - de-initialize the SPIx peripheral: - - (+) User must implement HAL_SPI_MspInit() function in which he configures - all related peripherals resources (CLOCK, GPIO, DMA, IT and NVIC ). - - (+) Call the function HAL_SPI_Init() to configure the selected device with - the selected configuration: - (++) Mode - (++) Direction - (++) Data Size - (++) Clock Polarity and Phase - (++) NSS Management - (++) BaudRate Prescaler - (++) FirstBit - (++) TIMode - (++) CRC Calculation - (++) CRC Polynomial if CRC enabled - (++) CRC Length, used only with Data8 and Data16 - (++) FIFO reception threshold - - (+) Call the function HAL_SPI_DeInit() to restore the default configuration - of the selected SPIx peripheral. - -@endverbatim - * @{ - */ - -/** - * @brief Initialize the SPI according to the specified parameters - * in the SPI_InitTypeDef and initialize the associated handle. - * @param hspi pointer to a SPI_HandleTypeDef structure that contains - * the configuration information for SPI module. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_SPI_Init(SPI_HandleTypeDef *hspi) -{ - uint32_t frxth; - - /* Check the SPI handle allocation */ - if (hspi == NULL) - { - return HAL_ERROR; - } - - /* Check the parameters */ - assert_param(IS_SPI_ALL_INSTANCE(hspi->Instance)); - assert_param(IS_SPI_MODE(hspi->Init.Mode)); - assert_param(IS_SPI_DIRECTION(hspi->Init.Direction)); - assert_param(IS_SPI_DATASIZE(hspi->Init.DataSize)); - assert_param(IS_SPI_NSS(hspi->Init.NSS)); - assert_param(IS_SPI_NSSP(hspi->Init.NSSPMode)); - assert_param(IS_SPI_BAUDRATE_PRESCALER(hspi->Init.BaudRatePrescaler)); - assert_param(IS_SPI_FIRST_BIT(hspi->Init.FirstBit)); - assert_param(IS_SPI_TIMODE(hspi->Init.TIMode)); - if (hspi->Init.TIMode == SPI_TIMODE_DISABLE) - { - assert_param(IS_SPI_CPOL(hspi->Init.CLKPolarity)); - assert_param(IS_SPI_CPHA(hspi->Init.CLKPhase)); - } -#if (USE_SPI_CRC != 0U) - assert_param(IS_SPI_CRC_CALCULATION(hspi->Init.CRCCalculation)); - if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) - { - assert_param(IS_SPI_CRC_POLYNOMIAL(hspi->Init.CRCPolynomial)); - assert_param(IS_SPI_CRC_LENGTH(hspi->Init.CRCLength)); - } -#else - hspi->Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE; -#endif /* USE_SPI_CRC */ - - if (hspi->State == HAL_SPI_STATE_RESET) - { - /* Allocate lock resource and initialize it */ - hspi->Lock = HAL_UNLOCKED; - -#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) - /* Init the SPI Callback settings */ - hspi->TxCpltCallback = HAL_SPI_TxCpltCallback; /* Legacy weak TxCpltCallback */ - hspi->RxCpltCallback = HAL_SPI_RxCpltCallback; /* Legacy weak RxCpltCallback */ - hspi->TxRxCpltCallback = HAL_SPI_TxRxCpltCallback; /* Legacy weak TxRxCpltCallback */ - hspi->TxHalfCpltCallback = HAL_SPI_TxHalfCpltCallback; /* Legacy weak TxHalfCpltCallback */ - hspi->RxHalfCpltCallback = HAL_SPI_RxHalfCpltCallback; /* Legacy weak RxHalfCpltCallback */ - hspi->TxRxHalfCpltCallback = HAL_SPI_TxRxHalfCpltCallback; /* Legacy weak TxRxHalfCpltCallback */ - hspi->ErrorCallback = HAL_SPI_ErrorCallback; /* Legacy weak ErrorCallback */ - hspi->AbortCpltCallback = HAL_SPI_AbortCpltCallback; /* Legacy weak AbortCpltCallback */ - - if (hspi->MspInitCallback == NULL) - { - hspi->MspInitCallback = HAL_SPI_MspInit; /* Legacy weak MspInit */ - } - - /* Init the low level hardware : GPIO, CLOCK, NVIC... */ - hspi->MspInitCallback(hspi); -#else - /* Init the low level hardware : GPIO, CLOCK, NVIC... */ - HAL_SPI_MspInit(hspi); -#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ - } - - hspi->State = HAL_SPI_STATE_BUSY; - - /* Disable the selected SPI peripheral */ - __HAL_SPI_DISABLE(hspi); - - /* Align by default the rs fifo threshold on the data size */ - if (hspi->Init.DataSize > SPI_DATASIZE_8BIT) - { - frxth = SPI_RXFIFO_THRESHOLD_HF; - } - else - { - frxth = SPI_RXFIFO_THRESHOLD_QF; - } - - /* CRC calculation is valid only for 16Bit and 8 Bit */ - if ((hspi->Init.DataSize != SPI_DATASIZE_16BIT) && (hspi->Init.DataSize != SPI_DATASIZE_8BIT)) - { - /* CRC must be disabled */ - hspi->Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE; - } - - /* Align the CRC Length on the data size */ - if (hspi->Init.CRCLength == SPI_CRC_LENGTH_DATASIZE) - { - /* CRC Length aligned on the data size : value set by default */ - if (hspi->Init.DataSize > SPI_DATASIZE_8BIT) - { - hspi->Init.CRCLength = SPI_CRC_LENGTH_16BIT; - } - else - { - hspi->Init.CRCLength = SPI_CRC_LENGTH_8BIT; - } - } - - /*----------------------- SPIx CR1 & CR2 Configuration ---------------------*/ - /* Configure : SPI Mode, Communication Mode, Clock polarity and phase, NSS management, - Communication speed, First bit and CRC calculation state */ - WRITE_REG(hspi->Instance->CR1, (hspi->Init.Mode | hspi->Init.Direction | - hspi->Init.CLKPolarity | hspi->Init.CLKPhase | (hspi->Init.NSS & SPI_CR1_SSM) | - hspi->Init.BaudRatePrescaler | hspi->Init.FirstBit | hspi->Init.CRCCalculation)); -#if (USE_SPI_CRC != 0U) - /* Configure : CRC Length */ - if (hspi->Init.CRCLength == SPI_CRC_LENGTH_16BIT) - { - hspi->Instance->CR1 |= SPI_CR1_CRCL; - } -#endif /* USE_SPI_CRC */ - - /* Configure : NSS management, TI Mode, NSS Pulse, Data size and Rx Fifo threshold */ - WRITE_REG(hspi->Instance->CR2, (((hspi->Init.NSS >> 16U) & SPI_CR2_SSOE) | hspi->Init.TIMode | - hspi->Init.NSSPMode | hspi->Init.DataSize) | frxth); - -#if (USE_SPI_CRC != 0U) - /*---------------------------- SPIx CRCPOLY Configuration ------------------*/ - /* Configure : CRC Polynomial */ - if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) - { - WRITE_REG(hspi->Instance->CRCPR, hspi->Init.CRCPolynomial); - } -#endif /* USE_SPI_CRC */ - -#if defined(SPI_I2SCFGR_I2SMOD) - /* Activate the SPI mode (Make sure that I2SMOD bit in I2SCFGR register is reset) */ - CLEAR_BIT(hspi->Instance->I2SCFGR, SPI_I2SCFGR_I2SMOD); -#endif /* SPI_I2SCFGR_I2SMOD */ - - hspi->ErrorCode = HAL_SPI_ERROR_NONE; - hspi->State = HAL_SPI_STATE_READY; - - return HAL_OK; -} - -/** - * @brief De-Initialize the SPI peripheral. - * @param hspi pointer to a SPI_HandleTypeDef structure that contains - * the configuration information for SPI module. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_SPI_DeInit(SPI_HandleTypeDef *hspi) -{ - /* Check the SPI handle allocation */ - if (hspi == NULL) - { - return HAL_ERROR; - } - - /* Check SPI Instance parameter */ - assert_param(IS_SPI_ALL_INSTANCE(hspi->Instance)); - - hspi->State = HAL_SPI_STATE_BUSY; - - /* Disable the SPI Peripheral Clock */ - __HAL_SPI_DISABLE(hspi); - -#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) - if (hspi->MspDeInitCallback == NULL) - { - hspi->MspDeInitCallback = HAL_SPI_MspDeInit; /* Legacy weak MspDeInit */ - } - - /* DeInit the low level hardware: GPIO, CLOCK, NVIC... */ - hspi->MspDeInitCallback(hspi); -#else - /* DeInit the low level hardware: GPIO, CLOCK, NVIC... */ - HAL_SPI_MspDeInit(hspi); -#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ - - hspi->ErrorCode = HAL_SPI_ERROR_NONE; - hspi->State = HAL_SPI_STATE_RESET; - - /* Release Lock */ - __HAL_UNLOCK(hspi); - - return HAL_OK; -} - -/** - * @brief Initialize the SPI MSP. - * @param hspi pointer to a SPI_HandleTypeDef structure that contains - * the configuration information for SPI module. - * @retval None - */ -__weak void HAL_SPI_MspInit(SPI_HandleTypeDef *hspi) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hspi); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_SPI_MspInit should be implemented in the user file - */ -} - -/** - * @brief De-Initialize the SPI MSP. - * @param hspi pointer to a SPI_HandleTypeDef structure that contains - * the configuration information for SPI module. - * @retval None - */ -__weak void HAL_SPI_MspDeInit(SPI_HandleTypeDef *hspi) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hspi); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_SPI_MspDeInit should be implemented in the user file - */ -} - -#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) -/** - * @brief Register a User SPI Callback - * To be used instead of the weak predefined callback - * @param hspi Pointer to a SPI_HandleTypeDef structure that contains - * the configuration information for the specified SPI. - * @param CallbackID ID of the callback to be registered - * @param pCallback pointer to the Callback function - * @retval HAL status - */ -HAL_StatusTypeDef HAL_SPI_RegisterCallback(SPI_HandleTypeDef *hspi, HAL_SPI_CallbackIDTypeDef CallbackID, - pSPI_CallbackTypeDef pCallback) -{ - HAL_StatusTypeDef status = HAL_OK; - - if (pCallback == NULL) - { - /* Update the error code */ - hspi->ErrorCode |= HAL_SPI_ERROR_INVALID_CALLBACK; - - return HAL_ERROR; - } - /* Process locked */ - __HAL_LOCK(hspi); - - if (HAL_SPI_STATE_READY == hspi->State) - { - switch (CallbackID) - { - case HAL_SPI_TX_COMPLETE_CB_ID : - hspi->TxCpltCallback = pCallback; - break; - - case HAL_SPI_RX_COMPLETE_CB_ID : - hspi->RxCpltCallback = pCallback; - break; - - case HAL_SPI_TX_RX_COMPLETE_CB_ID : - hspi->TxRxCpltCallback = pCallback; - break; - - case HAL_SPI_TX_HALF_COMPLETE_CB_ID : - hspi->TxHalfCpltCallback = pCallback; - break; - - case HAL_SPI_RX_HALF_COMPLETE_CB_ID : - hspi->RxHalfCpltCallback = pCallback; - break; - - case HAL_SPI_TX_RX_HALF_COMPLETE_CB_ID : - hspi->TxRxHalfCpltCallback = pCallback; - break; - - case HAL_SPI_ERROR_CB_ID : - hspi->ErrorCallback = pCallback; - break; - - case HAL_SPI_ABORT_CB_ID : - hspi->AbortCpltCallback = pCallback; - break; - - case HAL_SPI_MSPINIT_CB_ID : - hspi->MspInitCallback = pCallback; - break; - - case HAL_SPI_MSPDEINIT_CB_ID : - hspi->MspDeInitCallback = pCallback; - break; - - default : - /* Update the error code */ - SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_INVALID_CALLBACK); - - /* Return error status */ - status = HAL_ERROR; - break; - } - } - else if (HAL_SPI_STATE_RESET == hspi->State) - { - switch (CallbackID) - { - case HAL_SPI_MSPINIT_CB_ID : - hspi->MspInitCallback = pCallback; - break; - - case HAL_SPI_MSPDEINIT_CB_ID : - hspi->MspDeInitCallback = pCallback; - break; - - default : - /* Update the error code */ - SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_INVALID_CALLBACK); - - /* Return error status */ - status = HAL_ERROR; - break; - } - } - else - { - /* Update the error code */ - SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_INVALID_CALLBACK); - - /* Return error status */ - status = HAL_ERROR; - } - - /* Release Lock */ - __HAL_UNLOCK(hspi); - return status; -} - -/** - * @brief Unregister an SPI Callback - * SPI callback is redirected to the weak predefined callback - * @param hspi Pointer to a SPI_HandleTypeDef structure that contains - * the configuration information for the specified SPI. - * @param CallbackID ID of the callback to be unregistered - * @retval HAL status - */ -HAL_StatusTypeDef HAL_SPI_UnRegisterCallback(SPI_HandleTypeDef *hspi, HAL_SPI_CallbackIDTypeDef CallbackID) -{ - HAL_StatusTypeDef status = HAL_OK; - - /* Process locked */ - __HAL_LOCK(hspi); - - if (HAL_SPI_STATE_READY == hspi->State) - { - switch (CallbackID) - { - case HAL_SPI_TX_COMPLETE_CB_ID : - hspi->TxCpltCallback = HAL_SPI_TxCpltCallback; /* Legacy weak TxCpltCallback */ - break; - - case HAL_SPI_RX_COMPLETE_CB_ID : - hspi->RxCpltCallback = HAL_SPI_RxCpltCallback; /* Legacy weak RxCpltCallback */ - break; - - case HAL_SPI_TX_RX_COMPLETE_CB_ID : - hspi->TxRxCpltCallback = HAL_SPI_TxRxCpltCallback; /* Legacy weak TxRxCpltCallback */ - break; - - case HAL_SPI_TX_HALF_COMPLETE_CB_ID : - hspi->TxHalfCpltCallback = HAL_SPI_TxHalfCpltCallback; /* Legacy weak TxHalfCpltCallback */ - break; - - case HAL_SPI_RX_HALF_COMPLETE_CB_ID : - hspi->RxHalfCpltCallback = HAL_SPI_RxHalfCpltCallback; /* Legacy weak RxHalfCpltCallback */ - break; - - case HAL_SPI_TX_RX_HALF_COMPLETE_CB_ID : - hspi->TxRxHalfCpltCallback = HAL_SPI_TxRxHalfCpltCallback; /* Legacy weak TxRxHalfCpltCallback */ - break; - - case HAL_SPI_ERROR_CB_ID : - hspi->ErrorCallback = HAL_SPI_ErrorCallback; /* Legacy weak ErrorCallback */ - break; - - case HAL_SPI_ABORT_CB_ID : - hspi->AbortCpltCallback = HAL_SPI_AbortCpltCallback; /* Legacy weak AbortCpltCallback */ - break; - - case HAL_SPI_MSPINIT_CB_ID : - hspi->MspInitCallback = HAL_SPI_MspInit; /* Legacy weak MspInit */ - break; - - case HAL_SPI_MSPDEINIT_CB_ID : - hspi->MspDeInitCallback = HAL_SPI_MspDeInit; /* Legacy weak MspDeInit */ - break; - - default : - /* Update the error code */ - SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_INVALID_CALLBACK); - - /* Return error status */ - status = HAL_ERROR; - break; - } - } - else if (HAL_SPI_STATE_RESET == hspi->State) - { - switch (CallbackID) - { - case HAL_SPI_MSPINIT_CB_ID : - hspi->MspInitCallback = HAL_SPI_MspInit; /* Legacy weak MspInit */ - break; - - case HAL_SPI_MSPDEINIT_CB_ID : - hspi->MspDeInitCallback = HAL_SPI_MspDeInit; /* Legacy weak MspDeInit */ - break; - - default : - /* Update the error code */ - SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_INVALID_CALLBACK); - - /* Return error status */ - status = HAL_ERROR; - break; - } - } - else - { - /* Update the error code */ - SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_INVALID_CALLBACK); - - /* Return error status */ - status = HAL_ERROR; - } - - /* Release Lock */ - __HAL_UNLOCK(hspi); - return status; -} -#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ -/** - * @} - */ - -/** @defgroup SPI_Exported_Functions_Group2 IO operation functions - * @brief Data transfers functions - * -@verbatim - ============================================================================== - ##### IO operation functions ##### - =============================================================================== - [..] - This subsection provides a set of functions allowing to manage the SPI - data transfers. - - [..] The SPI supports master and slave mode : - - (#) There are two modes of transfer: - (++) Blocking mode: The communication is performed in polling mode. - The HAL status of all data processing is returned by the same function - after finishing transfer. - (++) No-Blocking mode: The communication is performed using Interrupts - or DMA, These APIs return the HAL status. - The end of the data processing will be indicated through the - dedicated SPI IRQ when using Interrupt mode or the DMA IRQ when - using DMA mode. - The HAL_SPI_TxCpltCallback(), HAL_SPI_RxCpltCallback() and HAL_SPI_TxRxCpltCallback() user callbacks - will be executed respectively at the end of the transmit or Receive process - The HAL_SPI_ErrorCallback()user callback will be executed when a communication error is detected - - (#) APIs provided for these 2 transfer modes (Blocking mode or Non blocking mode using either Interrupt or DMA) - exist for 1Line (simplex) and 2Lines (full duplex) modes. - -@endverbatim - * @{ - */ - -/** - * @brief Transmit an amount of data in blocking mode. - * @param hspi pointer to a SPI_HandleTypeDef structure that contains - * the configuration information for SPI module. - * @param pData pointer to data buffer - * @param Size amount of data to be sent - * @param Timeout Timeout duration - * @retval HAL status - */ -HAL_StatusTypeDef HAL_SPI_Transmit(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size, uint32_t Timeout) -{ - uint32_t tickstart; - HAL_StatusTypeDef errorcode = HAL_OK; - uint16_t initial_TxXferCount; - - if ((hspi->Init.DataSize > SPI_DATASIZE_8BIT) || ((hspi->Init.DataSize <= SPI_DATASIZE_8BIT) && (Size > 1U))) - { - /* in this case, 16-bit access is performed on Data - So, check Data is 16-bit aligned address */ - assert_param(IS_SPI_16BIT_ALIGNED_ADDRESS(pData)); - } - - /* Check Direction parameter */ - assert_param(IS_SPI_DIRECTION_2LINES_OR_1LINE(hspi->Init.Direction)); - - /* Process Locked */ - __HAL_LOCK(hspi); - - /* Init tickstart for timeout management*/ - tickstart = HAL_GetTick(); - initial_TxXferCount = Size; - - if (hspi->State != HAL_SPI_STATE_READY) - { - errorcode = HAL_BUSY; - goto error; - } - - if ((pData == NULL) || (Size == 0U)) - { - errorcode = HAL_ERROR; - goto error; - } - - /* Set the transaction information */ - hspi->State = HAL_SPI_STATE_BUSY_TX; - hspi->ErrorCode = HAL_SPI_ERROR_NONE; - hspi->pTxBuffPtr = (uint8_t *)pData; - hspi->TxXferSize = Size; - hspi->TxXferCount = Size; - - /*Init field not used in handle to zero */ - hspi->pRxBuffPtr = (uint8_t *)NULL; - hspi->RxXferSize = 0U; - hspi->RxXferCount = 0U; - hspi->TxISR = NULL; - hspi->RxISR = NULL; - - /* Configure communication direction : 1Line */ - if (hspi->Init.Direction == SPI_DIRECTION_1LINE) - { - SPI_1LINE_TX(hspi); - } - -#if (USE_SPI_CRC != 0U) - /* Reset CRC Calculation */ - if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) - { - SPI_RESET_CRC(hspi); - } -#endif /* USE_SPI_CRC */ - - /* Check if the SPI is already enabled */ - if ((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE) - { - /* Enable SPI peripheral */ - __HAL_SPI_ENABLE(hspi); - } - - /* Transmit data in 16 Bit mode */ - if (hspi->Init.DataSize > SPI_DATASIZE_8BIT) - { - if ((hspi->Init.Mode == SPI_MODE_SLAVE) || (initial_TxXferCount == 0x01U)) - { - hspi->Instance->DR = *((uint16_t *)hspi->pTxBuffPtr); - hspi->pTxBuffPtr += sizeof(uint16_t); - hspi->TxXferCount--; - } - /* Transmit data in 16 Bit mode */ - while (hspi->TxXferCount > 0U) - { - /* Wait until TXE flag is set to send data */ - if (__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_TXE)) - { - hspi->Instance->DR = *((uint16_t *)hspi->pTxBuffPtr); - hspi->pTxBuffPtr += sizeof(uint16_t); - hspi->TxXferCount--; - } - else - { - /* Timeout management */ - if ((((HAL_GetTick() - tickstart) >= Timeout) && (Timeout != HAL_MAX_DELAY)) || (Timeout == 0U)) - { - errorcode = HAL_TIMEOUT; - goto error; - } - } - } - } - /* Transmit data in 8 Bit mode */ - else - { - if ((hspi->Init.Mode == SPI_MODE_SLAVE) || (initial_TxXferCount == 0x01U)) - { - if (hspi->TxXferCount > 1U) - { - /* write on the data register in packing mode */ - hspi->Instance->DR = *((uint16_t *)hspi->pTxBuffPtr); - hspi->pTxBuffPtr += sizeof(uint16_t); - hspi->TxXferCount -= 2U; - } - else - { - *((__IO uint8_t *)&hspi->Instance->DR) = (*hspi->pTxBuffPtr); - hspi->pTxBuffPtr ++; - hspi->TxXferCount--; - } - } - while (hspi->TxXferCount > 0U) - { - /* Wait until TXE flag is set to send data */ - if (__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_TXE)) - { - if (hspi->TxXferCount > 1U) - { - /* write on the data register in packing mode */ - hspi->Instance->DR = *((uint16_t *)hspi->pTxBuffPtr); - hspi->pTxBuffPtr += sizeof(uint16_t); - hspi->TxXferCount -= 2U; - } - else - { - *((__IO uint8_t *)&hspi->Instance->DR) = (*hspi->pTxBuffPtr); - hspi->pTxBuffPtr++; - hspi->TxXferCount--; - } - } - else - { - /* Timeout management */ - if ((((HAL_GetTick() - tickstart) >= Timeout) && (Timeout != HAL_MAX_DELAY)) || (Timeout == 0U)) - { - errorcode = HAL_TIMEOUT; - goto error; - } - } - } - } -#if (USE_SPI_CRC != 0U) - /* Enable CRC Transmission */ - if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) - { - SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT); - } -#endif /* USE_SPI_CRC */ - - /* Check the end of the transaction */ - if (SPI_EndRxTxTransaction(hspi, Timeout, tickstart) != HAL_OK) - { - hspi->ErrorCode = HAL_SPI_ERROR_FLAG; - } - - /* Clear overrun flag in 2 Lines communication mode because received is not read */ - if (hspi->Init.Direction == SPI_DIRECTION_2LINES) - { - __HAL_SPI_CLEAR_OVRFLAG(hspi); - } - - if (hspi->ErrorCode != HAL_SPI_ERROR_NONE) - { - errorcode = HAL_ERROR; - } - -error: - hspi->State = HAL_SPI_STATE_READY; - /* Process Unlocked */ - __HAL_UNLOCK(hspi); - return errorcode; -} - -/** - * @brief Receive an amount of data in blocking mode. - * @param hspi pointer to a SPI_HandleTypeDef structure that contains - * the configuration information for SPI module. - * @param pData pointer to data buffer - * @param Size amount of data to be received - * @param Timeout Timeout duration - * @retval HAL status - */ -HAL_StatusTypeDef HAL_SPI_Receive(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size, uint32_t Timeout) -{ - uint32_t tickstart; - HAL_StatusTypeDef errorcode = HAL_OK; - - if ((hspi->Init.DataSize > SPI_DATASIZE_8BIT) || ((hspi->Init.DataSize <= SPI_DATASIZE_8BIT) && (Size > 1U))) - { - /* in this case, 16-bit access is performed on Data - So, check Data is 16-bit aligned address */ - assert_param(IS_SPI_16BIT_ALIGNED_ADDRESS(pData)); - } - - if ((hspi->Init.Mode == SPI_MODE_MASTER) && (hspi->Init.Direction == SPI_DIRECTION_2LINES)) - { - hspi->State = HAL_SPI_STATE_BUSY_RX; - /* Call transmit-receive function to send Dummy data on Tx line and generate clock on CLK line */ - return HAL_SPI_TransmitReceive(hspi, pData, pData, Size, Timeout); - } - - /* Process Locked */ - __HAL_LOCK(hspi); - - /* Init tickstart for timeout management*/ - tickstart = HAL_GetTick(); - - if (hspi->State != HAL_SPI_STATE_READY) - { - errorcode = HAL_BUSY; - goto error; - } - - if ((pData == NULL) || (Size == 0U)) - { - errorcode = HAL_ERROR; - goto error; - } - - /* Set the transaction information */ - hspi->State = HAL_SPI_STATE_BUSY_RX; - hspi->ErrorCode = HAL_SPI_ERROR_NONE; - hspi->pRxBuffPtr = (uint8_t *)pData; - hspi->RxXferSize = Size; - hspi->RxXferCount = Size; - - /*Init field not used in handle to zero */ - hspi->pTxBuffPtr = (uint8_t *)NULL; - hspi->TxXferSize = 0U; - hspi->TxXferCount = 0U; - hspi->RxISR = NULL; - hspi->TxISR = NULL; - -#if (USE_SPI_CRC != 0U) - /* Reset CRC Calculation */ - if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) - { - SPI_RESET_CRC(hspi); - /* this is done to handle the CRCNEXT before the latest data */ - hspi->RxXferCount--; - } -#endif /* USE_SPI_CRC */ - - /* Set the Rx Fifo threshold */ - if (hspi->Init.DataSize > SPI_DATASIZE_8BIT) - { - /* Set RX Fifo threshold according the reception data length: 16bit */ - CLEAR_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD); - } - else - { - /* Set RX Fifo threshold according the reception data length: 8bit */ - SET_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD); - } - - /* Configure communication direction: 1Line */ - if (hspi->Init.Direction == SPI_DIRECTION_1LINE) - { - SPI_1LINE_RX(hspi); - } - - /* Check if the SPI is already enabled */ - if ((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE) - { - /* Enable SPI peripheral */ - __HAL_SPI_ENABLE(hspi); - } - - /* Receive data in 8 Bit mode */ - if (hspi->Init.DataSize <= SPI_DATASIZE_8BIT) - { - /* Transfer loop */ - while (hspi->RxXferCount > 0U) - { - /* Check the RXNE flag */ - if (__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_RXNE)) - { - /* read the received data */ - (* (uint8_t *)hspi->pRxBuffPtr) = *(__IO uint8_t *)&hspi->Instance->DR; - hspi->pRxBuffPtr += sizeof(uint8_t); - hspi->RxXferCount--; - } - else - { - /* Timeout management */ - if ((((HAL_GetTick() - tickstart) >= Timeout) && (Timeout != HAL_MAX_DELAY)) || (Timeout == 0U)) - { - errorcode = HAL_TIMEOUT; - goto error; - } - } - } - } - else - { - /* Transfer loop */ - while (hspi->RxXferCount > 0U) - { - /* Check the RXNE flag */ - if (__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_RXNE)) - { - *((uint16_t *)hspi->pRxBuffPtr) = (uint16_t)hspi->Instance->DR; - hspi->pRxBuffPtr += sizeof(uint16_t); - hspi->RxXferCount--; - } - else - { - /* Timeout management */ - if ((((HAL_GetTick() - tickstart) >= Timeout) && (Timeout != HAL_MAX_DELAY)) || (Timeout == 0U)) - { - errorcode = HAL_TIMEOUT; - goto error; - } - } - } - } - -#if (USE_SPI_CRC != 0U) - /* Handle the CRC Transmission */ - if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) - { - /* freeze the CRC before the latest data */ - SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT); - - /* Read the latest data */ - if (SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_RXNE, SET, Timeout, tickstart) != HAL_OK) - { - /* the latest data has not been received */ - errorcode = HAL_TIMEOUT; - goto error; - } - - /* Receive last data in 16 Bit mode */ - if (hspi->Init.DataSize > SPI_DATASIZE_8BIT) - { - *((uint16_t *)hspi->pRxBuffPtr) = (uint16_t)hspi->Instance->DR; - } - /* Receive last data in 8 Bit mode */ - else - { - (*(uint8_t *)hspi->pRxBuffPtr) = *(__IO uint8_t *)&hspi->Instance->DR; - } - - /* Wait the CRC data */ - if (SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_RXNE, SET, Timeout, tickstart) != HAL_OK) - { - SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC); - errorcode = HAL_TIMEOUT; - goto error; - } - - /* Read CRC to Flush DR and RXNE flag */ - if (hspi->Init.DataSize == SPI_DATASIZE_16BIT) - { - /* Read 16bit CRC */ - READ_REG(hspi->Instance->DR); - } - else - { - /* Read 8bit CRC */ - READ_REG(*(__IO uint8_t *)&hspi->Instance->DR); - - if ((hspi->Init.DataSize == SPI_DATASIZE_8BIT) && (hspi->Init.CRCLength == SPI_CRC_LENGTH_16BIT)) - { - if (SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_RXNE, SET, Timeout, tickstart) != HAL_OK) - { - /* Error on the CRC reception */ - SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC); - errorcode = HAL_TIMEOUT; - goto error; - } - /* Read 8bit CRC again in case of 16bit CRC in 8bit Data mode */ - READ_REG(*(__IO uint8_t *)&hspi->Instance->DR); - } - } - } -#endif /* USE_SPI_CRC */ - - /* Check the end of the transaction */ - if (SPI_EndRxTransaction(hspi, Timeout, tickstart) != HAL_OK) - { - hspi->ErrorCode = HAL_SPI_ERROR_FLAG; - } - -#if (USE_SPI_CRC != 0U) - /* Check if CRC error occurred */ - if (__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR)) - { - SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC); - __HAL_SPI_CLEAR_CRCERRFLAG(hspi); - } -#endif /* USE_SPI_CRC */ - - if (hspi->ErrorCode != HAL_SPI_ERROR_NONE) - { - errorcode = HAL_ERROR; - } - -error : - hspi->State = HAL_SPI_STATE_READY; - __HAL_UNLOCK(hspi); - return errorcode; -} - -/** - * @brief Transmit and Receive an amount of data in blocking mode. - * @param hspi pointer to a SPI_HandleTypeDef structure that contains - * the configuration information for SPI module. - * @param pTxData pointer to transmission data buffer - * @param pRxData pointer to reception data buffer - * @param Size amount of data to be sent and received - * @param Timeout Timeout duration - * @retval HAL status - */ -HAL_StatusTypeDef HAL_SPI_TransmitReceive(SPI_HandleTypeDef *hspi, uint8_t *pTxData, uint8_t *pRxData, uint16_t Size, - uint32_t Timeout) -{ - uint16_t initial_TxXferCount; - uint16_t initial_RxXferCount; - uint32_t tmp_mode; - HAL_SPI_StateTypeDef tmp_state; - uint32_t tickstart; -#if (USE_SPI_CRC != 0U) - uint32_t spi_cr1; - uint32_t spi_cr2; -#endif /* USE_SPI_CRC */ - - /* Variable used to alternate Rx and Tx during transfer */ - uint32_t txallowed = 1U; - HAL_StatusTypeDef errorcode = HAL_OK; - - if ((hspi->Init.DataSize > SPI_DATASIZE_8BIT) || ((hspi->Init.DataSize <= SPI_DATASIZE_8BIT) && (Size > 1U))) - { - /* in this case, 16-bit access is performed on Data - So, check Data is 16-bit aligned address */ - assert_param(IS_SPI_16BIT_ALIGNED_ADDRESS(pTxData)); - assert_param(IS_SPI_16BIT_ALIGNED_ADDRESS(pRxData)); - } - - /* Check Direction parameter */ - assert_param(IS_SPI_DIRECTION_2LINES(hspi->Init.Direction)); - - /* Process Locked */ - __HAL_LOCK(hspi); - - /* Init tickstart for timeout management*/ - tickstart = HAL_GetTick(); - - /* Init temporary variables */ - tmp_state = hspi->State; - tmp_mode = hspi->Init.Mode; - initial_TxXferCount = Size; - initial_RxXferCount = Size; -#if (USE_SPI_CRC != 0U) - spi_cr1 = READ_REG(hspi->Instance->CR1); - spi_cr2 = READ_REG(hspi->Instance->CR2); -#endif /* USE_SPI_CRC */ - - if (!((tmp_state == HAL_SPI_STATE_READY) || \ - ((tmp_mode == SPI_MODE_MASTER) && (hspi->Init.Direction == SPI_DIRECTION_2LINES) && (tmp_state == HAL_SPI_STATE_BUSY_RX)))) - { - errorcode = HAL_BUSY; - goto error; - } - - if ((pTxData == NULL) || (pRxData == NULL) || (Size == 0U)) - { - errorcode = HAL_ERROR; - goto error; - } - - /* Don't overwrite in case of HAL_SPI_STATE_BUSY_RX */ - if (hspi->State != HAL_SPI_STATE_BUSY_RX) - { - hspi->State = HAL_SPI_STATE_BUSY_TX_RX; - } - - /* Set the transaction information */ - hspi->ErrorCode = HAL_SPI_ERROR_NONE; - hspi->pRxBuffPtr = (uint8_t *)pRxData; - hspi->RxXferCount = Size; - hspi->RxXferSize = Size; - hspi->pTxBuffPtr = (uint8_t *)pTxData; - hspi->TxXferCount = Size; - hspi->TxXferSize = Size; - - /*Init field not used in handle to zero */ - hspi->RxISR = NULL; - hspi->TxISR = NULL; - -#if (USE_SPI_CRC != 0U) - /* Reset CRC Calculation */ - if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) - { - SPI_RESET_CRC(hspi); - } -#endif /* USE_SPI_CRC */ - - /* Set the Rx Fifo threshold */ - if ((hspi->Init.DataSize > SPI_DATASIZE_8BIT) || (initial_RxXferCount > 1U)) - { - /* Set fiforxthreshold according the reception data length: 16bit */ - CLEAR_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD); - } - else - { - /* Set fiforxthreshold according the reception data length: 8bit */ - SET_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD); - } - - /* Check if the SPI is already enabled */ - if ((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE) - { - /* Enable SPI peripheral */ - __HAL_SPI_ENABLE(hspi); - } - - /* Transmit and Receive data in 16 Bit mode */ - if (hspi->Init.DataSize > SPI_DATASIZE_8BIT) - { - if ((hspi->Init.Mode == SPI_MODE_SLAVE) || (initial_TxXferCount == 0x01U)) - { - hspi->Instance->DR = *((uint16_t *)hspi->pTxBuffPtr); - hspi->pTxBuffPtr += sizeof(uint16_t); - hspi->TxXferCount--; - } - while ((hspi->TxXferCount > 0U) || (hspi->RxXferCount > 0U)) - { - /* Check TXE flag */ - if ((__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_TXE)) && (hspi->TxXferCount > 0U) && (txallowed == 1U)) - { - hspi->Instance->DR = *((uint16_t *)hspi->pTxBuffPtr); - hspi->pTxBuffPtr += sizeof(uint16_t); - hspi->TxXferCount--; - /* Next Data is a reception (Rx). Tx not allowed */ - txallowed = 0U; - -#if (USE_SPI_CRC != 0U) - /* Enable CRC Transmission */ - if ((hspi->TxXferCount == 0U) && (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)) - { - /* Set NSS Soft to received correctly the CRC on slave mode with NSS pulse activated */ - if ((READ_BIT(spi_cr1, SPI_CR1_MSTR) == 0U) && (READ_BIT(spi_cr2, SPI_CR2_NSSP) == SPI_CR2_NSSP)) - { - SET_BIT(hspi->Instance->CR1, SPI_CR1_SSM); - } - SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT); - } -#endif /* USE_SPI_CRC */ - } - - /* Check RXNE flag */ - if ((__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_RXNE)) && (hspi->RxXferCount > 0U)) - { - *((uint16_t *)hspi->pRxBuffPtr) = (uint16_t)hspi->Instance->DR; - hspi->pRxBuffPtr += sizeof(uint16_t); - hspi->RxXferCount--; - /* Next Data is a Transmission (Tx). Tx is allowed */ - txallowed = 1U; - } - if (((HAL_GetTick() - tickstart) >= Timeout) && (Timeout != HAL_MAX_DELAY)) - { - errorcode = HAL_TIMEOUT; - goto error; - } - } - } - /* Transmit and Receive data in 8 Bit mode */ - else - { - if ((hspi->Init.Mode == SPI_MODE_SLAVE) || (initial_TxXferCount == 0x01U)) - { - if (hspi->TxXferCount > 1U) - { - hspi->Instance->DR = *((uint16_t *)hspi->pTxBuffPtr); - hspi->pTxBuffPtr += sizeof(uint16_t); - hspi->TxXferCount -= 2U; - } - else - { - *(__IO uint8_t *)&hspi->Instance->DR = (*hspi->pTxBuffPtr); - hspi->pTxBuffPtr++; - hspi->TxXferCount--; - } - } - while ((hspi->TxXferCount > 0U) || (hspi->RxXferCount > 0U)) - { - /* Check TXE flag */ - if ((__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_TXE)) && (hspi->TxXferCount > 0U) && (txallowed == 1U)) - { - if (hspi->TxXferCount > 1U) - { - hspi->Instance->DR = *((uint16_t *)hspi->pTxBuffPtr); - hspi->pTxBuffPtr += sizeof(uint16_t); - hspi->TxXferCount -= 2U; - } - else - { - *(__IO uint8_t *)&hspi->Instance->DR = (*hspi->pTxBuffPtr); - hspi->pTxBuffPtr++; - hspi->TxXferCount--; - } - /* Next Data is a reception (Rx). Tx not allowed */ - txallowed = 0U; - -#if (USE_SPI_CRC != 0U) - /* Enable CRC Transmission */ - if ((hspi->TxXferCount == 0U) && (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)) - { - /* Set NSS Soft to received correctly the CRC on slave mode with NSS pulse activated */ - if ((READ_BIT(spi_cr1, SPI_CR1_MSTR) == 0U) && (READ_BIT(spi_cr2, SPI_CR2_NSSP) == SPI_CR2_NSSP)) - { - SET_BIT(hspi->Instance->CR1, SPI_CR1_SSM); - } - SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT); - } -#endif /* USE_SPI_CRC */ - } - - /* Wait until RXNE flag is reset */ - if ((__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_RXNE)) && (hspi->RxXferCount > 0U)) - { - if (hspi->RxXferCount > 1U) - { - *((uint16_t *)hspi->pRxBuffPtr) = (uint16_t)hspi->Instance->DR; - hspi->pRxBuffPtr += sizeof(uint16_t); - hspi->RxXferCount -= 2U; - if (hspi->RxXferCount <= 1U) - { - /* Set RX Fifo threshold before to switch on 8 bit data size */ - SET_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD); - } - } - else - { - (*(uint8_t *)hspi->pRxBuffPtr) = *(__IO uint8_t *)&hspi->Instance->DR; - hspi->pRxBuffPtr++; - hspi->RxXferCount--; - } - /* Next Data is a Transmission (Tx). Tx is allowed */ - txallowed = 1U; - } - if ((((HAL_GetTick() - tickstart) >= Timeout) && ((Timeout != HAL_MAX_DELAY))) || (Timeout == 0U)) - { - errorcode = HAL_TIMEOUT; - goto error; - } - } - } - -#if (USE_SPI_CRC != 0U) - /* Read CRC from DR to close CRC calculation process */ - if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) - { - /* Wait until TXE flag */ - if (SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_RXNE, SET, Timeout, tickstart) != HAL_OK) - { - /* Error on the CRC reception */ - SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC); - errorcode = HAL_TIMEOUT; - goto error; - } - /* Read CRC */ - if (hspi->Init.DataSize == SPI_DATASIZE_16BIT) - { - /* Read 16bit CRC */ - READ_REG(hspi->Instance->DR); - } - else - { - /* Read 8bit CRC */ - READ_REG(*(__IO uint8_t *)&hspi->Instance->DR); - - if (hspi->Init.CRCLength == SPI_CRC_LENGTH_16BIT) - { - if (SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_RXNE, SET, Timeout, tickstart) != HAL_OK) - { - /* Error on the CRC reception */ - SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC); - errorcode = HAL_TIMEOUT; - goto error; - } - /* Read 8bit CRC again in case of 16bit CRC in 8bit Data mode */ - READ_REG(*(__IO uint8_t *)&hspi->Instance->DR); - } - } - } - - /* Check if CRC error occurred */ - if (__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR)) - { - SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC); - /* Clear CRC Flag */ - __HAL_SPI_CLEAR_CRCERRFLAG(hspi); - - errorcode = HAL_ERROR; - } -#endif /* USE_SPI_CRC */ - - /* Check the end of the transaction */ - if (SPI_EndRxTxTransaction(hspi, Timeout, tickstart) != HAL_OK) - { - errorcode = HAL_ERROR; - hspi->ErrorCode = HAL_SPI_ERROR_FLAG; - } - -error : - hspi->State = HAL_SPI_STATE_READY; - __HAL_UNLOCK(hspi); - return errorcode; -} - -/** - * @brief Transmit an amount of data in non-blocking mode with Interrupt. - * @param hspi pointer to a SPI_HandleTypeDef structure that contains - * the configuration information for SPI module. - * @param pData pointer to data buffer - * @param Size amount of data to be sent - * @retval HAL status - */ -HAL_StatusTypeDef HAL_SPI_Transmit_IT(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size) -{ - HAL_StatusTypeDef errorcode = HAL_OK; - - if ((hspi->Init.DataSize > SPI_DATASIZE_8BIT) || ((hspi->Init.DataSize <= SPI_DATASIZE_8BIT) && (Size > 1U))) - { - /* in this case, 16-bit access is performed on Data - So, check Data is 16-bit aligned address */ - assert_param(IS_SPI_16BIT_ALIGNED_ADDRESS(pData)); - } - - /* Check Direction parameter */ - assert_param(IS_SPI_DIRECTION_2LINES_OR_1LINE(hspi->Init.Direction)); - - /* Process Locked */ - __HAL_LOCK(hspi); - - if ((pData == NULL) || (Size == 0U)) - { - errorcode = HAL_ERROR; - goto error; - } - - if (hspi->State != HAL_SPI_STATE_READY) - { - errorcode = HAL_BUSY; - goto error; - } - - /* Set the transaction information */ - hspi->State = HAL_SPI_STATE_BUSY_TX; - hspi->ErrorCode = HAL_SPI_ERROR_NONE; - hspi->pTxBuffPtr = (uint8_t *)pData; - hspi->TxXferSize = Size; - hspi->TxXferCount = Size; - - /* Init field not used in handle to zero */ - hspi->pRxBuffPtr = (uint8_t *)NULL; - hspi->RxXferSize = 0U; - hspi->RxXferCount = 0U; - hspi->RxISR = NULL; - - /* Set the function for IT treatment */ - if (hspi->Init.DataSize > SPI_DATASIZE_8BIT) - { - hspi->TxISR = SPI_TxISR_16BIT; - } - else - { - hspi->TxISR = SPI_TxISR_8BIT; - } - - /* Configure communication direction : 1Line */ - if (hspi->Init.Direction == SPI_DIRECTION_1LINE) - { - SPI_1LINE_TX(hspi); - } - -#if (USE_SPI_CRC != 0U) - /* Reset CRC Calculation */ - if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) - { - SPI_RESET_CRC(hspi); - } -#endif /* USE_SPI_CRC */ - - /* Enable TXE and ERR interrupt */ - __HAL_SPI_ENABLE_IT(hspi, (SPI_IT_TXE | SPI_IT_ERR)); - - - /* Check if the SPI is already enabled */ - if ((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE) - { - /* Enable SPI peripheral */ - __HAL_SPI_ENABLE(hspi); - } - -error : - __HAL_UNLOCK(hspi); - return errorcode; -} - -/** - * @brief Receive an amount of data in non-blocking mode with Interrupt. - * @param hspi pointer to a SPI_HandleTypeDef structure that contains - * the configuration information for SPI module. - * @param pData pointer to data buffer - * @param Size amount of data to be sent - * @retval HAL status - */ -HAL_StatusTypeDef HAL_SPI_Receive_IT(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size) -{ - HAL_StatusTypeDef errorcode = HAL_OK; - - if ((hspi->Init.DataSize > SPI_DATASIZE_8BIT) || ((hspi->Init.DataSize <= SPI_DATASIZE_8BIT) && (Size > 1U))) - { - /* in this case, 16-bit access is performed on Data - So, check Data is 16-bit aligned address */ - assert_param(IS_SPI_16BIT_ALIGNED_ADDRESS(pData)); - } - - if ((hspi->Init.Direction == SPI_DIRECTION_2LINES) && (hspi->Init.Mode == SPI_MODE_MASTER)) - { - hspi->State = HAL_SPI_STATE_BUSY_RX; - /* Call transmit-receive function to send Dummy data on Tx line and generate clock on CLK line */ - return HAL_SPI_TransmitReceive_IT(hspi, pData, pData, Size); - } - - /* Process Locked */ - __HAL_LOCK(hspi); - - if (hspi->State != HAL_SPI_STATE_READY) - { - errorcode = HAL_BUSY; - goto error; - } - - if ((pData == NULL) || (Size == 0U)) - { - errorcode = HAL_ERROR; - goto error; - } - - /* Set the transaction information */ - hspi->State = HAL_SPI_STATE_BUSY_RX; - hspi->ErrorCode = HAL_SPI_ERROR_NONE; - hspi->pRxBuffPtr = (uint8_t *)pData; - hspi->RxXferSize = Size; - hspi->RxXferCount = Size; - - /* Init field not used in handle to zero */ - hspi->pTxBuffPtr = (uint8_t *)NULL; - hspi->TxXferSize = 0U; - hspi->TxXferCount = 0U; - hspi->TxISR = NULL; - - /* Check the data size to adapt Rx threshold and the set the function for IT treatment */ - if (hspi->Init.DataSize > SPI_DATASIZE_8BIT) - { - /* Set RX Fifo threshold according the reception data length: 16 bit */ - CLEAR_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD); - hspi->RxISR = SPI_RxISR_16BIT; - } - else - { - /* Set RX Fifo threshold according the reception data length: 8 bit */ - SET_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD); - hspi->RxISR = SPI_RxISR_8BIT; - } - - /* Configure communication direction : 1Line */ - if (hspi->Init.Direction == SPI_DIRECTION_1LINE) - { - SPI_1LINE_RX(hspi); - } - -#if (USE_SPI_CRC != 0U) - /* Reset CRC Calculation */ - if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) - { - hspi->CRCSize = 1U; - if ((hspi->Init.DataSize <= SPI_DATASIZE_8BIT) && (hspi->Init.CRCLength == SPI_CRC_LENGTH_16BIT)) - { - hspi->CRCSize = 2U; - } - SPI_RESET_CRC(hspi); - } - else - { - hspi->CRCSize = 0U; - } -#endif /* USE_SPI_CRC */ - - /* Enable TXE and ERR interrupt */ - __HAL_SPI_ENABLE_IT(hspi, (SPI_IT_RXNE | SPI_IT_ERR)); - - /* Note : The SPI must be enabled after unlocking current process - to avoid the risk of SPI interrupt handle execution before current - process unlock */ - - /* Check if the SPI is already enabled */ - if ((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE) - { - /* Enable SPI peripheral */ - __HAL_SPI_ENABLE(hspi); - } - -error : - /* Process Unlocked */ - __HAL_UNLOCK(hspi); - return errorcode; -} - -/** - * @brief Transmit and Receive an amount of data in non-blocking mode with Interrupt. - * @param hspi pointer to a SPI_HandleTypeDef structure that contains - * the configuration information for SPI module. - * @param pTxData pointer to transmission data buffer - * @param pRxData pointer to reception data buffer - * @param Size amount of data to be sent and received - * @retval HAL status - */ -HAL_StatusTypeDef HAL_SPI_TransmitReceive_IT(SPI_HandleTypeDef *hspi, uint8_t *pTxData, uint8_t *pRxData, uint16_t Size) -{ - uint32_t tmp_mode; - HAL_SPI_StateTypeDef tmp_state; - HAL_StatusTypeDef errorcode = HAL_OK; - - if ((hspi->Init.DataSize > SPI_DATASIZE_8BIT) || ((hspi->Init.DataSize <= SPI_DATASIZE_8BIT) && (Size > 1U))) - { - /* in this case, 16-bit access is performed on Data - So, check Data is 16-bit aligned address */ - assert_param(IS_SPI_16BIT_ALIGNED_ADDRESS(pTxData)); - assert_param(IS_SPI_16BIT_ALIGNED_ADDRESS(pRxData)); - } - - /* Check Direction parameter */ - assert_param(IS_SPI_DIRECTION_2LINES(hspi->Init.Direction)); - - /* Process locked */ - __HAL_LOCK(hspi); - - /* Init temporary variables */ - tmp_state = hspi->State; - tmp_mode = hspi->Init.Mode; - - if (!((tmp_state == HAL_SPI_STATE_READY) || \ - ((tmp_mode == SPI_MODE_MASTER) && (hspi->Init.Direction == SPI_DIRECTION_2LINES) && (tmp_state == HAL_SPI_STATE_BUSY_RX)))) - { - errorcode = HAL_BUSY; - goto error; - } - - if ((pTxData == NULL) || (pRxData == NULL) || (Size == 0U)) - { - errorcode = HAL_ERROR; - goto error; - } - - /* Don't overwrite in case of HAL_SPI_STATE_BUSY_RX */ - if (hspi->State != HAL_SPI_STATE_BUSY_RX) - { - hspi->State = HAL_SPI_STATE_BUSY_TX_RX; - } - - /* Set the transaction information */ - hspi->ErrorCode = HAL_SPI_ERROR_NONE; - hspi->pTxBuffPtr = (uint8_t *)pTxData; - hspi->TxXferSize = Size; - hspi->TxXferCount = Size; - hspi->pRxBuffPtr = (uint8_t *)pRxData; - hspi->RxXferSize = Size; - hspi->RxXferCount = Size; - - /* Set the function for IT treatment */ - if (hspi->Init.DataSize > SPI_DATASIZE_8BIT) - { - hspi->RxISR = SPI_2linesRxISR_16BIT; - hspi->TxISR = SPI_2linesTxISR_16BIT; - } - else - { - hspi->RxISR = SPI_2linesRxISR_8BIT; - hspi->TxISR = SPI_2linesTxISR_8BIT; - } - -#if (USE_SPI_CRC != 0U) - /* Reset CRC Calculation */ - if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) - { - hspi->CRCSize = 1U; - if ((hspi->Init.DataSize <= SPI_DATASIZE_8BIT) && (hspi->Init.CRCLength == SPI_CRC_LENGTH_16BIT)) - { - hspi->CRCSize = 2U; - } - SPI_RESET_CRC(hspi); - } - else - { - hspi->CRCSize = 0U; - } -#endif /* USE_SPI_CRC */ - - /* Check if packing mode is enabled and if there is more than 2 data to receive */ - if ((hspi->Init.DataSize > SPI_DATASIZE_8BIT) || (Size >= 2U)) - { - /* Set RX Fifo threshold according the reception data length: 16 bit */ - CLEAR_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD); - } - else - { - /* Set RX Fifo threshold according the reception data length: 8 bit */ - SET_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD); - } - - /* Enable TXE, RXNE and ERR interrupt */ - __HAL_SPI_ENABLE_IT(hspi, (SPI_IT_TXE | SPI_IT_RXNE | SPI_IT_ERR)); - - /* Check if the SPI is already enabled */ - if ((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE) - { - /* Enable SPI peripheral */ - __HAL_SPI_ENABLE(hspi); - } - -error : - /* Process Unlocked */ - __HAL_UNLOCK(hspi); - return errorcode; -} - -/** - * @brief Transmit an amount of data in non-blocking mode with DMA. - * @param hspi pointer to a SPI_HandleTypeDef structure that contains - * the configuration information for SPI module. - * @param pData pointer to data buffer - * @param Size amount of data to be sent - * @retval HAL status - */ -HAL_StatusTypeDef HAL_SPI_Transmit_DMA(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size) -{ - HAL_StatusTypeDef errorcode = HAL_OK; - - /* Check tx dma handle */ - assert_param(IS_SPI_DMA_HANDLE(hspi->hdmatx)); - - /* Check Direction parameter */ - assert_param(IS_SPI_DIRECTION_2LINES_OR_1LINE(hspi->Init.Direction)); - - /* Process Locked */ - __HAL_LOCK(hspi); - - if (hspi->State != HAL_SPI_STATE_READY) - { - errorcode = HAL_BUSY; - goto error; - } - - if ((pData == NULL) || (Size == 0U)) - { - errorcode = HAL_ERROR; - goto error; - } - - /* Set the transaction information */ - hspi->State = HAL_SPI_STATE_BUSY_TX; - hspi->ErrorCode = HAL_SPI_ERROR_NONE; - hspi->pTxBuffPtr = (uint8_t *)pData; - hspi->TxXferSize = Size; - hspi->TxXferCount = Size; - - /* Init field not used in handle to zero */ - hspi->pRxBuffPtr = (uint8_t *)NULL; - hspi->TxISR = NULL; - hspi->RxISR = NULL; - hspi->RxXferSize = 0U; - hspi->RxXferCount = 0U; - - /* Configure communication direction : 1Line */ - if (hspi->Init.Direction == SPI_DIRECTION_1LINE) - { - SPI_1LINE_TX(hspi); - } - -#if (USE_SPI_CRC != 0U) - /* Reset CRC Calculation */ - if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) - { - SPI_RESET_CRC(hspi); - } -#endif /* USE_SPI_CRC */ - - /* Set the SPI TxDMA Half transfer complete callback */ - hspi->hdmatx->XferHalfCpltCallback = SPI_DMAHalfTransmitCplt; - - /* Set the SPI TxDMA transfer complete callback */ - hspi->hdmatx->XferCpltCallback = SPI_DMATransmitCplt; - - /* Set the DMA error callback */ - hspi->hdmatx->XferErrorCallback = SPI_DMAError; - - /* Set the DMA AbortCpltCallback */ - hspi->hdmatx->XferAbortCallback = NULL; - - CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_LDMATX); - /* Packing mode is enabled only if the DMA setting is HALWORD */ - if ((hspi->Init.DataSize <= SPI_DATASIZE_8BIT) && (hspi->hdmatx->Init.MemDataAlignment == DMA_MDATAALIGN_HALFWORD)) - { - /* Check the even/odd of the data size + crc if enabled */ - if ((hspi->TxXferCount & 0x1U) == 0U) - { - CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_LDMATX); - hspi->TxXferCount = (hspi->TxXferCount >> 1U); - } - else - { - SET_BIT(hspi->Instance->CR2, SPI_CR2_LDMATX); - hspi->TxXferCount = (hspi->TxXferCount >> 1U) + 1U; - } - } - - /* Enable the Tx DMA Stream/Channel */ - if (HAL_OK != HAL_DMA_Start_IT(hspi->hdmatx, (uint32_t)hspi->pTxBuffPtr, (uint32_t)&hspi->Instance->DR, - hspi->TxXferCount)) - { - /* Update SPI error code */ - SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_DMA); - errorcode = HAL_ERROR; - - hspi->State = HAL_SPI_STATE_READY; - goto error; - } - - /* Check if the SPI is already enabled */ - if ((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE) - { - /* Enable SPI peripheral */ - __HAL_SPI_ENABLE(hspi); - } - - /* Enable the SPI Error Interrupt Bit */ - __HAL_SPI_ENABLE_IT(hspi, (SPI_IT_ERR)); - - /* Enable Tx DMA Request */ - SET_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN); - -error : - /* Process Unlocked */ - __HAL_UNLOCK(hspi); - return errorcode; -} - -/** - * @brief Receive an amount of data in non-blocking mode with DMA. - * @note In case of MASTER mode and SPI_DIRECTION_2LINES direction, hdmatx shall be defined. - * @param hspi pointer to a SPI_HandleTypeDef structure that contains - * the configuration information for SPI module. - * @param pData pointer to data buffer - * @note When the CRC feature is enabled the pData Length must be Size + 1. - * @param Size amount of data to be sent - * @retval HAL status - */ -HAL_StatusTypeDef HAL_SPI_Receive_DMA(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size) -{ - HAL_StatusTypeDef errorcode = HAL_OK; - - /* Check rx dma handle */ - assert_param(IS_SPI_DMA_HANDLE(hspi->hdmarx)); - - if ((hspi->Init.Direction == SPI_DIRECTION_2LINES) && (hspi->Init.Mode == SPI_MODE_MASTER)) - { - hspi->State = HAL_SPI_STATE_BUSY_RX; - - /* Check tx dma handle */ - assert_param(IS_SPI_DMA_HANDLE(hspi->hdmatx)); - - /* Call transmit-receive function to send Dummy data on Tx line and generate clock on CLK line */ - return HAL_SPI_TransmitReceive_DMA(hspi, pData, pData, Size); - } - - /* Process Locked */ - __HAL_LOCK(hspi); - - if (hspi->State != HAL_SPI_STATE_READY) - { - errorcode = HAL_BUSY; - goto error; - } - - if ((pData == NULL) || (Size == 0U)) - { - errorcode = HAL_ERROR; - goto error; - } - - /* Set the transaction information */ - hspi->State = HAL_SPI_STATE_BUSY_RX; - hspi->ErrorCode = HAL_SPI_ERROR_NONE; - hspi->pRxBuffPtr = (uint8_t *)pData; - hspi->RxXferSize = Size; - hspi->RxXferCount = Size; - - /*Init field not used in handle to zero */ - hspi->RxISR = NULL; - hspi->TxISR = NULL; - hspi->TxXferSize = 0U; - hspi->TxXferCount = 0U; - - /* Configure communication direction : 1Line */ - if (hspi->Init.Direction == SPI_DIRECTION_1LINE) - { - SPI_1LINE_RX(hspi); - } - -#if (USE_SPI_CRC != 0U) - /* Reset CRC Calculation */ - if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) - { - SPI_RESET_CRC(hspi); - } -#endif /* USE_SPI_CRC */ - -#if defined (STM32F030x6) || defined (STM32F030x8) || defined (STM32F031x6)|| defined (STM32F038xx) || defined (STM32F051x8) || defined (STM32F058xx) - /* Packing mode management is enabled by the DMA settings */ - if ((hspi->Init.DataSize <= SPI_DATASIZE_8BIT) && (hspi->hdmarx->Init.MemDataAlignment == DMA_MDATAALIGN_HALFWORD)) - { - /* Restriction the DMA data received is not allowed in this mode */ - errorcode = HAL_ERROR; - goto error; - } -#endif - - CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_LDMARX); - if (hspi->Init.DataSize > SPI_DATASIZE_8BIT) - { - /* Set RX Fifo threshold according the reception data length: 16bit */ - CLEAR_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD); - } - else - { - /* Set RX Fifo threshold according the reception data length: 8bit */ - SET_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD); - - if (hspi->hdmarx->Init.MemDataAlignment == DMA_MDATAALIGN_HALFWORD) - { - /* Set RX Fifo threshold according the reception data length: 16bit */ - CLEAR_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD); - - if ((hspi->RxXferCount & 0x1U) == 0x0U) - { - CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_LDMARX); - hspi->RxXferCount = hspi->RxXferCount >> 1U; - } - else - { - SET_BIT(hspi->Instance->CR2, SPI_CR2_LDMARX); - hspi->RxXferCount = (hspi->RxXferCount >> 1U) + 1U; - } - } - } - - /* Set the SPI RxDMA Half transfer complete callback */ - hspi->hdmarx->XferHalfCpltCallback = SPI_DMAHalfReceiveCplt; - - /* Set the SPI Rx DMA transfer complete callback */ - hspi->hdmarx->XferCpltCallback = SPI_DMAReceiveCplt; - - /* Set the DMA error callback */ - hspi->hdmarx->XferErrorCallback = SPI_DMAError; - - /* Set the DMA AbortCpltCallback */ - hspi->hdmarx->XferAbortCallback = NULL; - - /* Enable the Rx DMA Stream/Channel */ - if (HAL_OK != HAL_DMA_Start_IT(hspi->hdmarx, (uint32_t)&hspi->Instance->DR, (uint32_t)hspi->pRxBuffPtr, - hspi->RxXferCount)) - { - /* Update SPI error code */ - SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_DMA); - errorcode = HAL_ERROR; - - hspi->State = HAL_SPI_STATE_READY; - goto error; - } - - /* Check if the SPI is already enabled */ - if ((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE) - { - /* Enable SPI peripheral */ - __HAL_SPI_ENABLE(hspi); - } - - /* Enable the SPI Error Interrupt Bit */ - __HAL_SPI_ENABLE_IT(hspi, (SPI_IT_ERR)); - - /* Enable Rx DMA Request */ - SET_BIT(hspi->Instance->CR2, SPI_CR2_RXDMAEN); - -error: - /* Process Unlocked */ - __HAL_UNLOCK(hspi); - return errorcode; -} - -/** - * @brief Transmit and Receive an amount of data in non-blocking mode with DMA. - * @param hspi pointer to a SPI_HandleTypeDef structure that contains - * the configuration information for SPI module. - * @param pTxData pointer to transmission data buffer - * @param pRxData pointer to reception data buffer - * @note When the CRC feature is enabled the pRxData Length must be Size + 1 - * @param Size amount of data to be sent - * @retval HAL status - */ -HAL_StatusTypeDef HAL_SPI_TransmitReceive_DMA(SPI_HandleTypeDef *hspi, uint8_t *pTxData, uint8_t *pRxData, - uint16_t Size) -{ - uint32_t tmp_mode; - HAL_SPI_StateTypeDef tmp_state; - HAL_StatusTypeDef errorcode = HAL_OK; - - /* Check rx & tx dma handles */ - assert_param(IS_SPI_DMA_HANDLE(hspi->hdmarx)); - assert_param(IS_SPI_DMA_HANDLE(hspi->hdmatx)); - - /* Check Direction parameter */ - assert_param(IS_SPI_DIRECTION_2LINES(hspi->Init.Direction)); - - /* Process locked */ - __HAL_LOCK(hspi); - - /* Init temporary variables */ - tmp_state = hspi->State; - tmp_mode = hspi->Init.Mode; - - if (!((tmp_state == HAL_SPI_STATE_READY) || - ((tmp_mode == SPI_MODE_MASTER) && (hspi->Init.Direction == SPI_DIRECTION_2LINES) && (tmp_state == HAL_SPI_STATE_BUSY_RX)))) - { - errorcode = HAL_BUSY; - goto error; - } - - if ((pTxData == NULL) || (pRxData == NULL) || (Size == 0U)) - { - errorcode = HAL_ERROR; - goto error; - } - - /* Don't overwrite in case of HAL_SPI_STATE_BUSY_RX */ - if (hspi->State != HAL_SPI_STATE_BUSY_RX) - { - hspi->State = HAL_SPI_STATE_BUSY_TX_RX; - } - - /* Set the transaction information */ - hspi->ErrorCode = HAL_SPI_ERROR_NONE; - hspi->pTxBuffPtr = (uint8_t *)pTxData; - hspi->TxXferSize = Size; - hspi->TxXferCount = Size; - hspi->pRxBuffPtr = (uint8_t *)pRxData; - hspi->RxXferSize = Size; - hspi->RxXferCount = Size; - - /* Init field not used in handle to zero */ - hspi->RxISR = NULL; - hspi->TxISR = NULL; - -#if (USE_SPI_CRC != 0U) - /* Reset CRC Calculation */ - if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) - { - SPI_RESET_CRC(hspi); - } -#endif /* USE_SPI_CRC */ - -#if defined (STM32F030x6) || defined (STM32F030x8) || defined (STM32F031x6) || defined (STM32F038xx) || defined (STM32F051x8) || defined (STM32F058xx) - /* Packing mode management is enabled by the DMA settings */ - if ((hspi->Init.DataSize <= SPI_DATASIZE_8BIT) && (hspi->hdmarx->Init.MemDataAlignment == DMA_MDATAALIGN_HALFWORD)) - { - /* Restriction the DMA data received is not allowed in this mode */ - errorcode = HAL_ERROR; - goto error; - } -#endif - - /* Reset the threshold bit */ - CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_LDMATX | SPI_CR2_LDMARX); - - /* The packing mode management is enabled by the DMA settings according the spi data size */ - if (hspi->Init.DataSize > SPI_DATASIZE_8BIT) - { - /* Set fiforxthreshold according the reception data length: 16bit */ - CLEAR_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD); - } - else - { - /* Set RX Fifo threshold according the reception data length: 8bit */ - SET_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD); - - if (hspi->hdmatx->Init.MemDataAlignment == DMA_MDATAALIGN_HALFWORD) - { - if ((hspi->TxXferSize & 0x1U) == 0x0U) - { - CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_LDMATX); - hspi->TxXferCount = hspi->TxXferCount >> 1U; - } - else - { - SET_BIT(hspi->Instance->CR2, SPI_CR2_LDMATX); - hspi->TxXferCount = (hspi->TxXferCount >> 1U) + 1U; - } - } - - if (hspi->hdmarx->Init.MemDataAlignment == DMA_MDATAALIGN_HALFWORD) - { - /* Set RX Fifo threshold according the reception data length: 16bit */ - CLEAR_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD); - - if ((hspi->RxXferCount & 0x1U) == 0x0U) - { - CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_LDMARX); - hspi->RxXferCount = hspi->RxXferCount >> 1U; - } - else - { - SET_BIT(hspi->Instance->CR2, SPI_CR2_LDMARX); - hspi->RxXferCount = (hspi->RxXferCount >> 1U) + 1U; - } - } - } - - /* Check if we are in Rx only or in Rx/Tx Mode and configure the DMA transfer complete callback */ - if (hspi->State == HAL_SPI_STATE_BUSY_RX) - { - /* Set the SPI Rx DMA Half transfer complete callback */ - hspi->hdmarx->XferHalfCpltCallback = SPI_DMAHalfReceiveCplt; - hspi->hdmarx->XferCpltCallback = SPI_DMAReceiveCplt; - } - else - { - /* Set the SPI Tx/Rx DMA Half transfer complete callback */ - hspi->hdmarx->XferHalfCpltCallback = SPI_DMAHalfTransmitReceiveCplt; - hspi->hdmarx->XferCpltCallback = SPI_DMATransmitReceiveCplt; - } - - /* Set the DMA error callback */ - hspi->hdmarx->XferErrorCallback = SPI_DMAError; - - /* Set the DMA AbortCpltCallback */ - hspi->hdmarx->XferAbortCallback = NULL; - - /* Enable the Rx DMA Stream/Channel */ - if (HAL_OK != HAL_DMA_Start_IT(hspi->hdmarx, (uint32_t)&hspi->Instance->DR, (uint32_t)hspi->pRxBuffPtr, - hspi->RxXferCount)) - { - /* Update SPI error code */ - SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_DMA); - errorcode = HAL_ERROR; - - hspi->State = HAL_SPI_STATE_READY; - goto error; - } - - /* Enable Rx DMA Request */ - SET_BIT(hspi->Instance->CR2, SPI_CR2_RXDMAEN); - - /* Set the SPI Tx DMA transfer complete callback as NULL because the communication closing - is performed in DMA reception complete callback */ - hspi->hdmatx->XferHalfCpltCallback = NULL; - hspi->hdmatx->XferCpltCallback = NULL; - hspi->hdmatx->XferErrorCallback = NULL; - hspi->hdmatx->XferAbortCallback = NULL; - - /* Enable the Tx DMA Stream/Channel */ - if (HAL_OK != HAL_DMA_Start_IT(hspi->hdmatx, (uint32_t)hspi->pTxBuffPtr, (uint32_t)&hspi->Instance->DR, - hspi->TxXferCount)) - { - /* Update SPI error code */ - SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_DMA); - errorcode = HAL_ERROR; - - hspi->State = HAL_SPI_STATE_READY; - goto error; - } - - /* Check if the SPI is already enabled */ - if ((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE) - { - /* Enable SPI peripheral */ - __HAL_SPI_ENABLE(hspi); - } - /* Enable the SPI Error Interrupt Bit */ - __HAL_SPI_ENABLE_IT(hspi, (SPI_IT_ERR)); - - /* Enable Tx DMA Request */ - SET_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN); - -error : - /* Process Unlocked */ - __HAL_UNLOCK(hspi); - return errorcode; -} - -/** - * @brief Abort ongoing transfer (blocking mode). - * @param hspi SPI handle. - * @note This procedure could be used for aborting any ongoing transfer (Tx and Rx), - * started in Interrupt or DMA mode. - * This procedure performs following operations : - * - Disable SPI Interrupts (depending of transfer direction) - * - Disable the DMA transfer in the peripheral register (if enabled) - * - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode) - * - Set handle State to READY - * @note This procedure is executed in blocking mode : when exiting function, Abort is considered as completed. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_SPI_Abort(SPI_HandleTypeDef *hspi) -{ - HAL_StatusTypeDef errorcode; - __IO uint32_t count; - __IO uint32_t resetcount; - - /* Initialized local variable */ - errorcode = HAL_OK; - resetcount = SPI_DEFAULT_TIMEOUT * (SystemCoreClock / 24U / 1000U); - count = resetcount; - - /* Clear ERRIE interrupt to avoid error interrupts generation during Abort procedure */ - CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_ERRIE); - - /* Disable TXEIE, RXNEIE and ERRIE(mode fault event, overrun error, TI frame error) interrupts */ - if (HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_TXEIE)) - { - hspi->TxISR = SPI_AbortTx_ISR; - /* Wait HAL_SPI_STATE_ABORT state */ - do - { - if (count == 0U) - { - SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_ABORT); - break; - } - count--; - } while (hspi->State != HAL_SPI_STATE_ABORT); - /* Reset Timeout Counter */ - count = resetcount; - } - - if (HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_RXNEIE)) - { - hspi->RxISR = SPI_AbortRx_ISR; - /* Wait HAL_SPI_STATE_ABORT state */ - do - { - if (count == 0U) - { - SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_ABORT); - break; - } - count--; - } while (hspi->State != HAL_SPI_STATE_ABORT); - /* Reset Timeout Counter */ - count = resetcount; - } - - /* Disable the SPI DMA Tx request if enabled */ - if (HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_TXDMAEN)) - { - /* Abort the SPI DMA Tx Stream/Channel : use blocking DMA Abort API (no callback) */ - if (hspi->hdmatx != NULL) - { - /* Set the SPI DMA Abort callback : - will lead to call HAL_SPI_AbortCpltCallback() at end of DMA abort procedure */ - hspi->hdmatx->XferAbortCallback = NULL; - - /* Abort DMA Tx Handle linked to SPI Peripheral */ - if (HAL_DMA_Abort(hspi->hdmatx) != HAL_OK) - { - hspi->ErrorCode = HAL_SPI_ERROR_ABORT; - } - - /* Disable Tx DMA Request */ - CLEAR_BIT(hspi->Instance->CR2, (SPI_CR2_TXDMAEN)); - - if (SPI_EndRxTxTransaction(hspi, SPI_DEFAULT_TIMEOUT, HAL_GetTick()) != HAL_OK) - { - hspi->ErrorCode = HAL_SPI_ERROR_ABORT; - } - - /* Disable SPI Peripheral */ - __HAL_SPI_DISABLE(hspi); - - /* Empty the FRLVL fifo */ - if (SPI_WaitFifoStateUntilTimeout(hspi, SPI_FLAG_FRLVL, SPI_FRLVL_EMPTY, SPI_DEFAULT_TIMEOUT, HAL_GetTick()) != HAL_OK) - { - hspi->ErrorCode = HAL_SPI_ERROR_ABORT; - } - } - } - - /* Disable the SPI DMA Rx request if enabled */ - if (HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_RXDMAEN)) - { - /* Abort the SPI DMA Rx Stream/Channel : use blocking DMA Abort API (no callback) */ - if (hspi->hdmarx != NULL) - { - /* Set the SPI DMA Abort callback : - will lead to call HAL_SPI_AbortCpltCallback() at end of DMA abort procedure */ - hspi->hdmarx->XferAbortCallback = NULL; - - /* Abort DMA Rx Handle linked to SPI Peripheral */ - if (HAL_DMA_Abort(hspi->hdmarx) != HAL_OK) - { - hspi->ErrorCode = HAL_SPI_ERROR_ABORT; - } - - /* Disable peripheral */ - __HAL_SPI_DISABLE(hspi); - - /* Control the BSY flag */ - if (SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_BSY, RESET, SPI_DEFAULT_TIMEOUT, HAL_GetTick()) != HAL_OK) - { - hspi->ErrorCode = HAL_SPI_ERROR_ABORT; - } - - /* Empty the FRLVL fifo */ - if (SPI_WaitFifoStateUntilTimeout(hspi, SPI_FLAG_FRLVL, SPI_FRLVL_EMPTY, SPI_DEFAULT_TIMEOUT, HAL_GetTick()) != HAL_OK) - { - hspi->ErrorCode = HAL_SPI_ERROR_ABORT; - } - - /* Disable Rx DMA Request */ - CLEAR_BIT(hspi->Instance->CR2, (SPI_CR2_RXDMAEN)); - } - } - /* Reset Tx and Rx transfer counters */ - hspi->RxXferCount = 0U; - hspi->TxXferCount = 0U; - - /* Check error during Abort procedure */ - if (hspi->ErrorCode == HAL_SPI_ERROR_ABORT) - { - /* return HAL_Error in case of error during Abort procedure */ - errorcode = HAL_ERROR; - } - else - { - /* Reset errorCode */ - hspi->ErrorCode = HAL_SPI_ERROR_NONE; - } - - /* Clear the Error flags in the SR register */ - __HAL_SPI_CLEAR_OVRFLAG(hspi); - __HAL_SPI_CLEAR_FREFLAG(hspi); - - /* Restore hspi->state to ready */ - hspi->State = HAL_SPI_STATE_READY; - - return errorcode; -} - -/** - * @brief Abort ongoing transfer (Interrupt mode). - * @param hspi SPI handle. - * @note This procedure could be used for aborting any ongoing transfer (Tx and Rx), - * started in Interrupt or DMA mode. - * This procedure performs following operations : - * - Disable SPI Interrupts (depending of transfer direction) - * - Disable the DMA transfer in the peripheral register (if enabled) - * - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode) - * - Set handle State to READY - * - At abort completion, call user abort complete callback - * @note This procedure is executed in Interrupt mode, meaning that abort procedure could be - * considered as completed only when user abort complete callback is executed (not when exiting function). - * @retval HAL status - */ -HAL_StatusTypeDef HAL_SPI_Abort_IT(SPI_HandleTypeDef *hspi) -{ - HAL_StatusTypeDef errorcode; - uint32_t abortcplt ; - __IO uint32_t count; - __IO uint32_t resetcount; - - /* Initialized local variable */ - errorcode = HAL_OK; - abortcplt = 1U; - resetcount = SPI_DEFAULT_TIMEOUT * (SystemCoreClock / 24U / 1000U); - count = resetcount; - - /* Clear ERRIE interrupt to avoid error interrupts generation during Abort procedure */ - CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_ERRIE); - - /* Change Rx and Tx Irq Handler to Disable TXEIE, RXNEIE and ERRIE interrupts */ - if (HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_TXEIE)) - { - hspi->TxISR = SPI_AbortTx_ISR; - /* Wait HAL_SPI_STATE_ABORT state */ - do - { - if (count == 0U) - { - SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_ABORT); - break; - } - count--; - } while (hspi->State != HAL_SPI_STATE_ABORT); - /* Reset Timeout Counter */ - count = resetcount; - } - - if (HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_RXNEIE)) - { - hspi->RxISR = SPI_AbortRx_ISR; - /* Wait HAL_SPI_STATE_ABORT state */ - do - { - if (count == 0U) - { - SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_ABORT); - break; - } - count--; - } while (hspi->State != HAL_SPI_STATE_ABORT); - /* Reset Timeout Counter */ - count = resetcount; - } - - /* If DMA Tx and/or DMA Rx Handles are associated to SPI Handle, DMA Abort complete callbacks should be initialised - before any call to DMA Abort functions */ - /* DMA Tx Handle is valid */ - if (hspi->hdmatx != NULL) - { - /* Set DMA Abort Complete callback if UART DMA Tx request if enabled. - Otherwise, set it to NULL */ - if (HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_TXDMAEN)) - { - hspi->hdmatx->XferAbortCallback = SPI_DMATxAbortCallback; - } - else - { - hspi->hdmatx->XferAbortCallback = NULL; - } - } - /* DMA Rx Handle is valid */ - if (hspi->hdmarx != NULL) - { - /* Set DMA Abort Complete callback if UART DMA Rx request if enabled. - Otherwise, set it to NULL */ - if (HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_RXDMAEN)) - { - hspi->hdmarx->XferAbortCallback = SPI_DMARxAbortCallback; - } - else - { - hspi->hdmarx->XferAbortCallback = NULL; - } - } - - /* Disable the SPI DMA Tx request if enabled */ - if (HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_TXDMAEN)) - { - /* Abort the SPI DMA Tx Stream/Channel */ - if (hspi->hdmatx != NULL) - { - /* Abort DMA Tx Handle linked to SPI Peripheral */ - if (HAL_DMA_Abort_IT(hspi->hdmatx) != HAL_OK) - { - hspi->hdmatx->XferAbortCallback = NULL; - hspi->ErrorCode = HAL_SPI_ERROR_ABORT; - } - else - { - abortcplt = 0U; - } - } - } - /* Disable the SPI DMA Rx request if enabled */ - if (HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_RXDMAEN)) - { - /* Abort the SPI DMA Rx Stream/Channel */ - if (hspi->hdmarx != NULL) - { - /* Abort DMA Rx Handle linked to SPI Peripheral */ - if (HAL_DMA_Abort_IT(hspi->hdmarx) != HAL_OK) - { - hspi->hdmarx->XferAbortCallback = NULL; - hspi->ErrorCode = HAL_SPI_ERROR_ABORT; - } - else - { - abortcplt = 0U; - } - } - } - - if (abortcplt == 1U) - { - /* Reset Tx and Rx transfer counters */ - hspi->RxXferCount = 0U; - hspi->TxXferCount = 0U; - - /* Check error during Abort procedure */ - if (hspi->ErrorCode == HAL_SPI_ERROR_ABORT) - { - /* return HAL_Error in case of error during Abort procedure */ - errorcode = HAL_ERROR; - } - else - { - /* Reset errorCode */ - hspi->ErrorCode = HAL_SPI_ERROR_NONE; - } - - /* Clear the Error flags in the SR register */ - __HAL_SPI_CLEAR_OVRFLAG(hspi); - __HAL_SPI_CLEAR_FREFLAG(hspi); - - /* Restore hspi->State to Ready */ - hspi->State = HAL_SPI_STATE_READY; - - /* As no DMA to be aborted, call directly user Abort complete callback */ -#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) - hspi->AbortCpltCallback(hspi); -#else - HAL_SPI_AbortCpltCallback(hspi); -#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ - } - - return errorcode; -} - -/** - * @brief Pause the DMA Transfer. - * @param hspi pointer to a SPI_HandleTypeDef structure that contains - * the configuration information for the specified SPI module. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_SPI_DMAPause(SPI_HandleTypeDef *hspi) -{ - /* Process Locked */ - __HAL_LOCK(hspi); - - /* Disable the SPI DMA Tx & Rx requests */ - CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN | SPI_CR2_RXDMAEN); - - /* Process Unlocked */ - __HAL_UNLOCK(hspi); - - return HAL_OK; -} - -/** - * @brief Resume the DMA Transfer. - * @param hspi pointer to a SPI_HandleTypeDef structure that contains - * the configuration information for the specified SPI module. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_SPI_DMAResume(SPI_HandleTypeDef *hspi) -{ - /* Process Locked */ - __HAL_LOCK(hspi); - - /* Enable the SPI DMA Tx & Rx requests */ - SET_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN | SPI_CR2_RXDMAEN); - - /* Process Unlocked */ - __HAL_UNLOCK(hspi); - - return HAL_OK; -} - -/** - * @brief Stop the DMA Transfer. - * @param hspi pointer to a SPI_HandleTypeDef structure that contains - * the configuration information for the specified SPI module. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_SPI_DMAStop(SPI_HandleTypeDef *hspi) -{ - HAL_StatusTypeDef errorcode = HAL_OK; - /* The Lock is not implemented on this API to allow the user application - to call the HAL SPI API under callbacks HAL_SPI_TxCpltCallback() or HAL_SPI_RxCpltCallback() or HAL_SPI_TxRxCpltCallback(): - when calling HAL_DMA_Abort() API the DMA TX/RX Transfer complete interrupt is generated - and the correspond call back is executed HAL_SPI_TxCpltCallback() or HAL_SPI_RxCpltCallback() or HAL_SPI_TxRxCpltCallback() - */ - - /* Abort the SPI DMA tx Stream/Channel */ - if (hspi->hdmatx != NULL) - { - if (HAL_OK != HAL_DMA_Abort(hspi->hdmatx)) - { - SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_DMA); - errorcode = HAL_ERROR; - } - } - /* Abort the SPI DMA rx Stream/Channel */ - if (hspi->hdmarx != NULL) - { - if (HAL_OK != HAL_DMA_Abort(hspi->hdmarx)) - { - SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_DMA); - errorcode = HAL_ERROR; - } - } - - /* Disable the SPI DMA Tx & Rx requests */ - CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN | SPI_CR2_RXDMAEN); - hspi->State = HAL_SPI_STATE_READY; - return errorcode; -} - -/** - * @brief Handle SPI interrupt request. - * @param hspi pointer to a SPI_HandleTypeDef structure that contains - * the configuration information for the specified SPI module. - * @retval None - */ -void HAL_SPI_IRQHandler(SPI_HandleTypeDef *hspi) -{ - uint32_t itsource = hspi->Instance->CR2; - uint32_t itflag = hspi->Instance->SR; - - /* SPI in mode Receiver ----------------------------------------------------*/ - if ((SPI_CHECK_FLAG(itflag, SPI_FLAG_OVR) == RESET) && - (SPI_CHECK_FLAG(itflag, SPI_FLAG_RXNE) != RESET) && (SPI_CHECK_IT_SOURCE(itsource, SPI_IT_RXNE) != RESET)) - { - hspi->RxISR(hspi); - return; - } - - /* SPI in mode Transmitter -------------------------------------------------*/ - if ((SPI_CHECK_FLAG(itflag, SPI_FLAG_TXE) != RESET) && (SPI_CHECK_IT_SOURCE(itsource, SPI_IT_TXE) != RESET)) - { - hspi->TxISR(hspi); - return; - } - - /* SPI in Error Treatment --------------------------------------------------*/ - if (((SPI_CHECK_FLAG(itflag, SPI_FLAG_MODF) != RESET) || (SPI_CHECK_FLAG(itflag, SPI_FLAG_OVR) != RESET) - || (SPI_CHECK_FLAG(itflag, SPI_FLAG_FRE) != RESET)) && (SPI_CHECK_IT_SOURCE(itsource, SPI_IT_ERR) != RESET)) - { - /* SPI Overrun error interrupt occurred ----------------------------------*/ - if (SPI_CHECK_FLAG(itflag, SPI_FLAG_OVR) != RESET) - { - if (hspi->State != HAL_SPI_STATE_BUSY_TX) - { - SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_OVR); - __HAL_SPI_CLEAR_OVRFLAG(hspi); - } - else - { - __HAL_SPI_CLEAR_OVRFLAG(hspi); - return; - } - } - - /* SPI Mode Fault error interrupt occurred -------------------------------*/ - if (SPI_CHECK_FLAG(itflag, SPI_FLAG_MODF) != RESET) - { - SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_MODF); - __HAL_SPI_CLEAR_MODFFLAG(hspi); - } - - /* SPI Frame error interrupt occurred ------------------------------------*/ - if (SPI_CHECK_FLAG(itflag, SPI_FLAG_FRE) != RESET) - { - SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FRE); - __HAL_SPI_CLEAR_FREFLAG(hspi); - } - - if (hspi->ErrorCode != HAL_SPI_ERROR_NONE) - { - /* Disable all interrupts */ - __HAL_SPI_DISABLE_IT(hspi, SPI_IT_RXNE | SPI_IT_TXE | SPI_IT_ERR); - - hspi->State = HAL_SPI_STATE_READY; - /* Disable the SPI DMA requests if enabled */ - if ((HAL_IS_BIT_SET(itsource, SPI_CR2_TXDMAEN)) || (HAL_IS_BIT_SET(itsource, SPI_CR2_RXDMAEN))) - { - CLEAR_BIT(hspi->Instance->CR2, (SPI_CR2_TXDMAEN | SPI_CR2_RXDMAEN)); - - /* Abort the SPI DMA Rx channel */ - if (hspi->hdmarx != NULL) - { - /* Set the SPI DMA Abort callback : - will lead to call HAL_SPI_ErrorCallback() at end of DMA abort procedure */ - hspi->hdmarx->XferAbortCallback = SPI_DMAAbortOnError; - if (HAL_OK != HAL_DMA_Abort_IT(hspi->hdmarx)) - { - SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_ABORT); - } - } - /* Abort the SPI DMA Tx channel */ - if (hspi->hdmatx != NULL) - { - /* Set the SPI DMA Abort callback : - will lead to call HAL_SPI_ErrorCallback() at end of DMA abort procedure */ - hspi->hdmatx->XferAbortCallback = SPI_DMAAbortOnError; - if (HAL_OK != HAL_DMA_Abort_IT(hspi->hdmatx)) - { - SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_ABORT); - } - } - } - else - { - /* Call user error callback */ -#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) - hspi->ErrorCallback(hspi); -#else - HAL_SPI_ErrorCallback(hspi); -#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ - } - } - return; - } -} - -/** - * @brief Tx Transfer completed callback. - * @param hspi pointer to a SPI_HandleTypeDef structure that contains - * the configuration information for SPI module. - * @retval None - */ -__weak void HAL_SPI_TxCpltCallback(SPI_HandleTypeDef *hspi) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hspi); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_SPI_TxCpltCallback should be implemented in the user file - */ -} - -/** - * @brief Rx Transfer completed callback. - * @param hspi pointer to a SPI_HandleTypeDef structure that contains - * the configuration information for SPI module. - * @retval None - */ -__weak void HAL_SPI_RxCpltCallback(SPI_HandleTypeDef *hspi) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hspi); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_SPI_RxCpltCallback should be implemented in the user file - */ -} - -/** - * @brief Tx and Rx Transfer completed callback. - * @param hspi pointer to a SPI_HandleTypeDef structure that contains - * the configuration information for SPI module. - * @retval None - */ -__weak void HAL_SPI_TxRxCpltCallback(SPI_HandleTypeDef *hspi) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hspi); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_SPI_TxRxCpltCallback should be implemented in the user file - */ -} - -/** - * @brief Tx Half Transfer completed callback. - * @param hspi pointer to a SPI_HandleTypeDef structure that contains - * the configuration information for SPI module. - * @retval None - */ -__weak void HAL_SPI_TxHalfCpltCallback(SPI_HandleTypeDef *hspi) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hspi); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_SPI_TxHalfCpltCallback should be implemented in the user file - */ -} - -/** - * @brief Rx Half Transfer completed callback. - * @param hspi pointer to a SPI_HandleTypeDef structure that contains - * the configuration information for SPI module. - * @retval None - */ -__weak void HAL_SPI_RxHalfCpltCallback(SPI_HandleTypeDef *hspi) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hspi); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_SPI_RxHalfCpltCallback() should be implemented in the user file - */ -} - -/** - * @brief Tx and Rx Half Transfer callback. - * @param hspi pointer to a SPI_HandleTypeDef structure that contains - * the configuration information for SPI module. - * @retval None - */ -__weak void HAL_SPI_TxRxHalfCpltCallback(SPI_HandleTypeDef *hspi) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hspi); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_SPI_TxRxHalfCpltCallback() should be implemented in the user file - */ -} - -/** - * @brief SPI error callback. - * @param hspi pointer to a SPI_HandleTypeDef structure that contains - * the configuration information for SPI module. - * @retval None - */ -__weak void HAL_SPI_ErrorCallback(SPI_HandleTypeDef *hspi) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hspi); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_SPI_ErrorCallback should be implemented in the user file - */ - /* NOTE : The ErrorCode parameter in the hspi handle is updated by the SPI processes - and user can use HAL_SPI_GetError() API to check the latest error occurred - */ -} - -/** - * @brief SPI Abort Complete callback. - * @param hspi SPI handle. - * @retval None - */ -__weak void HAL_SPI_AbortCpltCallback(SPI_HandleTypeDef *hspi) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hspi); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_SPI_AbortCpltCallback can be implemented in the user file. - */ -} - -/** - * @} - */ - -/** @defgroup SPI_Exported_Functions_Group3 Peripheral State and Errors functions - * @brief SPI control functions - * -@verbatim - =============================================================================== - ##### Peripheral State and Errors functions ##### - =============================================================================== - [..] - This subsection provides a set of functions allowing to control the SPI. - (+) HAL_SPI_GetState() API can be helpful to check in run-time the state of the SPI peripheral - (+) HAL_SPI_GetError() check in run-time Errors occurring during communication -@endverbatim - * @{ - */ - -/** - * @brief Return the SPI handle state. - * @param hspi pointer to a SPI_HandleTypeDef structure that contains - * the configuration information for SPI module. - * @retval SPI state - */ -HAL_SPI_StateTypeDef HAL_SPI_GetState(SPI_HandleTypeDef *hspi) -{ - /* Return SPI handle state */ - return hspi->State; -} - -/** - * @brief Return the SPI error code. - * @param hspi pointer to a SPI_HandleTypeDef structure that contains - * the configuration information for SPI module. - * @retval SPI error code in bitmap format - */ -uint32_t HAL_SPI_GetError(SPI_HandleTypeDef *hspi) -{ - /* Return SPI ErrorCode */ - return hspi->ErrorCode; -} - -/** - * @} - */ - -/** - * @} - */ - -/** @addtogroup SPI_Private_Functions - * @brief Private functions - * @{ - */ - -/** - * @brief DMA SPI transmit process complete callback. - * @param hdma pointer to a DMA_HandleTypeDef structure that contains - * the configuration information for the specified DMA module. - * @retval None - */ -static void SPI_DMATransmitCplt(DMA_HandleTypeDef *hdma) -{ - SPI_HandleTypeDef *hspi = (SPI_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent); /* Derogation MISRAC2012-Rule-11.5 */ - uint32_t tickstart; - - /* Init tickstart for timeout management*/ - tickstart = HAL_GetTick(); - - /* DMA Normal Mode */ - if ((hdma->Instance->CCR & DMA_CCR_CIRC) != DMA_CCR_CIRC) - { - /* Disable ERR interrupt */ - __HAL_SPI_DISABLE_IT(hspi, SPI_IT_ERR); - - /* Disable Tx DMA Request */ - CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN); - - /* Check the end of the transaction */ - if (SPI_EndRxTxTransaction(hspi, SPI_DEFAULT_TIMEOUT, tickstart) != HAL_OK) - { - SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG); - } - - /* Clear overrun flag in 2 Lines communication mode because received data is not read */ - if (hspi->Init.Direction == SPI_DIRECTION_2LINES) - { - __HAL_SPI_CLEAR_OVRFLAG(hspi); - } - - hspi->TxXferCount = 0U; - hspi->State = HAL_SPI_STATE_READY; - - if (hspi->ErrorCode != HAL_SPI_ERROR_NONE) - { - /* Call user error callback */ -#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) - hspi->ErrorCallback(hspi); -#else - HAL_SPI_ErrorCallback(hspi); -#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ - return; - } - } - /* Call user Tx complete callback */ -#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) - hspi->TxCpltCallback(hspi); -#else - HAL_SPI_TxCpltCallback(hspi); -#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ -} - -/** - * @brief DMA SPI receive process complete callback. - * @param hdma pointer to a DMA_HandleTypeDef structure that contains - * the configuration information for the specified DMA module. - * @retval None - */ -static void SPI_DMAReceiveCplt(DMA_HandleTypeDef *hdma) -{ - SPI_HandleTypeDef *hspi = (SPI_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent); /* Derogation MISRAC2012-Rule-11.5 */ - uint32_t tickstart; - - /* Init tickstart for timeout management*/ - tickstart = HAL_GetTick(); - - /* DMA Normal Mode */ - if ((hdma->Instance->CCR & DMA_CCR_CIRC) != DMA_CCR_CIRC) - { - /* Disable ERR interrupt */ - __HAL_SPI_DISABLE_IT(hspi, SPI_IT_ERR); - -#if (USE_SPI_CRC != 0U) - /* CRC handling */ - if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) - { - /* Wait until RXNE flag */ - if (SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_RXNE, SET, SPI_DEFAULT_TIMEOUT, tickstart) != HAL_OK) - { - /* Error on the CRC reception */ - SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC); - } - /* Read CRC */ - if (hspi->Init.DataSize > SPI_DATASIZE_8BIT) - { - /* Read 16bit CRC */ - READ_REG(hspi->Instance->DR); - } - else - { - /* Read 8bit CRC */ - READ_REG(*(__IO uint8_t *)&hspi->Instance->DR); - - if (hspi->Init.CRCLength == SPI_CRC_LENGTH_16BIT) - { - if (SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_RXNE, SET, SPI_DEFAULT_TIMEOUT, tickstart) != HAL_OK) - { - /* Error on the CRC reception */ - SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC); - } - /* Read 8bit CRC again in case of 16bit CRC in 8bit Data mode */ - READ_REG(*(__IO uint8_t *)&hspi->Instance->DR); - } - } - } -#endif /* USE_SPI_CRC */ - - /* Disable Rx/Tx DMA Request (done by default to handle the case master rx direction 2 lines) */ - CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN | SPI_CR2_RXDMAEN); - - /* Check the end of the transaction */ - if (SPI_EndRxTransaction(hspi, SPI_DEFAULT_TIMEOUT, tickstart) != HAL_OK) - { - hspi->ErrorCode = HAL_SPI_ERROR_FLAG; - } - - hspi->RxXferCount = 0U; - hspi->State = HAL_SPI_STATE_READY; - -#if (USE_SPI_CRC != 0U) - /* Check if CRC error occurred */ - if (__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR)) - { - SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC); - __HAL_SPI_CLEAR_CRCERRFLAG(hspi); - } -#endif /* USE_SPI_CRC */ - - if (hspi->ErrorCode != HAL_SPI_ERROR_NONE) - { - /* Call user error callback */ -#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) - hspi->ErrorCallback(hspi); -#else - HAL_SPI_ErrorCallback(hspi); -#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ - return; - } - } - /* Call user Rx complete callback */ -#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) - hspi->RxCpltCallback(hspi); -#else - HAL_SPI_RxCpltCallback(hspi); -#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ -} - -/** - * @brief DMA SPI transmit receive process complete callback. - * @param hdma pointer to a DMA_HandleTypeDef structure that contains - * the configuration information for the specified DMA module. - * @retval None - */ -static void SPI_DMATransmitReceiveCplt(DMA_HandleTypeDef *hdma) -{ - SPI_HandleTypeDef *hspi = (SPI_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent); /* Derogation MISRAC2012-Rule-11.5 */ - uint32_t tickstart; - - /* Init tickstart for timeout management*/ - tickstart = HAL_GetTick(); - - /* DMA Normal Mode */ - if ((hdma->Instance->CCR & DMA_CCR_CIRC) != DMA_CCR_CIRC) - { - /* Disable ERR interrupt */ - __HAL_SPI_DISABLE_IT(hspi, SPI_IT_ERR); - -#if (USE_SPI_CRC != 0U) - /* CRC handling */ - if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) - { - if ((hspi->Init.DataSize == SPI_DATASIZE_8BIT) && (hspi->Init.CRCLength == SPI_CRC_LENGTH_8BIT)) - { - if (SPI_WaitFifoStateUntilTimeout(hspi, SPI_FLAG_FRLVL, SPI_FRLVL_QUARTER_FULL, SPI_DEFAULT_TIMEOUT, - tickstart) != HAL_OK) - { - /* Error on the CRC reception */ - SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC); - } - /* Read CRC to Flush DR and RXNE flag */ - READ_REG(*(__IO uint8_t *)&hspi->Instance->DR); - } - else - { - if (SPI_WaitFifoStateUntilTimeout(hspi, SPI_FLAG_FRLVL, SPI_FRLVL_HALF_FULL, SPI_DEFAULT_TIMEOUT, tickstart) != HAL_OK) - { - /* Error on the CRC reception */ - SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC); - } - /* Read CRC to Flush DR and RXNE flag */ - READ_REG(hspi->Instance->DR); - } - } -#endif /* USE_SPI_CRC */ - - /* Check the end of the transaction */ - if (SPI_EndRxTxTransaction(hspi, SPI_DEFAULT_TIMEOUT, tickstart) != HAL_OK) - { - SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG); - } - - /* Disable Rx/Tx DMA Request */ - CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN | SPI_CR2_RXDMAEN); - - hspi->TxXferCount = 0U; - hspi->RxXferCount = 0U; - hspi->State = HAL_SPI_STATE_READY; - -#if (USE_SPI_CRC != 0U) - /* Check if CRC error occurred */ - if (__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR)) - { - SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC); - __HAL_SPI_CLEAR_CRCERRFLAG(hspi); - } -#endif /* USE_SPI_CRC */ - - if (hspi->ErrorCode != HAL_SPI_ERROR_NONE) - { - /* Call user error callback */ -#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) - hspi->ErrorCallback(hspi); -#else - HAL_SPI_ErrorCallback(hspi); -#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ - return; - } - } - /* Call user TxRx complete callback */ -#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) - hspi->TxRxCpltCallback(hspi); -#else - HAL_SPI_TxRxCpltCallback(hspi); -#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ -} - -/** - * @brief DMA SPI half transmit process complete callback. - * @param hdma pointer to a DMA_HandleTypeDef structure that contains - * the configuration information for the specified DMA module. - * @retval None - */ -static void SPI_DMAHalfTransmitCplt(DMA_HandleTypeDef *hdma) -{ - SPI_HandleTypeDef *hspi = (SPI_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent); /* Derogation MISRAC2012-Rule-11.5 */ - - /* Call user Tx half complete callback */ -#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) - hspi->TxHalfCpltCallback(hspi); -#else - HAL_SPI_TxHalfCpltCallback(hspi); -#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ -} - -/** - * @brief DMA SPI half receive process complete callback - * @param hdma pointer to a DMA_HandleTypeDef structure that contains - * the configuration information for the specified DMA module. - * @retval None - */ -static void SPI_DMAHalfReceiveCplt(DMA_HandleTypeDef *hdma) -{ - SPI_HandleTypeDef *hspi = (SPI_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent); /* Derogation MISRAC2012-Rule-11.5 */ - - /* Call user Rx half complete callback */ -#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) - hspi->RxHalfCpltCallback(hspi); -#else - HAL_SPI_RxHalfCpltCallback(hspi); -#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ -} - -/** - * @brief DMA SPI half transmit receive process complete callback. - * @param hdma pointer to a DMA_HandleTypeDef structure that contains - * the configuration information for the specified DMA module. - * @retval None - */ -static void SPI_DMAHalfTransmitReceiveCplt(DMA_HandleTypeDef *hdma) -{ - SPI_HandleTypeDef *hspi = (SPI_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent); /* Derogation MISRAC2012-Rule-11.5 */ - - /* Call user TxRx half complete callback */ -#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) - hspi->TxRxHalfCpltCallback(hspi); -#else - HAL_SPI_TxRxHalfCpltCallback(hspi); -#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ -} - -/** - * @brief DMA SPI communication error callback. - * @param hdma pointer to a DMA_HandleTypeDef structure that contains - * the configuration information for the specified DMA module. - * @retval None - */ -static void SPI_DMAError(DMA_HandleTypeDef *hdma) -{ - SPI_HandleTypeDef *hspi = (SPI_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent); /* Derogation MISRAC2012-Rule-11.5 */ - - /* Stop the disable DMA transfer on SPI side */ - CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN | SPI_CR2_RXDMAEN); - - SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_DMA); - hspi->State = HAL_SPI_STATE_READY; - /* Call user error callback */ -#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) - hspi->ErrorCallback(hspi); -#else - HAL_SPI_ErrorCallback(hspi); -#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ -} - -/** - * @brief DMA SPI communication abort callback, when initiated by HAL services on Error - * (To be called at end of DMA Abort procedure following error occurrence). - * @param hdma DMA handle. - * @retval None - */ -static void SPI_DMAAbortOnError(DMA_HandleTypeDef *hdma) -{ - SPI_HandleTypeDef *hspi = (SPI_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent); /* Derogation MISRAC2012-Rule-11.5 */ - hspi->RxXferCount = 0U; - hspi->TxXferCount = 0U; - - /* Call user error callback */ -#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) - hspi->ErrorCallback(hspi); -#else - HAL_SPI_ErrorCallback(hspi); -#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ -} - -/** - * @brief DMA SPI Tx communication abort callback, when initiated by user - * (To be called at end of DMA Tx Abort procedure following user abort request). - * @note When this callback is executed, User Abort complete call back is called only if no - * Abort still ongoing for Rx DMA Handle. - * @param hdma DMA handle. - * @retval None - */ -static void SPI_DMATxAbortCallback(DMA_HandleTypeDef *hdma) -{ - SPI_HandleTypeDef *hspi = (SPI_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent); /* Derogation MISRAC2012-Rule-11.5 */ - - hspi->hdmatx->XferAbortCallback = NULL; - - /* Disable Tx DMA Request */ - CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN); - - if (SPI_EndRxTxTransaction(hspi, SPI_DEFAULT_TIMEOUT, HAL_GetTick()) != HAL_OK) - { - hspi->ErrorCode = HAL_SPI_ERROR_ABORT; - } - - /* Disable SPI Peripheral */ - __HAL_SPI_DISABLE(hspi); - - /* Empty the FRLVL fifo */ - if (SPI_WaitFifoStateUntilTimeout(hspi, SPI_FLAG_FRLVL, SPI_FRLVL_EMPTY, SPI_DEFAULT_TIMEOUT, HAL_GetTick()) != HAL_OK) - { - hspi->ErrorCode = HAL_SPI_ERROR_ABORT; - } - - /* Check if an Abort process is still ongoing */ - if (hspi->hdmarx != NULL) - { - if (hspi->hdmarx->XferAbortCallback != NULL) - { - return; - } - } - - /* No Abort process still ongoing : All DMA Stream/Channel are aborted, call user Abort Complete callback */ - hspi->RxXferCount = 0U; - hspi->TxXferCount = 0U; - - /* Check no error during Abort procedure */ - if (hspi->ErrorCode != HAL_SPI_ERROR_ABORT) - { - /* Reset errorCode */ - hspi->ErrorCode = HAL_SPI_ERROR_NONE; - } - - /* Clear the Error flags in the SR register */ - __HAL_SPI_CLEAR_OVRFLAG(hspi); - __HAL_SPI_CLEAR_FREFLAG(hspi); - - /* Restore hspi->State to Ready */ - hspi->State = HAL_SPI_STATE_READY; - - /* Call user Abort complete callback */ -#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) - hspi->AbortCpltCallback(hspi); -#else - HAL_SPI_AbortCpltCallback(hspi); -#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ -} - -/** - * @brief DMA SPI Rx communication abort callback, when initiated by user - * (To be called at end of DMA Rx Abort procedure following user abort request). - * @note When this callback is executed, User Abort complete call back is called only if no - * Abort still ongoing for Tx DMA Handle. - * @param hdma DMA handle. - * @retval None - */ -static void SPI_DMARxAbortCallback(DMA_HandleTypeDef *hdma) -{ - SPI_HandleTypeDef *hspi = (SPI_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent); /* Derogation MISRAC2012-Rule-11.5 */ - - /* Disable SPI Peripheral */ - __HAL_SPI_DISABLE(hspi); - - hspi->hdmarx->XferAbortCallback = NULL; - - /* Disable Rx DMA Request */ - CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_RXDMAEN); - - /* Control the BSY flag */ - if (SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_BSY, RESET, SPI_DEFAULT_TIMEOUT, HAL_GetTick()) != HAL_OK) - { - hspi->ErrorCode = HAL_SPI_ERROR_ABORT; - } - - /* Empty the FRLVL fifo */ - if (SPI_WaitFifoStateUntilTimeout(hspi, SPI_FLAG_FRLVL, SPI_FRLVL_EMPTY, SPI_DEFAULT_TIMEOUT, HAL_GetTick()) != HAL_OK) - { - hspi->ErrorCode = HAL_SPI_ERROR_ABORT; - } - - /* Check if an Abort process is still ongoing */ - if (hspi->hdmatx != NULL) - { - if (hspi->hdmatx->XferAbortCallback != NULL) - { - return; - } - } - - /* No Abort process still ongoing : All DMA Stream/Channel are aborted, call user Abort Complete callback */ - hspi->RxXferCount = 0U; - hspi->TxXferCount = 0U; - - /* Check no error during Abort procedure */ - if (hspi->ErrorCode != HAL_SPI_ERROR_ABORT) - { - /* Reset errorCode */ - hspi->ErrorCode = HAL_SPI_ERROR_NONE; - } - - /* Clear the Error flags in the SR register */ - __HAL_SPI_CLEAR_OVRFLAG(hspi); - __HAL_SPI_CLEAR_FREFLAG(hspi); - - /* Restore hspi->State to Ready */ - hspi->State = HAL_SPI_STATE_READY; - - /* Call user Abort complete callback */ -#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) - hspi->AbortCpltCallback(hspi); -#else - HAL_SPI_AbortCpltCallback(hspi); -#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ -} - -/** - * @brief Rx 8-bit handler for Transmit and Receive in Interrupt mode. - * @param hspi pointer to a SPI_HandleTypeDef structure that contains - * the configuration information for SPI module. - * @retval None - */ -static void SPI_2linesRxISR_8BIT(struct __SPI_HandleTypeDef *hspi) -{ - /* Receive data in packing mode */ - if (hspi->RxXferCount > 1U) - { - *((uint16_t *)hspi->pRxBuffPtr) = (uint16_t)(hspi->Instance->DR); - hspi->pRxBuffPtr += sizeof(uint16_t); - hspi->RxXferCount -= 2U; - if (hspi->RxXferCount == 1U) - { - /* Set RX Fifo threshold according the reception data length: 8bit */ - SET_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD); - } - } - /* Receive data in 8 Bit mode */ - else - { - *hspi->pRxBuffPtr = *((__IO uint8_t *)&hspi->Instance->DR); - hspi->pRxBuffPtr++; - hspi->RxXferCount--; - } - - /* Check end of the reception */ - if (hspi->RxXferCount == 0U) - { -#if (USE_SPI_CRC != 0U) - if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) - { - SET_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD); - hspi->RxISR = SPI_2linesRxISR_8BITCRC; - return; - } -#endif /* USE_SPI_CRC */ - - /* Disable RXNE and ERR interrupt */ - __HAL_SPI_DISABLE_IT(hspi, (SPI_IT_RXNE | SPI_IT_ERR)); - - if (hspi->TxXferCount == 0U) - { - SPI_CloseRxTx_ISR(hspi); - } - } -} - -#if (USE_SPI_CRC != 0U) -/** - * @brief Rx 8-bit handler for Transmit and Receive in Interrupt mode. - * @param hspi pointer to a SPI_HandleTypeDef structure that contains - * the configuration information for SPI module. - * @retval None - */ -static void SPI_2linesRxISR_8BITCRC(struct __SPI_HandleTypeDef *hspi) -{ - /* Read 8bit CRC to flush Data Regsiter */ - READ_REG(*(__IO uint8_t *)&hspi->Instance->DR); - - hspi->CRCSize--; - - /* Check end of the reception */ - if (hspi->CRCSize == 0U) - { - /* Disable RXNE and ERR interrupt */ - __HAL_SPI_DISABLE_IT(hspi, (SPI_IT_RXNE | SPI_IT_ERR)); - - if (hspi->TxXferCount == 0U) - { - SPI_CloseRxTx_ISR(hspi); - } - } -} -#endif /* USE_SPI_CRC */ - -/** - * @brief Tx 8-bit handler for Transmit and Receive in Interrupt mode. - * @param hspi pointer to a SPI_HandleTypeDef structure that contains - * the configuration information for SPI module. - * @retval None - */ -static void SPI_2linesTxISR_8BIT(struct __SPI_HandleTypeDef *hspi) -{ - /* Transmit data in packing Bit mode */ - if (hspi->TxXferCount >= 2U) - { - hspi->Instance->DR = *((uint16_t *)hspi->pTxBuffPtr); - hspi->pTxBuffPtr += sizeof(uint16_t); - hspi->TxXferCount -= 2U; - } - /* Transmit data in 8 Bit mode */ - else - { - *(__IO uint8_t *)&hspi->Instance->DR = (*hspi->pTxBuffPtr); - hspi->pTxBuffPtr++; - hspi->TxXferCount--; - } - - /* Check the end of the transmission */ - if (hspi->TxXferCount == 0U) - { -#if (USE_SPI_CRC != 0U) - if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) - { - /* Set CRC Next Bit to send CRC */ - SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT); - /* Disable TXE interrupt */ - __HAL_SPI_DISABLE_IT(hspi, SPI_IT_TXE); - return; - } -#endif /* USE_SPI_CRC */ - - /* Disable TXE interrupt */ - __HAL_SPI_DISABLE_IT(hspi, SPI_IT_TXE); - - if (hspi->RxXferCount == 0U) - { - SPI_CloseRxTx_ISR(hspi); - } - } -} - -/** - * @brief Rx 16-bit handler for Transmit and Receive in Interrupt mode. - * @param hspi pointer to a SPI_HandleTypeDef structure that contains - * the configuration information for SPI module. - * @retval None - */ -static void SPI_2linesRxISR_16BIT(struct __SPI_HandleTypeDef *hspi) -{ - /* Receive data in 16 Bit mode */ - *((uint16_t *)hspi->pRxBuffPtr) = (uint16_t)(hspi->Instance->DR); - hspi->pRxBuffPtr += sizeof(uint16_t); - hspi->RxXferCount--; - - if (hspi->RxXferCount == 0U) - { -#if (USE_SPI_CRC != 0U) - if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) - { - hspi->RxISR = SPI_2linesRxISR_16BITCRC; - return; - } -#endif /* USE_SPI_CRC */ - - /* Disable RXNE interrupt */ - __HAL_SPI_DISABLE_IT(hspi, SPI_IT_RXNE); - - if (hspi->TxXferCount == 0U) - { - SPI_CloseRxTx_ISR(hspi); - } - } -} - -#if (USE_SPI_CRC != 0U) -/** - * @brief Manage the CRC 16-bit receive for Transmit and Receive in Interrupt mode. - * @param hspi pointer to a SPI_HandleTypeDef structure that contains - * the configuration information for SPI module. - * @retval None - */ -static void SPI_2linesRxISR_16BITCRC(struct __SPI_HandleTypeDef *hspi) -{ - /* Read 16bit CRC to flush Data Regsiter */ - READ_REG(hspi->Instance->DR); - - /* Disable RXNE interrupt */ - __HAL_SPI_DISABLE_IT(hspi, SPI_IT_RXNE); - - SPI_CloseRxTx_ISR(hspi); -} -#endif /* USE_SPI_CRC */ - -/** - * @brief Tx 16-bit handler for Transmit and Receive in Interrupt mode. - * @param hspi pointer to a SPI_HandleTypeDef structure that contains - * the configuration information for SPI module. - * @retval None - */ -static void SPI_2linesTxISR_16BIT(struct __SPI_HandleTypeDef *hspi) -{ - /* Transmit data in 16 Bit mode */ - hspi->Instance->DR = *((uint16_t *)hspi->pTxBuffPtr); - hspi->pTxBuffPtr += sizeof(uint16_t); - hspi->TxXferCount--; - - /* Enable CRC Transmission */ - if (hspi->TxXferCount == 0U) - { -#if (USE_SPI_CRC != 0U) - if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) - { - /* Set CRC Next Bit to send CRC */ - SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT); - /* Disable TXE interrupt */ - __HAL_SPI_DISABLE_IT(hspi, SPI_IT_TXE); - return; - } -#endif /* USE_SPI_CRC */ - - /* Disable TXE interrupt */ - __HAL_SPI_DISABLE_IT(hspi, SPI_IT_TXE); - - if (hspi->RxXferCount == 0U) - { - SPI_CloseRxTx_ISR(hspi); - } - } -} - -#if (USE_SPI_CRC != 0U) -/** - * @brief Manage the CRC 8-bit receive in Interrupt context. - * @param hspi pointer to a SPI_HandleTypeDef structure that contains - * the configuration information for SPI module. - * @retval None - */ -static void SPI_RxISR_8BITCRC(struct __SPI_HandleTypeDef *hspi) -{ - /* Read 8bit CRC to flush Data Register */ - READ_REG(*(__IO uint8_t *)&hspi->Instance->DR); - - hspi->CRCSize--; - - if (hspi->CRCSize == 0U) - { - SPI_CloseRx_ISR(hspi); - } -} -#endif /* USE_SPI_CRC */ - -/** - * @brief Manage the receive 8-bit in Interrupt context. - * @param hspi pointer to a SPI_HandleTypeDef structure that contains - * the configuration information for SPI module. - * @retval None - */ -static void SPI_RxISR_8BIT(struct __SPI_HandleTypeDef *hspi) -{ - *hspi->pRxBuffPtr = (*(__IO uint8_t *)&hspi->Instance->DR); - hspi->pRxBuffPtr++; - hspi->RxXferCount--; - -#if (USE_SPI_CRC != 0U) - /* Enable CRC Transmission */ - if ((hspi->RxXferCount == 1U) && (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)) - { - SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT); - } -#endif /* USE_SPI_CRC */ - - if (hspi->RxXferCount == 0U) - { -#if (USE_SPI_CRC != 0U) - if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) - { - hspi->RxISR = SPI_RxISR_8BITCRC; - return; - } -#endif /* USE_SPI_CRC */ - SPI_CloseRx_ISR(hspi); - } -} - -#if (USE_SPI_CRC != 0U) -/** - * @brief Manage the CRC 16-bit receive in Interrupt context. - * @param hspi pointer to a SPI_HandleTypeDef structure that contains - * the configuration information for SPI module. - * @retval None - */ -static void SPI_RxISR_16BITCRC(struct __SPI_HandleTypeDef *hspi) -{ - /* Read 16bit CRC to flush Data Register */ - READ_REG(hspi->Instance->DR); - - /* Disable RXNE and ERR interrupt */ - __HAL_SPI_DISABLE_IT(hspi, (SPI_IT_RXNE | SPI_IT_ERR)); - - SPI_CloseRx_ISR(hspi); -} -#endif /* USE_SPI_CRC */ - -/** - * @brief Manage the 16-bit receive in Interrupt context. - * @param hspi pointer to a SPI_HandleTypeDef structure that contains - * the configuration information for SPI module. - * @retval None - */ -static void SPI_RxISR_16BIT(struct __SPI_HandleTypeDef *hspi) -{ - *((uint16_t *)hspi->pRxBuffPtr) = (uint16_t)(hspi->Instance->DR); - hspi->pRxBuffPtr += sizeof(uint16_t); - hspi->RxXferCount--; - -#if (USE_SPI_CRC != 0U) - /* Enable CRC Transmission */ - if ((hspi->RxXferCount == 1U) && (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)) - { - SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT); - } -#endif /* USE_SPI_CRC */ - - if (hspi->RxXferCount == 0U) - { -#if (USE_SPI_CRC != 0U) - if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) - { - hspi->RxISR = SPI_RxISR_16BITCRC; - return; - } -#endif /* USE_SPI_CRC */ - SPI_CloseRx_ISR(hspi); - } -} - -/** - * @brief Handle the data 8-bit transmit in Interrupt mode. - * @param hspi pointer to a SPI_HandleTypeDef structure that contains - * the configuration information for SPI module. - * @retval None - */ -static void SPI_TxISR_8BIT(struct __SPI_HandleTypeDef *hspi) -{ - *(__IO uint8_t *)&hspi->Instance->DR = (*hspi->pTxBuffPtr); - hspi->pTxBuffPtr++; - hspi->TxXferCount--; - - if (hspi->TxXferCount == 0U) - { -#if (USE_SPI_CRC != 0U) - if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) - { - /* Enable CRC Transmission */ - SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT); - } -#endif /* USE_SPI_CRC */ - SPI_CloseTx_ISR(hspi); - } -} - -/** - * @brief Handle the data 16-bit transmit in Interrupt mode. - * @param hspi pointer to a SPI_HandleTypeDef structure that contains - * the configuration information for SPI module. - * @retval None - */ -static void SPI_TxISR_16BIT(struct __SPI_HandleTypeDef *hspi) -{ - /* Transmit data in 16 Bit mode */ - hspi->Instance->DR = *((uint16_t *)hspi->pTxBuffPtr); - hspi->pTxBuffPtr += sizeof(uint16_t); - hspi->TxXferCount--; - - if (hspi->TxXferCount == 0U) - { -#if (USE_SPI_CRC != 0U) - if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) - { - /* Enable CRC Transmission */ - SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT); - } -#endif /* USE_SPI_CRC */ - SPI_CloseTx_ISR(hspi); - } -} - -/** - * @brief Handle SPI Communication Timeout. - * @param hspi pointer to a SPI_HandleTypeDef structure that contains - * the configuration information for SPI module. - * @param Flag SPI flag to check - * @param State flag state to check - * @param Timeout Timeout duration - * @param Tickstart tick start value - * @retval HAL status - */ -static HAL_StatusTypeDef SPI_WaitFlagStateUntilTimeout(SPI_HandleTypeDef *hspi, uint32_t Flag, FlagStatus State, - uint32_t Timeout, uint32_t Tickstart) -{ - while ((__HAL_SPI_GET_FLAG(hspi, Flag) ? SET : RESET) != State) - { - if (Timeout != HAL_MAX_DELAY) - { - if (((HAL_GetTick() - Tickstart) >= Timeout) || (Timeout == 0U)) - { - /* Disable the SPI and reset the CRC: the CRC value should be cleared - on both master and slave sides in order to resynchronize the master - and slave for their respective CRC calculation */ - - /* Disable TXE, RXNE and ERR interrupts for the interrupt process */ - __HAL_SPI_DISABLE_IT(hspi, (SPI_IT_TXE | SPI_IT_RXNE | SPI_IT_ERR)); - - if ((hspi->Init.Mode == SPI_MODE_MASTER) && ((hspi->Init.Direction == SPI_DIRECTION_1LINE) - || (hspi->Init.Direction == SPI_DIRECTION_2LINES_RXONLY))) - { - /* Disable SPI peripheral */ - __HAL_SPI_DISABLE(hspi); - } - - /* Reset CRC Calculation */ - if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) - { - SPI_RESET_CRC(hspi); - } - - hspi->State = HAL_SPI_STATE_READY; - - /* Process Unlocked */ - __HAL_UNLOCK(hspi); - - return HAL_TIMEOUT; - } - } - } - - return HAL_OK; -} - -/** - * @brief Handle SPI FIFO Communication Timeout. - * @param hspi pointer to a SPI_HandleTypeDef structure that contains - * the configuration information for SPI module. - * @param Fifo Fifo to check - * @param State Fifo state to check - * @param Timeout Timeout duration - * @param Tickstart tick start value - * @retval HAL status - */ -static HAL_StatusTypeDef SPI_WaitFifoStateUntilTimeout(SPI_HandleTypeDef *hspi, uint32_t Fifo, uint32_t State, - uint32_t Timeout, uint32_t Tickstart) -{ - while ((hspi->Instance->SR & Fifo) != State) - { - if ((Fifo == SPI_SR_FRLVL) && (State == SPI_FRLVL_EMPTY)) - { - /* Read 8bit CRC to flush Data Register */ - READ_REG(*((__IO uint8_t *)&hspi->Instance->DR)); - } - - if (Timeout != HAL_MAX_DELAY) - { - if (((HAL_GetTick() - Tickstart) >= Timeout) || (Timeout == 0U)) - { - /* Disable the SPI and reset the CRC: the CRC value should be cleared - on both master and slave sides in order to resynchronize the master - and slave for their respective CRC calculation */ - - /* Disable TXE, RXNE and ERR interrupts for the interrupt process */ - __HAL_SPI_DISABLE_IT(hspi, (SPI_IT_TXE | SPI_IT_RXNE | SPI_IT_ERR)); - - if ((hspi->Init.Mode == SPI_MODE_MASTER) && ((hspi->Init.Direction == SPI_DIRECTION_1LINE) - || (hspi->Init.Direction == SPI_DIRECTION_2LINES_RXONLY))) - { - /* Disable SPI peripheral */ - __HAL_SPI_DISABLE(hspi); - } - - /* Reset CRC Calculation */ - if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) - { - SPI_RESET_CRC(hspi); - } - - hspi->State = HAL_SPI_STATE_READY; - - /* Process Unlocked */ - __HAL_UNLOCK(hspi); - - return HAL_TIMEOUT; - } - } - } - - return HAL_OK; -} - -/** - * @brief Handle the check of the RX transaction complete. - * @param hspi pointer to a SPI_HandleTypeDef structure that contains - * the configuration information for SPI module. - * @param Timeout Timeout duration - * @param Tickstart tick start value - * @retval HAL status - */ -static HAL_StatusTypeDef SPI_EndRxTransaction(SPI_HandleTypeDef *hspi, uint32_t Timeout, uint32_t Tickstart) -{ - if ((hspi->Init.Mode == SPI_MODE_MASTER) && ((hspi->Init.Direction == SPI_DIRECTION_1LINE) - || (hspi->Init.Direction == SPI_DIRECTION_2LINES_RXONLY))) - { - /* Disable SPI peripheral */ - __HAL_SPI_DISABLE(hspi); - } - - /* Control the BSY flag */ - if (SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_BSY, RESET, Timeout, Tickstart) != HAL_OK) - { - SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG); - return HAL_TIMEOUT; - } - - if ((hspi->Init.Mode == SPI_MODE_MASTER) && ((hspi->Init.Direction == SPI_DIRECTION_1LINE) - || (hspi->Init.Direction == SPI_DIRECTION_2LINES_RXONLY))) - { - /* Empty the FRLVL fifo */ - if (SPI_WaitFifoStateUntilTimeout(hspi, SPI_FLAG_FRLVL, SPI_FRLVL_EMPTY, Timeout, Tickstart) != HAL_OK) - { - SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG); - return HAL_TIMEOUT; - } - } - return HAL_OK; -} - -/** - * @brief Handle the check of the RXTX or TX transaction complete. - * @param hspi SPI handle - * @param Timeout Timeout duration - * @param Tickstart tick start value - * @retval HAL status - */ -static HAL_StatusTypeDef SPI_EndRxTxTransaction(SPI_HandleTypeDef *hspi, uint32_t Timeout, uint32_t Tickstart) -{ - /* Control if the TX fifo is empty */ - if (SPI_WaitFifoStateUntilTimeout(hspi, SPI_FLAG_FTLVL, SPI_FTLVL_EMPTY, Timeout, Tickstart) != HAL_OK) - { - SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG); - return HAL_TIMEOUT; - } - - /* Control the BSY flag */ - if (SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_BSY, RESET, Timeout, Tickstart) != HAL_OK) - { - SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG); - return HAL_TIMEOUT; - } - - /* Control if the RX fifo is empty */ - if (SPI_WaitFifoStateUntilTimeout(hspi, SPI_FLAG_FRLVL, SPI_FRLVL_EMPTY, Timeout, Tickstart) != HAL_OK) - { - SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG); - return HAL_TIMEOUT; - } - - return HAL_OK; -} - -/** - * @brief Handle the end of the RXTX transaction. - * @param hspi pointer to a SPI_HandleTypeDef structure that contains - * the configuration information for SPI module. - * @retval None - */ -static void SPI_CloseRxTx_ISR(SPI_HandleTypeDef *hspi) -{ - uint32_t tickstart; - - /* Init tickstart for timeout managment*/ - tickstart = HAL_GetTick(); - - /* Disable ERR interrupt */ - __HAL_SPI_DISABLE_IT(hspi, SPI_IT_ERR); - - /* Check the end of the transaction */ - if (SPI_EndRxTxTransaction(hspi, SPI_DEFAULT_TIMEOUT, tickstart) != HAL_OK) - { - SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG); - } - -#if (USE_SPI_CRC != 0U) - /* Check if CRC error occurred */ - if (__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR) != RESET) - { - hspi->State = HAL_SPI_STATE_READY; - SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC); - __HAL_SPI_CLEAR_CRCERRFLAG(hspi); - /* Call user error callback */ -#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) - hspi->ErrorCallback(hspi); -#else - HAL_SPI_ErrorCallback(hspi); -#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ - } - else - { -#endif /* USE_SPI_CRC */ - if (hspi->ErrorCode == HAL_SPI_ERROR_NONE) - { - if (hspi->State == HAL_SPI_STATE_BUSY_RX) - { - hspi->State = HAL_SPI_STATE_READY; - /* Call user Rx complete callback */ -#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) - hspi->RxCpltCallback(hspi); -#else - HAL_SPI_RxCpltCallback(hspi); -#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ - } - else - { - hspi->State = HAL_SPI_STATE_READY; - /* Call user TxRx complete callback */ -#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) - hspi->TxRxCpltCallback(hspi); -#else - HAL_SPI_TxRxCpltCallback(hspi); -#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ - } - } - else - { - hspi->State = HAL_SPI_STATE_READY; - /* Call user error callback */ -#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) - hspi->ErrorCallback(hspi); -#else - HAL_SPI_ErrorCallback(hspi); -#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ - } -#if (USE_SPI_CRC != 0U) - } -#endif /* USE_SPI_CRC */ -} - -/** - * @brief Handle the end of the RX transaction. - * @param hspi pointer to a SPI_HandleTypeDef structure that contains - * the configuration information for SPI module. - * @retval None - */ -static void SPI_CloseRx_ISR(SPI_HandleTypeDef *hspi) -{ - /* Disable RXNE and ERR interrupt */ - __HAL_SPI_DISABLE_IT(hspi, (SPI_IT_RXNE | SPI_IT_ERR)); - - /* Check the end of the transaction */ - if (SPI_EndRxTransaction(hspi, SPI_DEFAULT_TIMEOUT, HAL_GetTick()) != HAL_OK) - { - SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG); - } - hspi->State = HAL_SPI_STATE_READY; - -#if (USE_SPI_CRC != 0U) - /* Check if CRC error occurred */ - if (__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR) != RESET) - { - SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC); - __HAL_SPI_CLEAR_CRCERRFLAG(hspi); - /* Call user error callback */ -#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) - hspi->ErrorCallback(hspi); -#else - HAL_SPI_ErrorCallback(hspi); -#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ - } - else - { -#endif /* USE_SPI_CRC */ - if (hspi->ErrorCode == HAL_SPI_ERROR_NONE) - { - /* Call user Rx complete callback */ -#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) - hspi->RxCpltCallback(hspi); -#else - HAL_SPI_RxCpltCallback(hspi); -#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ - } - else - { - /* Call user error callback */ -#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) - hspi->ErrorCallback(hspi); -#else - HAL_SPI_ErrorCallback(hspi); -#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ - } -#if (USE_SPI_CRC != 0U) - } -#endif /* USE_SPI_CRC */ -} - -/** - * @brief Handle the end of the TX transaction. - * @param hspi pointer to a SPI_HandleTypeDef structure that contains - * the configuration information for SPI module. - * @retval None - */ -static void SPI_CloseTx_ISR(SPI_HandleTypeDef *hspi) -{ - uint32_t tickstart; - - /* Init tickstart for timeout management*/ - tickstart = HAL_GetTick(); - - /* Disable TXE and ERR interrupt */ - __HAL_SPI_DISABLE_IT(hspi, (SPI_IT_TXE | SPI_IT_ERR)); - - /* Check the end of the transaction */ - if (SPI_EndRxTxTransaction(hspi, SPI_DEFAULT_TIMEOUT, tickstart) != HAL_OK) - { - SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG); - } - - /* Clear overrun flag in 2 Lines communication mode because received is not read */ - if (hspi->Init.Direction == SPI_DIRECTION_2LINES) - { - __HAL_SPI_CLEAR_OVRFLAG(hspi); - } - - hspi->State = HAL_SPI_STATE_READY; - if (hspi->ErrorCode != HAL_SPI_ERROR_NONE) - { - /* Call user error callback */ -#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) - hspi->ErrorCallback(hspi); -#else - HAL_SPI_ErrorCallback(hspi); -#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ - } - else - { - /* Call user Rx complete callback */ -#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U) - hspi->TxCpltCallback(hspi); -#else - HAL_SPI_TxCpltCallback(hspi); -#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ - } -} - -/** - * @brief Handle abort a Rx transaction. - * @param hspi pointer to a SPI_HandleTypeDef structure that contains - * the configuration information for SPI module. - * @retval None - */ -static void SPI_AbortRx_ISR(SPI_HandleTypeDef *hspi) -{ - __IO uint32_t count; - - /* Disable SPI Peripheral */ - __HAL_SPI_DISABLE(hspi); - - count = SPI_DEFAULT_TIMEOUT * (SystemCoreClock / 24U / 1000U); - - /* Disable RXNEIE interrupt */ - CLEAR_BIT(hspi->Instance->CR2, (SPI_CR2_RXNEIE)); - - /* Check RXNEIE is disabled */ - do - { - if (count == 0U) - { - SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_ABORT); - break; - } - count--; - } while (HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_RXNEIE)); - - /* Control the BSY flag */ - if (SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_BSY, RESET, SPI_DEFAULT_TIMEOUT, HAL_GetTick()) != HAL_OK) - { - hspi->ErrorCode = HAL_SPI_ERROR_ABORT; - } - - /* Empty the FRLVL fifo */ - if (SPI_WaitFifoStateUntilTimeout(hspi, SPI_FLAG_FRLVL, SPI_FRLVL_EMPTY, SPI_DEFAULT_TIMEOUT, HAL_GetTick()) != HAL_OK) - { - hspi->ErrorCode = HAL_SPI_ERROR_ABORT; - } - - hspi->State = HAL_SPI_STATE_ABORT; -} - -/** - * @brief Handle abort a Tx or Rx/Tx transaction. - * @param hspi pointer to a SPI_HandleTypeDef structure that contains - * the configuration information for SPI module. - * @retval None - */ -static void SPI_AbortTx_ISR(SPI_HandleTypeDef *hspi) -{ - __IO uint32_t count; - - count = SPI_DEFAULT_TIMEOUT * (SystemCoreClock / 24U / 1000U); - - /* Disable TXEIE interrupt */ - CLEAR_BIT(hspi->Instance->CR2, (SPI_CR2_TXEIE)); - - /* Check TXEIE is disabled */ - do - { - if (count == 0U) - { - SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_ABORT); - break; - } - count--; - } while (HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_TXEIE)); - - if (SPI_EndRxTxTransaction(hspi, SPI_DEFAULT_TIMEOUT, HAL_GetTick()) != HAL_OK) - { - hspi->ErrorCode = HAL_SPI_ERROR_ABORT; - } - - /* Disable SPI Peripheral */ - __HAL_SPI_DISABLE(hspi); - - /* Empty the FRLVL fifo */ - if (SPI_WaitFifoStateUntilTimeout(hspi, SPI_FLAG_FRLVL, SPI_FRLVL_EMPTY, SPI_DEFAULT_TIMEOUT, HAL_GetTick()) != HAL_OK) - { - hspi->ErrorCode = HAL_SPI_ERROR_ABORT; - } - - /* Check case of Full-Duplex Mode and disable directly RXNEIE interrupt */ - if (HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_RXNEIE)) - { - /* Disable RXNEIE interrupt */ - CLEAR_BIT(hspi->Instance->CR2, (SPI_CR2_RXNEIE)); - - /* Check RXNEIE is disabled */ - do - { - if (count == 0U) - { - SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_ABORT); - break; - } - count--; - } while (HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_RXNEIE)); - - /* Control the BSY flag */ - if (SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_BSY, RESET, SPI_DEFAULT_TIMEOUT, HAL_GetTick()) != HAL_OK) - { - hspi->ErrorCode = HAL_SPI_ERROR_ABORT; - } - - /* Empty the FRLVL fifo */ - if (SPI_WaitFifoStateUntilTimeout(hspi, SPI_FLAG_FRLVL, SPI_FRLVL_EMPTY, SPI_DEFAULT_TIMEOUT, HAL_GetTick()) != HAL_OK) - { - hspi->ErrorCode = HAL_SPI_ERROR_ABORT; - } - } - hspi->State = HAL_SPI_STATE_ABORT; -} - -/** - * @} - */ - -#endif /* HAL_SPI_MODULE_ENABLED */ - -/** - * @} - */ - -/** - * @} - */ - -/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_spi_ex.c b/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_spi_ex.c deleted file mode 100644 index b746553..0000000 --- a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_spi_ex.c +++ /dev/null @@ -1,115 +0,0 @@ -/** - ****************************************************************************** - * @file stm32f0xx_hal_spi_ex.c - * @author MCD Application Team - * @brief Extended SPI HAL module driver. - * This file provides firmware functions to manage the following - * SPI peripheral extended functionalities : - * + IO operation functions - * - ****************************************************************************** - * @attention - * - *

© Copyright (c) 2016 STMicroelectronics. - * All rights reserved.

- * - * This software component is licensed by ST under BSD 3-Clause license, - * the "License"; You may not use this file except in compliance with the - * License. You may obtain a copy of the License at: - * opensource.org/licenses/BSD-3-Clause - * - ****************************************************************************** - */ - -/* Includes ------------------------------------------------------------------*/ -#include "stm32f0xx_hal.h" - -/** @addtogroup STM32F0xx_HAL_Driver - * @{ - */ - -/** @defgroup SPIEx SPIEx - * @brief SPI Extended HAL module driver - * @{ - */ -#ifdef HAL_SPI_MODULE_ENABLED - -/* Private typedef -----------------------------------------------------------*/ -/* Private defines -----------------------------------------------------------*/ -/** @defgroup SPIEx_Private_Constants SPIEx Private Constants - * @{ - */ -#define SPI_FIFO_SIZE 4UL -/** - * @} - */ - -/* Private macros ------------------------------------------------------------*/ -/* Private variables ---------------------------------------------------------*/ -/* Private function prototypes -----------------------------------------------*/ -/* Exported functions --------------------------------------------------------*/ - -/** @defgroup SPIEx_Exported_Functions SPIEx Exported Functions - * @{ - */ - -/** @defgroup SPIEx_Exported_Functions_Group1 IO operation functions - * @brief Data transfers functions - * -@verbatim - ============================================================================== - ##### IO operation functions ##### - =============================================================================== - [..] - This subsection provides a set of extended functions to manage the SPI - data transfers. - - (#) Rx data flush function: - (++) HAL_SPIEx_FlushRxFifo() - -@endverbatim - * @{ - */ - -/** - * @brief Flush the RX fifo. - * @param hspi pointer to a SPI_HandleTypeDef structure that contains - * the configuration information for the specified SPI module. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_SPIEx_FlushRxFifo(SPI_HandleTypeDef *hspi) -{ - __IO uint32_t tmpreg; - uint8_t count = 0U; - while ((hspi->Instance->SR & SPI_FLAG_FRLVL) != SPI_FRLVL_EMPTY) - { - count++; - tmpreg = hspi->Instance->DR; - UNUSED(tmpreg); /* To avoid GCC warning */ - if (count == SPI_FIFO_SIZE) - { - return HAL_TIMEOUT; - } - } - return HAL_OK; -} - -/** - * @} - */ - -/** - * @} - */ - -#endif /* HAL_SPI_MODULE_ENABLED */ - -/** - * @} - */ - -/** - * @} - */ - -/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_tim.c b/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_tim.c deleted file mode 100644 index 24648d1..0000000 --- a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_tim.c +++ /dev/null @@ -1,6767 +0,0 @@ -/** - ****************************************************************************** - * @file stm32f0xx_hal_tim.c - * @author MCD Application Team - * @brief TIM HAL module driver. - * This file provides firmware functions to manage the following - * functionalities of the Timer (TIM) peripheral: - * + TIM Time Base Initialization - * + TIM Time Base Start - * + TIM Time Base Start Interruption - * + TIM Time Base Start DMA - * + TIM Output Compare/PWM Initialization - * + TIM Output Compare/PWM Channel Configuration - * + TIM Output Compare/PWM Start - * + TIM Output Compare/PWM Start Interruption - * + TIM Output Compare/PWM Start DMA - * + TIM Input Capture Initialization - * + TIM Input Capture Channel Configuration - * + TIM Input Capture Start - * + TIM Input Capture Start Interruption - * + TIM Input Capture Start DMA - * + TIM One Pulse Initialization - * + TIM One Pulse Channel Configuration - * + TIM One Pulse Start - * + TIM Encoder Interface Initialization - * + TIM Encoder Interface Start - * + TIM Encoder Interface Start Interruption - * + TIM Encoder Interface Start DMA - * + Commutation Event configuration with Interruption and DMA - * + TIM OCRef clear configuration - * + TIM External Clock configuration - @verbatim - ============================================================================== - ##### TIMER Generic features ##### - ============================================================================== - [..] The Timer features include: - (#) 16-bit up, down, up/down auto-reload counter. - (#) 16-bit programmable prescaler allowing dividing (also on the fly) the - counter clock frequency either by any factor between 1 and 65536. - (#) Up to 4 independent channels for: - (++) Input Capture - (++) Output Compare - (++) PWM generation (Edge and Center-aligned Mode) - (++) One-pulse mode output - (#) Synchronization circuit to control the timer with external signals and to interconnect - several timers together. - (#) Supports incremental encoder for positioning purposes - - ##### How to use this driver ##### - ============================================================================== - [..] - (#) Initialize the TIM low level resources by implementing the following functions - depending on the selected feature: - (++) Time Base : HAL_TIM_Base_MspInit() - (++) Input Capture : HAL_TIM_IC_MspInit() - (++) Output Compare : HAL_TIM_OC_MspInit() - (++) PWM generation : HAL_TIM_PWM_MspInit() - (++) One-pulse mode output : HAL_TIM_OnePulse_MspInit() - (++) Encoder mode output : HAL_TIM_Encoder_MspInit() - - (#) Initialize the TIM low level resources : - (##) Enable the TIM interface clock using __HAL_RCC_TIMx_CLK_ENABLE(); - (##) TIM pins configuration - (+++) Enable the clock for the TIM GPIOs using the following function: - __HAL_RCC_GPIOx_CLK_ENABLE(); - (+++) Configure these TIM pins in Alternate function mode using HAL_GPIO_Init(); - - (#) The external Clock can be configured, if needed (the default clock is the - internal clock from the APBx), using the following function: - HAL_TIM_ConfigClockSource, the clock configuration should be done before - any start function. - - (#) Configure the TIM in the desired functioning mode using one of the - Initialization function of this driver: - (++) HAL_TIM_Base_Init: to use the Timer to generate a simple time base - (++) HAL_TIM_OC_Init and HAL_TIM_OC_ConfigChannel: to use the Timer to generate an - Output Compare signal. - (++) HAL_TIM_PWM_Init and HAL_TIM_PWM_ConfigChannel: to use the Timer to generate a - PWM signal. - (++) HAL_TIM_IC_Init and HAL_TIM_IC_ConfigChannel: to use the Timer to measure an - external signal. - (++) HAL_TIM_OnePulse_Init and HAL_TIM_OnePulse_ConfigChannel: to use the Timer - in One Pulse Mode. - (++) HAL_TIM_Encoder_Init: to use the Timer Encoder Interface. - - (#) Activate the TIM peripheral using one of the start functions depending from the feature used: - (++) Time Base : HAL_TIM_Base_Start(), HAL_TIM_Base_Start_DMA(), HAL_TIM_Base_Start_IT() - (++) Input Capture : HAL_TIM_IC_Start(), HAL_TIM_IC_Start_DMA(), HAL_TIM_IC_Start_IT() - (++) Output Compare : HAL_TIM_OC_Start(), HAL_TIM_OC_Start_DMA(), HAL_TIM_OC_Start_IT() - (++) PWM generation : HAL_TIM_PWM_Start(), HAL_TIM_PWM_Start_DMA(), HAL_TIM_PWM_Start_IT() - (++) One-pulse mode output : HAL_TIM_OnePulse_Start(), HAL_TIM_OnePulse_Start_IT() - (++) Encoder mode output : HAL_TIM_Encoder_Start(), HAL_TIM_Encoder_Start_DMA(), HAL_TIM_Encoder_Start_IT(). - - (#) The DMA Burst is managed with the two following functions: - HAL_TIM_DMABurst_WriteStart() - HAL_TIM_DMABurst_ReadStart() - - *** Callback registration *** - ============================================= - - [..] - The compilation define USE_HAL_TIM_REGISTER_CALLBACKS when set to 1 - allows the user to configure dynamically the driver callbacks. - - [..] - Use Function @ref HAL_TIM_RegisterCallback() to register a callback. - @ref HAL_TIM_RegisterCallback() takes as parameters the HAL peripheral handle, - the Callback ID and a pointer to the user callback function. - - [..] - Use function @ref HAL_TIM_UnRegisterCallback() to reset a callback to the default - weak function. - @ref HAL_TIM_UnRegisterCallback takes as parameters the HAL peripheral handle, - and the Callback ID. - - [..] - These functions allow to register/unregister following callbacks: - (+) Base_MspInitCallback : TIM Base Msp Init Callback. - (+) Base_MspDeInitCallback : TIM Base Msp DeInit Callback. - (+) IC_MspInitCallback : TIM IC Msp Init Callback. - (+) IC_MspDeInitCallback : TIM IC Msp DeInit Callback. - (+) OC_MspInitCallback : TIM OC Msp Init Callback. - (+) OC_MspDeInitCallback : TIM OC Msp DeInit Callback. - (+) PWM_MspInitCallback : TIM PWM Msp Init Callback. - (+) PWM_MspDeInitCallback : TIM PWM Msp DeInit Callback. - (+) OnePulse_MspInitCallback : TIM One Pulse Msp Init Callback. - (+) OnePulse_MspDeInitCallback : TIM One Pulse Msp DeInit Callback. - (+) Encoder_MspInitCallback : TIM Encoder Msp Init Callback. - (+) Encoder_MspDeInitCallback : TIM Encoder Msp DeInit Callback. - (+) HallSensor_MspInitCallback : TIM Hall Sensor Msp Init Callback. - (+) HallSensor_MspDeInitCallback : TIM Hall Sensor Msp DeInit Callback. - (+) PeriodElapsedCallback : TIM Period Elapsed Callback. - (+) PeriodElapsedHalfCpltCallback : TIM Period Elapsed half complete Callback. - (+) TriggerCallback : TIM Trigger Callback. - (+) TriggerHalfCpltCallback : TIM Trigger half complete Callback. - (+) IC_CaptureCallback : TIM Input Capture Callback. - (+) IC_CaptureHalfCpltCallback : TIM Input Capture half complete Callback. - (+) OC_DelayElapsedCallback : TIM Output Compare Delay Elapsed Callback. - (+) PWM_PulseFinishedCallback : TIM PWM Pulse Finished Callback. - (+) PWM_PulseFinishedHalfCpltCallback : TIM PWM Pulse Finished half complete Callback. - (+) ErrorCallback : TIM Error Callback. - (+) CommutationCallback : TIM Commutation Callback. - (+) CommutationHalfCpltCallback : TIM Commutation half complete Callback. - (+) BreakCallback : TIM Break Callback. - - [..] -By default, after the Init and when the state is HAL_TIM_STATE_RESET -all interrupt callbacks are set to the corresponding weak functions: - examples @ref HAL_TIM_TriggerCallback(), @ref HAL_TIM_ErrorCallback(). - - [..] - Exception done for MspInit and MspDeInit functions that are reset to the legacy weak - functionalities in the Init / DeInit only when these callbacks are null - (not registered beforehand). If not, MspInit or MspDeInit are not null, the Init / DeInit - keep and use the user MspInit / MspDeInit callbacks(registered beforehand) - - [..] - Callbacks can be registered / unregistered in HAL_TIM_STATE_READY state only. - Exception done MspInit / MspDeInit that can be registered / unregistered - in HAL_TIM_STATE_READY or HAL_TIM_STATE_RESET state, - thus registered(user) MspInit / DeInit callbacks can be used during the Init / DeInit. - In that case first register the MspInit/MspDeInit user callbacks - using @ref HAL_TIM_RegisterCallback() before calling DeInit or Init function. - - [..] - When The compilation define USE_HAL_TIM_REGISTER_CALLBACKS is set to 0 or - not defined, the callback registration feature is not available and all callbacks - are set to the corresponding weak functions. - - @endverbatim - ****************************************************************************** - * @attention - * - *

© Copyright (c) 2016 STMicroelectronics. - * All rights reserved.

- * - * This software component is licensed by ST under BSD 3-Clause license, - * the "License"; You may not use this file except in compliance with the - * License. You may obtain a copy of the License at: - * opensource.org/licenses/BSD-3-Clause - * - ****************************************************************************** - */ - -/* Includes ------------------------------------------------------------------*/ -#include "stm32f0xx_hal.h" - -/** @addtogroup STM32F0xx_HAL_Driver - * @{ - */ - -/** @defgroup TIM TIM - * @brief TIM HAL module driver - * @{ - */ - -#ifdef HAL_TIM_MODULE_ENABLED - -/* Private typedef -----------------------------------------------------------*/ -/* Private define ------------------------------------------------------------*/ -/* Private macro -------------------------------------------------------------*/ -/* Private variables ---------------------------------------------------------*/ -/* Private function prototypes -----------------------------------------------*/ -/** @addtogroup TIM_Private_Functions - * @{ - */ -static void TIM_OC1_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config); -static void TIM_OC3_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config); -static void TIM_OC4_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config); -static void TIM_TI1_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter); -static void TIM_TI2_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, - uint32_t TIM_ICFilter); -static void TIM_TI2_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter); -static void TIM_TI3_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, - uint32_t TIM_ICFilter); -static void TIM_TI4_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, - uint32_t TIM_ICFilter); -static void TIM_ITRx_SetConfig(TIM_TypeDef *TIMx, uint32_t InputTriggerSource); -static void TIM_DMAPeriodElapsedCplt(DMA_HandleTypeDef *hdma); -static void TIM_DMAPeriodElapsedHalfCplt(DMA_HandleTypeDef *hdma); -static void TIM_DMATriggerCplt(DMA_HandleTypeDef *hdma); -static void TIM_DMATriggerHalfCplt(DMA_HandleTypeDef *hdma); -static HAL_StatusTypeDef TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim, - TIM_SlaveConfigTypeDef *sSlaveConfig); -/** - * @} - */ -/* Exported functions --------------------------------------------------------*/ - -/** @defgroup TIM_Exported_Functions TIM Exported Functions - * @{ - */ - -/** @defgroup TIM_Exported_Functions_Group1 TIM Time Base functions - * @brief Time Base functions - * -@verbatim - ============================================================================== - ##### Time Base functions ##### - ============================================================================== - [..] - This section provides functions allowing to: - (+) Initialize and configure the TIM base. - (+) De-initialize the TIM base. - (+) Start the Time Base. - (+) Stop the Time Base. - (+) Start the Time Base and enable interrupt. - (+) Stop the Time Base and disable interrupt. - (+) Start the Time Base and enable DMA transfer. - (+) Stop the Time Base and disable DMA transfer. - -@endverbatim - * @{ - */ -/** - * @brief Initializes the TIM Time base Unit according to the specified - * parameters in the TIM_HandleTypeDef and initialize the associated handle. - * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) - * requires a timer reset to avoid unexpected direction - * due to DIR bit readonly in center aligned mode. - * Ex: call @ref HAL_TIM_Base_DeInit() before HAL_TIM_Base_Init() - * @param htim TIM Base handle - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIM_Base_Init(TIM_HandleTypeDef *htim) -{ - /* Check the TIM handle allocation */ - if (htim == NULL) - { - return HAL_ERROR; - } - - /* Check the parameters */ - assert_param(IS_TIM_INSTANCE(htim->Instance)); - assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); - assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); - assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); - - if (htim->State == HAL_TIM_STATE_RESET) - { - /* Allocate lock resource and initialize it */ - htim->Lock = HAL_UNLOCKED; - -#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) - /* Reset interrupt callbacks to legacy weak callbacks */ - TIM_ResetCallback(htim); - - if (htim->Base_MspInitCallback == NULL) - { - htim->Base_MspInitCallback = HAL_TIM_Base_MspInit; - } - /* Init the low level hardware : GPIO, CLOCK, NVIC */ - htim->Base_MspInitCallback(htim); -#else - /* Init the low level hardware : GPIO, CLOCK, NVIC */ - HAL_TIM_Base_MspInit(htim); -#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ - } - - /* Set the TIM state */ - htim->State = HAL_TIM_STATE_BUSY; - - /* Set the Time Base configuration */ - TIM_Base_SetConfig(htim->Instance, &htim->Init); - - /* Initialize the TIM state*/ - htim->State = HAL_TIM_STATE_READY; - - return HAL_OK; -} - -/** - * @brief DeInitializes the TIM Base peripheral - * @param htim TIM Base handle - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIM_Base_DeInit(TIM_HandleTypeDef *htim) -{ - /* Check the parameters */ - assert_param(IS_TIM_INSTANCE(htim->Instance)); - - htim->State = HAL_TIM_STATE_BUSY; - - /* Disable the TIM Peripheral Clock */ - __HAL_TIM_DISABLE(htim); - -#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) - if (htim->Base_MspDeInitCallback == NULL) - { - htim->Base_MspDeInitCallback = HAL_TIM_Base_MspDeInit; - } - /* DeInit the low level hardware */ - htim->Base_MspDeInitCallback(htim); -#else - /* DeInit the low level hardware: GPIO, CLOCK, NVIC */ - HAL_TIM_Base_MspDeInit(htim); -#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ - - /* Change TIM state */ - htim->State = HAL_TIM_STATE_RESET; - - /* Release Lock */ - __HAL_UNLOCK(htim); - - return HAL_OK; -} - -/** - * @brief Initializes the TIM Base MSP. - * @param htim TIM Base handle - * @retval None - */ -__weak void HAL_TIM_Base_MspInit(TIM_HandleTypeDef *htim) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(htim); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_TIM_Base_MspInit could be implemented in the user file - */ -} - -/** - * @brief DeInitializes TIM Base MSP. - * @param htim TIM Base handle - * @retval None - */ -__weak void HAL_TIM_Base_MspDeInit(TIM_HandleTypeDef *htim) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(htim); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_TIM_Base_MspDeInit could be implemented in the user file - */ -} - - -/** - * @brief Starts the TIM Base generation. - * @param htim TIM Base handle - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIM_Base_Start(TIM_HandleTypeDef *htim) -{ - uint32_t tmpsmcr; - - /* Check the parameters */ - assert_param(IS_TIM_INSTANCE(htim->Instance)); - - /* Set the TIM state */ - htim->State = HAL_TIM_STATE_BUSY; - - /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ - tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; - if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) - { - __HAL_TIM_ENABLE(htim); - } - - /* Change the TIM state*/ - htim->State = HAL_TIM_STATE_READY; - - /* Return function status */ - return HAL_OK; -} - -/** - * @brief Stops the TIM Base generation. - * @param htim TIM Base handle - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIM_Base_Stop(TIM_HandleTypeDef *htim) -{ - /* Check the parameters */ - assert_param(IS_TIM_INSTANCE(htim->Instance)); - - /* Set the TIM state */ - htim->State = HAL_TIM_STATE_BUSY; - - /* Disable the Peripheral */ - __HAL_TIM_DISABLE(htim); - - /* Change the TIM state*/ - htim->State = HAL_TIM_STATE_READY; - - /* Return function status */ - return HAL_OK; -} - -/** - * @brief Starts the TIM Base generation in interrupt mode. - * @param htim TIM Base handle - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIM_Base_Start_IT(TIM_HandleTypeDef *htim) -{ - uint32_t tmpsmcr; - - /* Check the parameters */ - assert_param(IS_TIM_INSTANCE(htim->Instance)); - - /* Enable the TIM Update interrupt */ - __HAL_TIM_ENABLE_IT(htim, TIM_IT_UPDATE); - - /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ - tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; - if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) - { - __HAL_TIM_ENABLE(htim); - } - - /* Return function status */ - return HAL_OK; -} - -/** - * @brief Stops the TIM Base generation in interrupt mode. - * @param htim TIM Base handle - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIM_Base_Stop_IT(TIM_HandleTypeDef *htim) -{ - /* Check the parameters */ - assert_param(IS_TIM_INSTANCE(htim->Instance)); - /* Disable the TIM Update interrupt */ - __HAL_TIM_DISABLE_IT(htim, TIM_IT_UPDATE); - - /* Disable the Peripheral */ - __HAL_TIM_DISABLE(htim); - - /* Return function status */ - return HAL_OK; -} - -/** - * @brief Starts the TIM Base generation in DMA mode. - * @param htim TIM Base handle - * @param pData The source Buffer address. - * @param Length The length of data to be transferred from memory to peripheral. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIM_Base_Start_DMA(TIM_HandleTypeDef *htim, uint32_t *pData, uint16_t Length) -{ - uint32_t tmpsmcr; - - /* Check the parameters */ - assert_param(IS_TIM_DMA_INSTANCE(htim->Instance)); - - if (htim->State == HAL_TIM_STATE_BUSY) - { - return HAL_BUSY; - } - else if (htim->State == HAL_TIM_STATE_READY) - { - if ((pData == NULL) && (Length > 0U)) - { - return HAL_ERROR; - } - else - { - htim->State = HAL_TIM_STATE_BUSY; - } - } - else - { - /* nothing to do */ - } - - /* Set the DMA Period elapsed callbacks */ - htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt; - htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt; - - /* Set the DMA error callback */ - htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ; - - /* Enable the DMA channel */ - if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)pData, (uint32_t)&htim->Instance->ARR, Length) != HAL_OK) - { - return HAL_ERROR; - } - - /* Enable the TIM Update DMA request */ - __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_UPDATE); - - /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ - tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; - if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) - { - __HAL_TIM_ENABLE(htim); - } - - /* Return function status */ - return HAL_OK; -} - -/** - * @brief Stops the TIM Base generation in DMA mode. - * @param htim TIM Base handle - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIM_Base_Stop_DMA(TIM_HandleTypeDef *htim) -{ - /* Check the parameters */ - assert_param(IS_TIM_DMA_INSTANCE(htim->Instance)); - - /* Disable the TIM Update DMA request */ - __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_UPDATE); - - (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]); - - /* Disable the Peripheral */ - __HAL_TIM_DISABLE(htim); - - /* Change the htim state */ - htim->State = HAL_TIM_STATE_READY; - - /* Return function status */ - return HAL_OK; -} - -/** - * @} - */ - -/** @defgroup TIM_Exported_Functions_Group2 TIM Output Compare functions - * @brief TIM Output Compare functions - * -@verbatim - ============================================================================== - ##### TIM Output Compare functions ##### - ============================================================================== - [..] - This section provides functions allowing to: - (+) Initialize and configure the TIM Output Compare. - (+) De-initialize the TIM Output Compare. - (+) Start the TIM Output Compare. - (+) Stop the TIM Output Compare. - (+) Start the TIM Output Compare and enable interrupt. - (+) Stop the TIM Output Compare and disable interrupt. - (+) Start the TIM Output Compare and enable DMA transfer. - (+) Stop the TIM Output Compare and disable DMA transfer. - -@endverbatim - * @{ - */ -/** - * @brief Initializes the TIM Output Compare according to the specified - * parameters in the TIM_HandleTypeDef and initializes the associated handle. - * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) - * requires a timer reset to avoid unexpected direction - * due to DIR bit readonly in center aligned mode. - * Ex: call @ref HAL_TIM_OC_DeInit() before HAL_TIM_OC_Init() - * @param htim TIM Output Compare handle - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIM_OC_Init(TIM_HandleTypeDef *htim) -{ - /* Check the TIM handle allocation */ - if (htim == NULL) - { - return HAL_ERROR; - } - - /* Check the parameters */ - assert_param(IS_TIM_INSTANCE(htim->Instance)); - assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); - assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); - assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); - - if (htim->State == HAL_TIM_STATE_RESET) - { - /* Allocate lock resource and initialize it */ - htim->Lock = HAL_UNLOCKED; - -#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) - /* Reset interrupt callbacks to legacy weak callbacks */ - TIM_ResetCallback(htim); - - if (htim->OC_MspInitCallback == NULL) - { - htim->OC_MspInitCallback = HAL_TIM_OC_MspInit; - } - /* Init the low level hardware : GPIO, CLOCK, NVIC */ - htim->OC_MspInitCallback(htim); -#else - /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ - HAL_TIM_OC_MspInit(htim); -#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ - } - - /* Set the TIM state */ - htim->State = HAL_TIM_STATE_BUSY; - - /* Init the base time for the Output Compare */ - TIM_Base_SetConfig(htim->Instance, &htim->Init); - - /* Initialize the TIM state*/ - htim->State = HAL_TIM_STATE_READY; - - return HAL_OK; -} - -/** - * @brief DeInitializes the TIM peripheral - * @param htim TIM Output Compare handle - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIM_OC_DeInit(TIM_HandleTypeDef *htim) -{ - /* Check the parameters */ - assert_param(IS_TIM_INSTANCE(htim->Instance)); - - htim->State = HAL_TIM_STATE_BUSY; - - /* Disable the TIM Peripheral Clock */ - __HAL_TIM_DISABLE(htim); - -#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) - if (htim->OC_MspDeInitCallback == NULL) - { - htim->OC_MspDeInitCallback = HAL_TIM_OC_MspDeInit; - } - /* DeInit the low level hardware */ - htim->OC_MspDeInitCallback(htim); -#else - /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */ - HAL_TIM_OC_MspDeInit(htim); -#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ - - /* Change TIM state */ - htim->State = HAL_TIM_STATE_RESET; - - /* Release Lock */ - __HAL_UNLOCK(htim); - - return HAL_OK; -} - -/** - * @brief Initializes the TIM Output Compare MSP. - * @param htim TIM Output Compare handle - * @retval None - */ -__weak void HAL_TIM_OC_MspInit(TIM_HandleTypeDef *htim) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(htim); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_TIM_OC_MspInit could be implemented in the user file - */ -} - -/** - * @brief DeInitializes TIM Output Compare MSP. - * @param htim TIM Output Compare handle - * @retval None - */ -__weak void HAL_TIM_OC_MspDeInit(TIM_HandleTypeDef *htim) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(htim); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_TIM_OC_MspDeInit could be implemented in the user file - */ -} - -/** - * @brief Starts the TIM Output Compare signal generation. - * @param htim TIM Output Compare handle - * @param Channel TIM Channel to be enabled - * This parameter can be one of the following values: - * @arg TIM_CHANNEL_1: TIM Channel 1 selected - * @arg TIM_CHANNEL_2: TIM Channel 2 selected - * @arg TIM_CHANNEL_3: TIM Channel 3 selected - * @arg TIM_CHANNEL_4: TIM Channel 4 selected - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIM_OC_Start(TIM_HandleTypeDef *htim, uint32_t Channel) -{ - uint32_t tmpsmcr; - - /* Check the parameters */ - assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); - - /* Enable the Output compare channel */ - TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); - - if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) - { - /* Enable the main output */ - __HAL_TIM_MOE_ENABLE(htim); - } - - /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ - tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; - if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) - { - __HAL_TIM_ENABLE(htim); - } - - /* Return function status */ - return HAL_OK; -} - -/** - * @brief Stops the TIM Output Compare signal generation. - * @param htim TIM Output Compare handle - * @param Channel TIM Channel to be disabled - * This parameter can be one of the following values: - * @arg TIM_CHANNEL_1: TIM Channel 1 selected - * @arg TIM_CHANNEL_2: TIM Channel 2 selected - * @arg TIM_CHANNEL_3: TIM Channel 3 selected - * @arg TIM_CHANNEL_4: TIM Channel 4 selected - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIM_OC_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) -{ - /* Check the parameters */ - assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); - - /* Disable the Output compare channel */ - TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); - - if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) - { - /* Disable the Main Output */ - __HAL_TIM_MOE_DISABLE(htim); - } - - /* Disable the Peripheral */ - __HAL_TIM_DISABLE(htim); - - /* Return function status */ - return HAL_OK; -} - -/** - * @brief Starts the TIM Output Compare signal generation in interrupt mode. - * @param htim TIM Output Compare handle - * @param Channel TIM Channel to be enabled - * This parameter can be one of the following values: - * @arg TIM_CHANNEL_1: TIM Channel 1 selected - * @arg TIM_CHANNEL_2: TIM Channel 2 selected - * @arg TIM_CHANNEL_3: TIM Channel 3 selected - * @arg TIM_CHANNEL_4: TIM Channel 4 selected - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIM_OC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) -{ - uint32_t tmpsmcr; - - /* Check the parameters */ - assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); - - switch (Channel) - { - case TIM_CHANNEL_1: - { - /* Enable the TIM Capture/Compare 1 interrupt */ - __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); - break; - } - - case TIM_CHANNEL_2: - { - /* Enable the TIM Capture/Compare 2 interrupt */ - __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); - break; - } - - case TIM_CHANNEL_3: - { - /* Enable the TIM Capture/Compare 3 interrupt */ - __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3); - break; - } - - case TIM_CHANNEL_4: - { - /* Enable the TIM Capture/Compare 4 interrupt */ - __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4); - break; - } - - default: - break; - } - - /* Enable the Output compare channel */ - TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); - - if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) - { - /* Enable the main output */ - __HAL_TIM_MOE_ENABLE(htim); - } - - /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ - tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; - if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) - { - __HAL_TIM_ENABLE(htim); - } - - /* Return function status */ - return HAL_OK; -} - -/** - * @brief Stops the TIM Output Compare signal generation in interrupt mode. - * @param htim TIM Output Compare handle - * @param Channel TIM Channel to be disabled - * This parameter can be one of the following values: - * @arg TIM_CHANNEL_1: TIM Channel 1 selected - * @arg TIM_CHANNEL_2: TIM Channel 2 selected - * @arg TIM_CHANNEL_3: TIM Channel 3 selected - * @arg TIM_CHANNEL_4: TIM Channel 4 selected - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIM_OC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) -{ - /* Check the parameters */ - assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); - - switch (Channel) - { - case TIM_CHANNEL_1: - { - /* Disable the TIM Capture/Compare 1 interrupt */ - __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); - break; - } - - case TIM_CHANNEL_2: - { - /* Disable the TIM Capture/Compare 2 interrupt */ - __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); - break; - } - - case TIM_CHANNEL_3: - { - /* Disable the TIM Capture/Compare 3 interrupt */ - __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3); - break; - } - - case TIM_CHANNEL_4: - { - /* Disable the TIM Capture/Compare 4 interrupt */ - __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4); - break; - } - - default: - break; - } - - /* Disable the Output compare channel */ - TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); - - if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) - { - /* Disable the Main Output */ - __HAL_TIM_MOE_DISABLE(htim); - } - - /* Disable the Peripheral */ - __HAL_TIM_DISABLE(htim); - - /* Return function status */ - return HAL_OK; -} - -/** - * @brief Starts the TIM Output Compare signal generation in DMA mode. - * @param htim TIM Output Compare handle - * @param Channel TIM Channel to be enabled - * This parameter can be one of the following values: - * @arg TIM_CHANNEL_1: TIM Channel 1 selected - * @arg TIM_CHANNEL_2: TIM Channel 2 selected - * @arg TIM_CHANNEL_3: TIM Channel 3 selected - * @arg TIM_CHANNEL_4: TIM Channel 4 selected - * @param pData The source Buffer address. - * @param Length The length of data to be transferred from memory to TIM peripheral - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIM_OC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length) -{ - uint32_t tmpsmcr; - - /* Check the parameters */ - assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); - - if (htim->State == HAL_TIM_STATE_BUSY) - { - return HAL_BUSY; - } - else if (htim->State == HAL_TIM_STATE_READY) - { - if ((pData == NULL) && (Length > 0U)) - { - return HAL_ERROR; - } - else - { - htim->State = HAL_TIM_STATE_BUSY; - } - } - else - { - /* nothing to do */ - } - - switch (Channel) - { - case TIM_CHANNEL_1: - { - /* Set the DMA compare callbacks */ - htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt; - htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; - - /* Set the DMA error callback */ - htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; - - /* Enable the DMA channel */ - if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, Length) != HAL_OK) - { - return HAL_ERROR; - } - - /* Enable the TIM Capture/Compare 1 DMA request */ - __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); - break; - } - - case TIM_CHANNEL_2: - { - /* Set the DMA compare callbacks */ - htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt; - htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; - - /* Set the DMA error callback */ - htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; - - /* Enable the DMA channel */ - if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, Length) != HAL_OK) - { - return HAL_ERROR; - } - - /* Enable the TIM Capture/Compare 2 DMA request */ - __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); - break; - } - - case TIM_CHANNEL_3: - { - /* Set the DMA compare callbacks */ - htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt; - htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; - - /* Set the DMA error callback */ - htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ; - - /* Enable the DMA channel */ - if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3, Length) != HAL_OK) - { - return HAL_ERROR; - } - /* Enable the TIM Capture/Compare 3 DMA request */ - __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3); - break; - } - - case TIM_CHANNEL_4: - { - /* Set the DMA compare callbacks */ - htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt; - htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; - - /* Set the DMA error callback */ - htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ; - - /* Enable the DMA channel */ - if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4, Length) != HAL_OK) - { - return HAL_ERROR; - } - /* Enable the TIM Capture/Compare 4 DMA request */ - __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4); - break; - } - - default: - break; - } - - /* Enable the Output compare channel */ - TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); - - if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) - { - /* Enable the main output */ - __HAL_TIM_MOE_ENABLE(htim); - } - - /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ - tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; - if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) - { - __HAL_TIM_ENABLE(htim); - } - - /* Return function status */ - return HAL_OK; -} - -/** - * @brief Stops the TIM Output Compare signal generation in DMA mode. - * @param htim TIM Output Compare handle - * @param Channel TIM Channel to be disabled - * This parameter can be one of the following values: - * @arg TIM_CHANNEL_1: TIM Channel 1 selected - * @arg TIM_CHANNEL_2: TIM Channel 2 selected - * @arg TIM_CHANNEL_3: TIM Channel 3 selected - * @arg TIM_CHANNEL_4: TIM Channel 4 selected - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIM_OC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) -{ - /* Check the parameters */ - assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); - - switch (Channel) - { - case TIM_CHANNEL_1: - { - /* Disable the TIM Capture/Compare 1 DMA request */ - __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); - (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); - break; - } - - case TIM_CHANNEL_2: - { - /* Disable the TIM Capture/Compare 2 DMA request */ - __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); - (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); - break; - } - - case TIM_CHANNEL_3: - { - /* Disable the TIM Capture/Compare 3 DMA request */ - __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3); - (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); - break; - } - - case TIM_CHANNEL_4: - { - /* Disable the TIM Capture/Compare 4 interrupt */ - __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4); - (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]); - break; - } - - default: - break; - } - - /* Disable the Output compare channel */ - TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); - - if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) - { - /* Disable the Main Output */ - __HAL_TIM_MOE_DISABLE(htim); - } - - /* Disable the Peripheral */ - __HAL_TIM_DISABLE(htim); - - /* Change the htim state */ - htim->State = HAL_TIM_STATE_READY; - - /* Return function status */ - return HAL_OK; -} - -/** - * @} - */ - -/** @defgroup TIM_Exported_Functions_Group3 TIM PWM functions - * @brief TIM PWM functions - * -@verbatim - ============================================================================== - ##### TIM PWM functions ##### - ============================================================================== - [..] - This section provides functions allowing to: - (+) Initialize and configure the TIM PWM. - (+) De-initialize the TIM PWM. - (+) Start the TIM PWM. - (+) Stop the TIM PWM. - (+) Start the TIM PWM and enable interrupt. - (+) Stop the TIM PWM and disable interrupt. - (+) Start the TIM PWM and enable DMA transfer. - (+) Stop the TIM PWM and disable DMA transfer. - -@endverbatim - * @{ - */ -/** - * @brief Initializes the TIM PWM Time Base according to the specified - * parameters in the TIM_HandleTypeDef and initializes the associated handle. - * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) - * requires a timer reset to avoid unexpected direction - * due to DIR bit readonly in center aligned mode. - * Ex: call @ref HAL_TIM_PWM_DeInit() before HAL_TIM_PWM_Init() - * @param htim TIM PWM handle - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIM_PWM_Init(TIM_HandleTypeDef *htim) -{ - /* Check the TIM handle allocation */ - if (htim == NULL) - { - return HAL_ERROR; - } - - /* Check the parameters */ - assert_param(IS_TIM_INSTANCE(htim->Instance)); - assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); - assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); - assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); - - if (htim->State == HAL_TIM_STATE_RESET) - { - /* Allocate lock resource and initialize it */ - htim->Lock = HAL_UNLOCKED; - -#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) - /* Reset interrupt callbacks to legacy weak callbacks */ - TIM_ResetCallback(htim); - - if (htim->PWM_MspInitCallback == NULL) - { - htim->PWM_MspInitCallback = HAL_TIM_PWM_MspInit; - } - /* Init the low level hardware : GPIO, CLOCK, NVIC */ - htim->PWM_MspInitCallback(htim); -#else - /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ - HAL_TIM_PWM_MspInit(htim); -#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ - } - - /* Set the TIM state */ - htim->State = HAL_TIM_STATE_BUSY; - - /* Init the base time for the PWM */ - TIM_Base_SetConfig(htim->Instance, &htim->Init); - - /* Initialize the TIM state*/ - htim->State = HAL_TIM_STATE_READY; - - return HAL_OK; -} - -/** - * @brief DeInitializes the TIM peripheral - * @param htim TIM PWM handle - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIM_PWM_DeInit(TIM_HandleTypeDef *htim) -{ - /* Check the parameters */ - assert_param(IS_TIM_INSTANCE(htim->Instance)); - - htim->State = HAL_TIM_STATE_BUSY; - - /* Disable the TIM Peripheral Clock */ - __HAL_TIM_DISABLE(htim); - -#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) - if (htim->PWM_MspDeInitCallback == NULL) - { - htim->PWM_MspDeInitCallback = HAL_TIM_PWM_MspDeInit; - } - /* DeInit the low level hardware */ - htim->PWM_MspDeInitCallback(htim); -#else - /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */ - HAL_TIM_PWM_MspDeInit(htim); -#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ - - /* Change TIM state */ - htim->State = HAL_TIM_STATE_RESET; - - /* Release Lock */ - __HAL_UNLOCK(htim); - - return HAL_OK; -} - -/** - * @brief Initializes the TIM PWM MSP. - * @param htim TIM PWM handle - * @retval None - */ -__weak void HAL_TIM_PWM_MspInit(TIM_HandleTypeDef *htim) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(htim); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_TIM_PWM_MspInit could be implemented in the user file - */ -} - -/** - * @brief DeInitializes TIM PWM MSP. - * @param htim TIM PWM handle - * @retval None - */ -__weak void HAL_TIM_PWM_MspDeInit(TIM_HandleTypeDef *htim) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(htim); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_TIM_PWM_MspDeInit could be implemented in the user file - */ -} - -/** - * @brief Starts the PWM signal generation. - * @param htim TIM handle - * @param Channel TIM Channels to be enabled - * This parameter can be one of the following values: - * @arg TIM_CHANNEL_1: TIM Channel 1 selected - * @arg TIM_CHANNEL_2: TIM Channel 2 selected - * @arg TIM_CHANNEL_3: TIM Channel 3 selected - * @arg TIM_CHANNEL_4: TIM Channel 4 selected - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIM_PWM_Start(TIM_HandleTypeDef *htim, uint32_t Channel) -{ - uint32_t tmpsmcr; - - /* Check the parameters */ - assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); - - /* Enable the Capture compare channel */ - TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); - - if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) - { - /* Enable the main output */ - __HAL_TIM_MOE_ENABLE(htim); - } - - /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ - tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; - if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) - { - __HAL_TIM_ENABLE(htim); - } - - /* Return function status */ - return HAL_OK; -} - -/** - * @brief Stops the PWM signal generation. - * @param htim TIM PWM handle - * @param Channel TIM Channels to be disabled - * This parameter can be one of the following values: - * @arg TIM_CHANNEL_1: TIM Channel 1 selected - * @arg TIM_CHANNEL_2: TIM Channel 2 selected - * @arg TIM_CHANNEL_3: TIM Channel 3 selected - * @arg TIM_CHANNEL_4: TIM Channel 4 selected - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIM_PWM_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) -{ - /* Check the parameters */ - assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); - - /* Disable the Capture compare channel */ - TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); - - if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) - { - /* Disable the Main Output */ - __HAL_TIM_MOE_DISABLE(htim); - } - - /* Disable the Peripheral */ - __HAL_TIM_DISABLE(htim); - - /* Change the htim state */ - htim->State = HAL_TIM_STATE_READY; - - /* Return function status */ - return HAL_OK; -} - -/** - * @brief Starts the PWM signal generation in interrupt mode. - * @param htim TIM PWM handle - * @param Channel TIM Channel to be enabled - * This parameter can be one of the following values: - * @arg TIM_CHANNEL_1: TIM Channel 1 selected - * @arg TIM_CHANNEL_2: TIM Channel 2 selected - * @arg TIM_CHANNEL_3: TIM Channel 3 selected - * @arg TIM_CHANNEL_4: TIM Channel 4 selected - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIM_PWM_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) -{ - uint32_t tmpsmcr; - /* Check the parameters */ - assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); - - switch (Channel) - { - case TIM_CHANNEL_1: - { - /* Enable the TIM Capture/Compare 1 interrupt */ - __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); - break; - } - - case TIM_CHANNEL_2: - { - /* Enable the TIM Capture/Compare 2 interrupt */ - __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); - break; - } - - case TIM_CHANNEL_3: - { - /* Enable the TIM Capture/Compare 3 interrupt */ - __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3); - break; - } - - case TIM_CHANNEL_4: - { - /* Enable the TIM Capture/Compare 4 interrupt */ - __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4); - break; - } - - default: - break; - } - - /* Enable the Capture compare channel */ - TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); - - if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) - { - /* Enable the main output */ - __HAL_TIM_MOE_ENABLE(htim); - } - - /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ - tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; - if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) - { - __HAL_TIM_ENABLE(htim); - } - - /* Return function status */ - return HAL_OK; -} - -/** - * @brief Stops the PWM signal generation in interrupt mode. - * @param htim TIM PWM handle - * @param Channel TIM Channels to be disabled - * This parameter can be one of the following values: - * @arg TIM_CHANNEL_1: TIM Channel 1 selected - * @arg TIM_CHANNEL_2: TIM Channel 2 selected - * @arg TIM_CHANNEL_3: TIM Channel 3 selected - * @arg TIM_CHANNEL_4: TIM Channel 4 selected - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIM_PWM_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) -{ - /* Check the parameters */ - assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); - - switch (Channel) - { - case TIM_CHANNEL_1: - { - /* Disable the TIM Capture/Compare 1 interrupt */ - __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); - break; - } - - case TIM_CHANNEL_2: - { - /* Disable the TIM Capture/Compare 2 interrupt */ - __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); - break; - } - - case TIM_CHANNEL_3: - { - /* Disable the TIM Capture/Compare 3 interrupt */ - __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3); - break; - } - - case TIM_CHANNEL_4: - { - /* Disable the TIM Capture/Compare 4 interrupt */ - __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4); - break; - } - - default: - break; - } - - /* Disable the Capture compare channel */ - TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); - - if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) - { - /* Disable the Main Output */ - __HAL_TIM_MOE_DISABLE(htim); - } - - /* Disable the Peripheral */ - __HAL_TIM_DISABLE(htim); - - /* Return function status */ - return HAL_OK; -} - -/** - * @brief Starts the TIM PWM signal generation in DMA mode. - * @param htim TIM PWM handle - * @param Channel TIM Channels to be enabled - * This parameter can be one of the following values: - * @arg TIM_CHANNEL_1: TIM Channel 1 selected - * @arg TIM_CHANNEL_2: TIM Channel 2 selected - * @arg TIM_CHANNEL_3: TIM Channel 3 selected - * @arg TIM_CHANNEL_4: TIM Channel 4 selected - * @param pData The source Buffer address. - * @param Length The length of data to be transferred from memory to TIM peripheral - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIM_PWM_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length) -{ - uint32_t tmpsmcr; - - /* Check the parameters */ - assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); - - if (htim->State == HAL_TIM_STATE_BUSY) - { - return HAL_BUSY; - } - else if (htim->State == HAL_TIM_STATE_READY) - { - if ((pData == NULL) && (Length > 0U)) - { - return HAL_ERROR; - } - else - { - htim->State = HAL_TIM_STATE_BUSY; - } - } - else - { - /* nothing to do */ - } - - switch (Channel) - { - case TIM_CHANNEL_1: - { - /* Set the DMA compare callbacks */ - htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt; - htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; - - /* Set the DMA error callback */ - htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; - - /* Enable the DMA channel */ - if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, Length) != HAL_OK) - { - return HAL_ERROR; - } - - /* Enable the TIM Capture/Compare 1 DMA request */ - __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); - break; - } - - case TIM_CHANNEL_2: - { - /* Set the DMA compare callbacks */ - htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt; - htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; - - /* Set the DMA error callback */ - htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; - - /* Enable the DMA channel */ - if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, Length) != HAL_OK) - { - return HAL_ERROR; - } - /* Enable the TIM Capture/Compare 2 DMA request */ - __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); - break; - } - - case TIM_CHANNEL_3: - { - /* Set the DMA compare callbacks */ - htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt; - htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; - - /* Set the DMA error callback */ - htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ; - - /* Enable the DMA channel */ - if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3, Length) != HAL_OK) - { - return HAL_ERROR; - } - /* Enable the TIM Output Capture/Compare 3 request */ - __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3); - break; - } - - case TIM_CHANNEL_4: - { - /* Set the DMA compare callbacks */ - htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt; - htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; - - /* Set the DMA error callback */ - htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ; - - /* Enable the DMA channel */ - if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4, Length) != HAL_OK) - { - return HAL_ERROR; - } - /* Enable the TIM Capture/Compare 4 DMA request */ - __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4); - break; - } - - default: - break; - } - - /* Enable the Capture compare channel */ - TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); - - if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) - { - /* Enable the main output */ - __HAL_TIM_MOE_ENABLE(htim); - } - - /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ - tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; - if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) - { - __HAL_TIM_ENABLE(htim); - } - - /* Return function status */ - return HAL_OK; -} - -/** - * @brief Stops the TIM PWM signal generation in DMA mode. - * @param htim TIM PWM handle - * @param Channel TIM Channels to be disabled - * This parameter can be one of the following values: - * @arg TIM_CHANNEL_1: TIM Channel 1 selected - * @arg TIM_CHANNEL_2: TIM Channel 2 selected - * @arg TIM_CHANNEL_3: TIM Channel 3 selected - * @arg TIM_CHANNEL_4: TIM Channel 4 selected - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIM_PWM_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) -{ - /* Check the parameters */ - assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); - - switch (Channel) - { - case TIM_CHANNEL_1: - { - /* Disable the TIM Capture/Compare 1 DMA request */ - __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); - (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); - break; - } - - case TIM_CHANNEL_2: - { - /* Disable the TIM Capture/Compare 2 DMA request */ - __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); - (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); - break; - } - - case TIM_CHANNEL_3: - { - /* Disable the TIM Capture/Compare 3 DMA request */ - __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3); - (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); - break; - } - - case TIM_CHANNEL_4: - { - /* Disable the TIM Capture/Compare 4 interrupt */ - __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4); - (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]); - break; - } - - default: - break; - } - - /* Disable the Capture compare channel */ - TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); - - if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) - { - /* Disable the Main Output */ - __HAL_TIM_MOE_DISABLE(htim); - } - - /* Disable the Peripheral */ - __HAL_TIM_DISABLE(htim); - - /* Change the htim state */ - htim->State = HAL_TIM_STATE_READY; - - /* Return function status */ - return HAL_OK; -} - -/** - * @} - */ - -/** @defgroup TIM_Exported_Functions_Group4 TIM Input Capture functions - * @brief TIM Input Capture functions - * -@verbatim - ============================================================================== - ##### TIM Input Capture functions ##### - ============================================================================== - [..] - This section provides functions allowing to: - (+) Initialize and configure the TIM Input Capture. - (+) De-initialize the TIM Input Capture. - (+) Start the TIM Input Capture. - (+) Stop the TIM Input Capture. - (+) Start the TIM Input Capture and enable interrupt. - (+) Stop the TIM Input Capture and disable interrupt. - (+) Start the TIM Input Capture and enable DMA transfer. - (+) Stop the TIM Input Capture and disable DMA transfer. - -@endverbatim - * @{ - */ -/** - * @brief Initializes the TIM Input Capture Time base according to the specified - * parameters in the TIM_HandleTypeDef and initializes the associated handle. - * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) - * requires a timer reset to avoid unexpected direction - * due to DIR bit readonly in center aligned mode. - * Ex: call @ref HAL_TIM_IC_DeInit() before HAL_TIM_IC_Init() - * @param htim TIM Input Capture handle - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIM_IC_Init(TIM_HandleTypeDef *htim) -{ - /* Check the TIM handle allocation */ - if (htim == NULL) - { - return HAL_ERROR; - } - - /* Check the parameters */ - assert_param(IS_TIM_INSTANCE(htim->Instance)); - assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); - assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); - assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); - - if (htim->State == HAL_TIM_STATE_RESET) - { - /* Allocate lock resource and initialize it */ - htim->Lock = HAL_UNLOCKED; - -#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) - /* Reset interrupt callbacks to legacy weak callbacks */ - TIM_ResetCallback(htim); - - if (htim->IC_MspInitCallback == NULL) - { - htim->IC_MspInitCallback = HAL_TIM_IC_MspInit; - } - /* Init the low level hardware : GPIO, CLOCK, NVIC */ - htim->IC_MspInitCallback(htim); -#else - /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ - HAL_TIM_IC_MspInit(htim); -#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ - } - - /* Set the TIM state */ - htim->State = HAL_TIM_STATE_BUSY; - - /* Init the base time for the input capture */ - TIM_Base_SetConfig(htim->Instance, &htim->Init); - - /* Initialize the TIM state*/ - htim->State = HAL_TIM_STATE_READY; - - return HAL_OK; -} - -/** - * @brief DeInitializes the TIM peripheral - * @param htim TIM Input Capture handle - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIM_IC_DeInit(TIM_HandleTypeDef *htim) -{ - /* Check the parameters */ - assert_param(IS_TIM_INSTANCE(htim->Instance)); - - htim->State = HAL_TIM_STATE_BUSY; - - /* Disable the TIM Peripheral Clock */ - __HAL_TIM_DISABLE(htim); - -#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) - if (htim->IC_MspDeInitCallback == NULL) - { - htim->IC_MspDeInitCallback = HAL_TIM_IC_MspDeInit; - } - /* DeInit the low level hardware */ - htim->IC_MspDeInitCallback(htim); -#else - /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */ - HAL_TIM_IC_MspDeInit(htim); -#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ - - /* Change TIM state */ - htim->State = HAL_TIM_STATE_RESET; - - /* Release Lock */ - __HAL_UNLOCK(htim); - - return HAL_OK; -} - -/** - * @brief Initializes the TIM Input Capture MSP. - * @param htim TIM Input Capture handle - * @retval None - */ -__weak void HAL_TIM_IC_MspInit(TIM_HandleTypeDef *htim) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(htim); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_TIM_IC_MspInit could be implemented in the user file - */ -} - -/** - * @brief DeInitializes TIM Input Capture MSP. - * @param htim TIM handle - * @retval None - */ -__weak void HAL_TIM_IC_MspDeInit(TIM_HandleTypeDef *htim) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(htim); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_TIM_IC_MspDeInit could be implemented in the user file - */ -} - -/** - * @brief Starts the TIM Input Capture measurement. - * @param htim TIM Input Capture handle - * @param Channel TIM Channels to be enabled - * This parameter can be one of the following values: - * @arg TIM_CHANNEL_1: TIM Channel 1 selected - * @arg TIM_CHANNEL_2: TIM Channel 2 selected - * @arg TIM_CHANNEL_3: TIM Channel 3 selected - * @arg TIM_CHANNEL_4: TIM Channel 4 selected - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIM_IC_Start(TIM_HandleTypeDef *htim, uint32_t Channel) -{ - uint32_t tmpsmcr; - - /* Check the parameters */ - assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); - - /* Enable the Input Capture channel */ - TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); - - /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ - tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; - if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) - { - __HAL_TIM_ENABLE(htim); - } - - /* Return function status */ - return HAL_OK; -} - -/** - * @brief Stops the TIM Input Capture measurement. - * @param htim TIM Input Capture handle - * @param Channel TIM Channels to be disabled - * This parameter can be one of the following values: - * @arg TIM_CHANNEL_1: TIM Channel 1 selected - * @arg TIM_CHANNEL_2: TIM Channel 2 selected - * @arg TIM_CHANNEL_3: TIM Channel 3 selected - * @arg TIM_CHANNEL_4: TIM Channel 4 selected - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIM_IC_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) -{ - /* Check the parameters */ - assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); - - /* Disable the Input Capture channel */ - TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); - - /* Disable the Peripheral */ - __HAL_TIM_DISABLE(htim); - - /* Return function status */ - return HAL_OK; -} - -/** - * @brief Starts the TIM Input Capture measurement in interrupt mode. - * @param htim TIM Input Capture handle - * @param Channel TIM Channels to be enabled - * This parameter can be one of the following values: - * @arg TIM_CHANNEL_1: TIM Channel 1 selected - * @arg TIM_CHANNEL_2: TIM Channel 2 selected - * @arg TIM_CHANNEL_3: TIM Channel 3 selected - * @arg TIM_CHANNEL_4: TIM Channel 4 selected - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIM_IC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) -{ - uint32_t tmpsmcr; - - /* Check the parameters */ - assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); - - switch (Channel) - { - case TIM_CHANNEL_1: - { - /* Enable the TIM Capture/Compare 1 interrupt */ - __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); - break; - } - - case TIM_CHANNEL_2: - { - /* Enable the TIM Capture/Compare 2 interrupt */ - __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); - break; - } - - case TIM_CHANNEL_3: - { - /* Enable the TIM Capture/Compare 3 interrupt */ - __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3); - break; - } - - case TIM_CHANNEL_4: - { - /* Enable the TIM Capture/Compare 4 interrupt */ - __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4); - break; - } - - default: - break; - } - /* Enable the Input Capture channel */ - TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); - - /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ - tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; - if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) - { - __HAL_TIM_ENABLE(htim); - } - - /* Return function status */ - return HAL_OK; -} - -/** - * @brief Stops the TIM Input Capture measurement in interrupt mode. - * @param htim TIM Input Capture handle - * @param Channel TIM Channels to be disabled - * This parameter can be one of the following values: - * @arg TIM_CHANNEL_1: TIM Channel 1 selected - * @arg TIM_CHANNEL_2: TIM Channel 2 selected - * @arg TIM_CHANNEL_3: TIM Channel 3 selected - * @arg TIM_CHANNEL_4: TIM Channel 4 selected - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIM_IC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) -{ - /* Check the parameters */ - assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); - - switch (Channel) - { - case TIM_CHANNEL_1: - { - /* Disable the TIM Capture/Compare 1 interrupt */ - __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); - break; - } - - case TIM_CHANNEL_2: - { - /* Disable the TIM Capture/Compare 2 interrupt */ - __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); - break; - } - - case TIM_CHANNEL_3: - { - /* Disable the TIM Capture/Compare 3 interrupt */ - __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3); - break; - } - - case TIM_CHANNEL_4: - { - /* Disable the TIM Capture/Compare 4 interrupt */ - __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4); - break; - } - - default: - break; - } - - /* Disable the Input Capture channel */ - TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); - - /* Disable the Peripheral */ - __HAL_TIM_DISABLE(htim); - - /* Return function status */ - return HAL_OK; -} - -/** - * @brief Starts the TIM Input Capture measurement in DMA mode. - * @param htim TIM Input Capture handle - * @param Channel TIM Channels to be enabled - * This parameter can be one of the following values: - * @arg TIM_CHANNEL_1: TIM Channel 1 selected - * @arg TIM_CHANNEL_2: TIM Channel 2 selected - * @arg TIM_CHANNEL_3: TIM Channel 3 selected - * @arg TIM_CHANNEL_4: TIM Channel 4 selected - * @param pData The destination Buffer address. - * @param Length The length of data to be transferred from TIM peripheral to memory. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIM_IC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length) -{ - uint32_t tmpsmcr; - - /* Check the parameters */ - assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); - assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance)); - - if (htim->State == HAL_TIM_STATE_BUSY) - { - return HAL_BUSY; - } - else if (htim->State == HAL_TIM_STATE_READY) - { - if ((pData == NULL) && (Length > 0U)) - { - return HAL_ERROR; - } - else - { - htim->State = HAL_TIM_STATE_BUSY; - } - } - else - { - /* nothing to do */ - } - - switch (Channel) - { - case TIM_CHANNEL_1: - { - /* Set the DMA capture callbacks */ - htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt; - htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; - - /* Set the DMA error callback */ - htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; - - /* Enable the DMA channel */ - if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData, Length) != HAL_OK) - { - return HAL_ERROR; - } - /* Enable the TIM Capture/Compare 1 DMA request */ - __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); - break; - } - - case TIM_CHANNEL_2: - { - /* Set the DMA capture callbacks */ - htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt; - htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; - - /* Set the DMA error callback */ - htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; - - /* Enable the DMA channel */ - if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData, Length) != HAL_OK) - { - return HAL_ERROR; - } - /* Enable the TIM Capture/Compare 2 DMA request */ - __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); - break; - } - - case TIM_CHANNEL_3: - { - /* Set the DMA capture callbacks */ - htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMACaptureCplt; - htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; - - /* Set the DMA error callback */ - htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ; - - /* Enable the DMA channel */ - if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)&htim->Instance->CCR3, (uint32_t)pData, Length) != HAL_OK) - { - return HAL_ERROR; - } - /* Enable the TIM Capture/Compare 3 DMA request */ - __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3); - break; - } - - case TIM_CHANNEL_4: - { - /* Set the DMA capture callbacks */ - htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMACaptureCplt; - htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; - - /* Set the DMA error callback */ - htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ; - - /* Enable the DMA channel */ - if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)&htim->Instance->CCR4, (uint32_t)pData, Length) != HAL_OK) - { - return HAL_ERROR; - } - /* Enable the TIM Capture/Compare 4 DMA request */ - __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4); - break; - } - - default: - break; - } - - /* Enable the Input Capture channel */ - TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); - - /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ - tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; - if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) - { - __HAL_TIM_ENABLE(htim); - } - - /* Return function status */ - return HAL_OK; -} - -/** - * @brief Stops the TIM Input Capture measurement in DMA mode. - * @param htim TIM Input Capture handle - * @param Channel TIM Channels to be disabled - * This parameter can be one of the following values: - * @arg TIM_CHANNEL_1: TIM Channel 1 selected - * @arg TIM_CHANNEL_2: TIM Channel 2 selected - * @arg TIM_CHANNEL_3: TIM Channel 3 selected - * @arg TIM_CHANNEL_4: TIM Channel 4 selected - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIM_IC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) -{ - /* Check the parameters */ - assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); - assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance)); - - switch (Channel) - { - case TIM_CHANNEL_1: - { - /* Disable the TIM Capture/Compare 1 DMA request */ - __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); - (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); - break; - } - - case TIM_CHANNEL_2: - { - /* Disable the TIM Capture/Compare 2 DMA request */ - __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); - (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); - break; - } - - case TIM_CHANNEL_3: - { - /* Disable the TIM Capture/Compare 3 DMA request */ - __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3); - (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); - break; - } - - case TIM_CHANNEL_4: - { - /* Disable the TIM Capture/Compare 4 DMA request */ - __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4); - (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]); - break; - } - - default: - break; - } - - /* Disable the Input Capture channel */ - TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); - - /* Disable the Peripheral */ - __HAL_TIM_DISABLE(htim); - - /* Change the htim state */ - htim->State = HAL_TIM_STATE_READY; - - /* Return function status */ - return HAL_OK; -} -/** - * @} - */ - -/** @defgroup TIM_Exported_Functions_Group5 TIM One Pulse functions - * @brief TIM One Pulse functions - * -@verbatim - ============================================================================== - ##### TIM One Pulse functions ##### - ============================================================================== - [..] - This section provides functions allowing to: - (+) Initialize and configure the TIM One Pulse. - (+) De-initialize the TIM One Pulse. - (+) Start the TIM One Pulse. - (+) Stop the TIM One Pulse. - (+) Start the TIM One Pulse and enable interrupt. - (+) Stop the TIM One Pulse and disable interrupt. - (+) Start the TIM One Pulse and enable DMA transfer. - (+) Stop the TIM One Pulse and disable DMA transfer. - -@endverbatim - * @{ - */ -/** - * @brief Initializes the TIM One Pulse Time Base according to the specified - * parameters in the TIM_HandleTypeDef and initializes the associated handle. - * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) - * requires a timer reset to avoid unexpected direction - * due to DIR bit readonly in center aligned mode. - * Ex: call @ref HAL_TIM_OnePulse_DeInit() before HAL_TIM_OnePulse_Init() - * @param htim TIM One Pulse handle - * @param OnePulseMode Select the One pulse mode. - * This parameter can be one of the following values: - * @arg TIM_OPMODE_SINGLE: Only one pulse will be generated. - * @arg TIM_OPMODE_REPETITIVE: Repetitive pulses will be generated. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIM_OnePulse_Init(TIM_HandleTypeDef *htim, uint32_t OnePulseMode) -{ - /* Check the TIM handle allocation */ - if (htim == NULL) - { - return HAL_ERROR; - } - - /* Check the parameters */ - assert_param(IS_TIM_INSTANCE(htim->Instance)); - assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); - assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); - assert_param(IS_TIM_OPM_MODE(OnePulseMode)); - assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); - - if (htim->State == HAL_TIM_STATE_RESET) - { - /* Allocate lock resource and initialize it */ - htim->Lock = HAL_UNLOCKED; - -#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) - /* Reset interrupt callbacks to legacy weak callbacks */ - TIM_ResetCallback(htim); - - if (htim->OnePulse_MspInitCallback == NULL) - { - htim->OnePulse_MspInitCallback = HAL_TIM_OnePulse_MspInit; - } - /* Init the low level hardware : GPIO, CLOCK, NVIC */ - htim->OnePulse_MspInitCallback(htim); -#else - /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ - HAL_TIM_OnePulse_MspInit(htim); -#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ - } - - /* Set the TIM state */ - htim->State = HAL_TIM_STATE_BUSY; - - /* Configure the Time base in the One Pulse Mode */ - TIM_Base_SetConfig(htim->Instance, &htim->Init); - - /* Reset the OPM Bit */ - htim->Instance->CR1 &= ~TIM_CR1_OPM; - - /* Configure the OPM Mode */ - htim->Instance->CR1 |= OnePulseMode; - - /* Initialize the TIM state*/ - htim->State = HAL_TIM_STATE_READY; - - return HAL_OK; -} - -/** - * @brief DeInitializes the TIM One Pulse - * @param htim TIM One Pulse handle - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIM_OnePulse_DeInit(TIM_HandleTypeDef *htim) -{ - /* Check the parameters */ - assert_param(IS_TIM_INSTANCE(htim->Instance)); - - htim->State = HAL_TIM_STATE_BUSY; - - /* Disable the TIM Peripheral Clock */ - __HAL_TIM_DISABLE(htim); - -#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) - if (htim->OnePulse_MspDeInitCallback == NULL) - { - htim->OnePulse_MspDeInitCallback = HAL_TIM_OnePulse_MspDeInit; - } - /* DeInit the low level hardware */ - htim->OnePulse_MspDeInitCallback(htim); -#else - /* DeInit the low level hardware: GPIO, CLOCK, NVIC */ - HAL_TIM_OnePulse_MspDeInit(htim); -#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ - - /* Change TIM state */ - htim->State = HAL_TIM_STATE_RESET; - - /* Release Lock */ - __HAL_UNLOCK(htim); - - return HAL_OK; -} - -/** - * @brief Initializes the TIM One Pulse MSP. - * @param htim TIM One Pulse handle - * @retval None - */ -__weak void HAL_TIM_OnePulse_MspInit(TIM_HandleTypeDef *htim) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(htim); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_TIM_OnePulse_MspInit could be implemented in the user file - */ -} - -/** - * @brief DeInitializes TIM One Pulse MSP. - * @param htim TIM One Pulse handle - * @retval None - */ -__weak void HAL_TIM_OnePulse_MspDeInit(TIM_HandleTypeDef *htim) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(htim); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_TIM_OnePulse_MspDeInit could be implemented in the user file - */ -} - -/** - * @brief Starts the TIM One Pulse signal generation. - * @param htim TIM One Pulse handle - * @param OutputChannel TIM Channels to be enabled - * This parameter can be one of the following values: - * @arg TIM_CHANNEL_1: TIM Channel 1 selected - * @arg TIM_CHANNEL_2: TIM Channel 2 selected - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIM_OnePulse_Start(TIM_HandleTypeDef *htim, uint32_t OutputChannel) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(OutputChannel); - - /* Enable the Capture compare and the Input Capture channels - (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) - if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and - if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output - in all combinations, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be enabled together - - No need to enable the counter, it's enabled automatically by hardware - (the counter starts in response to a stimulus and generate a pulse */ - - TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); - TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); - - if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) - { - /* Enable the main output */ - __HAL_TIM_MOE_ENABLE(htim); - } - - /* Return function status */ - return HAL_OK; -} - -/** - * @brief Stops the TIM One Pulse signal generation. - * @param htim TIM One Pulse handle - * @param OutputChannel TIM Channels to be disable - * This parameter can be one of the following values: - * @arg TIM_CHANNEL_1: TIM Channel 1 selected - * @arg TIM_CHANNEL_2: TIM Channel 2 selected - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIM_OnePulse_Stop(TIM_HandleTypeDef *htim, uint32_t OutputChannel) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(OutputChannel); - - /* Disable the Capture compare and the Input Capture channels - (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) - if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and - if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output - in all combinations, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be disabled together */ - - TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); - TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); - - if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) - { - /* Disable the Main Output */ - __HAL_TIM_MOE_DISABLE(htim); - } - - /* Disable the Peripheral */ - __HAL_TIM_DISABLE(htim); - - /* Return function status */ - return HAL_OK; -} - -/** - * @brief Starts the TIM One Pulse signal generation in interrupt mode. - * @param htim TIM One Pulse handle - * @param OutputChannel TIM Channels to be enabled - * This parameter can be one of the following values: - * @arg TIM_CHANNEL_1: TIM Channel 1 selected - * @arg TIM_CHANNEL_2: TIM Channel 2 selected - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIM_OnePulse_Start_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(OutputChannel); - - /* Enable the Capture compare and the Input Capture channels - (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) - if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and - if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output - in all combinations, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be enabled together - - No need to enable the counter, it's enabled automatically by hardware - (the counter starts in response to a stimulus and generate a pulse */ - - /* Enable the TIM Capture/Compare 1 interrupt */ - __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); - - /* Enable the TIM Capture/Compare 2 interrupt */ - __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); - - TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); - TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); - - if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) - { - /* Enable the main output */ - __HAL_TIM_MOE_ENABLE(htim); - } - - /* Return function status */ - return HAL_OK; -} - -/** - * @brief Stops the TIM One Pulse signal generation in interrupt mode. - * @param htim TIM One Pulse handle - * @param OutputChannel TIM Channels to be enabled - * This parameter can be one of the following values: - * @arg TIM_CHANNEL_1: TIM Channel 1 selected - * @arg TIM_CHANNEL_2: TIM Channel 2 selected - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIM_OnePulse_Stop_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(OutputChannel); - - /* Disable the TIM Capture/Compare 1 interrupt */ - __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); - - /* Disable the TIM Capture/Compare 2 interrupt */ - __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); - - /* Disable the Capture compare and the Input Capture channels - (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) - if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and - if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output - in all combinations, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be disabled together */ - TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); - TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); - - if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) - { - /* Disable the Main Output */ - __HAL_TIM_MOE_DISABLE(htim); - } - - /* Disable the Peripheral */ - __HAL_TIM_DISABLE(htim); - - /* Return function status */ - return HAL_OK; -} - -/** - * @} - */ - -/** @defgroup TIM_Exported_Functions_Group6 TIM Encoder functions - * @brief TIM Encoder functions - * -@verbatim - ============================================================================== - ##### TIM Encoder functions ##### - ============================================================================== - [..] - This section provides functions allowing to: - (+) Initialize and configure the TIM Encoder. - (+) De-initialize the TIM Encoder. - (+) Start the TIM Encoder. - (+) Stop the TIM Encoder. - (+) Start the TIM Encoder and enable interrupt. - (+) Stop the TIM Encoder and disable interrupt. - (+) Start the TIM Encoder and enable DMA transfer. - (+) Stop the TIM Encoder and disable DMA transfer. - -@endverbatim - * @{ - */ -/** - * @brief Initializes the TIM Encoder Interface and initialize the associated handle. - * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) - * requires a timer reset to avoid unexpected direction - * due to DIR bit readonly in center aligned mode. - * Ex: call @ref HAL_TIM_Encoder_DeInit() before HAL_TIM_Encoder_Init() - * @note Encoder mode and External clock mode 2 are not compatible and must not be selected together - * Ex: A call for @ref HAL_TIM_Encoder_Init will erase the settings of @ref HAL_TIM_ConfigClockSource - * using TIM_CLOCKSOURCE_ETRMODE2 and vice versa - * @param htim TIM Encoder Interface handle - * @param sConfig TIM Encoder Interface configuration structure - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIM_Encoder_Init(TIM_HandleTypeDef *htim, TIM_Encoder_InitTypeDef *sConfig) -{ - uint32_t tmpsmcr; - uint32_t tmpccmr1; - uint32_t tmpccer; - - /* Check the TIM handle allocation */ - if (htim == NULL) - { - return HAL_ERROR; - } - - /* Check the parameters */ - assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); - assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); - assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); - assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); - assert_param(IS_TIM_ENCODER_MODE(sConfig->EncoderMode)); - assert_param(IS_TIM_IC_SELECTION(sConfig->IC1Selection)); - assert_param(IS_TIM_IC_SELECTION(sConfig->IC2Selection)); - assert_param(IS_TIM_ENCODERINPUT_POLARITY(sConfig->IC1Polarity)); - assert_param(IS_TIM_ENCODERINPUT_POLARITY(sConfig->IC2Polarity)); - assert_param(IS_TIM_IC_PRESCALER(sConfig->IC1Prescaler)); - assert_param(IS_TIM_IC_PRESCALER(sConfig->IC2Prescaler)); - assert_param(IS_TIM_IC_FILTER(sConfig->IC1Filter)); - assert_param(IS_TIM_IC_FILTER(sConfig->IC2Filter)); - - if (htim->State == HAL_TIM_STATE_RESET) - { - /* Allocate lock resource and initialize it */ - htim->Lock = HAL_UNLOCKED; - -#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) - /* Reset interrupt callbacks to legacy weak callbacks */ - TIM_ResetCallback(htim); - - if (htim->Encoder_MspInitCallback == NULL) - { - htim->Encoder_MspInitCallback = HAL_TIM_Encoder_MspInit; - } - /* Init the low level hardware : GPIO, CLOCK, NVIC */ - htim->Encoder_MspInitCallback(htim); -#else - /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ - HAL_TIM_Encoder_MspInit(htim); -#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ - } - - /* Set the TIM state */ - htim->State = HAL_TIM_STATE_BUSY; - - /* Reset the SMS and ECE bits */ - htim->Instance->SMCR &= ~(TIM_SMCR_SMS | TIM_SMCR_ECE); - - /* Configure the Time base in the Encoder Mode */ - TIM_Base_SetConfig(htim->Instance, &htim->Init); - - /* Get the TIMx SMCR register value */ - tmpsmcr = htim->Instance->SMCR; - - /* Get the TIMx CCMR1 register value */ - tmpccmr1 = htim->Instance->CCMR1; - - /* Get the TIMx CCER register value */ - tmpccer = htim->Instance->CCER; - - /* Set the encoder Mode */ - tmpsmcr |= sConfig->EncoderMode; - - /* Select the Capture Compare 1 and the Capture Compare 2 as input */ - tmpccmr1 &= ~(TIM_CCMR1_CC1S | TIM_CCMR1_CC2S); - tmpccmr1 |= (sConfig->IC1Selection | (sConfig->IC2Selection << 8U)); - - /* Set the Capture Compare 1 and the Capture Compare 2 prescalers and filters */ - tmpccmr1 &= ~(TIM_CCMR1_IC1PSC | TIM_CCMR1_IC2PSC); - tmpccmr1 &= ~(TIM_CCMR1_IC1F | TIM_CCMR1_IC2F); - tmpccmr1 |= sConfig->IC1Prescaler | (sConfig->IC2Prescaler << 8U); - tmpccmr1 |= (sConfig->IC1Filter << 4U) | (sConfig->IC2Filter << 12U); - - /* Set the TI1 and the TI2 Polarities */ - tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC2P); - tmpccer &= ~(TIM_CCER_CC1NP | TIM_CCER_CC2NP); - tmpccer |= sConfig->IC1Polarity | (sConfig->IC2Polarity << 4U); - - /* Write to TIMx SMCR */ - htim->Instance->SMCR = tmpsmcr; - - /* Write to TIMx CCMR1 */ - htim->Instance->CCMR1 = tmpccmr1; - - /* Write to TIMx CCER */ - htim->Instance->CCER = tmpccer; - - /* Initialize the TIM state*/ - htim->State = HAL_TIM_STATE_READY; - - return HAL_OK; -} - - -/** - * @brief DeInitializes the TIM Encoder interface - * @param htim TIM Encoder Interface handle - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIM_Encoder_DeInit(TIM_HandleTypeDef *htim) -{ - /* Check the parameters */ - assert_param(IS_TIM_INSTANCE(htim->Instance)); - - htim->State = HAL_TIM_STATE_BUSY; - - /* Disable the TIM Peripheral Clock */ - __HAL_TIM_DISABLE(htim); - -#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) - if (htim->Encoder_MspDeInitCallback == NULL) - { - htim->Encoder_MspDeInitCallback = HAL_TIM_Encoder_MspDeInit; - } - /* DeInit the low level hardware */ - htim->Encoder_MspDeInitCallback(htim); -#else - /* DeInit the low level hardware: GPIO, CLOCK, NVIC */ - HAL_TIM_Encoder_MspDeInit(htim); -#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ - - /* Change TIM state */ - htim->State = HAL_TIM_STATE_RESET; - - /* Release Lock */ - __HAL_UNLOCK(htim); - - return HAL_OK; -} - -/** - * @brief Initializes the TIM Encoder Interface MSP. - * @param htim TIM Encoder Interface handle - * @retval None - */ -__weak void HAL_TIM_Encoder_MspInit(TIM_HandleTypeDef *htim) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(htim); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_TIM_Encoder_MspInit could be implemented in the user file - */ -} - -/** - * @brief DeInitializes TIM Encoder Interface MSP. - * @param htim TIM Encoder Interface handle - * @retval None - */ -__weak void HAL_TIM_Encoder_MspDeInit(TIM_HandleTypeDef *htim) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(htim); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_TIM_Encoder_MspDeInit could be implemented in the user file - */ -} - -/** - * @brief Starts the TIM Encoder Interface. - * @param htim TIM Encoder Interface handle - * @param Channel TIM Channels to be enabled - * This parameter can be one of the following values: - * @arg TIM_CHANNEL_1: TIM Channel 1 selected - * @arg TIM_CHANNEL_2: TIM Channel 2 selected - * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIM_Encoder_Start(TIM_HandleTypeDef *htim, uint32_t Channel) -{ - /* Check the parameters */ - assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); - - /* Enable the encoder interface channels */ - switch (Channel) - { - case TIM_CHANNEL_1: - { - TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); - break; - } - - case TIM_CHANNEL_2: - { - TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); - break; - } - - default : - { - TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); - TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); - break; - } - } - /* Enable the Peripheral */ - __HAL_TIM_ENABLE(htim); - - /* Return function status */ - return HAL_OK; -} - -/** - * @brief Stops the TIM Encoder Interface. - * @param htim TIM Encoder Interface handle - * @param Channel TIM Channels to be disabled - * This parameter can be one of the following values: - * @arg TIM_CHANNEL_1: TIM Channel 1 selected - * @arg TIM_CHANNEL_2: TIM Channel 2 selected - * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIM_Encoder_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) -{ - /* Check the parameters */ - assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); - - /* Disable the Input Capture channels 1 and 2 - (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */ - switch (Channel) - { - case TIM_CHANNEL_1: - { - TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); - break; - } - - case TIM_CHANNEL_2: - { - TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); - break; - } - - default : - { - TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); - TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); - break; - } - } - - /* Disable the Peripheral */ - __HAL_TIM_DISABLE(htim); - - /* Return function status */ - return HAL_OK; -} - -/** - * @brief Starts the TIM Encoder Interface in interrupt mode. - * @param htim TIM Encoder Interface handle - * @param Channel TIM Channels to be enabled - * This parameter can be one of the following values: - * @arg TIM_CHANNEL_1: TIM Channel 1 selected - * @arg TIM_CHANNEL_2: TIM Channel 2 selected - * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIM_Encoder_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) -{ - /* Check the parameters */ - assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); - - /* Enable the encoder interface channels */ - /* Enable the capture compare Interrupts 1 and/or 2 */ - switch (Channel) - { - case TIM_CHANNEL_1: - { - TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); - __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); - break; - } - - case TIM_CHANNEL_2: - { - TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); - __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); - break; - } - - default : - { - TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); - TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); - __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); - __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); - break; - } - } - - /* Enable the Peripheral */ - __HAL_TIM_ENABLE(htim); - - /* Return function status */ - return HAL_OK; -} - -/** - * @brief Stops the TIM Encoder Interface in interrupt mode. - * @param htim TIM Encoder Interface handle - * @param Channel TIM Channels to be disabled - * This parameter can be one of the following values: - * @arg TIM_CHANNEL_1: TIM Channel 1 selected - * @arg TIM_CHANNEL_2: TIM Channel 2 selected - * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIM_Encoder_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) -{ - /* Check the parameters */ - assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); - - /* Disable the Input Capture channels 1 and 2 - (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */ - if (Channel == TIM_CHANNEL_1) - { - TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); - - /* Disable the capture compare Interrupts 1 */ - __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); - } - else if (Channel == TIM_CHANNEL_2) - { - TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); - - /* Disable the capture compare Interrupts 2 */ - __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); - } - else - { - TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); - TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); - - /* Disable the capture compare Interrupts 1 and 2 */ - __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); - __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); - } - - /* Disable the Peripheral */ - __HAL_TIM_DISABLE(htim); - - /* Change the htim state */ - htim->State = HAL_TIM_STATE_READY; - - /* Return function status */ - return HAL_OK; -} - -/** - * @brief Starts the TIM Encoder Interface in DMA mode. - * @param htim TIM Encoder Interface handle - * @param Channel TIM Channels to be enabled - * This parameter can be one of the following values: - * @arg TIM_CHANNEL_1: TIM Channel 1 selected - * @arg TIM_CHANNEL_2: TIM Channel 2 selected - * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected - * @param pData1 The destination Buffer address for IC1. - * @param pData2 The destination Buffer address for IC2. - * @param Length The length of data to be transferred from TIM peripheral to memory. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIM_Encoder_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData1, - uint32_t *pData2, uint16_t Length) -{ - /* Check the parameters */ - assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance)); - - if (htim->State == HAL_TIM_STATE_BUSY) - { - return HAL_BUSY; - } - else if (htim->State == HAL_TIM_STATE_READY) - { - if ((((pData1 == NULL) || (pData2 == NULL))) && (Length > 0U)) - { - return HAL_ERROR; - } - else - { - htim->State = HAL_TIM_STATE_BUSY; - } - } - else - { - /* nothing to do */ - } - - switch (Channel) - { - case TIM_CHANNEL_1: - { - /* Set the DMA capture callbacks */ - htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt; - htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; - - /* Set the DMA error callback */ - htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; - - /* Enable the DMA channel */ - if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData1, Length) != HAL_OK) - { - return HAL_ERROR; - } - /* Enable the TIM Input Capture DMA request */ - __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); - - /* Enable the Peripheral */ - __HAL_TIM_ENABLE(htim); - - /* Enable the Capture compare channel */ - TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); - break; - } - - case TIM_CHANNEL_2: - { - /* Set the DMA capture callbacks */ - htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt; - htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; - - /* Set the DMA error callback */ - htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError; - /* Enable the DMA channel */ - if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData2, Length) != HAL_OK) - { - return HAL_ERROR; - } - /* Enable the TIM Input Capture DMA request */ - __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); - - /* Enable the Peripheral */ - __HAL_TIM_ENABLE(htim); - - /* Enable the Capture compare channel */ - TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); - break; - } - - case TIM_CHANNEL_ALL: - { - /* Set the DMA capture callbacks */ - htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt; - htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; - - /* Set the DMA error callback */ - htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; - - /* Enable the DMA channel */ - if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData1, Length) != HAL_OK) - { - return HAL_ERROR; - } - - /* Set the DMA capture callbacks */ - htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt; - htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; - - /* Set the DMA error callback */ - htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; - - /* Enable the DMA channel */ - if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData2, Length) != HAL_OK) - { - return HAL_ERROR; - } - /* Enable the Peripheral */ - __HAL_TIM_ENABLE(htim); - - /* Enable the Capture compare channel */ - TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); - TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); - - /* Enable the TIM Input Capture DMA request */ - __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); - /* Enable the TIM Input Capture DMA request */ - __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); - break; - } - - default: - break; - } - /* Return function status */ - return HAL_OK; -} - -/** - * @brief Stops the TIM Encoder Interface in DMA mode. - * @param htim TIM Encoder Interface handle - * @param Channel TIM Channels to be enabled - * This parameter can be one of the following values: - * @arg TIM_CHANNEL_1: TIM Channel 1 selected - * @arg TIM_CHANNEL_2: TIM Channel 2 selected - * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIM_Encoder_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) -{ - /* Check the parameters */ - assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance)); - - /* Disable the Input Capture channels 1 and 2 - (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */ - if (Channel == TIM_CHANNEL_1) - { - TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); - - /* Disable the capture compare DMA Request 1 */ - __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); - (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); - } - else if (Channel == TIM_CHANNEL_2) - { - TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); - - /* Disable the capture compare DMA Request 2 */ - __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); - (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); - } - else - { - TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); - TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); - - /* Disable the capture compare DMA Request 1 and 2 */ - __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); - __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); - (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); - (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); - } - - /* Disable the Peripheral */ - __HAL_TIM_DISABLE(htim); - - /* Change the htim state */ - htim->State = HAL_TIM_STATE_READY; - - /* Return function status */ - return HAL_OK; -} - -/** - * @} - */ -/** @defgroup TIM_Exported_Functions_Group7 TIM IRQ handler management - * @brief TIM IRQ handler management - * -@verbatim - ============================================================================== - ##### IRQ handler management ##### - ============================================================================== - [..] - This section provides Timer IRQ handler function. - -@endverbatim - * @{ - */ -/** - * @brief This function handles TIM interrupts requests. - * @param htim TIM handle - * @retval None - */ -void HAL_TIM_IRQHandler(TIM_HandleTypeDef *htim) -{ - /* Capture compare 1 event */ - if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC1) != RESET) - { - if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC1) != RESET) - { - { - __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC1); - htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; - - /* Input capture event */ - if ((htim->Instance->CCMR1 & TIM_CCMR1_CC1S) != 0x00U) - { -#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) - htim->IC_CaptureCallback(htim); -#else - HAL_TIM_IC_CaptureCallback(htim); -#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ - } - /* Output compare event */ - else - { -#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) - htim->OC_DelayElapsedCallback(htim); - htim->PWM_PulseFinishedCallback(htim); -#else - HAL_TIM_OC_DelayElapsedCallback(htim); - HAL_TIM_PWM_PulseFinishedCallback(htim); -#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ - } - htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; - } - } - } - /* Capture compare 2 event */ - if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC2) != RESET) - { - if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC2) != RESET) - { - __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC2); - htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; - /* Input capture event */ - if ((htim->Instance->CCMR1 & TIM_CCMR1_CC2S) != 0x00U) - { -#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) - htim->IC_CaptureCallback(htim); -#else - HAL_TIM_IC_CaptureCallback(htim); -#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ - } - /* Output compare event */ - else - { -#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) - htim->OC_DelayElapsedCallback(htim); - htim->PWM_PulseFinishedCallback(htim); -#else - HAL_TIM_OC_DelayElapsedCallback(htim); - HAL_TIM_PWM_PulseFinishedCallback(htim); -#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ - } - htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; - } - } - /* Capture compare 3 event */ - if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC3) != RESET) - { - if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC3) != RESET) - { - __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC3); - htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; - /* Input capture event */ - if ((htim->Instance->CCMR2 & TIM_CCMR2_CC3S) != 0x00U) - { -#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) - htim->IC_CaptureCallback(htim); -#else - HAL_TIM_IC_CaptureCallback(htim); -#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ - } - /* Output compare event */ - else - { -#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) - htim->OC_DelayElapsedCallback(htim); - htim->PWM_PulseFinishedCallback(htim); -#else - HAL_TIM_OC_DelayElapsedCallback(htim); - HAL_TIM_PWM_PulseFinishedCallback(htim); -#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ - } - htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; - } - } - /* Capture compare 4 event */ - if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC4) != RESET) - { - if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC4) != RESET) - { - __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC4); - htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; - /* Input capture event */ - if ((htim->Instance->CCMR2 & TIM_CCMR2_CC4S) != 0x00U) - { -#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) - htim->IC_CaptureCallback(htim); -#else - HAL_TIM_IC_CaptureCallback(htim); -#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ - } - /* Output compare event */ - else - { -#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) - htim->OC_DelayElapsedCallback(htim); - htim->PWM_PulseFinishedCallback(htim); -#else - HAL_TIM_OC_DelayElapsedCallback(htim); - HAL_TIM_PWM_PulseFinishedCallback(htim); -#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ - } - htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; - } - } - /* TIM Update event */ - if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_UPDATE) != RESET) - { - if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_UPDATE) != RESET) - { - __HAL_TIM_CLEAR_IT(htim, TIM_IT_UPDATE); -#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) - htim->PeriodElapsedCallback(htim); -#else - HAL_TIM_PeriodElapsedCallback(htim); -#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ - } - } - /* TIM Break input event */ - if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_BREAK) != RESET) - { - if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_BREAK) != RESET) - { - __HAL_TIM_CLEAR_IT(htim, TIM_IT_BREAK); -#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) - htim->BreakCallback(htim); -#else - HAL_TIMEx_BreakCallback(htim); -#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ - } - } - /* TIM Trigger detection event */ - if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_TRIGGER) != RESET) - { - if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_TRIGGER) != RESET) - { - __HAL_TIM_CLEAR_IT(htim, TIM_IT_TRIGGER); -#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) - htim->TriggerCallback(htim); -#else - HAL_TIM_TriggerCallback(htim); -#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ - } - } - /* TIM commutation event */ - if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_COM) != RESET) - { - if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_COM) != RESET) - { - __HAL_TIM_CLEAR_IT(htim, TIM_FLAG_COM); -#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) - htim->CommutationCallback(htim); -#else - HAL_TIMEx_CommutCallback(htim); -#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ - } - } -} - -/** - * @} - */ - -/** @defgroup TIM_Exported_Functions_Group8 TIM Peripheral Control functions - * @brief TIM Peripheral Control functions - * -@verbatim - ============================================================================== - ##### Peripheral Control functions ##### - ============================================================================== - [..] - This section provides functions allowing to: - (+) Configure The Input Output channels for OC, PWM, IC or One Pulse mode. - (+) Configure External Clock source. - (+) Configure Complementary channels, break features and dead time. - (+) Configure Master and the Slave synchronization. - (+) Configure the DMA Burst Mode. - -@endverbatim - * @{ - */ - -/** - * @brief Initializes the TIM Output Compare Channels according to the specified - * parameters in the TIM_OC_InitTypeDef. - * @param htim TIM Output Compare handle - * @param sConfig TIM Output Compare configuration structure - * @param Channel TIM Channels to configure - * This parameter can be one of the following values: - * @arg TIM_CHANNEL_1: TIM Channel 1 selected - * @arg TIM_CHANNEL_2: TIM Channel 2 selected - * @arg TIM_CHANNEL_3: TIM Channel 3 selected - * @arg TIM_CHANNEL_4: TIM Channel 4 selected - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIM_OC_ConfigChannel(TIM_HandleTypeDef *htim, - TIM_OC_InitTypeDef *sConfig, - uint32_t Channel) -{ - /* Check the parameters */ - assert_param(IS_TIM_CHANNELS(Channel)); - assert_param(IS_TIM_OC_MODE(sConfig->OCMode)); - assert_param(IS_TIM_OC_POLARITY(sConfig->OCPolarity)); - - /* Process Locked */ - __HAL_LOCK(htim); - - htim->State = HAL_TIM_STATE_BUSY; - - switch (Channel) - { - case TIM_CHANNEL_1: - { - /* Check the parameters */ - assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); - - /* Configure the TIM Channel 1 in Output Compare */ - TIM_OC1_SetConfig(htim->Instance, sConfig); - break; - } - - case TIM_CHANNEL_2: - { - /* Check the parameters */ - assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); - - /* Configure the TIM Channel 2 in Output Compare */ - TIM_OC2_SetConfig(htim->Instance, sConfig); - break; - } - - case TIM_CHANNEL_3: - { - /* Check the parameters */ - assert_param(IS_TIM_CC3_INSTANCE(htim->Instance)); - - /* Configure the TIM Channel 3 in Output Compare */ - TIM_OC3_SetConfig(htim->Instance, sConfig); - break; - } - - case TIM_CHANNEL_4: - { - /* Check the parameters */ - assert_param(IS_TIM_CC4_INSTANCE(htim->Instance)); - - /* Configure the TIM Channel 4 in Output Compare */ - TIM_OC4_SetConfig(htim->Instance, sConfig); - break; - } - - default: - break; - } - - htim->State = HAL_TIM_STATE_READY; - - __HAL_UNLOCK(htim); - - return HAL_OK; -} - -/** - * @brief Initializes the TIM Input Capture Channels according to the specified - * parameters in the TIM_IC_InitTypeDef. - * @param htim TIM IC handle - * @param sConfig TIM Input Capture configuration structure - * @param Channel TIM Channel to configure - * This parameter can be one of the following values: - * @arg TIM_CHANNEL_1: TIM Channel 1 selected - * @arg TIM_CHANNEL_2: TIM Channel 2 selected - * @arg TIM_CHANNEL_3: TIM Channel 3 selected - * @arg TIM_CHANNEL_4: TIM Channel 4 selected - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIM_IC_ConfigChannel(TIM_HandleTypeDef *htim, TIM_IC_InitTypeDef *sConfig, uint32_t Channel) -{ - /* Check the parameters */ - assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); - assert_param(IS_TIM_IC_POLARITY(sConfig->ICPolarity)); - assert_param(IS_TIM_IC_SELECTION(sConfig->ICSelection)); - assert_param(IS_TIM_IC_PRESCALER(sConfig->ICPrescaler)); - assert_param(IS_TIM_IC_FILTER(sConfig->ICFilter)); - - /* Process Locked */ - __HAL_LOCK(htim); - - htim->State = HAL_TIM_STATE_BUSY; - - if (Channel == TIM_CHANNEL_1) - { - /* TI1 Configuration */ - TIM_TI1_SetConfig(htim->Instance, - sConfig->ICPolarity, - sConfig->ICSelection, - sConfig->ICFilter); - - /* Reset the IC1PSC Bits */ - htim->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC; - - /* Set the IC1PSC value */ - htim->Instance->CCMR1 |= sConfig->ICPrescaler; - } - else if (Channel == TIM_CHANNEL_2) - { - /* TI2 Configuration */ - assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); - - TIM_TI2_SetConfig(htim->Instance, - sConfig->ICPolarity, - sConfig->ICSelection, - sConfig->ICFilter); - - /* Reset the IC2PSC Bits */ - htim->Instance->CCMR1 &= ~TIM_CCMR1_IC2PSC; - - /* Set the IC2PSC value */ - htim->Instance->CCMR1 |= (sConfig->ICPrescaler << 8U); - } - else if (Channel == TIM_CHANNEL_3) - { - /* TI3 Configuration */ - assert_param(IS_TIM_CC3_INSTANCE(htim->Instance)); - - TIM_TI3_SetConfig(htim->Instance, - sConfig->ICPolarity, - sConfig->ICSelection, - sConfig->ICFilter); - - /* Reset the IC3PSC Bits */ - htim->Instance->CCMR2 &= ~TIM_CCMR2_IC3PSC; - - /* Set the IC3PSC value */ - htim->Instance->CCMR2 |= sConfig->ICPrescaler; - } - else - { - /* TI4 Configuration */ - assert_param(IS_TIM_CC4_INSTANCE(htim->Instance)); - - TIM_TI4_SetConfig(htim->Instance, - sConfig->ICPolarity, - sConfig->ICSelection, - sConfig->ICFilter); - - /* Reset the IC4PSC Bits */ - htim->Instance->CCMR2 &= ~TIM_CCMR2_IC4PSC; - - /* Set the IC4PSC value */ - htim->Instance->CCMR2 |= (sConfig->ICPrescaler << 8U); - } - - htim->State = HAL_TIM_STATE_READY; - - __HAL_UNLOCK(htim); - - return HAL_OK; -} - -/** - * @brief Initializes the TIM PWM channels according to the specified - * parameters in the TIM_OC_InitTypeDef. - * @param htim TIM PWM handle - * @param sConfig TIM PWM configuration structure - * @param Channel TIM Channels to be configured - * This parameter can be one of the following values: - * @arg TIM_CHANNEL_1: TIM Channel 1 selected - * @arg TIM_CHANNEL_2: TIM Channel 2 selected - * @arg TIM_CHANNEL_3: TIM Channel 3 selected - * @arg TIM_CHANNEL_4: TIM Channel 4 selected - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIM_PWM_ConfigChannel(TIM_HandleTypeDef *htim, - TIM_OC_InitTypeDef *sConfig, - uint32_t Channel) -{ - /* Check the parameters */ - assert_param(IS_TIM_CHANNELS(Channel)); - assert_param(IS_TIM_PWM_MODE(sConfig->OCMode)); - assert_param(IS_TIM_OC_POLARITY(sConfig->OCPolarity)); - assert_param(IS_TIM_FAST_STATE(sConfig->OCFastMode)); - - /* Process Locked */ - __HAL_LOCK(htim); - - htim->State = HAL_TIM_STATE_BUSY; - - switch (Channel) - { - case TIM_CHANNEL_1: - { - /* Check the parameters */ - assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); - - /* Configure the Channel 1 in PWM mode */ - TIM_OC1_SetConfig(htim->Instance, sConfig); - - /* Set the Preload enable bit for channel1 */ - htim->Instance->CCMR1 |= TIM_CCMR1_OC1PE; - - /* Configure the Output Fast mode */ - htim->Instance->CCMR1 &= ~TIM_CCMR1_OC1FE; - htim->Instance->CCMR1 |= sConfig->OCFastMode; - break; - } - - case TIM_CHANNEL_2: - { - /* Check the parameters */ - assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); - - /* Configure the Channel 2 in PWM mode */ - TIM_OC2_SetConfig(htim->Instance, sConfig); - - /* Set the Preload enable bit for channel2 */ - htim->Instance->CCMR1 |= TIM_CCMR1_OC2PE; - - /* Configure the Output Fast mode */ - htim->Instance->CCMR1 &= ~TIM_CCMR1_OC2FE; - htim->Instance->CCMR1 |= sConfig->OCFastMode << 8U; - break; - } - - case TIM_CHANNEL_3: - { - /* Check the parameters */ - assert_param(IS_TIM_CC3_INSTANCE(htim->Instance)); - - /* Configure the Channel 3 in PWM mode */ - TIM_OC3_SetConfig(htim->Instance, sConfig); - - /* Set the Preload enable bit for channel3 */ - htim->Instance->CCMR2 |= TIM_CCMR2_OC3PE; - - /* Configure the Output Fast mode */ - htim->Instance->CCMR2 &= ~TIM_CCMR2_OC3FE; - htim->Instance->CCMR2 |= sConfig->OCFastMode; - break; - } - - case TIM_CHANNEL_4: - { - /* Check the parameters */ - assert_param(IS_TIM_CC4_INSTANCE(htim->Instance)); - - /* Configure the Channel 4 in PWM mode */ - TIM_OC4_SetConfig(htim->Instance, sConfig); - - /* Set the Preload enable bit for channel4 */ - htim->Instance->CCMR2 |= TIM_CCMR2_OC4PE; - - /* Configure the Output Fast mode */ - htim->Instance->CCMR2 &= ~TIM_CCMR2_OC4FE; - htim->Instance->CCMR2 |= sConfig->OCFastMode << 8U; - break; - } - - default: - break; - } - - htim->State = HAL_TIM_STATE_READY; - - __HAL_UNLOCK(htim); - - return HAL_OK; -} - -/** - * @brief Initializes the TIM One Pulse Channels according to the specified - * parameters in the TIM_OnePulse_InitTypeDef. - * @param htim TIM One Pulse handle - * @param sConfig TIM One Pulse configuration structure - * @param OutputChannel TIM output channel to configure - * This parameter can be one of the following values: - * @arg TIM_CHANNEL_1: TIM Channel 1 selected - * @arg TIM_CHANNEL_2: TIM Channel 2 selected - * @param InputChannel TIM input Channel to configure - * This parameter can be one of the following values: - * @arg TIM_CHANNEL_1: TIM Channel 1 selected - * @arg TIM_CHANNEL_2: TIM Channel 2 selected - * @note To output a waveform with a minimum delay user can enable the fast - * mode by calling the @ref __HAL_TIM_ENABLE_OCxFAST macro. Then CCx - * output is forced in response to the edge detection on TIx input, - * without taking in account the comparison. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIM_OnePulse_ConfigChannel(TIM_HandleTypeDef *htim, TIM_OnePulse_InitTypeDef *sConfig, - uint32_t OutputChannel, uint32_t InputChannel) -{ - TIM_OC_InitTypeDef temp1; - - /* Check the parameters */ - assert_param(IS_TIM_OPM_CHANNELS(OutputChannel)); - assert_param(IS_TIM_OPM_CHANNELS(InputChannel)); - - if (OutputChannel != InputChannel) - { - /* Process Locked */ - __HAL_LOCK(htim); - - htim->State = HAL_TIM_STATE_BUSY; - - /* Extract the Output compare configuration from sConfig structure */ - temp1.OCMode = sConfig->OCMode; - temp1.Pulse = sConfig->Pulse; - temp1.OCPolarity = sConfig->OCPolarity; - temp1.OCNPolarity = sConfig->OCNPolarity; - temp1.OCIdleState = sConfig->OCIdleState; - temp1.OCNIdleState = sConfig->OCNIdleState; - - switch (OutputChannel) - { - case TIM_CHANNEL_1: - { - assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); - - TIM_OC1_SetConfig(htim->Instance, &temp1); - break; - } - case TIM_CHANNEL_2: - { - assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); - - TIM_OC2_SetConfig(htim->Instance, &temp1); - break; - } - default: - break; - } - - switch (InputChannel) - { - case TIM_CHANNEL_1: - { - assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); - - TIM_TI1_SetConfig(htim->Instance, sConfig->ICPolarity, - sConfig->ICSelection, sConfig->ICFilter); - - /* Reset the IC1PSC Bits */ - htim->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC; - - /* Select the Trigger source */ - htim->Instance->SMCR &= ~TIM_SMCR_TS; - htim->Instance->SMCR |= TIM_TS_TI1FP1; - - /* Select the Slave Mode */ - htim->Instance->SMCR &= ~TIM_SMCR_SMS; - htim->Instance->SMCR |= TIM_SLAVEMODE_TRIGGER; - break; - } - case TIM_CHANNEL_2: - { - assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); - - TIM_TI2_SetConfig(htim->Instance, sConfig->ICPolarity, - sConfig->ICSelection, sConfig->ICFilter); - - /* Reset the IC2PSC Bits */ - htim->Instance->CCMR1 &= ~TIM_CCMR1_IC2PSC; - - /* Select the Trigger source */ - htim->Instance->SMCR &= ~TIM_SMCR_TS; - htim->Instance->SMCR |= TIM_TS_TI2FP2; - - /* Select the Slave Mode */ - htim->Instance->SMCR &= ~TIM_SMCR_SMS; - htim->Instance->SMCR |= TIM_SLAVEMODE_TRIGGER; - break; - } - - default: - break; - } - - htim->State = HAL_TIM_STATE_READY; - - __HAL_UNLOCK(htim); - - return HAL_OK; - } - else - { - return HAL_ERROR; - } -} - -/** - * @brief Configure the DMA Burst to transfer Data from the memory to the TIM peripheral - * @param htim TIM handle - * @param BurstBaseAddress TIM Base address from where the DMA will start the Data write - * This parameter can be one of the following values: - * @arg TIM_DMABASE_CR1 - * @arg TIM_DMABASE_CR2 - * @arg TIM_DMABASE_SMCR - * @arg TIM_DMABASE_DIER - * @arg TIM_DMABASE_SR - * @arg TIM_DMABASE_EGR - * @arg TIM_DMABASE_CCMR1 - * @arg TIM_DMABASE_CCMR2 - * @arg TIM_DMABASE_CCER - * @arg TIM_DMABASE_CNT - * @arg TIM_DMABASE_PSC - * @arg TIM_DMABASE_ARR - * @arg TIM_DMABASE_RCR - * @arg TIM_DMABASE_CCR1 - * @arg TIM_DMABASE_CCR2 - * @arg TIM_DMABASE_CCR3 - * @arg TIM_DMABASE_CCR4 - * @arg TIM_DMABASE_BDTR - * @param BurstRequestSrc TIM DMA Request sources - * This parameter can be one of the following values: - * @arg TIM_DMA_UPDATE: TIM update Interrupt source - * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source - * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source - * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source - * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source - * @arg TIM_DMA_COM: TIM Commutation DMA source - * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source - * @param BurstBuffer The Buffer address. - * @param BurstLength DMA Burst length. This parameter can be one value - * between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS. - * @note This function should be used only when BurstLength is equal to DMA data transfer length. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, - uint32_t BurstRequestSrc, uint32_t *BurstBuffer, uint32_t BurstLength) -{ - return HAL_TIM_DMABurst_MultiWriteStart(htim, BurstBaseAddress, BurstRequestSrc, BurstBuffer, BurstLength, - ((BurstLength) >> 8U) + 1U); -} - -/** - * @brief Configure the DMA Burst to transfer multiple Data from the memory to the TIM peripheral - * @param htim TIM handle - * @param BurstBaseAddress TIM Base address from where the DMA will start the Data write - * This parameter can be one of the following values: - * @arg TIM_DMABASE_CR1 - * @arg TIM_DMABASE_CR2 - * @arg TIM_DMABASE_SMCR - * @arg TIM_DMABASE_DIER - * @arg TIM_DMABASE_SR - * @arg TIM_DMABASE_EGR - * @arg TIM_DMABASE_CCMR1 - * @arg TIM_DMABASE_CCMR2 - * @arg TIM_DMABASE_CCER - * @arg TIM_DMABASE_CNT - * @arg TIM_DMABASE_PSC - * @arg TIM_DMABASE_ARR - * @arg TIM_DMABASE_RCR - * @arg TIM_DMABASE_CCR1 - * @arg TIM_DMABASE_CCR2 - * @arg TIM_DMABASE_CCR3 - * @arg TIM_DMABASE_CCR4 - * @arg TIM_DMABASE_BDTR - * @param BurstRequestSrc TIM DMA Request sources - * This parameter can be one of the following values: - * @arg TIM_DMA_UPDATE: TIM update Interrupt source - * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source - * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source - * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source - * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source - * @arg TIM_DMA_COM: TIM Commutation DMA source - * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source - * @param BurstBuffer The Buffer address. - * @param BurstLength DMA Burst length. This parameter can be one value - * between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS. - * @param DataLength Data length. This parameter can be one value - * between 1 and 0xFFFF. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIM_DMABurst_MultiWriteStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, - uint32_t BurstRequestSrc, uint32_t *BurstBuffer, - uint32_t BurstLength, uint32_t DataLength) -{ - /* Check the parameters */ - assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance)); - assert_param(IS_TIM_DMA_BASE(BurstBaseAddress)); - assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc)); - assert_param(IS_TIM_DMA_LENGTH(BurstLength)); - assert_param(IS_TIM_DMA_DATA_LENGTH(DataLength)); - - if (htim->State == HAL_TIM_STATE_BUSY) - { - return HAL_BUSY; - } - else if (htim->State == HAL_TIM_STATE_READY) - { - if ((BurstBuffer == NULL) && (BurstLength > 0U)) - { - return HAL_ERROR; - } - else - { - htim->State = HAL_TIM_STATE_BUSY; - } - } - else - { - /* nothing to do */ - } - switch (BurstRequestSrc) - { - case TIM_DMA_UPDATE: - { - /* Set the DMA Period elapsed callbacks */ - htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt; - htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt; - - /* Set the DMA error callback */ - htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ; - - /* Enable the DMA channel */ - if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)BurstBuffer, - (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) - { - return HAL_ERROR; - } - break; - } - case TIM_DMA_CC1: - { - /* Set the DMA compare callbacks */ - htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt; - htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; - - /* Set the DMA error callback */ - htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; - - /* Enable the DMA channel */ - if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)BurstBuffer, - (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) - { - return HAL_ERROR; - } - break; - } - case TIM_DMA_CC2: - { - /* Set the DMA compare callbacks */ - htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt; - htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; - - /* Set the DMA error callback */ - htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; - - /* Enable the DMA channel */ - if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)BurstBuffer, - (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) - { - return HAL_ERROR; - } - break; - } - case TIM_DMA_CC3: - { - /* Set the DMA compare callbacks */ - htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt; - htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; - - /* Set the DMA error callback */ - htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ; - - /* Enable the DMA channel */ - if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)BurstBuffer, - (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) - { - return HAL_ERROR; - } - break; - } - case TIM_DMA_CC4: - { - /* Set the DMA compare callbacks */ - htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt; - htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; - - /* Set the DMA error callback */ - htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ; - - /* Enable the DMA channel */ - if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)BurstBuffer, - (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) - { - return HAL_ERROR; - } - break; - } - case TIM_DMA_COM: - { - /* Set the DMA commutation callbacks */ - htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback = TIMEx_DMACommutationCplt; - htim->hdma[TIM_DMA_ID_COMMUTATION]->XferHalfCpltCallback = TIMEx_DMACommutationHalfCplt; - - /* Set the DMA error callback */ - htim->hdma[TIM_DMA_ID_COMMUTATION]->XferErrorCallback = TIM_DMAError ; - - /* Enable the DMA channel */ - if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_COMMUTATION], (uint32_t)BurstBuffer, - (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) - { - return HAL_ERROR; - } - break; - } - case TIM_DMA_TRIGGER: - { - /* Set the DMA trigger callbacks */ - htim->hdma[TIM_DMA_ID_TRIGGER]->XferCpltCallback = TIM_DMATriggerCplt; - htim->hdma[TIM_DMA_ID_TRIGGER]->XferHalfCpltCallback = TIM_DMATriggerHalfCplt; - - /* Set the DMA error callback */ - htim->hdma[TIM_DMA_ID_TRIGGER]->XferErrorCallback = TIM_DMAError ; - - /* Enable the DMA channel */ - if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_TRIGGER], (uint32_t)BurstBuffer, - (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) - { - return HAL_ERROR; - } - break; - } - default: - break; - } - - /* Configure the DMA Burst Mode */ - htim->Instance->DCR = (BurstBaseAddress | BurstLength); - /* Enable the TIM DMA Request */ - __HAL_TIM_ENABLE_DMA(htim, BurstRequestSrc); - - htim->State = HAL_TIM_STATE_READY; - - /* Return function status */ - return HAL_OK; -} - -/** - * @brief Stops the TIM DMA Burst mode - * @param htim TIM handle - * @param BurstRequestSrc TIM DMA Request sources to disable - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStop(TIM_HandleTypeDef *htim, uint32_t BurstRequestSrc) -{ - HAL_StatusTypeDef status = HAL_OK; - /* Check the parameters */ - assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc)); - - /* Abort the DMA transfer (at least disable the DMA channel) */ - switch (BurstRequestSrc) - { - case TIM_DMA_UPDATE: - { - status = HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]); - break; - } - case TIM_DMA_CC1: - { - status = HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); - break; - } - case TIM_DMA_CC2: - { - status = HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); - break; - } - case TIM_DMA_CC3: - { - status = HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); - break; - } - case TIM_DMA_CC4: - { - status = HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]); - break; - } - case TIM_DMA_COM: - { - status = HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_COMMUTATION]); - break; - } - case TIM_DMA_TRIGGER: - { - status = HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_TRIGGER]); - break; - } - default: - break; - } - - if (HAL_OK == status) - { - /* Disable the TIM Update DMA request */ - __HAL_TIM_DISABLE_DMA(htim, BurstRequestSrc); - } - - /* Return function status */ - return status; -} - -/** - * @brief Configure the DMA Burst to transfer Data from the TIM peripheral to the memory - * @param htim TIM handle - * @param BurstBaseAddress TIM Base address from where the DMA will start the Data read - * This parameter can be one of the following values: - * @arg TIM_DMABASE_CR1 - * @arg TIM_DMABASE_CR2 - * @arg TIM_DMABASE_SMCR - * @arg TIM_DMABASE_DIER - * @arg TIM_DMABASE_SR - * @arg TIM_DMABASE_EGR - * @arg TIM_DMABASE_CCMR1 - * @arg TIM_DMABASE_CCMR2 - * @arg TIM_DMABASE_CCER - * @arg TIM_DMABASE_CNT - * @arg TIM_DMABASE_PSC - * @arg TIM_DMABASE_ARR - * @arg TIM_DMABASE_RCR - * @arg TIM_DMABASE_CCR1 - * @arg TIM_DMABASE_CCR2 - * @arg TIM_DMABASE_CCR3 - * @arg TIM_DMABASE_CCR4 - * @arg TIM_DMABASE_BDTR - * @param BurstRequestSrc TIM DMA Request sources - * This parameter can be one of the following values: - * @arg TIM_DMA_UPDATE: TIM update Interrupt source - * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source - * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source - * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source - * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source - * @arg TIM_DMA_COM: TIM Commutation DMA source - * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source - * @param BurstBuffer The Buffer address. - * @param BurstLength DMA Burst length. This parameter can be one value - * between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS. - * @note This function should be used only when BurstLength is equal to DMA data transfer length. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, - uint32_t BurstRequestSrc, uint32_t *BurstBuffer, uint32_t BurstLength) -{ - return HAL_TIM_DMABurst_MultiReadStart(htim, BurstBaseAddress, BurstRequestSrc, BurstBuffer, BurstLength, - ((BurstLength) >> 8U) + 1U); -} - -/** - * @brief Configure the DMA Burst to transfer Data from the TIM peripheral to the memory - * @param htim TIM handle - * @param BurstBaseAddress TIM Base address from where the DMA will start the Data read - * This parameter can be one of the following values: - * @arg TIM_DMABASE_CR1 - * @arg TIM_DMABASE_CR2 - * @arg TIM_DMABASE_SMCR - * @arg TIM_DMABASE_DIER - * @arg TIM_DMABASE_SR - * @arg TIM_DMABASE_EGR - * @arg TIM_DMABASE_CCMR1 - * @arg TIM_DMABASE_CCMR2 - * @arg TIM_DMABASE_CCER - * @arg TIM_DMABASE_CNT - * @arg TIM_DMABASE_PSC - * @arg TIM_DMABASE_ARR - * @arg TIM_DMABASE_RCR - * @arg TIM_DMABASE_CCR1 - * @arg TIM_DMABASE_CCR2 - * @arg TIM_DMABASE_CCR3 - * @arg TIM_DMABASE_CCR4 - * @arg TIM_DMABASE_BDTR - * @param BurstRequestSrc TIM DMA Request sources - * This parameter can be one of the following values: - * @arg TIM_DMA_UPDATE: TIM update Interrupt source - * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source - * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source - * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source - * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source - * @arg TIM_DMA_COM: TIM Commutation DMA source - * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source - * @param BurstBuffer The Buffer address. - * @param BurstLength DMA Burst length. This parameter can be one value - * between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS. - * @param DataLength Data length. This parameter can be one value - * between 1 and 0xFFFF. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIM_DMABurst_MultiReadStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, - uint32_t BurstRequestSrc, uint32_t *BurstBuffer, - uint32_t BurstLength, uint32_t DataLength) -{ - /* Check the parameters */ - assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance)); - assert_param(IS_TIM_DMA_BASE(BurstBaseAddress)); - assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc)); - assert_param(IS_TIM_DMA_LENGTH(BurstLength)); - assert_param(IS_TIM_DMA_DATA_LENGTH(DataLength)); - - if (htim->State == HAL_TIM_STATE_BUSY) - { - return HAL_BUSY; - } - else if (htim->State == HAL_TIM_STATE_READY) - { - if ((BurstBuffer == NULL) && (BurstLength > 0U)) - { - return HAL_ERROR; - } - else - { - htim->State = HAL_TIM_STATE_BUSY; - } - } - else - { - /* nothing to do */ - } - switch (BurstRequestSrc) - { - case TIM_DMA_UPDATE: - { - /* Set the DMA Period elapsed callbacks */ - htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt; - htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt; - - /* Set the DMA error callback */ - htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ; - - /* Enable the DMA channel */ - if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, - DataLength) != HAL_OK) - { - return HAL_ERROR; - } - break; - } - case TIM_DMA_CC1: - { - /* Set the DMA capture callbacks */ - htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt; - htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; - - /* Set the DMA error callback */ - htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; - - /* Enable the DMA channel */ - if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, - DataLength) != HAL_OK) - { - return HAL_ERROR; - } - break; - } - case TIM_DMA_CC2: - { - /* Set the DMA capture callbacks */ - htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt; - htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; - - /* Set the DMA error callback */ - htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; - - /* Enable the DMA channel */ - if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, - DataLength) != HAL_OK) - { - return HAL_ERROR; - } - break; - } - case TIM_DMA_CC3: - { - /* Set the DMA capture callbacks */ - htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMACaptureCplt; - htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; - - /* Set the DMA error callback */ - htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ; - - /* Enable the DMA channel */ - if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, - DataLength) != HAL_OK) - { - return HAL_ERROR; - } - break; - } - case TIM_DMA_CC4: - { - /* Set the DMA capture callbacks */ - htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMACaptureCplt; - htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; - - /* Set the DMA error callback */ - htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ; - - /* Enable the DMA channel */ - if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, - DataLength) != HAL_OK) - { - return HAL_ERROR; - } - break; - } - case TIM_DMA_COM: - { - /* Set the DMA commutation callbacks */ - htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback = TIMEx_DMACommutationCplt; - htim->hdma[TIM_DMA_ID_COMMUTATION]->XferHalfCpltCallback = TIMEx_DMACommutationHalfCplt; - - /* Set the DMA error callback */ - htim->hdma[TIM_DMA_ID_COMMUTATION]->XferErrorCallback = TIM_DMAError ; - - /* Enable the DMA channel */ - if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_COMMUTATION], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, - DataLength) != HAL_OK) - { - return HAL_ERROR; - } - break; - } - case TIM_DMA_TRIGGER: - { - /* Set the DMA trigger callbacks */ - htim->hdma[TIM_DMA_ID_TRIGGER]->XferCpltCallback = TIM_DMATriggerCplt; - htim->hdma[TIM_DMA_ID_TRIGGER]->XferHalfCpltCallback = TIM_DMATriggerHalfCplt; - - /* Set the DMA error callback */ - htim->hdma[TIM_DMA_ID_TRIGGER]->XferErrorCallback = TIM_DMAError ; - - /* Enable the DMA channel */ - if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_TRIGGER], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, - DataLength) != HAL_OK) - { - return HAL_ERROR; - } - break; - } - default: - break; - } - - /* Configure the DMA Burst Mode */ - htim->Instance->DCR = (BurstBaseAddress | BurstLength); - - /* Enable the TIM DMA Request */ - __HAL_TIM_ENABLE_DMA(htim, BurstRequestSrc); - - htim->State = HAL_TIM_STATE_READY; - - /* Return function status */ - return HAL_OK; -} - -/** - * @brief Stop the DMA burst reading - * @param htim TIM handle - * @param BurstRequestSrc TIM DMA Request sources to disable. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStop(TIM_HandleTypeDef *htim, uint32_t BurstRequestSrc) -{ - HAL_StatusTypeDef status = HAL_OK; - /* Check the parameters */ - assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc)); - - /* Abort the DMA transfer (at least disable the DMA channel) */ - switch (BurstRequestSrc) - { - case TIM_DMA_UPDATE: - { - status = HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]); - break; - } - case TIM_DMA_CC1: - { - status = HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); - break; - } - case TIM_DMA_CC2: - { - status = HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); - break; - } - case TIM_DMA_CC3: - { - status = HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); - break; - } - case TIM_DMA_CC4: - { - status = HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]); - break; - } - case TIM_DMA_COM: - { - status = HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_COMMUTATION]); - break; - } - case TIM_DMA_TRIGGER: - { - status = HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_TRIGGER]); - break; - } - default: - break; - } - - if (HAL_OK == status) - { - /* Disable the TIM Update DMA request */ - __HAL_TIM_DISABLE_DMA(htim, BurstRequestSrc); - } - - /* Return function status */ - return status; -} - -/** - * @brief Generate a software event - * @param htim TIM handle - * @param EventSource specifies the event source. - * This parameter can be one of the following values: - * @arg TIM_EVENTSOURCE_UPDATE: Timer update Event source - * @arg TIM_EVENTSOURCE_CC1: Timer Capture Compare 1 Event source - * @arg TIM_EVENTSOURCE_CC2: Timer Capture Compare 2 Event source - * @arg TIM_EVENTSOURCE_CC3: Timer Capture Compare 3 Event source - * @arg TIM_EVENTSOURCE_CC4: Timer Capture Compare 4 Event source - * @arg TIM_EVENTSOURCE_COM: Timer COM event source - * @arg TIM_EVENTSOURCE_TRIGGER: Timer Trigger Event source - * @arg TIM_EVENTSOURCE_BREAK: Timer Break event source - * @note Basic timers can only generate an update event. - * @note TIM_EVENTSOURCE_COM is relevant only with advanced timer instances. - * @note TIM_EVENTSOURCE_BREAK are relevant only for timer instances - * supporting a break input. - * @retval HAL status - */ - -HAL_StatusTypeDef HAL_TIM_GenerateEvent(TIM_HandleTypeDef *htim, uint32_t EventSource) -{ - /* Check the parameters */ - assert_param(IS_TIM_INSTANCE(htim->Instance)); - assert_param(IS_TIM_EVENT_SOURCE(EventSource)); - - /* Process Locked */ - __HAL_LOCK(htim); - - /* Change the TIM state */ - htim->State = HAL_TIM_STATE_BUSY; - - /* Set the event sources */ - htim->Instance->EGR = EventSource; - - /* Change the TIM state */ - htim->State = HAL_TIM_STATE_READY; - - __HAL_UNLOCK(htim); - - /* Return function status */ - return HAL_OK; -} - -/** - * @brief Configures the OCRef clear feature - * @param htim TIM handle - * @param sClearInputConfig pointer to a TIM_ClearInputConfigTypeDef structure that - * contains the OCREF clear feature and parameters for the TIM peripheral. - * @param Channel specifies the TIM Channel - * This parameter can be one of the following values: - * @arg TIM_CHANNEL_1: TIM Channel 1 - * @arg TIM_CHANNEL_2: TIM Channel 2 - * @arg TIM_CHANNEL_3: TIM Channel 3 - * @arg TIM_CHANNEL_4: TIM Channel 4 - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIM_ConfigOCrefClear(TIM_HandleTypeDef *htim, - TIM_ClearInputConfigTypeDef *sClearInputConfig, - uint32_t Channel) -{ - /* Check the parameters */ - assert_param(IS_TIM_OCXREF_CLEAR_INSTANCE(htim->Instance)); - assert_param(IS_TIM_CLEARINPUT_SOURCE(sClearInputConfig->ClearInputSource)); - - /* Process Locked */ - __HAL_LOCK(htim); - - htim->State = HAL_TIM_STATE_BUSY; - - switch (sClearInputConfig->ClearInputSource) - { - case TIM_CLEARINPUTSOURCE_NONE: - { - /* Clear the OCREF clear selection bit and the the ETR Bits */ - CLEAR_BIT(htim->Instance->SMCR, (TIM_SMCR_OCCS | TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP)); - break; - } - case TIM_CLEARINPUTSOURCE_OCREFCLR: - { - /* Clear the OCREF clear selection bit */ - CLEAR_BIT(htim->Instance->SMCR, TIM_SMCR_OCCS); - } - break; - - case TIM_CLEARINPUTSOURCE_ETR: - { - /* Check the parameters */ - assert_param(IS_TIM_CLEARINPUT_POLARITY(sClearInputConfig->ClearInputPolarity)); - assert_param(IS_TIM_CLEARINPUT_PRESCALER(sClearInputConfig->ClearInputPrescaler)); - assert_param(IS_TIM_CLEARINPUT_FILTER(sClearInputConfig->ClearInputFilter)); - - /* When OCRef clear feature is used with ETR source, ETR prescaler must be off */ - if (sClearInputConfig->ClearInputPrescaler != TIM_CLEARINPUTPRESCALER_DIV1) - { - htim->State = HAL_TIM_STATE_READY; - __HAL_UNLOCK(htim); - return HAL_ERROR; - } - - TIM_ETR_SetConfig(htim->Instance, - sClearInputConfig->ClearInputPrescaler, - sClearInputConfig->ClearInputPolarity, - sClearInputConfig->ClearInputFilter); - - /* Set the OCREF clear selection bit */ - SET_BIT(htim->Instance->SMCR, TIM_SMCR_OCCS); - break; - } - - default: - break; - } - - switch (Channel) - { - case TIM_CHANNEL_1: - { - if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE) - { - /* Enable the OCREF clear feature for Channel 1 */ - SET_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC1CE); - } - else - { - /* Disable the OCREF clear feature for Channel 1 */ - CLEAR_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC1CE); - } - break; - } - case TIM_CHANNEL_2: - { - if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE) - { - /* Enable the OCREF clear feature for Channel 2 */ - SET_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC2CE); - } - else - { - /* Disable the OCREF clear feature for Channel 2 */ - CLEAR_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC2CE); - } - break; - } - case TIM_CHANNEL_3: - { - if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE) - { - /* Enable the OCREF clear feature for Channel 3 */ - SET_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC3CE); - } - else - { - /* Disable the OCREF clear feature for Channel 3 */ - CLEAR_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC3CE); - } - break; - } - case TIM_CHANNEL_4: - { - if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE) - { - /* Enable the OCREF clear feature for Channel 4 */ - SET_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC4CE); - } - else - { - /* Disable the OCREF clear feature for Channel 4 */ - CLEAR_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC4CE); - } - break; - } - default: - break; - } - - htim->State = HAL_TIM_STATE_READY; - - __HAL_UNLOCK(htim); - - return HAL_OK; -} - -/** - * @brief Configures the clock source to be used - * @param htim TIM handle - * @param sClockSourceConfig pointer to a TIM_ClockConfigTypeDef structure that - * contains the clock source information for the TIM peripheral. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIM_ConfigClockSource(TIM_HandleTypeDef *htim, TIM_ClockConfigTypeDef *sClockSourceConfig) -{ - uint32_t tmpsmcr; - - /* Process Locked */ - __HAL_LOCK(htim); - - htim->State = HAL_TIM_STATE_BUSY; - - /* Check the parameters */ - assert_param(IS_TIM_CLOCKSOURCE(sClockSourceConfig->ClockSource)); - - /* Reset the SMS, TS, ECE, ETPS and ETRF bits */ - tmpsmcr = htim->Instance->SMCR; - tmpsmcr &= ~(TIM_SMCR_SMS | TIM_SMCR_TS); - tmpsmcr &= ~(TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP); - htim->Instance->SMCR = tmpsmcr; - - switch (sClockSourceConfig->ClockSource) - { - case TIM_CLOCKSOURCE_INTERNAL: - { - assert_param(IS_TIM_INSTANCE(htim->Instance)); - break; - } - - case TIM_CLOCKSOURCE_ETRMODE1: - { - /* Check whether or not the timer instance supports external trigger input mode 1 (ETRF)*/ - assert_param(IS_TIM_CLOCKSOURCE_ETRMODE1_INSTANCE(htim->Instance)); - - /* Check ETR input conditioning related parameters */ - assert_param(IS_TIM_CLOCKPRESCALER(sClockSourceConfig->ClockPrescaler)); - assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity)); - assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter)); - - /* Configure the ETR Clock source */ - TIM_ETR_SetConfig(htim->Instance, - sClockSourceConfig->ClockPrescaler, - sClockSourceConfig->ClockPolarity, - sClockSourceConfig->ClockFilter); - - /* Select the External clock mode1 and the ETRF trigger */ - tmpsmcr = htim->Instance->SMCR; - tmpsmcr |= (TIM_SLAVEMODE_EXTERNAL1 | TIM_CLOCKSOURCE_ETRMODE1); - /* Write to TIMx SMCR */ - htim->Instance->SMCR = tmpsmcr; - break; - } - - case TIM_CLOCKSOURCE_ETRMODE2: - { - /* Check whether or not the timer instance supports external trigger input mode 2 (ETRF)*/ - assert_param(IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(htim->Instance)); - - /* Check ETR input conditioning related parameters */ - assert_param(IS_TIM_CLOCKPRESCALER(sClockSourceConfig->ClockPrescaler)); - assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity)); - assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter)); - - /* Configure the ETR Clock source */ - TIM_ETR_SetConfig(htim->Instance, - sClockSourceConfig->ClockPrescaler, - sClockSourceConfig->ClockPolarity, - sClockSourceConfig->ClockFilter); - /* Enable the External clock mode2 */ - htim->Instance->SMCR |= TIM_SMCR_ECE; - break; - } - - case TIM_CLOCKSOURCE_TI1: - { - /* Check whether or not the timer instance supports external clock mode 1 */ - assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance)); - - /* Check TI1 input conditioning related parameters */ - assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity)); - assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter)); - - TIM_TI1_ConfigInputStage(htim->Instance, - sClockSourceConfig->ClockPolarity, - sClockSourceConfig->ClockFilter); - TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI1); - break; - } - - case TIM_CLOCKSOURCE_TI2: - { - /* Check whether or not the timer instance supports external clock mode 1 (ETRF)*/ - assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance)); - - /* Check TI2 input conditioning related parameters */ - assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity)); - assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter)); - - TIM_TI2_ConfigInputStage(htim->Instance, - sClockSourceConfig->ClockPolarity, - sClockSourceConfig->ClockFilter); - TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI2); - break; - } - - case TIM_CLOCKSOURCE_TI1ED: - { - /* Check whether or not the timer instance supports external clock mode 1 */ - assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance)); - - /* Check TI1 input conditioning related parameters */ - assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity)); - assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter)); - - TIM_TI1_ConfigInputStage(htim->Instance, - sClockSourceConfig->ClockPolarity, - sClockSourceConfig->ClockFilter); - TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI1ED); - break; - } - - case TIM_CLOCKSOURCE_ITR0: - case TIM_CLOCKSOURCE_ITR1: - case TIM_CLOCKSOURCE_ITR2: - case TIM_CLOCKSOURCE_ITR3: - { - /* Check whether or not the timer instance supports internal trigger input */ - assert_param(IS_TIM_CLOCKSOURCE_ITRX_INSTANCE(htim->Instance)); - - TIM_ITRx_SetConfig(htim->Instance, sClockSourceConfig->ClockSource); - break; - } - - default: - break; - } - htim->State = HAL_TIM_STATE_READY; - - __HAL_UNLOCK(htim); - - return HAL_OK; -} - -/** - * @brief Selects the signal connected to the TI1 input: direct from CH1_input - * or a XOR combination between CH1_input, CH2_input & CH3_input - * @param htim TIM handle. - * @param TI1_Selection Indicate whether or not channel 1 is connected to the - * output of a XOR gate. - * This parameter can be one of the following values: - * @arg TIM_TI1SELECTION_CH1: The TIMx_CH1 pin is connected to TI1 input - * @arg TIM_TI1SELECTION_XORCOMBINATION: The TIMx_CH1, CH2 and CH3 - * pins are connected to the TI1 input (XOR combination) - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIM_ConfigTI1Input(TIM_HandleTypeDef *htim, uint32_t TI1_Selection) -{ - uint32_t tmpcr2; - - /* Check the parameters */ - assert_param(IS_TIM_XOR_INSTANCE(htim->Instance)); - assert_param(IS_TIM_TI1SELECTION(TI1_Selection)); - - /* Get the TIMx CR2 register value */ - tmpcr2 = htim->Instance->CR2; - - /* Reset the TI1 selection */ - tmpcr2 &= ~TIM_CR2_TI1S; - - /* Set the TI1 selection */ - tmpcr2 |= TI1_Selection; - - /* Write to TIMxCR2 */ - htim->Instance->CR2 = tmpcr2; - - return HAL_OK; -} - -/** - * @brief Configures the TIM in Slave mode - * @param htim TIM handle. - * @param sSlaveConfig pointer to a TIM_SlaveConfigTypeDef structure that - * contains the selected trigger (internal trigger input, filtered - * timer input or external trigger input) and the Slave mode - * (Disable, Reset, Gated, Trigger, External clock mode 1). - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchro(TIM_HandleTypeDef *htim, TIM_SlaveConfigTypeDef *sSlaveConfig) -{ - /* Check the parameters */ - assert_param(IS_TIM_SLAVE_INSTANCE(htim->Instance)); - assert_param(IS_TIM_SLAVE_MODE(sSlaveConfig->SlaveMode)); - assert_param(IS_TIM_TRIGGER_SELECTION(sSlaveConfig->InputTrigger)); - - __HAL_LOCK(htim); - - htim->State = HAL_TIM_STATE_BUSY; - - if (TIM_SlaveTimer_SetConfig(htim, sSlaveConfig) != HAL_OK) - { - htim->State = HAL_TIM_STATE_READY; - __HAL_UNLOCK(htim); - return HAL_ERROR; - } - - /* Disable Trigger Interrupt */ - __HAL_TIM_DISABLE_IT(htim, TIM_IT_TRIGGER); - - /* Disable Trigger DMA request */ - __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_TRIGGER); - - htim->State = HAL_TIM_STATE_READY; - - __HAL_UNLOCK(htim); - - return HAL_OK; -} - -/** - * @brief Configures the TIM in Slave mode in interrupt mode - * @param htim TIM handle. - * @param sSlaveConfig pointer to a TIM_SlaveConfigTypeDef structure that - * contains the selected trigger (internal trigger input, filtered - * timer input or external trigger input) and the Slave mode - * (Disable, Reset, Gated, Trigger, External clock mode 1). - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchro_IT(TIM_HandleTypeDef *htim, - TIM_SlaveConfigTypeDef *sSlaveConfig) -{ - /* Check the parameters */ - assert_param(IS_TIM_SLAVE_INSTANCE(htim->Instance)); - assert_param(IS_TIM_SLAVE_MODE(sSlaveConfig->SlaveMode)); - assert_param(IS_TIM_TRIGGER_SELECTION(sSlaveConfig->InputTrigger)); - - __HAL_LOCK(htim); - - htim->State = HAL_TIM_STATE_BUSY; - - if (TIM_SlaveTimer_SetConfig(htim, sSlaveConfig) != HAL_OK) - { - htim->State = HAL_TIM_STATE_READY; - __HAL_UNLOCK(htim); - return HAL_ERROR; - } - - /* Enable Trigger Interrupt */ - __HAL_TIM_ENABLE_IT(htim, TIM_IT_TRIGGER); - - /* Disable Trigger DMA request */ - __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_TRIGGER); - - htim->State = HAL_TIM_STATE_READY; - - __HAL_UNLOCK(htim); - - return HAL_OK; -} - -/** - * @brief Read the captured value from Capture Compare unit - * @param htim TIM handle. - * @param Channel TIM Channels to be enabled - * This parameter can be one of the following values: - * @arg TIM_CHANNEL_1: TIM Channel 1 selected - * @arg TIM_CHANNEL_2: TIM Channel 2 selected - * @arg TIM_CHANNEL_3: TIM Channel 3 selected - * @arg TIM_CHANNEL_4: TIM Channel 4 selected - * @retval Captured value - */ -uint32_t HAL_TIM_ReadCapturedValue(TIM_HandleTypeDef *htim, uint32_t Channel) -{ - uint32_t tmpreg = 0U; - - switch (Channel) - { - case TIM_CHANNEL_1: - { - /* Check the parameters */ - assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); - - /* Return the capture 1 value */ - tmpreg = htim->Instance->CCR1; - - break; - } - case TIM_CHANNEL_2: - { - /* Check the parameters */ - assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); - - /* Return the capture 2 value */ - tmpreg = htim->Instance->CCR2; - - break; - } - - case TIM_CHANNEL_3: - { - /* Check the parameters */ - assert_param(IS_TIM_CC3_INSTANCE(htim->Instance)); - - /* Return the capture 3 value */ - tmpreg = htim->Instance->CCR3; - - break; - } - - case TIM_CHANNEL_4: - { - /* Check the parameters */ - assert_param(IS_TIM_CC4_INSTANCE(htim->Instance)); - - /* Return the capture 4 value */ - tmpreg = htim->Instance->CCR4; - - break; - } - - default: - break; - } - - return tmpreg; -} - -/** - * @} - */ - -/** @defgroup TIM_Exported_Functions_Group9 TIM Callbacks functions - * @brief TIM Callbacks functions - * -@verbatim - ============================================================================== - ##### TIM Callbacks functions ##### - ============================================================================== - [..] - This section provides TIM callback functions: - (+) TIM Period elapsed callback - (+) TIM Output Compare callback - (+) TIM Input capture callback - (+) TIM Trigger callback - (+) TIM Error callback - -@endverbatim - * @{ - */ - -/** - * @brief Period elapsed callback in non-blocking mode - * @param htim TIM handle - * @retval None - */ -__weak void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(htim); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_TIM_PeriodElapsedCallback could be implemented in the user file - */ -} - -/** - * @brief Period elapsed half complete callback in non-blocking mode - * @param htim TIM handle - * @retval None - */ -__weak void HAL_TIM_PeriodElapsedHalfCpltCallback(TIM_HandleTypeDef *htim) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(htim); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_TIM_PeriodElapsedHalfCpltCallback could be implemented in the user file - */ -} - -/** - * @brief Output Compare callback in non-blocking mode - * @param htim TIM OC handle - * @retval None - */ -__weak void HAL_TIM_OC_DelayElapsedCallback(TIM_HandleTypeDef *htim) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(htim); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_TIM_OC_DelayElapsedCallback could be implemented in the user file - */ -} - -/** - * @brief Input Capture callback in non-blocking mode - * @param htim TIM IC handle - * @retval None - */ -__weak void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(htim); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_TIM_IC_CaptureCallback could be implemented in the user file - */ -} - -/** - * @brief Input Capture half complete callback in non-blocking mode - * @param htim TIM IC handle - * @retval None - */ -__weak void HAL_TIM_IC_CaptureHalfCpltCallback(TIM_HandleTypeDef *htim) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(htim); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_TIM_IC_CaptureHalfCpltCallback could be implemented in the user file - */ -} - -/** - * @brief PWM Pulse finished callback in non-blocking mode - * @param htim TIM handle - * @retval None - */ -__weak void HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef *htim) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(htim); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_TIM_PWM_PulseFinishedCallback could be implemented in the user file - */ -} - -/** - * @brief PWM Pulse finished half complete callback in non-blocking mode - * @param htim TIM handle - * @retval None - */ -__weak void HAL_TIM_PWM_PulseFinishedHalfCpltCallback(TIM_HandleTypeDef *htim) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(htim); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_TIM_PWM_PulseFinishedHalfCpltCallback could be implemented in the user file - */ -} - -/** - * @brief Hall Trigger detection callback in non-blocking mode - * @param htim TIM handle - * @retval None - */ -__weak void HAL_TIM_TriggerCallback(TIM_HandleTypeDef *htim) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(htim); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_TIM_TriggerCallback could be implemented in the user file - */ -} - -/** - * @brief Hall Trigger detection half complete callback in non-blocking mode - * @param htim TIM handle - * @retval None - */ -__weak void HAL_TIM_TriggerHalfCpltCallback(TIM_HandleTypeDef *htim) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(htim); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_TIM_TriggerHalfCpltCallback could be implemented in the user file - */ -} - -/** - * @brief Timer error callback in non-blocking mode - * @param htim TIM handle - * @retval None - */ -__weak void HAL_TIM_ErrorCallback(TIM_HandleTypeDef *htim) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(htim); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_TIM_ErrorCallback could be implemented in the user file - */ -} - -#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) -/** - * @brief Register a User TIM callback to be used instead of the weak predefined callback - * @param htim tim handle - * @param CallbackID ID of the callback to be registered - * This parameter can be one of the following values: - * @arg @ref HAL_TIM_BASE_MSPINIT_CB_ID Base MspInit Callback ID - * @arg @ref HAL_TIM_BASE_MSPDEINIT_CB_ID Base MspDeInit Callback ID - * @arg @ref HAL_TIM_IC_MSPINIT_CB_ID IC MspInit Callback ID - * @arg @ref HAL_TIM_IC_MSPDEINIT_CB_ID IC MspDeInit Callback ID - * @arg @ref HAL_TIM_OC_MSPINIT_CB_ID OC MspInit Callback ID - * @arg @ref HAL_TIM_OC_MSPDEINIT_CB_ID OC MspDeInit Callback ID - * @arg @ref HAL_TIM_PWM_MSPINIT_CB_ID PWM MspInit Callback ID - * @arg @ref HAL_TIM_PWM_MSPDEINIT_CB_ID PWM MspDeInit Callback ID - * @arg @ref HAL_TIM_ONE_PULSE_MSPINIT_CB_ID One Pulse MspInit Callback ID - * @arg @ref HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID One Pulse MspDeInit Callback ID - * @arg @ref HAL_TIM_ENCODER_MSPINIT_CB_ID Encoder MspInit Callback ID - * @arg @ref HAL_TIM_ENCODER_MSPDEINIT_CB_ID Encoder MspDeInit Callback ID - * @arg @ref HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID Hall Sensor MspInit Callback ID - * @arg @ref HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID Hall Sensor MspDeInit Callback ID - * @arg @ref HAL_TIM_PERIOD_ELAPSED_CB_ID Period Elapsed Callback ID - * @arg @ref HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID Period Elapsed half complete Callback ID - * @arg @ref HAL_TIM_TRIGGER_CB_ID Trigger Callback ID - * @arg @ref HAL_TIM_TRIGGER_HALF_CB_ID Trigger half complete Callback ID - * @arg @ref HAL_TIM_IC_CAPTURE_CB_ID Input Capture Callback ID - * @arg @ref HAL_TIM_IC_CAPTURE_HALF_CB_ID Input Capture half complete Callback ID - * @arg @ref HAL_TIM_OC_DELAY_ELAPSED_CB_ID Output Compare Delay Elapsed Callback ID - * @arg @ref HAL_TIM_PWM_PULSE_FINISHED_CB_ID PWM Pulse Finished Callback ID - * @arg @ref HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID PWM Pulse Finished half complete Callback ID - * @arg @ref HAL_TIM_ERROR_CB_ID Error Callback ID - * @arg @ref HAL_TIM_COMMUTATION_CB_ID Commutation Callback ID - * @arg @ref HAL_TIM_COMMUTATION_HALF_CB_ID Commutation half complete Callback ID - * @arg @ref HAL_TIM_BREAK_CB_ID Break Callback ID - * @param pCallback pointer to the callback function - * @retval status - */ -HAL_StatusTypeDef HAL_TIM_RegisterCallback(TIM_HandleTypeDef *htim, HAL_TIM_CallbackIDTypeDef CallbackID, - pTIM_CallbackTypeDef pCallback) -{ - HAL_StatusTypeDef status = HAL_OK; - - if (pCallback == NULL) - { - return HAL_ERROR; - } - /* Process locked */ - __HAL_LOCK(htim); - - if (htim->State == HAL_TIM_STATE_READY) - { - switch (CallbackID) - { - case HAL_TIM_BASE_MSPINIT_CB_ID : - htim->Base_MspInitCallback = pCallback; - break; - - case HAL_TIM_BASE_MSPDEINIT_CB_ID : - htim->Base_MspDeInitCallback = pCallback; - break; - - case HAL_TIM_IC_MSPINIT_CB_ID : - htim->IC_MspInitCallback = pCallback; - break; - - case HAL_TIM_IC_MSPDEINIT_CB_ID : - htim->IC_MspDeInitCallback = pCallback; - break; - - case HAL_TIM_OC_MSPINIT_CB_ID : - htim->OC_MspInitCallback = pCallback; - break; - - case HAL_TIM_OC_MSPDEINIT_CB_ID : - htim->OC_MspDeInitCallback = pCallback; - break; - - case HAL_TIM_PWM_MSPINIT_CB_ID : - htim->PWM_MspInitCallback = pCallback; - break; - - case HAL_TIM_PWM_MSPDEINIT_CB_ID : - htim->PWM_MspDeInitCallback = pCallback; - break; - - case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID : - htim->OnePulse_MspInitCallback = pCallback; - break; - - case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID : - htim->OnePulse_MspDeInitCallback = pCallback; - break; - - case HAL_TIM_ENCODER_MSPINIT_CB_ID : - htim->Encoder_MspInitCallback = pCallback; - break; - - case HAL_TIM_ENCODER_MSPDEINIT_CB_ID : - htim->Encoder_MspDeInitCallback = pCallback; - break; - - case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID : - htim->HallSensor_MspInitCallback = pCallback; - break; - - case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID : - htim->HallSensor_MspDeInitCallback = pCallback; - break; - - case HAL_TIM_PERIOD_ELAPSED_CB_ID : - htim->PeriodElapsedCallback = pCallback; - break; - - case HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID : - htim->PeriodElapsedHalfCpltCallback = pCallback; - break; - - case HAL_TIM_TRIGGER_CB_ID : - htim->TriggerCallback = pCallback; - break; - - case HAL_TIM_TRIGGER_HALF_CB_ID : - htim->TriggerHalfCpltCallback = pCallback; - break; - - case HAL_TIM_IC_CAPTURE_CB_ID : - htim->IC_CaptureCallback = pCallback; - break; - - case HAL_TIM_IC_CAPTURE_HALF_CB_ID : - htim->IC_CaptureHalfCpltCallback = pCallback; - break; - - case HAL_TIM_OC_DELAY_ELAPSED_CB_ID : - htim->OC_DelayElapsedCallback = pCallback; - break; - - case HAL_TIM_PWM_PULSE_FINISHED_CB_ID : - htim->PWM_PulseFinishedCallback = pCallback; - break; - - case HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID : - htim->PWM_PulseFinishedHalfCpltCallback = pCallback; - break; - - case HAL_TIM_ERROR_CB_ID : - htim->ErrorCallback = pCallback; - break; - - case HAL_TIM_COMMUTATION_CB_ID : - htim->CommutationCallback = pCallback; - break; - - case HAL_TIM_COMMUTATION_HALF_CB_ID : - htim->CommutationHalfCpltCallback = pCallback; - break; - - case HAL_TIM_BREAK_CB_ID : - htim->BreakCallback = pCallback; - break; - - default : - /* Return error status */ - status = HAL_ERROR; - break; - } - } - else if (htim->State == HAL_TIM_STATE_RESET) - { - switch (CallbackID) - { - case HAL_TIM_BASE_MSPINIT_CB_ID : - htim->Base_MspInitCallback = pCallback; - break; - - case HAL_TIM_BASE_MSPDEINIT_CB_ID : - htim->Base_MspDeInitCallback = pCallback; - break; - - case HAL_TIM_IC_MSPINIT_CB_ID : - htim->IC_MspInitCallback = pCallback; - break; - - case HAL_TIM_IC_MSPDEINIT_CB_ID : - htim->IC_MspDeInitCallback = pCallback; - break; - - case HAL_TIM_OC_MSPINIT_CB_ID : - htim->OC_MspInitCallback = pCallback; - break; - - case HAL_TIM_OC_MSPDEINIT_CB_ID : - htim->OC_MspDeInitCallback = pCallback; - break; - - case HAL_TIM_PWM_MSPINIT_CB_ID : - htim->PWM_MspInitCallback = pCallback; - break; - - case HAL_TIM_PWM_MSPDEINIT_CB_ID : - htim->PWM_MspDeInitCallback = pCallback; - break; - - case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID : - htim->OnePulse_MspInitCallback = pCallback; - break; - - case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID : - htim->OnePulse_MspDeInitCallback = pCallback; - break; - - case HAL_TIM_ENCODER_MSPINIT_CB_ID : - htim->Encoder_MspInitCallback = pCallback; - break; - - case HAL_TIM_ENCODER_MSPDEINIT_CB_ID : - htim->Encoder_MspDeInitCallback = pCallback; - break; - - case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID : - htim->HallSensor_MspInitCallback = pCallback; - break; - - case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID : - htim->HallSensor_MspDeInitCallback = pCallback; - break; - - default : - /* Return error status */ - status = HAL_ERROR; - break; - } - } - else - { - /* Return error status */ - status = HAL_ERROR; - } - - /* Release Lock */ - __HAL_UNLOCK(htim); - - return status; -} - -/** - * @brief Unregister a TIM callback - * TIM callback is redirected to the weak predefined callback - * @param htim tim handle - * @param CallbackID ID of the callback to be unregistered - * This parameter can be one of the following values: - * @arg @ref HAL_TIM_BASE_MSPINIT_CB_ID Base MspInit Callback ID - * @arg @ref HAL_TIM_BASE_MSPDEINIT_CB_ID Base MspDeInit Callback ID - * @arg @ref HAL_TIM_IC_MSPINIT_CB_ID IC MspInit Callback ID - * @arg @ref HAL_TIM_IC_MSPDEINIT_CB_ID IC MspDeInit Callback ID - * @arg @ref HAL_TIM_OC_MSPINIT_CB_ID OC MspInit Callback ID - * @arg @ref HAL_TIM_OC_MSPDEINIT_CB_ID OC MspDeInit Callback ID - * @arg @ref HAL_TIM_PWM_MSPINIT_CB_ID PWM MspInit Callback ID - * @arg @ref HAL_TIM_PWM_MSPDEINIT_CB_ID PWM MspDeInit Callback ID - * @arg @ref HAL_TIM_ONE_PULSE_MSPINIT_CB_ID One Pulse MspInit Callback ID - * @arg @ref HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID One Pulse MspDeInit Callback ID - * @arg @ref HAL_TIM_ENCODER_MSPINIT_CB_ID Encoder MspInit Callback ID - * @arg @ref HAL_TIM_ENCODER_MSPDEINIT_CB_ID Encoder MspDeInit Callback ID - * @arg @ref HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID Hall Sensor MspInit Callback ID - * @arg @ref HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID Hall Sensor MspDeInit Callback ID - * @arg @ref HAL_TIM_PERIOD_ELAPSED_CB_ID Period Elapsed Callback ID - * @arg @ref HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID Period Elapsed half complete Callback ID - * @arg @ref HAL_TIM_TRIGGER_CB_ID Trigger Callback ID - * @arg @ref HAL_TIM_TRIGGER_HALF_CB_ID Trigger half complete Callback ID - * @arg @ref HAL_TIM_IC_CAPTURE_CB_ID Input Capture Callback ID - * @arg @ref HAL_TIM_IC_CAPTURE_HALF_CB_ID Input Capture half complete Callback ID - * @arg @ref HAL_TIM_OC_DELAY_ELAPSED_CB_ID Output Compare Delay Elapsed Callback ID - * @arg @ref HAL_TIM_PWM_PULSE_FINISHED_CB_ID PWM Pulse Finished Callback ID - * @arg @ref HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID PWM Pulse Finished half complete Callback ID - * @arg @ref HAL_TIM_ERROR_CB_ID Error Callback ID - * @arg @ref HAL_TIM_COMMUTATION_CB_ID Commutation Callback ID - * @arg @ref HAL_TIM_COMMUTATION_HALF_CB_ID Commutation half complete Callback ID - * @arg @ref HAL_TIM_BREAK_CB_ID Break Callback ID - * @retval status - */ -HAL_StatusTypeDef HAL_TIM_UnRegisterCallback(TIM_HandleTypeDef *htim, HAL_TIM_CallbackIDTypeDef CallbackID) -{ - HAL_StatusTypeDef status = HAL_OK; - - /* Process locked */ - __HAL_LOCK(htim); - - if (htim->State == HAL_TIM_STATE_READY) - { - switch (CallbackID) - { - case HAL_TIM_BASE_MSPINIT_CB_ID : - htim->Base_MspInitCallback = HAL_TIM_Base_MspInit; /* Legacy weak Base MspInit Callback */ - break; - - case HAL_TIM_BASE_MSPDEINIT_CB_ID : - htim->Base_MspDeInitCallback = HAL_TIM_Base_MspDeInit; /* Legacy weak Base Msp DeInit Callback */ - break; - - case HAL_TIM_IC_MSPINIT_CB_ID : - htim->IC_MspInitCallback = HAL_TIM_IC_MspInit; /* Legacy weak IC Msp Init Callback */ - break; - - case HAL_TIM_IC_MSPDEINIT_CB_ID : - htim->IC_MspDeInitCallback = HAL_TIM_IC_MspDeInit; /* Legacy weak IC Msp DeInit Callback */ - break; - - case HAL_TIM_OC_MSPINIT_CB_ID : - htim->OC_MspInitCallback = HAL_TIM_OC_MspInit; /* Legacy weak OC Msp Init Callback */ - break; - - case HAL_TIM_OC_MSPDEINIT_CB_ID : - htim->OC_MspDeInitCallback = HAL_TIM_OC_MspDeInit; /* Legacy weak OC Msp DeInit Callback */ - break; - - case HAL_TIM_PWM_MSPINIT_CB_ID : - htim->PWM_MspInitCallback = HAL_TIM_PWM_MspInit; /* Legacy weak PWM Msp Init Callback */ - break; - - case HAL_TIM_PWM_MSPDEINIT_CB_ID : - htim->PWM_MspDeInitCallback = HAL_TIM_PWM_MspDeInit; /* Legacy weak PWM Msp DeInit Callback */ - break; - - case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID : - htim->OnePulse_MspInitCallback = HAL_TIM_OnePulse_MspInit; /* Legacy weak One Pulse Msp Init Callback */ - break; - - case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID : - htim->OnePulse_MspDeInitCallback = HAL_TIM_OnePulse_MspDeInit; /* Legacy weak One Pulse Msp DeInit Callback */ - break; - - case HAL_TIM_ENCODER_MSPINIT_CB_ID : - htim->Encoder_MspInitCallback = HAL_TIM_Encoder_MspInit; /* Legacy weak Encoder Msp Init Callback */ - break; - - case HAL_TIM_ENCODER_MSPDEINIT_CB_ID : - htim->Encoder_MspDeInitCallback = HAL_TIM_Encoder_MspDeInit; /* Legacy weak Encoder Msp DeInit Callback */ - break; - - case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID : - htim->HallSensor_MspInitCallback = HAL_TIMEx_HallSensor_MspInit; /* Legacy weak Hall Sensor Msp Init Callback */ - break; - - case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID : - htim->HallSensor_MspDeInitCallback = HAL_TIMEx_HallSensor_MspDeInit; /* Legacy weak Hall Sensor Msp DeInit Callback */ - break; - - case HAL_TIM_PERIOD_ELAPSED_CB_ID : - htim->PeriodElapsedCallback = HAL_TIM_PeriodElapsedCallback; /* Legacy weak Period Elapsed Callback */ - break; - - case HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID : - htim->PeriodElapsedHalfCpltCallback = HAL_TIM_PeriodElapsedHalfCpltCallback; /* Legacy weak Period Elapsed half complete Callback */ - break; - - case HAL_TIM_TRIGGER_CB_ID : - htim->TriggerCallback = HAL_TIM_TriggerCallback; /* Legacy weak Trigger Callback */ - break; - - case HAL_TIM_TRIGGER_HALF_CB_ID : - htim->TriggerHalfCpltCallback = HAL_TIM_TriggerHalfCpltCallback; /* Legacy weak Trigger half complete Callback */ - break; - - case HAL_TIM_IC_CAPTURE_CB_ID : - htim->IC_CaptureCallback = HAL_TIM_IC_CaptureCallback; /* Legacy weak IC Capture Callback */ - break; - - case HAL_TIM_IC_CAPTURE_HALF_CB_ID : - htim->IC_CaptureHalfCpltCallback = HAL_TIM_IC_CaptureHalfCpltCallback; /* Legacy weak IC Capture half complete Callback */ - break; - - case HAL_TIM_OC_DELAY_ELAPSED_CB_ID : - htim->OC_DelayElapsedCallback = HAL_TIM_OC_DelayElapsedCallback; /* Legacy weak OC Delay Elapsed Callback */ - break; - - case HAL_TIM_PWM_PULSE_FINISHED_CB_ID : - htim->PWM_PulseFinishedCallback = HAL_TIM_PWM_PulseFinishedCallback; /* Legacy weak PWM Pulse Finished Callback */ - break; - - case HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID : - htim->PWM_PulseFinishedHalfCpltCallback = HAL_TIM_PWM_PulseFinishedHalfCpltCallback; /* Legacy weak PWM Pulse Finished half complete Callback */ - break; - - case HAL_TIM_ERROR_CB_ID : - htim->ErrorCallback = HAL_TIM_ErrorCallback; /* Legacy weak Error Callback */ - break; - - case HAL_TIM_COMMUTATION_CB_ID : - htim->CommutationCallback = HAL_TIMEx_CommutCallback; /* Legacy weak Commutation Callback */ - break; - - case HAL_TIM_COMMUTATION_HALF_CB_ID : - htim->CommutationHalfCpltCallback = HAL_TIMEx_CommutHalfCpltCallback; /* Legacy weak Commutation half complete Callback */ - break; - - case HAL_TIM_BREAK_CB_ID : - htim->BreakCallback = HAL_TIMEx_BreakCallback; /* Legacy weak Break Callback */ - break; - - default : - /* Return error status */ - status = HAL_ERROR; - break; - } - } - else if (htim->State == HAL_TIM_STATE_RESET) - { - switch (CallbackID) - { - case HAL_TIM_BASE_MSPINIT_CB_ID : - htim->Base_MspInitCallback = HAL_TIM_Base_MspInit; /* Legacy weak Base MspInit Callback */ - break; - - case HAL_TIM_BASE_MSPDEINIT_CB_ID : - htim->Base_MspDeInitCallback = HAL_TIM_Base_MspDeInit; /* Legacy weak Base Msp DeInit Callback */ - break; - - case HAL_TIM_IC_MSPINIT_CB_ID : - htim->IC_MspInitCallback = HAL_TIM_IC_MspInit; /* Legacy weak IC Msp Init Callback */ - break; - - case HAL_TIM_IC_MSPDEINIT_CB_ID : - htim->IC_MspDeInitCallback = HAL_TIM_IC_MspDeInit; /* Legacy weak IC Msp DeInit Callback */ - break; - - case HAL_TIM_OC_MSPINIT_CB_ID : - htim->OC_MspInitCallback = HAL_TIM_OC_MspInit; /* Legacy weak OC Msp Init Callback */ - break; - - case HAL_TIM_OC_MSPDEINIT_CB_ID : - htim->OC_MspDeInitCallback = HAL_TIM_OC_MspDeInit; /* Legacy weak OC Msp DeInit Callback */ - break; - - case HAL_TIM_PWM_MSPINIT_CB_ID : - htim->PWM_MspInitCallback = HAL_TIM_PWM_MspInit; /* Legacy weak PWM Msp Init Callback */ - break; - - case HAL_TIM_PWM_MSPDEINIT_CB_ID : - htim->PWM_MspDeInitCallback = HAL_TIM_PWM_MspDeInit; /* Legacy weak PWM Msp DeInit Callback */ - break; - - case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID : - htim->OnePulse_MspInitCallback = HAL_TIM_OnePulse_MspInit; /* Legacy weak One Pulse Msp Init Callback */ - break; - - case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID : - htim->OnePulse_MspDeInitCallback = HAL_TIM_OnePulse_MspDeInit; /* Legacy weak One Pulse Msp DeInit Callback */ - break; - - case HAL_TIM_ENCODER_MSPINIT_CB_ID : - htim->Encoder_MspInitCallback = HAL_TIM_Encoder_MspInit; /* Legacy weak Encoder Msp Init Callback */ - break; - - case HAL_TIM_ENCODER_MSPDEINIT_CB_ID : - htim->Encoder_MspDeInitCallback = HAL_TIM_Encoder_MspDeInit; /* Legacy weak Encoder Msp DeInit Callback */ - break; - - case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID : - htim->HallSensor_MspInitCallback = HAL_TIMEx_HallSensor_MspInit; /* Legacy weak Hall Sensor Msp Init Callback */ - break; - - case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID : - htim->HallSensor_MspDeInitCallback = HAL_TIMEx_HallSensor_MspDeInit; /* Legacy weak Hall Sensor Msp DeInit Callback */ - break; - - default : - /* Return error status */ - status = HAL_ERROR; - break; - } - } - else - { - /* Return error status */ - status = HAL_ERROR; - } - - /* Release Lock */ - __HAL_UNLOCK(htim); - - return status; -} -#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ - -/** - * @} - */ - -/** @defgroup TIM_Exported_Functions_Group10 TIM Peripheral State functions - * @brief TIM Peripheral State functions - * -@verbatim - ============================================================================== - ##### Peripheral State functions ##### - ============================================================================== - [..] - This subsection permits to get in run-time the status of the peripheral - and the data flow. - -@endverbatim - * @{ - */ - -/** - * @brief Return the TIM Base handle state. - * @param htim TIM Base handle - * @retval HAL state - */ -HAL_TIM_StateTypeDef HAL_TIM_Base_GetState(TIM_HandleTypeDef *htim) -{ - return htim->State; -} - -/** - * @brief Return the TIM OC handle state. - * @param htim TIM Output Compare handle - * @retval HAL state - */ -HAL_TIM_StateTypeDef HAL_TIM_OC_GetState(TIM_HandleTypeDef *htim) -{ - return htim->State; -} - -/** - * @brief Return the TIM PWM handle state. - * @param htim TIM handle - * @retval HAL state - */ -HAL_TIM_StateTypeDef HAL_TIM_PWM_GetState(TIM_HandleTypeDef *htim) -{ - return htim->State; -} - -/** - * @brief Return the TIM Input Capture handle state. - * @param htim TIM IC handle - * @retval HAL state - */ -HAL_TIM_StateTypeDef HAL_TIM_IC_GetState(TIM_HandleTypeDef *htim) -{ - return htim->State; -} - -/** - * @brief Return the TIM One Pulse Mode handle state. - * @param htim TIM OPM handle - * @retval HAL state - */ -HAL_TIM_StateTypeDef HAL_TIM_OnePulse_GetState(TIM_HandleTypeDef *htim) -{ - return htim->State; -} - -/** - * @brief Return the TIM Encoder Mode handle state. - * @param htim TIM Encoder Interface handle - * @retval HAL state - */ -HAL_TIM_StateTypeDef HAL_TIM_Encoder_GetState(TIM_HandleTypeDef *htim) -{ - return htim->State; -} - -/** - * @} - */ - -/** - * @} - */ - -/** @defgroup TIM_Private_Functions TIM Private Functions - * @{ - */ - -/** - * @brief TIM DMA error callback - * @param hdma pointer to DMA handle. - * @retval None - */ -void TIM_DMAError(DMA_HandleTypeDef *hdma) -{ - TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; - - htim->State = HAL_TIM_STATE_READY; - -#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) - htim->ErrorCallback(htim); -#else - HAL_TIM_ErrorCallback(htim); -#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ -} - -/** - * @brief TIM DMA Delay Pulse complete callback. - * @param hdma pointer to DMA handle. - * @retval None - */ -void TIM_DMADelayPulseCplt(DMA_HandleTypeDef *hdma) -{ - TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; - - htim->State = HAL_TIM_STATE_READY; - - if (hdma == htim->hdma[TIM_DMA_ID_CC1]) - { - htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; - } - else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) - { - htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; - } - else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) - { - htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; - } - else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) - { - htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; - } - else - { - /* nothing to do */ - } - -#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) - htim->PWM_PulseFinishedCallback(htim); -#else - HAL_TIM_PWM_PulseFinishedCallback(htim); -#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ - - htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; -} - -/** - * @brief TIM DMA Delay Pulse half complete callback. - * @param hdma pointer to DMA handle. - * @retval None - */ -void TIM_DMADelayPulseHalfCplt(DMA_HandleTypeDef *hdma) -{ - TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; - - htim->State = HAL_TIM_STATE_READY; - - if (hdma == htim->hdma[TIM_DMA_ID_CC1]) - { - htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; - } - else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) - { - htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; - } - else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) - { - htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; - } - else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) - { - htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; - } - else - { - /* nothing to do */ - } - -#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) - htim->PWM_PulseFinishedHalfCpltCallback(htim); -#else - HAL_TIM_PWM_PulseFinishedHalfCpltCallback(htim); -#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ - - htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; -} - -/** - * @brief TIM DMA Capture complete callback. - * @param hdma pointer to DMA handle. - * @retval None - */ -void TIM_DMACaptureCplt(DMA_HandleTypeDef *hdma) -{ - TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; - - htim->State = HAL_TIM_STATE_READY; - - if (hdma == htim->hdma[TIM_DMA_ID_CC1]) - { - htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; - } - else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) - { - htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; - } - else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) - { - htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; - } - else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) - { - htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; - } - else - { - /* nothing to do */ - } - -#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) - htim->IC_CaptureCallback(htim); -#else - HAL_TIM_IC_CaptureCallback(htim); -#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ - - htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; -} - -/** - * @brief TIM DMA Capture half complete callback. - * @param hdma pointer to DMA handle. - * @retval None - */ -void TIM_DMACaptureHalfCplt(DMA_HandleTypeDef *hdma) -{ - TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; - - htim->State = HAL_TIM_STATE_READY; - - if (hdma == htim->hdma[TIM_DMA_ID_CC1]) - { - htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; - } - else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) - { - htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; - } - else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) - { - htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; - } - else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) - { - htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; - } - else - { - /* nothing to do */ - } - -#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) - htim->IC_CaptureHalfCpltCallback(htim); -#else - HAL_TIM_IC_CaptureHalfCpltCallback(htim); -#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ - - htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; -} - -/** - * @brief TIM DMA Period Elapse complete callback. - * @param hdma pointer to DMA handle. - * @retval None - */ -static void TIM_DMAPeriodElapsedCplt(DMA_HandleTypeDef *hdma) -{ - TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; - - htim->State = HAL_TIM_STATE_READY; - -#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) - htim->PeriodElapsedCallback(htim); -#else - HAL_TIM_PeriodElapsedCallback(htim); -#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ -} - -/** - * @brief TIM DMA Period Elapse half complete callback. - * @param hdma pointer to DMA handle. - * @retval None - */ -static void TIM_DMAPeriodElapsedHalfCplt(DMA_HandleTypeDef *hdma) -{ - TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; - - htim->State = HAL_TIM_STATE_READY; - -#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) - htim->PeriodElapsedHalfCpltCallback(htim); -#else - HAL_TIM_PeriodElapsedHalfCpltCallback(htim); -#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ -} - -/** - * @brief TIM DMA Trigger callback. - * @param hdma pointer to DMA handle. - * @retval None - */ -static void TIM_DMATriggerCplt(DMA_HandleTypeDef *hdma) -{ - TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; - - htim->State = HAL_TIM_STATE_READY; - -#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) - htim->TriggerCallback(htim); -#else - HAL_TIM_TriggerCallback(htim); -#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ -} - -/** - * @brief TIM DMA Trigger half complete callback. - * @param hdma pointer to DMA handle. - * @retval None - */ -static void TIM_DMATriggerHalfCplt(DMA_HandleTypeDef *hdma) -{ - TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; - - htim->State = HAL_TIM_STATE_READY; - -#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) - htim->TriggerHalfCpltCallback(htim); -#else - HAL_TIM_TriggerHalfCpltCallback(htim); -#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ -} - -/** - * @brief Time Base configuration - * @param TIMx TIM peripheral - * @param Structure TIM Base configuration structure - * @retval None - */ -void TIM_Base_SetConfig(TIM_TypeDef *TIMx, TIM_Base_InitTypeDef *Structure) -{ - uint32_t tmpcr1; - tmpcr1 = TIMx->CR1; - - /* Set TIM Time Base Unit parameters ---------------------------------------*/ - if (IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx)) - { - /* Select the Counter Mode */ - tmpcr1 &= ~(TIM_CR1_DIR | TIM_CR1_CMS); - tmpcr1 |= Structure->CounterMode; - } - - if (IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx)) - { - /* Set the clock division */ - tmpcr1 &= ~TIM_CR1_CKD; - tmpcr1 |= (uint32_t)Structure->ClockDivision; - } - - /* Set the auto-reload preload */ - MODIFY_REG(tmpcr1, TIM_CR1_ARPE, Structure->AutoReloadPreload); - - TIMx->CR1 = tmpcr1; - - /* Set the Autoreload value */ - TIMx->ARR = (uint32_t)Structure->Period ; - - /* Set the Prescaler value */ - TIMx->PSC = Structure->Prescaler; - - if (IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx)) - { - /* Set the Repetition Counter value */ - TIMx->RCR = Structure->RepetitionCounter; - } - - /* Generate an update event to reload the Prescaler - and the repetition counter (only for advanced timer) value immediately */ - TIMx->EGR = TIM_EGR_UG; -} - -/** - * @brief Timer Output Compare 1 configuration - * @param TIMx to select the TIM peripheral - * @param OC_Config The ouput configuration structure - * @retval None - */ -static void TIM_OC1_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config) -{ - uint32_t tmpccmrx; - uint32_t tmpccer; - uint32_t tmpcr2; - - /* Disable the Channel 1: Reset the CC1E Bit */ - TIMx->CCER &= ~TIM_CCER_CC1E; - - /* Get the TIMx CCER register value */ - tmpccer = TIMx->CCER; - /* Get the TIMx CR2 register value */ - tmpcr2 = TIMx->CR2; - - /* Get the TIMx CCMR1 register value */ - tmpccmrx = TIMx->CCMR1; - - /* Reset the Output Compare Mode Bits */ - tmpccmrx &= ~TIM_CCMR1_OC1M; - tmpccmrx &= ~TIM_CCMR1_CC1S; - /* Select the Output Compare Mode */ - tmpccmrx |= OC_Config->OCMode; - - /* Reset the Output Polarity level */ - tmpccer &= ~TIM_CCER_CC1P; - /* Set the Output Compare Polarity */ - tmpccer |= OC_Config->OCPolarity; - - if (IS_TIM_CCXN_INSTANCE(TIMx, TIM_CHANNEL_1)) - { - /* Check parameters */ - assert_param(IS_TIM_OCN_POLARITY(OC_Config->OCNPolarity)); - - /* Reset the Output N Polarity level */ - tmpccer &= ~TIM_CCER_CC1NP; - /* Set the Output N Polarity */ - tmpccer |= OC_Config->OCNPolarity; - /* Reset the Output N State */ - tmpccer &= ~TIM_CCER_CC1NE; - } - - if (IS_TIM_BREAK_INSTANCE(TIMx)) - { - /* Check parameters */ - assert_param(IS_TIM_OCNIDLE_STATE(OC_Config->OCNIdleState)); - assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState)); - - /* Reset the Output Compare and Output Compare N IDLE State */ - tmpcr2 &= ~TIM_CR2_OIS1; - tmpcr2 &= ~TIM_CR2_OIS1N; - /* Set the Output Idle state */ - tmpcr2 |= OC_Config->OCIdleState; - /* Set the Output N Idle state */ - tmpcr2 |= OC_Config->OCNIdleState; - } - - /* Write to TIMx CR2 */ - TIMx->CR2 = tmpcr2; - - /* Write to TIMx CCMR1 */ - TIMx->CCMR1 = tmpccmrx; - - /* Set the Capture Compare Register value */ - TIMx->CCR1 = OC_Config->Pulse; - - /* Write to TIMx CCER */ - TIMx->CCER = tmpccer; -} - -/** - * @brief Timer Output Compare 2 configuration - * @param TIMx to select the TIM peripheral - * @param OC_Config The ouput configuration structure - * @retval None - */ -void TIM_OC2_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config) -{ - uint32_t tmpccmrx; - uint32_t tmpccer; - uint32_t tmpcr2; - - /* Disable the Channel 2: Reset the CC2E Bit */ - TIMx->CCER &= ~TIM_CCER_CC2E; - - /* Get the TIMx CCER register value */ - tmpccer = TIMx->CCER; - /* Get the TIMx CR2 register value */ - tmpcr2 = TIMx->CR2; - - /* Get the TIMx CCMR1 register value */ - tmpccmrx = TIMx->CCMR1; - - /* Reset the Output Compare mode and Capture/Compare selection Bits */ - tmpccmrx &= ~TIM_CCMR1_OC2M; - tmpccmrx &= ~TIM_CCMR1_CC2S; - - /* Select the Output Compare Mode */ - tmpccmrx |= (OC_Config->OCMode << 8U); - - /* Reset the Output Polarity level */ - tmpccer &= ~TIM_CCER_CC2P; - /* Set the Output Compare Polarity */ - tmpccer |= (OC_Config->OCPolarity << 4U); - - if (IS_TIM_CCXN_INSTANCE(TIMx, TIM_CHANNEL_2)) - { - assert_param(IS_TIM_OCN_POLARITY(OC_Config->OCNPolarity)); - - /* Reset the Output N Polarity level */ - tmpccer &= ~TIM_CCER_CC2NP; - /* Set the Output N Polarity */ - tmpccer |= (OC_Config->OCNPolarity << 4U); - /* Reset the Output N State */ - tmpccer &= ~TIM_CCER_CC2NE; - - } - - if (IS_TIM_BREAK_INSTANCE(TIMx)) - { - /* Check parameters */ - assert_param(IS_TIM_OCNIDLE_STATE(OC_Config->OCNIdleState)); - assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState)); - - /* Reset the Output Compare and Output Compare N IDLE State */ - tmpcr2 &= ~TIM_CR2_OIS2; - tmpcr2 &= ~TIM_CR2_OIS2N; - /* Set the Output Idle state */ - tmpcr2 |= (OC_Config->OCIdleState << 2U); - /* Set the Output N Idle state */ - tmpcr2 |= (OC_Config->OCNIdleState << 2U); - } - - /* Write to TIMx CR2 */ - TIMx->CR2 = tmpcr2; - - /* Write to TIMx CCMR1 */ - TIMx->CCMR1 = tmpccmrx; - - /* Set the Capture Compare Register value */ - TIMx->CCR2 = OC_Config->Pulse; - - /* Write to TIMx CCER */ - TIMx->CCER = tmpccer; -} - -/** - * @brief Timer Output Compare 3 configuration - * @param TIMx to select the TIM peripheral - * @param OC_Config The ouput configuration structure - * @retval None - */ -static void TIM_OC3_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config) -{ - uint32_t tmpccmrx; - uint32_t tmpccer; - uint32_t tmpcr2; - - /* Disable the Channel 3: Reset the CC2E Bit */ - TIMx->CCER &= ~TIM_CCER_CC3E; - - /* Get the TIMx CCER register value */ - tmpccer = TIMx->CCER; - /* Get the TIMx CR2 register value */ - tmpcr2 = TIMx->CR2; - - /* Get the TIMx CCMR2 register value */ - tmpccmrx = TIMx->CCMR2; - - /* Reset the Output Compare mode and Capture/Compare selection Bits */ - tmpccmrx &= ~TIM_CCMR2_OC3M; - tmpccmrx &= ~TIM_CCMR2_CC3S; - /* Select the Output Compare Mode */ - tmpccmrx |= OC_Config->OCMode; - - /* Reset the Output Polarity level */ - tmpccer &= ~TIM_CCER_CC3P; - /* Set the Output Compare Polarity */ - tmpccer |= (OC_Config->OCPolarity << 8U); - - if (IS_TIM_CCXN_INSTANCE(TIMx, TIM_CHANNEL_3)) - { - assert_param(IS_TIM_OCN_POLARITY(OC_Config->OCNPolarity)); - - /* Reset the Output N Polarity level */ - tmpccer &= ~TIM_CCER_CC3NP; - /* Set the Output N Polarity */ - tmpccer |= (OC_Config->OCNPolarity << 8U); - /* Reset the Output N State */ - tmpccer &= ~TIM_CCER_CC3NE; - } - - if (IS_TIM_BREAK_INSTANCE(TIMx)) - { - /* Check parameters */ - assert_param(IS_TIM_OCNIDLE_STATE(OC_Config->OCNIdleState)); - assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState)); - - /* Reset the Output Compare and Output Compare N IDLE State */ - tmpcr2 &= ~TIM_CR2_OIS3; - tmpcr2 &= ~TIM_CR2_OIS3N; - /* Set the Output Idle state */ - tmpcr2 |= (OC_Config->OCIdleState << 4U); - /* Set the Output N Idle state */ - tmpcr2 |= (OC_Config->OCNIdleState << 4U); - } - - /* Write to TIMx CR2 */ - TIMx->CR2 = tmpcr2; - - /* Write to TIMx CCMR2 */ - TIMx->CCMR2 = tmpccmrx; - - /* Set the Capture Compare Register value */ - TIMx->CCR3 = OC_Config->Pulse; - - /* Write to TIMx CCER */ - TIMx->CCER = tmpccer; -} - -/** - * @brief Timer Output Compare 4 configuration - * @param TIMx to select the TIM peripheral - * @param OC_Config The ouput configuration structure - * @retval None - */ -static void TIM_OC4_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config) -{ - uint32_t tmpccmrx; - uint32_t tmpccer; - uint32_t tmpcr2; - - /* Disable the Channel 4: Reset the CC4E Bit */ - TIMx->CCER &= ~TIM_CCER_CC4E; - - /* Get the TIMx CCER register value */ - tmpccer = TIMx->CCER; - /* Get the TIMx CR2 register value */ - tmpcr2 = TIMx->CR2; - - /* Get the TIMx CCMR2 register value */ - tmpccmrx = TIMx->CCMR2; - - /* Reset the Output Compare mode and Capture/Compare selection Bits */ - tmpccmrx &= ~TIM_CCMR2_OC4M; - tmpccmrx &= ~TIM_CCMR2_CC4S; - - /* Select the Output Compare Mode */ - tmpccmrx |= (OC_Config->OCMode << 8U); - - /* Reset the Output Polarity level */ - tmpccer &= ~TIM_CCER_CC4P; - /* Set the Output Compare Polarity */ - tmpccer |= (OC_Config->OCPolarity << 12U); - - if (IS_TIM_BREAK_INSTANCE(TIMx)) - { - /* Check parameters */ - assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState)); - - /* Reset the Output Compare IDLE State */ - tmpcr2 &= ~TIM_CR2_OIS4; - - /* Set the Output Idle state */ - tmpcr2 |= (OC_Config->OCIdleState << 6U); - } - - /* Write to TIMx CR2 */ - TIMx->CR2 = tmpcr2; - - /* Write to TIMx CCMR2 */ - TIMx->CCMR2 = tmpccmrx; - - /* Set the Capture Compare Register value */ - TIMx->CCR4 = OC_Config->Pulse; - - /* Write to TIMx CCER */ - TIMx->CCER = tmpccer; -} - -/** - * @brief Slave Timer configuration function - * @param htim TIM handle - * @param sSlaveConfig Slave timer configuration - * @retval None - */ -static HAL_StatusTypeDef TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim, - TIM_SlaveConfigTypeDef *sSlaveConfig) -{ - uint32_t tmpsmcr; - uint32_t tmpccmr1; - uint32_t tmpccer; - - /* Get the TIMx SMCR register value */ - tmpsmcr = htim->Instance->SMCR; - - /* Reset the Trigger Selection Bits */ - tmpsmcr &= ~TIM_SMCR_TS; - /* Set the Input Trigger source */ - tmpsmcr |= sSlaveConfig->InputTrigger; - - /* Reset the slave mode Bits */ - tmpsmcr &= ~TIM_SMCR_SMS; - /* Set the slave mode */ - tmpsmcr |= sSlaveConfig->SlaveMode; - - /* Write to TIMx SMCR */ - htim->Instance->SMCR = tmpsmcr; - - /* Configure the trigger prescaler, filter, and polarity */ - switch (sSlaveConfig->InputTrigger) - { - case TIM_TS_ETRF: - { - /* Check the parameters */ - assert_param(IS_TIM_CLOCKSOURCE_ETRMODE1_INSTANCE(htim->Instance)); - assert_param(IS_TIM_TRIGGERPRESCALER(sSlaveConfig->TriggerPrescaler)); - assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity)); - assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter)); - /* Configure the ETR Trigger source */ - TIM_ETR_SetConfig(htim->Instance, - sSlaveConfig->TriggerPrescaler, - sSlaveConfig->TriggerPolarity, - sSlaveConfig->TriggerFilter); - break; - } - - case TIM_TS_TI1F_ED: - { - /* Check the parameters */ - assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); - assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter)); - - if(sSlaveConfig->SlaveMode == TIM_SLAVEMODE_GATED) - { - return HAL_ERROR; - } - - /* Disable the Channel 1: Reset the CC1E Bit */ - tmpccer = htim->Instance->CCER; - htim->Instance->CCER &= ~TIM_CCER_CC1E; - tmpccmr1 = htim->Instance->CCMR1; - - /* Set the filter */ - tmpccmr1 &= ~TIM_CCMR1_IC1F; - tmpccmr1 |= ((sSlaveConfig->TriggerFilter) << 4U); - - /* Write to TIMx CCMR1 and CCER registers */ - htim->Instance->CCMR1 = tmpccmr1; - htim->Instance->CCER = tmpccer; - break; - } - - case TIM_TS_TI1FP1: - { - /* Check the parameters */ - assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); - assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity)); - assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter)); - - /* Configure TI1 Filter and Polarity */ - TIM_TI1_ConfigInputStage(htim->Instance, - sSlaveConfig->TriggerPolarity, - sSlaveConfig->TriggerFilter); - break; - } - - case TIM_TS_TI2FP2: - { - /* Check the parameters */ - assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); - assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity)); - assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter)); - - /* Configure TI2 Filter and Polarity */ - TIM_TI2_ConfigInputStage(htim->Instance, - sSlaveConfig->TriggerPolarity, - sSlaveConfig->TriggerFilter); - break; - } - - case TIM_TS_ITR0: - case TIM_TS_ITR1: - case TIM_TS_ITR2: - case TIM_TS_ITR3: - { - /* Check the parameter */ - assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); - break; - } - - default: - break; - } - return HAL_OK; -} - -/** - * @brief Configure the TI1 as Input. - * @param TIMx to select the TIM peripheral. - * @param TIM_ICPolarity The Input Polarity. - * This parameter can be one of the following values: - * @arg TIM_ICPOLARITY_RISING - * @arg TIM_ICPOLARITY_FALLING - * @arg TIM_ICPOLARITY_BOTHEDGE - * @param TIM_ICSelection specifies the input to be used. - * This parameter can be one of the following values: - * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 1 is selected to be connected to IC1. - * @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 1 is selected to be connected to IC2. - * @arg TIM_ICSELECTION_TRC: TIM Input 1 is selected to be connected to TRC. - * @param TIM_ICFilter Specifies the Input Capture Filter. - * This parameter must be a value between 0x00 and 0x0F. - * @retval None - * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI2FP1 - * (on channel2 path) is used as the input signal. Therefore CCMR1 must be - * protected against un-initialized filter and polarity values. - */ -void TIM_TI1_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, - uint32_t TIM_ICFilter) -{ - uint32_t tmpccmr1; - uint32_t tmpccer; - - /* Disable the Channel 1: Reset the CC1E Bit */ - TIMx->CCER &= ~TIM_CCER_CC1E; - tmpccmr1 = TIMx->CCMR1; - tmpccer = TIMx->CCER; - - /* Select the Input */ - if (IS_TIM_CC2_INSTANCE(TIMx) != RESET) - { - tmpccmr1 &= ~TIM_CCMR1_CC1S; - tmpccmr1 |= TIM_ICSelection; - } - else - { - tmpccmr1 |= TIM_CCMR1_CC1S_0; - } - - /* Set the filter */ - tmpccmr1 &= ~TIM_CCMR1_IC1F; - tmpccmr1 |= ((TIM_ICFilter << 4U) & TIM_CCMR1_IC1F); - - /* Select the Polarity and set the CC1E Bit */ - tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC1NP); - tmpccer |= (TIM_ICPolarity & (TIM_CCER_CC1P | TIM_CCER_CC1NP)); - - /* Write to TIMx CCMR1 and CCER registers */ - TIMx->CCMR1 = tmpccmr1; - TIMx->CCER = tmpccer; -} - -/** - * @brief Configure the Polarity and Filter for TI1. - * @param TIMx to select the TIM peripheral. - * @param TIM_ICPolarity The Input Polarity. - * This parameter can be one of the following values: - * @arg TIM_ICPOLARITY_RISING - * @arg TIM_ICPOLARITY_FALLING - * @arg TIM_ICPOLARITY_BOTHEDGE - * @param TIM_ICFilter Specifies the Input Capture Filter. - * This parameter must be a value between 0x00 and 0x0F. - * @retval None - */ -static void TIM_TI1_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter) -{ - uint32_t tmpccmr1; - uint32_t tmpccer; - - /* Disable the Channel 1: Reset the CC1E Bit */ - tmpccer = TIMx->CCER; - TIMx->CCER &= ~TIM_CCER_CC1E; - tmpccmr1 = TIMx->CCMR1; - - /* Set the filter */ - tmpccmr1 &= ~TIM_CCMR1_IC1F; - tmpccmr1 |= (TIM_ICFilter << 4U); - - /* Select the Polarity and set the CC1E Bit */ - tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC1NP); - tmpccer |= TIM_ICPolarity; - - /* Write to TIMx CCMR1 and CCER registers */ - TIMx->CCMR1 = tmpccmr1; - TIMx->CCER = tmpccer; -} - -/** - * @brief Configure the TI2 as Input. - * @param TIMx to select the TIM peripheral - * @param TIM_ICPolarity The Input Polarity. - * This parameter can be one of the following values: - * @arg TIM_ICPOLARITY_RISING - * @arg TIM_ICPOLARITY_FALLING - * @arg TIM_ICPOLARITY_BOTHEDGE - * @param TIM_ICSelection specifies the input to be used. - * This parameter can be one of the following values: - * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 2 is selected to be connected to IC2. - * @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 2 is selected to be connected to IC1. - * @arg TIM_ICSELECTION_TRC: TIM Input 2 is selected to be connected to TRC. - * @param TIM_ICFilter Specifies the Input Capture Filter. - * This parameter must be a value between 0x00 and 0x0F. - * @retval None - * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI1FP2 - * (on channel1 path) is used as the input signal. Therefore CCMR1 must be - * protected against un-initialized filter and polarity values. - */ -static void TIM_TI2_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, - uint32_t TIM_ICFilter) -{ - uint32_t tmpccmr1; - uint32_t tmpccer; - - /* Disable the Channel 2: Reset the CC2E Bit */ - TIMx->CCER &= ~TIM_CCER_CC2E; - tmpccmr1 = TIMx->CCMR1; - tmpccer = TIMx->CCER; - - /* Select the Input */ - tmpccmr1 &= ~TIM_CCMR1_CC2S; - tmpccmr1 |= (TIM_ICSelection << 8U); - - /* Set the filter */ - tmpccmr1 &= ~TIM_CCMR1_IC2F; - tmpccmr1 |= ((TIM_ICFilter << 12U) & TIM_CCMR1_IC2F); - - /* Select the Polarity and set the CC2E Bit */ - tmpccer &= ~(TIM_CCER_CC2P | TIM_CCER_CC2NP); - tmpccer |= ((TIM_ICPolarity << 4U) & (TIM_CCER_CC2P | TIM_CCER_CC2NP)); - - /* Write to TIMx CCMR1 and CCER registers */ - TIMx->CCMR1 = tmpccmr1 ; - TIMx->CCER = tmpccer; -} - -/** - * @brief Configure the Polarity and Filter for TI2. - * @param TIMx to select the TIM peripheral. - * @param TIM_ICPolarity The Input Polarity. - * This parameter can be one of the following values: - * @arg TIM_ICPOLARITY_RISING - * @arg TIM_ICPOLARITY_FALLING - * @arg TIM_ICPOLARITY_BOTHEDGE - * @param TIM_ICFilter Specifies the Input Capture Filter. - * This parameter must be a value between 0x00 and 0x0F. - * @retval None - */ -static void TIM_TI2_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter) -{ - uint32_t tmpccmr1; - uint32_t tmpccer; - - /* Disable the Channel 2: Reset the CC2E Bit */ - TIMx->CCER &= ~TIM_CCER_CC2E; - tmpccmr1 = TIMx->CCMR1; - tmpccer = TIMx->CCER; - - /* Set the filter */ - tmpccmr1 &= ~TIM_CCMR1_IC2F; - tmpccmr1 |= (TIM_ICFilter << 12U); - - /* Select the Polarity and set the CC2E Bit */ - tmpccer &= ~(TIM_CCER_CC2P | TIM_CCER_CC2NP); - tmpccer |= (TIM_ICPolarity << 4U); - - /* Write to TIMx CCMR1 and CCER registers */ - TIMx->CCMR1 = tmpccmr1 ; - TIMx->CCER = tmpccer; -} - -/** - * @brief Configure the TI3 as Input. - * @param TIMx to select the TIM peripheral - * @param TIM_ICPolarity The Input Polarity. - * This parameter can be one of the following values: - * @arg TIM_ICPOLARITY_RISING - * @arg TIM_ICPOLARITY_FALLING - * @arg TIM_ICPOLARITY_BOTHEDGE - * @param TIM_ICSelection specifies the input to be used. - * This parameter can be one of the following values: - * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 3 is selected to be connected to IC3. - * @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 3 is selected to be connected to IC4. - * @arg TIM_ICSELECTION_TRC: TIM Input 3 is selected to be connected to TRC. - * @param TIM_ICFilter Specifies the Input Capture Filter. - * This parameter must be a value between 0x00 and 0x0F. - * @retval None - * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI3FP4 - * (on channel1 path) is used as the input signal. Therefore CCMR2 must be - * protected against un-initialized filter and polarity values. - */ -static void TIM_TI3_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, - uint32_t TIM_ICFilter) -{ - uint32_t tmpccmr2; - uint32_t tmpccer; - - /* Disable the Channel 3: Reset the CC3E Bit */ - TIMx->CCER &= ~TIM_CCER_CC3E; - tmpccmr2 = TIMx->CCMR2; - tmpccer = TIMx->CCER; - - /* Select the Input */ - tmpccmr2 &= ~TIM_CCMR2_CC3S; - tmpccmr2 |= TIM_ICSelection; - - /* Set the filter */ - tmpccmr2 &= ~TIM_CCMR2_IC3F; - tmpccmr2 |= ((TIM_ICFilter << 4U) & TIM_CCMR2_IC3F); - - /* Select the Polarity and set the CC3E Bit */ - tmpccer &= ~(TIM_CCER_CC3P | TIM_CCER_CC3NP); - tmpccer |= ((TIM_ICPolarity << 8U) & (TIM_CCER_CC3P | TIM_CCER_CC3NP)); - - /* Write to TIMx CCMR2 and CCER registers */ - TIMx->CCMR2 = tmpccmr2; - TIMx->CCER = tmpccer; -} - -/** - * @brief Configure the TI4 as Input. - * @param TIMx to select the TIM peripheral - * @param TIM_ICPolarity The Input Polarity. - * This parameter can be one of the following values: - * @arg TIM_ICPOLARITY_RISING - * @arg TIM_ICPOLARITY_FALLING - * @arg TIM_ICPOLARITY_BOTHEDGE - * @param TIM_ICSelection specifies the input to be used. - * This parameter can be one of the following values: - * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 4 is selected to be connected to IC4. - * @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 4 is selected to be connected to IC3. - * @arg TIM_ICSELECTION_TRC: TIM Input 4 is selected to be connected to TRC. - * @param TIM_ICFilter Specifies the Input Capture Filter. - * This parameter must be a value between 0x00 and 0x0F. - * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI4FP3 - * (on channel1 path) is used as the input signal. Therefore CCMR2 must be - * protected against un-initialized filter and polarity values. - * @retval None - */ -static void TIM_TI4_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, - uint32_t TIM_ICFilter) -{ - uint32_t tmpccmr2; - uint32_t tmpccer; - - /* Disable the Channel 4: Reset the CC4E Bit */ - TIMx->CCER &= ~TIM_CCER_CC4E; - tmpccmr2 = TIMx->CCMR2; - tmpccer = TIMx->CCER; - - /* Select the Input */ - tmpccmr2 &= ~TIM_CCMR2_CC4S; - tmpccmr2 |= (TIM_ICSelection << 8U); - - /* Set the filter */ - tmpccmr2 &= ~TIM_CCMR2_IC4F; - tmpccmr2 |= ((TIM_ICFilter << 12U) & TIM_CCMR2_IC4F); - - /* Select the Polarity and set the CC4E Bit */ - tmpccer &= ~(TIM_CCER_CC4P | TIM_CCER_CC4NP); - tmpccer |= ((TIM_ICPolarity << 12U) & (TIM_CCER_CC4P | TIM_CCER_CC4NP)); - - /* Write to TIMx CCMR2 and CCER registers */ - TIMx->CCMR2 = tmpccmr2; - TIMx->CCER = tmpccer ; -} - -/** - * @brief Selects the Input Trigger source - * @param TIMx to select the TIM peripheral - * @param InputTriggerSource The Input Trigger source. - * This parameter can be one of the following values: - * @arg TIM_TS_ITR0: Internal Trigger 0 - * @arg TIM_TS_ITR1: Internal Trigger 1 - * @arg TIM_TS_ITR2: Internal Trigger 2 - * @arg TIM_TS_ITR3: Internal Trigger 3 - * @arg TIM_TS_TI1F_ED: TI1 Edge Detector - * @arg TIM_TS_TI1FP1: Filtered Timer Input 1 - * @arg TIM_TS_TI2FP2: Filtered Timer Input 2 - * @arg TIM_TS_ETRF: External Trigger input - * @retval None - */ -static void TIM_ITRx_SetConfig(TIM_TypeDef *TIMx, uint32_t InputTriggerSource) -{ - uint32_t tmpsmcr; - - /* Get the TIMx SMCR register value */ - tmpsmcr = TIMx->SMCR; - /* Reset the TS Bits */ - tmpsmcr &= ~TIM_SMCR_TS; - /* Set the Input Trigger source and the slave mode*/ - tmpsmcr |= (InputTriggerSource | TIM_SLAVEMODE_EXTERNAL1); - /* Write to TIMx SMCR */ - TIMx->SMCR = tmpsmcr; -} -/** - * @brief Configures the TIMx External Trigger (ETR). - * @param TIMx to select the TIM peripheral - * @param TIM_ExtTRGPrescaler The external Trigger Prescaler. - * This parameter can be one of the following values: - * @arg TIM_ETRPRESCALER_DIV1: ETRP Prescaler OFF. - * @arg TIM_ETRPRESCALER_DIV2: ETRP frequency divided by 2. - * @arg TIM_ETRPRESCALER_DIV4: ETRP frequency divided by 4. - * @arg TIM_ETRPRESCALER_DIV8: ETRP frequency divided by 8. - * @param TIM_ExtTRGPolarity The external Trigger Polarity. - * This parameter can be one of the following values: - * @arg TIM_ETRPOLARITY_INVERTED: active low or falling edge active. - * @arg TIM_ETRPOLARITY_NONINVERTED: active high or rising edge active. - * @param ExtTRGFilter External Trigger Filter. - * This parameter must be a value between 0x00 and 0x0F - * @retval None - */ -void TIM_ETR_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ExtTRGPrescaler, - uint32_t TIM_ExtTRGPolarity, uint32_t ExtTRGFilter) -{ - uint32_t tmpsmcr; - - tmpsmcr = TIMx->SMCR; - - /* Reset the ETR Bits */ - tmpsmcr &= ~(TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP); - - /* Set the Prescaler, the Filter value and the Polarity */ - tmpsmcr |= (uint32_t)(TIM_ExtTRGPrescaler | (TIM_ExtTRGPolarity | (ExtTRGFilter << 8U))); - - /* Write to TIMx SMCR */ - TIMx->SMCR = tmpsmcr; -} - -/** - * @brief Enables or disables the TIM Capture Compare Channel x. - * @param TIMx to select the TIM peripheral - * @param Channel specifies the TIM Channel - * This parameter can be one of the following values: - * @arg TIM_CHANNEL_1: TIM Channel 1 - * @arg TIM_CHANNEL_2: TIM Channel 2 - * @arg TIM_CHANNEL_3: TIM Channel 3 - * @arg TIM_CHANNEL_4: TIM Channel 4 - * @param ChannelState specifies the TIM Channel CCxE bit new state. - * This parameter can be: TIM_CCx_ENABLE or TIM_CCx_DISABLE. - * @retval None - */ -void TIM_CCxChannelCmd(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ChannelState) -{ - uint32_t tmp; - - /* Check the parameters */ - assert_param(IS_TIM_CC1_INSTANCE(TIMx)); - assert_param(IS_TIM_CHANNELS(Channel)); - - tmp = TIM_CCER_CC1E << (Channel & 0x1FU); /* 0x1FU = 31 bits max shift */ - - /* Reset the CCxE Bit */ - TIMx->CCER &= ~tmp; - - /* Set or reset the CCxE Bit */ - TIMx->CCER |= (uint32_t)(ChannelState << (Channel & 0x1FU)); /* 0x1FU = 31 bits max shift */ -} - -#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) -/** - * @brief Reset interrupt callbacks to the legacy weak callbacks. - * @param htim pointer to a TIM_HandleTypeDef structure that contains - * the configuration information for TIM module. - * @retval None - */ -void TIM_ResetCallback(TIM_HandleTypeDef *htim) -{ - /* Reset the TIM callback to the legacy weak callbacks */ - htim->PeriodElapsedCallback = HAL_TIM_PeriodElapsedCallback; /* Legacy weak PeriodElapsedCallback */ - htim->PeriodElapsedHalfCpltCallback = HAL_TIM_PeriodElapsedHalfCpltCallback; /* Legacy weak PeriodElapsedHalfCpltCallback */ - htim->TriggerCallback = HAL_TIM_TriggerCallback; /* Legacy weak TriggerCallback */ - htim->TriggerHalfCpltCallback = HAL_TIM_TriggerHalfCpltCallback; /* Legacy weak TriggerHalfCpltCallback */ - htim->IC_CaptureCallback = HAL_TIM_IC_CaptureCallback; /* Legacy weak IC_CaptureCallback */ - htim->IC_CaptureHalfCpltCallback = HAL_TIM_IC_CaptureHalfCpltCallback; /* Legacy weak IC_CaptureHalfCpltCallback */ - htim->OC_DelayElapsedCallback = HAL_TIM_OC_DelayElapsedCallback; /* Legacy weak OC_DelayElapsedCallback */ - htim->PWM_PulseFinishedCallback = HAL_TIM_PWM_PulseFinishedCallback; /* Legacy weak PWM_PulseFinishedCallback */ - htim->PWM_PulseFinishedHalfCpltCallback = HAL_TIM_PWM_PulseFinishedHalfCpltCallback; /* Legacy weak PWM_PulseFinishedHalfCpltCallback */ - htim->ErrorCallback = HAL_TIM_ErrorCallback; /* Legacy weak ErrorCallback */ - htim->CommutationCallback = HAL_TIMEx_CommutCallback; /* Legacy weak CommutationCallback */ - htim->CommutationHalfCpltCallback = HAL_TIMEx_CommutHalfCpltCallback; /* Legacy weak CommutationHalfCpltCallback */ - htim->BreakCallback = HAL_TIMEx_BreakCallback; /* Legacy weak BreakCallback */ -} -#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ - -/** - * @} - */ - -#endif /* HAL_TIM_MODULE_ENABLED */ -/** - * @} - */ - -/** - * @} - */ -/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_tim_ex.c b/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_tim_ex.c deleted file mode 100644 index ba50c15..0000000 --- a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_tim_ex.c +++ /dev/null @@ -1,1939 +0,0 @@ -/** - ****************************************************************************** - * @file stm32f0xx_hal_tim_ex.c - * @author MCD Application Team - * @brief TIM HAL module driver. - * This file provides firmware functions to manage the following - * functionalities of the Timer Extended peripheral: - * + Time Hall Sensor Interface Initialization - * + Time Hall Sensor Interface Start - * + Time Complementary signal break and dead time configuration - * + Time Master and Slave synchronization configuration - * + Time OCRef clear configuration - * + Timer remapping capabilities configuration - @verbatim - ============================================================================== - ##### TIMER Extended features ##### - ============================================================================== - [..] - The Timer Extended features include: - (#) Complementary outputs with programmable dead-time for : - (++) Output Compare - (++) PWM generation (Edge and Center-aligned Mode) - (++) One-pulse mode output - (#) Synchronization circuit to control the timer with external signals and to - interconnect several timers together. - (#) Break input to put the timer output signals in reset state or in a known state. - (#) Supports incremental (quadrature) encoder and hall-sensor circuitry for - positioning purposes - - ##### How to use this driver ##### - ============================================================================== - [..] - (#) Initialize the TIM low level resources by implementing the following functions - depending on the selected feature: - (++) Hall Sensor output : HAL_TIMEx_HallSensor_MspInit() - - (#) Initialize the TIM low level resources : - (##) Enable the TIM interface clock using __HAL_RCC_TIMx_CLK_ENABLE(); - (##) TIM pins configuration - (+++) Enable the clock for the TIM GPIOs using the following function: - __HAL_RCC_GPIOx_CLK_ENABLE(); - (+++) Configure these TIM pins in Alternate function mode using HAL_GPIO_Init(); - - (#) The external Clock can be configured, if needed (the default clock is the - internal clock from the APBx), using the following function: - HAL_TIM_ConfigClockSource, the clock configuration should be done before - any start function. - - (#) Configure the TIM in the desired functioning mode using one of the - initialization function of this driver: - (++) HAL_TIMEx_HallSensor_Init() and HAL_TIMEx_ConfigCommutEvent(): to use the - Timer Hall Sensor Interface and the commutation event with the corresponding - Interrupt and DMA request if needed (Note that One Timer is used to interface - with the Hall sensor Interface and another Timer should be used to use - the commutation event). - - (#) Activate the TIM peripheral using one of the start functions: - (++) Complementary Output Compare : HAL_TIMEx_OCN_Start(), HAL_TIMEx_OCN_Start_DMA(), HAL_TIMEx_OC_Start_IT() - (++) Complementary PWM generation : HAL_TIMEx_PWMN_Start(), HAL_TIMEx_PWMN_Start_DMA(), HAL_TIMEx_PWMN_Start_IT() - (++) Complementary One-pulse mode output : HAL_TIMEx_OnePulseN_Start(), HAL_TIMEx_OnePulseN_Start_IT() - (++) Hall Sensor output : HAL_TIMEx_HallSensor_Start(), HAL_TIMEx_HallSensor_Start_DMA(), HAL_TIMEx_HallSensor_Start_IT(). - - @endverbatim - ****************************************************************************** - * @attention - * - *

© Copyright (c) 2016 STMicroelectronics. - * All rights reserved.

- * - * This software component is licensed by ST under BSD 3-Clause license, - * the "License"; You may not use this file except in compliance with the - * License. You may obtain a copy of the License at: - * opensource.org/licenses/BSD-3-Clause - * - ****************************************************************************** - */ - -/* Includes ------------------------------------------------------------------*/ -#include "stm32f0xx_hal.h" - -/** @addtogroup STM32F0xx_HAL_Driver - * @{ - */ - -/** @defgroup TIMEx TIMEx - * @brief TIM Extended HAL module driver - * @{ - */ - -#ifdef HAL_TIM_MODULE_ENABLED - -/* Private typedef -----------------------------------------------------------*/ -/* Private define ------------------------------------------------------------*/ -/* Private macro -------------------------------------------------------------*/ -/* Private variables ---------------------------------------------------------*/ -/* Private function prototypes -----------------------------------------------*/ -static void TIM_CCxNChannelCmd(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ChannelNState); - -/* Exported functions --------------------------------------------------------*/ -/** @defgroup TIMEx_Exported_Functions TIM Extended Exported Functions - * @{ - */ - -/** @defgroup TIMEx_Exported_Functions_Group1 Extended Timer Hall Sensor functions - * @brief Timer Hall Sensor functions - * -@verbatim - ============================================================================== - ##### Timer Hall Sensor functions ##### - ============================================================================== - [..] - This section provides functions allowing to: - (+) Initialize and configure TIM HAL Sensor. - (+) De-initialize TIM HAL Sensor. - (+) Start the Hall Sensor Interface. - (+) Stop the Hall Sensor Interface. - (+) Start the Hall Sensor Interface and enable interrupts. - (+) Stop the Hall Sensor Interface and disable interrupts. - (+) Start the Hall Sensor Interface and enable DMA transfers. - (+) Stop the Hall Sensor Interface and disable DMA transfers. - -@endverbatim - * @{ - */ -/** - * @brief Initializes the TIM Hall Sensor Interface and initialize the associated handle. - * @param htim TIM Hall Sensor Interface handle - * @param sConfig TIM Hall Sensor configuration structure - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIMEx_HallSensor_Init(TIM_HandleTypeDef *htim, TIM_HallSensor_InitTypeDef *sConfig) -{ - TIM_OC_InitTypeDef OC_Config; - - /* Check the TIM handle allocation */ - if (htim == NULL) - { - return HAL_ERROR; - } - - /* Check the parameters */ - assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance)); - assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); - assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); - assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); - assert_param(IS_TIM_IC_POLARITY(sConfig->IC1Polarity)); - assert_param(IS_TIM_IC_PRESCALER(sConfig->IC1Prescaler)); - assert_param(IS_TIM_IC_FILTER(sConfig->IC1Filter)); - - if (htim->State == HAL_TIM_STATE_RESET) - { - /* Allocate lock resource and initialize it */ - htim->Lock = HAL_UNLOCKED; - -#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) - /* Reset interrupt callbacks to legacy week callbacks */ - TIM_ResetCallback(htim); - - if (htim->HallSensor_MspInitCallback == NULL) - { - htim->HallSensor_MspInitCallback = HAL_TIMEx_HallSensor_MspInit; - } - /* Init the low level hardware : GPIO, CLOCK, NVIC */ - htim->HallSensor_MspInitCallback(htim); -#else - /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ - HAL_TIMEx_HallSensor_MspInit(htim); -#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ - } - - /* Set the TIM state */ - htim->State = HAL_TIM_STATE_BUSY; - - /* Configure the Time base in the Encoder Mode */ - TIM_Base_SetConfig(htim->Instance, &htim->Init); - - /* Configure the Channel 1 as Input Channel to interface with the three Outputs of the Hall sensor */ - TIM_TI1_SetConfig(htim->Instance, sConfig->IC1Polarity, TIM_ICSELECTION_TRC, sConfig->IC1Filter); - - /* Reset the IC1PSC Bits */ - htim->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC; - /* Set the IC1PSC value */ - htim->Instance->CCMR1 |= sConfig->IC1Prescaler; - - /* Enable the Hall sensor interface (XOR function of the three inputs) */ - htim->Instance->CR2 |= TIM_CR2_TI1S; - - /* Select the TIM_TS_TI1F_ED signal as Input trigger for the TIM */ - htim->Instance->SMCR &= ~TIM_SMCR_TS; - htim->Instance->SMCR |= TIM_TS_TI1F_ED; - - /* Use the TIM_TS_TI1F_ED signal to reset the TIM counter each edge detection */ - htim->Instance->SMCR &= ~TIM_SMCR_SMS; - htim->Instance->SMCR |= TIM_SLAVEMODE_RESET; - - /* Program channel 2 in PWM 2 mode with the desired Commutation_Delay*/ - OC_Config.OCFastMode = TIM_OCFAST_DISABLE; - OC_Config.OCIdleState = TIM_OCIDLESTATE_RESET; - OC_Config.OCMode = TIM_OCMODE_PWM2; - OC_Config.OCNIdleState = TIM_OCNIDLESTATE_RESET; - OC_Config.OCNPolarity = TIM_OCNPOLARITY_HIGH; - OC_Config.OCPolarity = TIM_OCPOLARITY_HIGH; - OC_Config.Pulse = sConfig->Commutation_Delay; - - TIM_OC2_SetConfig(htim->Instance, &OC_Config); - - /* Select OC2REF as trigger output on TRGO: write the MMS bits in the TIMx_CR2 - register to 101 */ - htim->Instance->CR2 &= ~TIM_CR2_MMS; - htim->Instance->CR2 |= TIM_TRGO_OC2REF; - - /* Initialize the TIM state*/ - htim->State = HAL_TIM_STATE_READY; - - return HAL_OK; -} - -/** - * @brief DeInitializes the TIM Hall Sensor interface - * @param htim TIM Hall Sensor Interface handle - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIMEx_HallSensor_DeInit(TIM_HandleTypeDef *htim) -{ - /* Check the parameters */ - assert_param(IS_TIM_INSTANCE(htim->Instance)); - - htim->State = HAL_TIM_STATE_BUSY; - - /* Disable the TIM Peripheral Clock */ - __HAL_TIM_DISABLE(htim); - -#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) - if (htim->HallSensor_MspDeInitCallback == NULL) - { - htim->HallSensor_MspDeInitCallback = HAL_TIMEx_HallSensor_MspDeInit; - } - /* DeInit the low level hardware */ - htim->HallSensor_MspDeInitCallback(htim); -#else - /* DeInit the low level hardware: GPIO, CLOCK, NVIC */ - HAL_TIMEx_HallSensor_MspDeInit(htim); -#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ - - /* Change TIM state */ - htim->State = HAL_TIM_STATE_RESET; - - /* Release Lock */ - __HAL_UNLOCK(htim); - - return HAL_OK; -} - -/** - * @brief Initializes the TIM Hall Sensor MSP. - * @param htim TIM Hall Sensor Interface handle - * @retval None - */ -__weak void HAL_TIMEx_HallSensor_MspInit(TIM_HandleTypeDef *htim) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(htim); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_TIMEx_HallSensor_MspInit could be implemented in the user file - */ -} - -/** - * @brief DeInitializes TIM Hall Sensor MSP. - * @param htim TIM Hall Sensor Interface handle - * @retval None - */ -__weak void HAL_TIMEx_HallSensor_MspDeInit(TIM_HandleTypeDef *htim) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(htim); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_TIMEx_HallSensor_MspDeInit could be implemented in the user file - */ -} - -/** - * @brief Starts the TIM Hall Sensor Interface. - * @param htim TIM Hall Sensor Interface handle - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start(TIM_HandleTypeDef *htim) -{ - uint32_t tmpsmcr; - - /* Check the parameters */ - assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance)); - - /* Enable the Input Capture channel 1 - (in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */ - TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); - - /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ - tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; - if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) - { - __HAL_TIM_ENABLE(htim); - } - - /* Return function status */ - return HAL_OK; -} - -/** - * @brief Stops the TIM Hall sensor Interface. - * @param htim TIM Hall Sensor Interface handle - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop(TIM_HandleTypeDef *htim) -{ - /* Check the parameters */ - assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance)); - - /* Disable the Input Capture channels 1, 2 and 3 - (in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */ - TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); - - /* Disable the Peripheral */ - __HAL_TIM_DISABLE(htim); - - /* Return function status */ - return HAL_OK; -} - -/** - * @brief Starts the TIM Hall Sensor Interface in interrupt mode. - * @param htim TIM Hall Sensor Interface handle - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start_IT(TIM_HandleTypeDef *htim) -{ - uint32_t tmpsmcr; - - /* Check the parameters */ - assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance)); - - /* Enable the capture compare Interrupts 1 event */ - __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); - - /* Enable the Input Capture channel 1 - (in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */ - TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); - - /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ - tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; - if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) - { - __HAL_TIM_ENABLE(htim); - } - - /* Return function status */ - return HAL_OK; -} - -/** - * @brief Stops the TIM Hall Sensor Interface in interrupt mode. - * @param htim TIM Hall Sensor Interface handle - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop_IT(TIM_HandleTypeDef *htim) -{ - /* Check the parameters */ - assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance)); - - /* Disable the Input Capture channel 1 - (in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */ - TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); - - /* Disable the capture compare Interrupts event */ - __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); - - /* Disable the Peripheral */ - __HAL_TIM_DISABLE(htim); - - /* Return function status */ - return HAL_OK; -} - -/** - * @brief Starts the TIM Hall Sensor Interface in DMA mode. - * @param htim TIM Hall Sensor Interface handle - * @param pData The destination Buffer address. - * @param Length The length of data to be transferred from TIM peripheral to memory. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start_DMA(TIM_HandleTypeDef *htim, uint32_t *pData, uint16_t Length) -{ - uint32_t tmpsmcr; - - /* Check the parameters */ - assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance)); - - if (htim->State == HAL_TIM_STATE_BUSY) - { - return HAL_BUSY; - } - else if (htim->State == HAL_TIM_STATE_READY) - { - if (((uint32_t)pData == 0U) && (Length > 0U)) - { - return HAL_ERROR; - } - else - { - htim->State = HAL_TIM_STATE_BUSY; - } - } - else - { - /* nothing to do */ - } - /* Enable the Input Capture channel 1 - (in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */ - TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); - - /* Set the DMA Input Capture 1 Callbacks */ - htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt; - htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; - /* Set the DMA error callback */ - htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; - - /* Enable the DMA channel for Capture 1*/ - if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData, Length) != HAL_OK) - { - return HAL_ERROR; - } - /* Enable the capture compare 1 Interrupt */ - __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); - - /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ - tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; - if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) - { - __HAL_TIM_ENABLE(htim); - } - - /* Return function status */ - return HAL_OK; -} - -/** - * @brief Stops the TIM Hall Sensor Interface in DMA mode. - * @param htim TIM Hall Sensor Interface handle - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop_DMA(TIM_HandleTypeDef *htim) -{ - /* Check the parameters */ - assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance)); - - /* Disable the Input Capture channel 1 - (in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */ - TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); - - - /* Disable the capture compare Interrupts 1 event */ - __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); - - (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); - /* Disable the Peripheral */ - __HAL_TIM_DISABLE(htim); - - /* Return function status */ - return HAL_OK; -} - -/** - * @} - */ - -/** @defgroup TIMEx_Exported_Functions_Group2 Extended Timer Complementary Output Compare functions - * @brief Timer Complementary Output Compare functions - * -@verbatim - ============================================================================== - ##### Timer Complementary Output Compare functions ##### - ============================================================================== - [..] - This section provides functions allowing to: - (+) Start the Complementary Output Compare/PWM. - (+) Stop the Complementary Output Compare/PWM. - (+) Start the Complementary Output Compare/PWM and enable interrupts. - (+) Stop the Complementary Output Compare/PWM and disable interrupts. - (+) Start the Complementary Output Compare/PWM and enable DMA transfers. - (+) Stop the Complementary Output Compare/PWM and disable DMA transfers. - -@endverbatim - * @{ - */ - -/** - * @brief Starts the TIM Output Compare signal generation on the complementary - * output. - * @param htim TIM Output Compare handle - * @param Channel TIM Channel to be enabled - * This parameter can be one of the following values: - * @arg TIM_CHANNEL_1: TIM Channel 1 selected - * @arg TIM_CHANNEL_2: TIM Channel 2 selected - * @arg TIM_CHANNEL_3: TIM Channel 3 selected - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIMEx_OCN_Start(TIM_HandleTypeDef *htim, uint32_t Channel) -{ - uint32_t tmpsmcr; - - /* Check the parameters */ - assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); - - /* Enable the Capture compare channel N */ - TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE); - - /* Enable the Main Output */ - __HAL_TIM_MOE_ENABLE(htim); - - /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ - tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; - if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) - { - __HAL_TIM_ENABLE(htim); - } - - /* Return function status */ - return HAL_OK; -} - -/** - * @brief Stops the TIM Output Compare signal generation on the complementary - * output. - * @param htim TIM handle - * @param Channel TIM Channel to be disabled - * This parameter can be one of the following values: - * @arg TIM_CHANNEL_1: TIM Channel 1 selected - * @arg TIM_CHANNEL_2: TIM Channel 2 selected - * @arg TIM_CHANNEL_3: TIM Channel 3 selected - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIMEx_OCN_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) -{ - /* Check the parameters */ - assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); - - /* Disable the Capture compare channel N */ - TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE); - - /* Disable the Main Output */ - __HAL_TIM_MOE_DISABLE(htim); - - /* Disable the Peripheral */ - __HAL_TIM_DISABLE(htim); - - /* Return function status */ - return HAL_OK; -} - -/** - * @brief Starts the TIM Output Compare signal generation in interrupt mode - * on the complementary output. - * @param htim TIM OC handle - * @param Channel TIM Channel to be enabled - * This parameter can be one of the following values: - * @arg TIM_CHANNEL_1: TIM Channel 1 selected - * @arg TIM_CHANNEL_2: TIM Channel 2 selected - * @arg TIM_CHANNEL_3: TIM Channel 3 selected - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIMEx_OCN_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) -{ - uint32_t tmpsmcr; - - /* Check the parameters */ - assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); - - switch (Channel) - { - case TIM_CHANNEL_1: - { - /* Enable the TIM Output Compare interrupt */ - __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); - break; - } - - case TIM_CHANNEL_2: - { - /* Enable the TIM Output Compare interrupt */ - __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); - break; - } - - case TIM_CHANNEL_3: - { - /* Enable the TIM Output Compare interrupt */ - __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3); - break; - } - - - default: - break; - } - - /* Enable the TIM Break interrupt */ - __HAL_TIM_ENABLE_IT(htim, TIM_IT_BREAK); - - /* Enable the Capture compare channel N */ - TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE); - - /* Enable the Main Output */ - __HAL_TIM_MOE_ENABLE(htim); - - /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ - tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; - if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) - { - __HAL_TIM_ENABLE(htim); - } - - /* Return function status */ - return HAL_OK; -} - -/** - * @brief Stops the TIM Output Compare signal generation in interrupt mode - * on the complementary output. - * @param htim TIM Output Compare handle - * @param Channel TIM Channel to be disabled - * This parameter can be one of the following values: - * @arg TIM_CHANNEL_1: TIM Channel 1 selected - * @arg TIM_CHANNEL_2: TIM Channel 2 selected - * @arg TIM_CHANNEL_3: TIM Channel 3 selected - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIMEx_OCN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) -{ - uint32_t tmpccer; - /* Check the parameters */ - assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); - - switch (Channel) - { - case TIM_CHANNEL_1: - { - /* Disable the TIM Output Compare interrupt */ - __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); - break; - } - - case TIM_CHANNEL_2: - { - /* Disable the TIM Output Compare interrupt */ - __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); - break; - } - - case TIM_CHANNEL_3: - { - /* Disable the TIM Output Compare interrupt */ - __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3); - break; - } - - default: - break; - } - - /* Disable the Capture compare channel N */ - TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE); - - /* Disable the TIM Break interrupt (only if no more channel is active) */ - tmpccer = htim->Instance->CCER; - if ((tmpccer & (TIM_CCER_CC1NE | TIM_CCER_CC2NE | TIM_CCER_CC3NE)) == (uint32_t)RESET) - { - __HAL_TIM_DISABLE_IT(htim, TIM_IT_BREAK); - } - - /* Disable the Main Output */ - __HAL_TIM_MOE_DISABLE(htim); - - /* Disable the Peripheral */ - __HAL_TIM_DISABLE(htim); - - /* Return function status */ - return HAL_OK; -} - -/** - * @brief Starts the TIM Output Compare signal generation in DMA mode - * on the complementary output. - * @param htim TIM Output Compare handle - * @param Channel TIM Channel to be enabled - * This parameter can be one of the following values: - * @arg TIM_CHANNEL_1: TIM Channel 1 selected - * @arg TIM_CHANNEL_2: TIM Channel 2 selected - * @arg TIM_CHANNEL_3: TIM Channel 3 selected - * @param pData The source Buffer address. - * @param Length The length of data to be transferred from memory to TIM peripheral - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIMEx_OCN_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length) -{ - uint32_t tmpsmcr; - - /* Check the parameters */ - assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); - - if (htim->State == HAL_TIM_STATE_BUSY) - { - return HAL_BUSY; - } - else if (htim->State == HAL_TIM_STATE_READY) - { - if (((uint32_t)pData == 0U) && (Length > 0U)) - { - return HAL_ERROR; - } - else - { - htim->State = HAL_TIM_STATE_BUSY; - } - } - else - { - /* nothing to do */ - } - - switch (Channel) - { - case TIM_CHANNEL_1: - { - /* Set the DMA compare callbacks */ - htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt; - htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; - - /* Set the DMA error callback */ - htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; - - /* Enable the DMA channel */ - if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, Length) != HAL_OK) - { - return HAL_ERROR; - } - /* Enable the TIM Output Compare DMA request */ - __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); - break; - } - - case TIM_CHANNEL_2: - { - /* Set the DMA compare callbacks */ - htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt; - htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; - - /* Set the DMA error callback */ - htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; - - /* Enable the DMA channel */ - if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, Length) != HAL_OK) - { - return HAL_ERROR; - } - /* Enable the TIM Output Compare DMA request */ - __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); - break; - } - - case TIM_CHANNEL_3: - { - /* Set the DMA compare callbacks */ - htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt; - htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; - - /* Set the DMA error callback */ - htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ; - - /* Enable the DMA channel */ - if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3, Length) != HAL_OK) - { - return HAL_ERROR; - } - /* Enable the TIM Output Compare DMA request */ - __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3); - break; - } - - default: - break; - } - - /* Enable the Capture compare channel N */ - TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE); - - /* Enable the Main Output */ - __HAL_TIM_MOE_ENABLE(htim); - - /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ - tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; - if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) - { - __HAL_TIM_ENABLE(htim); - } - - /* Return function status */ - return HAL_OK; -} - -/** - * @brief Stops the TIM Output Compare signal generation in DMA mode - * on the complementary output. - * @param htim TIM Output Compare handle - * @param Channel TIM Channel to be disabled - * This parameter can be one of the following values: - * @arg TIM_CHANNEL_1: TIM Channel 1 selected - * @arg TIM_CHANNEL_2: TIM Channel 2 selected - * @arg TIM_CHANNEL_3: TIM Channel 3 selected - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIMEx_OCN_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) -{ - /* Check the parameters */ - assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); - - switch (Channel) - { - case TIM_CHANNEL_1: - { - /* Disable the TIM Output Compare DMA request */ - __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); - (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); - break; - } - - case TIM_CHANNEL_2: - { - /* Disable the TIM Output Compare DMA request */ - __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); - (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); - break; - } - - case TIM_CHANNEL_3: - { - /* Disable the TIM Output Compare DMA request */ - __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3); - (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); - break; - } - - default: - break; - } - - /* Disable the Capture compare channel N */ - TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE); - - /* Disable the Main Output */ - __HAL_TIM_MOE_DISABLE(htim); - - /* Disable the Peripheral */ - __HAL_TIM_DISABLE(htim); - - /* Change the htim state */ - htim->State = HAL_TIM_STATE_READY; - - /* Return function status */ - return HAL_OK; -} - -/** - * @} - */ - -/** @defgroup TIMEx_Exported_Functions_Group3 Extended Timer Complementary PWM functions - * @brief Timer Complementary PWM functions - * -@verbatim - ============================================================================== - ##### Timer Complementary PWM functions ##### - ============================================================================== - [..] - This section provides functions allowing to: - (+) Start the Complementary PWM. - (+) Stop the Complementary PWM. - (+) Start the Complementary PWM and enable interrupts. - (+) Stop the Complementary PWM and disable interrupts. - (+) Start the Complementary PWM and enable DMA transfers. - (+) Stop the Complementary PWM and disable DMA transfers. - (+) Start the Complementary Input Capture measurement. - (+) Stop the Complementary Input Capture. - (+) Start the Complementary Input Capture and enable interrupts. - (+) Stop the Complementary Input Capture and disable interrupts. - (+) Start the Complementary Input Capture and enable DMA transfers. - (+) Stop the Complementary Input Capture and disable DMA transfers. - (+) Start the Complementary One Pulse generation. - (+) Stop the Complementary One Pulse. - (+) Start the Complementary One Pulse and enable interrupts. - (+) Stop the Complementary One Pulse and disable interrupts. - -@endverbatim - * @{ - */ - -/** - * @brief Starts the PWM signal generation on the complementary output. - * @param htim TIM handle - * @param Channel TIM Channel to be enabled - * This parameter can be one of the following values: - * @arg TIM_CHANNEL_1: TIM Channel 1 selected - * @arg TIM_CHANNEL_2: TIM Channel 2 selected - * @arg TIM_CHANNEL_3: TIM Channel 3 selected - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIMEx_PWMN_Start(TIM_HandleTypeDef *htim, uint32_t Channel) -{ - uint32_t tmpsmcr; - - /* Check the parameters */ - assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); - - /* Enable the complementary PWM output */ - TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE); - - /* Enable the Main Output */ - __HAL_TIM_MOE_ENABLE(htim); - - /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ - tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; - if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) - { - __HAL_TIM_ENABLE(htim); - } - - /* Return function status */ - return HAL_OK; -} - -/** - * @brief Stops the PWM signal generation on the complementary output. - * @param htim TIM handle - * @param Channel TIM Channel to be disabled - * This parameter can be one of the following values: - * @arg TIM_CHANNEL_1: TIM Channel 1 selected - * @arg TIM_CHANNEL_2: TIM Channel 2 selected - * @arg TIM_CHANNEL_3: TIM Channel 3 selected - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) -{ - /* Check the parameters */ - assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); - - /* Disable the complementary PWM output */ - TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE); - - /* Disable the Main Output */ - __HAL_TIM_MOE_DISABLE(htim); - - /* Disable the Peripheral */ - __HAL_TIM_DISABLE(htim); - - /* Return function status */ - return HAL_OK; -} - -/** - * @brief Starts the PWM signal generation in interrupt mode on the - * complementary output. - * @param htim TIM handle - * @param Channel TIM Channel to be disabled - * This parameter can be one of the following values: - * @arg TIM_CHANNEL_1: TIM Channel 1 selected - * @arg TIM_CHANNEL_2: TIM Channel 2 selected - * @arg TIM_CHANNEL_3: TIM Channel 3 selected - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIMEx_PWMN_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) -{ - uint32_t tmpsmcr; - - /* Check the parameters */ - assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); - - switch (Channel) - { - case TIM_CHANNEL_1: - { - /* Enable the TIM Capture/Compare 1 interrupt */ - __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); - break; - } - - case TIM_CHANNEL_2: - { - /* Enable the TIM Capture/Compare 2 interrupt */ - __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); - break; - } - - case TIM_CHANNEL_3: - { - /* Enable the TIM Capture/Compare 3 interrupt */ - __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3); - break; - } - - default: - break; - } - - /* Enable the TIM Break interrupt */ - __HAL_TIM_ENABLE_IT(htim, TIM_IT_BREAK); - - /* Enable the complementary PWM output */ - TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE); - - /* Enable the Main Output */ - __HAL_TIM_MOE_ENABLE(htim); - - /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ - tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; - if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) - { - __HAL_TIM_ENABLE(htim); - } - - /* Return function status */ - return HAL_OK; -} - -/** - * @brief Stops the PWM signal generation in interrupt mode on the - * complementary output. - * @param htim TIM handle - * @param Channel TIM Channel to be disabled - * This parameter can be one of the following values: - * @arg TIM_CHANNEL_1: TIM Channel 1 selected - * @arg TIM_CHANNEL_2: TIM Channel 2 selected - * @arg TIM_CHANNEL_3: TIM Channel 3 selected - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) -{ - uint32_t tmpccer; - - /* Check the parameters */ - assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); - - switch (Channel) - { - case TIM_CHANNEL_1: - { - /* Disable the TIM Capture/Compare 1 interrupt */ - __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); - break; - } - - case TIM_CHANNEL_2: - { - /* Disable the TIM Capture/Compare 2 interrupt */ - __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); - break; - } - - case TIM_CHANNEL_3: - { - /* Disable the TIM Capture/Compare 3 interrupt */ - __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3); - break; - } - - default: - break; - } - - /* Disable the complementary PWM output */ - TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE); - - /* Disable the TIM Break interrupt (only if no more channel is active) */ - tmpccer = htim->Instance->CCER; - if ((tmpccer & (TIM_CCER_CC1NE | TIM_CCER_CC2NE | TIM_CCER_CC3NE)) == (uint32_t)RESET) - { - __HAL_TIM_DISABLE_IT(htim, TIM_IT_BREAK); - } - - /* Disable the Main Output */ - __HAL_TIM_MOE_DISABLE(htim); - - /* Disable the Peripheral */ - __HAL_TIM_DISABLE(htim); - - /* Return function status */ - return HAL_OK; -} - -/** - * @brief Starts the TIM PWM signal generation in DMA mode on the - * complementary output - * @param htim TIM handle - * @param Channel TIM Channel to be enabled - * This parameter can be one of the following values: - * @arg TIM_CHANNEL_1: TIM Channel 1 selected - * @arg TIM_CHANNEL_2: TIM Channel 2 selected - * @arg TIM_CHANNEL_3: TIM Channel 3 selected - * @param pData The source Buffer address. - * @param Length The length of data to be transferred from memory to TIM peripheral - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIMEx_PWMN_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length) -{ - uint32_t tmpsmcr; - - /* Check the parameters */ - assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); - - if (htim->State == HAL_TIM_STATE_BUSY) - { - return HAL_BUSY; - } - else if (htim->State == HAL_TIM_STATE_READY) - { - if (((uint32_t)pData == 0U) && (Length > 0U)) - { - return HAL_ERROR; - } - else - { - htim->State = HAL_TIM_STATE_BUSY; - } - } - else - { - /* nothing to do */ - } - switch (Channel) - { - case TIM_CHANNEL_1: - { - /* Set the DMA compare callbacks */ - htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt; - htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; - - /* Set the DMA error callback */ - htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; - - /* Enable the DMA channel */ - if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, Length) != HAL_OK) - { - return HAL_ERROR; - } - /* Enable the TIM Capture/Compare 1 DMA request */ - __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); - break; - } - - case TIM_CHANNEL_2: - { - /* Set the DMA compare callbacks */ - htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt; - htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; - - /* Set the DMA error callback */ - htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; - - /* Enable the DMA channel */ - if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, Length) != HAL_OK) - { - return HAL_ERROR; - } - /* Enable the TIM Capture/Compare 2 DMA request */ - __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); - break; - } - - case TIM_CHANNEL_3: - { - /* Set the DMA compare callbacks */ - htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt; - htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; - - /* Set the DMA error callback */ - htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ; - - /* Enable the DMA channel */ - if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3, Length) != HAL_OK) - { - return HAL_ERROR; - } - /* Enable the TIM Capture/Compare 3 DMA request */ - __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3); - break; - } - - default: - break; - } - - /* Enable the complementary PWM output */ - TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE); - - /* Enable the Main Output */ - __HAL_TIM_MOE_ENABLE(htim); - - /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ - tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; - if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) - { - __HAL_TIM_ENABLE(htim); - } - - /* Return function status */ - return HAL_OK; -} - -/** - * @brief Stops the TIM PWM signal generation in DMA mode on the complementary - * output - * @param htim TIM handle - * @param Channel TIM Channel to be disabled - * This parameter can be one of the following values: - * @arg TIM_CHANNEL_1: TIM Channel 1 selected - * @arg TIM_CHANNEL_2: TIM Channel 2 selected - * @arg TIM_CHANNEL_3: TIM Channel 3 selected - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) -{ - /* Check the parameters */ - assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); - - switch (Channel) - { - case TIM_CHANNEL_1: - { - /* Disable the TIM Capture/Compare 1 DMA request */ - __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); - (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); - break; - } - - case TIM_CHANNEL_2: - { - /* Disable the TIM Capture/Compare 2 DMA request */ - __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); - (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); - break; - } - - case TIM_CHANNEL_3: - { - /* Disable the TIM Capture/Compare 3 DMA request */ - __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3); - (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); - break; - } - - default: - break; - } - - /* Disable the complementary PWM output */ - TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE); - - /* Disable the Main Output */ - __HAL_TIM_MOE_DISABLE(htim); - - /* Disable the Peripheral */ - __HAL_TIM_DISABLE(htim); - - /* Change the htim state */ - htim->State = HAL_TIM_STATE_READY; - - /* Return function status */ - return HAL_OK; -} - -/** - * @} - */ - -/** @defgroup TIMEx_Exported_Functions_Group4 Extended Timer Complementary One Pulse functions - * @brief Timer Complementary One Pulse functions - * -@verbatim - ============================================================================== - ##### Timer Complementary One Pulse functions ##### - ============================================================================== - [..] - This section provides functions allowing to: - (+) Start the Complementary One Pulse generation. - (+) Stop the Complementary One Pulse. - (+) Start the Complementary One Pulse and enable interrupts. - (+) Stop the Complementary One Pulse and disable interrupts. - -@endverbatim - * @{ - */ - -/** - * @brief Starts the TIM One Pulse signal generation on the complementary - * output. - * @param htim TIM One Pulse handle - * @param OutputChannel TIM Channel to be enabled - * This parameter can be one of the following values: - * @arg TIM_CHANNEL_1: TIM Channel 1 selected - * @arg TIM_CHANNEL_2: TIM Channel 2 selected - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Start(TIM_HandleTypeDef *htim, uint32_t OutputChannel) -{ - /* Check the parameters */ - assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, OutputChannel)); - - /* Enable the complementary One Pulse output */ - TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_ENABLE); - - /* Enable the Main Output */ - __HAL_TIM_MOE_ENABLE(htim); - - /* Return function status */ - return HAL_OK; -} - -/** - * @brief Stops the TIM One Pulse signal generation on the complementary - * output. - * @param htim TIM One Pulse handle - * @param OutputChannel TIM Channel to be disabled - * This parameter can be one of the following values: - * @arg TIM_CHANNEL_1: TIM Channel 1 selected - * @arg TIM_CHANNEL_2: TIM Channel 2 selected - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Stop(TIM_HandleTypeDef *htim, uint32_t OutputChannel) -{ - - /* Check the parameters */ - assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, OutputChannel)); - - /* Disable the complementary One Pulse output */ - TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_DISABLE); - - /* Disable the Main Output */ - __HAL_TIM_MOE_DISABLE(htim); - - /* Disable the Peripheral */ - __HAL_TIM_DISABLE(htim); - - /* Return function status */ - return HAL_OK; -} - -/** - * @brief Starts the TIM One Pulse signal generation in interrupt mode on the - * complementary channel. - * @param htim TIM One Pulse handle - * @param OutputChannel TIM Channel to be enabled - * This parameter can be one of the following values: - * @arg TIM_CHANNEL_1: TIM Channel 1 selected - * @arg TIM_CHANNEL_2: TIM Channel 2 selected - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Start_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel) -{ - /* Check the parameters */ - assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, OutputChannel)); - - /* Enable the TIM Capture/Compare 1 interrupt */ - __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); - - /* Enable the TIM Capture/Compare 2 interrupt */ - __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); - - /* Enable the complementary One Pulse output */ - TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_ENABLE); - - /* Enable the Main Output */ - __HAL_TIM_MOE_ENABLE(htim); - - /* Return function status */ - return HAL_OK; -} - -/** - * @brief Stops the TIM One Pulse signal generation in interrupt mode on the - * complementary channel. - * @param htim TIM One Pulse handle - * @param OutputChannel TIM Channel to be disabled - * This parameter can be one of the following values: - * @arg TIM_CHANNEL_1: TIM Channel 1 selected - * @arg TIM_CHANNEL_2: TIM Channel 2 selected - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel) -{ - /* Check the parameters */ - assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, OutputChannel)); - - /* Disable the TIM Capture/Compare 1 interrupt */ - __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); - - /* Disable the TIM Capture/Compare 2 interrupt */ - __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); - - /* Disable the complementary One Pulse output */ - TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_DISABLE); - - /* Disable the Main Output */ - __HAL_TIM_MOE_DISABLE(htim); - - /* Disable the Peripheral */ - __HAL_TIM_DISABLE(htim); - - /* Return function status */ - return HAL_OK; -} - -/** - * @} - */ - -/** @defgroup TIMEx_Exported_Functions_Group5 Extended Peripheral Control functions - * @brief Peripheral Control functions - * -@verbatim - ============================================================================== - ##### Peripheral Control functions ##### - ============================================================================== - [..] - This section provides functions allowing to: - (+) Configure the commutation event in case of use of the Hall sensor interface. - (+) Configure Output channels for OC and PWM mode. - - (+) Configure Complementary channels, break features and dead time. - (+) Configure Master synchronization. - (+) Configure timer remapping capabilities. - -@endverbatim - * @{ - */ - -/** - * @brief Configure the TIM commutation event sequence. - * @note This function is mandatory to use the commutation event in order to - * update the configuration at each commutation detection on the TRGI input of the Timer, - * the typical use of this feature is with the use of another Timer(interface Timer) - * configured in Hall sensor interface, this interface Timer will generate the - * commutation at its TRGO output (connected to Timer used in this function) each time - * the TI1 of the Interface Timer detect a commutation at its input TI1. - * @param htim TIM handle - * @param InputTrigger the Internal trigger corresponding to the Timer Interfacing with the Hall sensor - * This parameter can be one of the following values: - * @arg TIM_TS_ITR0: Internal trigger 0 selected - * @arg TIM_TS_ITR1: Internal trigger 1 selected - * @arg TIM_TS_ITR2: Internal trigger 2 selected - * @arg TIM_TS_ITR3: Internal trigger 3 selected - * @arg TIM_TS_NONE: No trigger is needed - * @param CommutationSource the Commutation Event source - * This parameter can be one of the following values: - * @arg TIM_COMMUTATION_TRGI: Commutation source is the TRGI of the Interface Timer - * @arg TIM_COMMUTATION_SOFTWARE: Commutation source is set by software using the COMG bit - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIMEx_ConfigCommutEvent(TIM_HandleTypeDef *htim, uint32_t InputTrigger, - uint32_t CommutationSource) -{ - /* Check the parameters */ - assert_param(IS_TIM_COMMUTATION_EVENT_INSTANCE(htim->Instance)); - assert_param(IS_TIM_INTERNAL_TRIGGEREVENT_SELECTION(InputTrigger)); - - __HAL_LOCK(htim); - - if ((InputTrigger == TIM_TS_ITR0) || (InputTrigger == TIM_TS_ITR1) || - (InputTrigger == TIM_TS_ITR2) || (InputTrigger == TIM_TS_ITR3)) - { - /* Select the Input trigger */ - htim->Instance->SMCR &= ~TIM_SMCR_TS; - htim->Instance->SMCR |= InputTrigger; - } - - /* Select the Capture Compare preload feature */ - htim->Instance->CR2 |= TIM_CR2_CCPC; - /* Select the Commutation event source */ - htim->Instance->CR2 &= ~TIM_CR2_CCUS; - htim->Instance->CR2 |= CommutationSource; - - /* Disable Commutation Interrupt */ - __HAL_TIM_DISABLE_IT(htim, TIM_IT_COM); - - /* Disable Commutation DMA request */ - __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_COM); - - __HAL_UNLOCK(htim); - - return HAL_OK; -} - -/** - * @brief Configure the TIM commutation event sequence with interrupt. - * @note This function is mandatory to use the commutation event in order to - * update the configuration at each commutation detection on the TRGI input of the Timer, - * the typical use of this feature is with the use of another Timer(interface Timer) - * configured in Hall sensor interface, this interface Timer will generate the - * commutation at its TRGO output (connected to Timer used in this function) each time - * the TI1 of the Interface Timer detect a commutation at its input TI1. - * @param htim TIM handle - * @param InputTrigger the Internal trigger corresponding to the Timer Interfacing with the Hall sensor - * This parameter can be one of the following values: - * @arg TIM_TS_ITR0: Internal trigger 0 selected - * @arg TIM_TS_ITR1: Internal trigger 1 selected - * @arg TIM_TS_ITR2: Internal trigger 2 selected - * @arg TIM_TS_ITR3: Internal trigger 3 selected - * @arg TIM_TS_NONE: No trigger is needed - * @param CommutationSource the Commutation Event source - * This parameter can be one of the following values: - * @arg TIM_COMMUTATION_TRGI: Commutation source is the TRGI of the Interface Timer - * @arg TIM_COMMUTATION_SOFTWARE: Commutation source is set by software using the COMG bit - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIMEx_ConfigCommutEvent_IT(TIM_HandleTypeDef *htim, uint32_t InputTrigger, - uint32_t CommutationSource) -{ - /* Check the parameters */ - assert_param(IS_TIM_COMMUTATION_EVENT_INSTANCE(htim->Instance)); - assert_param(IS_TIM_INTERNAL_TRIGGEREVENT_SELECTION(InputTrigger)); - - __HAL_LOCK(htim); - - if ((InputTrigger == TIM_TS_ITR0) || (InputTrigger == TIM_TS_ITR1) || - (InputTrigger == TIM_TS_ITR2) || (InputTrigger == TIM_TS_ITR3)) - { - /* Select the Input trigger */ - htim->Instance->SMCR &= ~TIM_SMCR_TS; - htim->Instance->SMCR |= InputTrigger; - } - - /* Select the Capture Compare preload feature */ - htim->Instance->CR2 |= TIM_CR2_CCPC; - /* Select the Commutation event source */ - htim->Instance->CR2 &= ~TIM_CR2_CCUS; - htim->Instance->CR2 |= CommutationSource; - - /* Disable Commutation DMA request */ - __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_COM); - - /* Enable the Commutation Interrupt */ - __HAL_TIM_ENABLE_IT(htim, TIM_IT_COM); - - __HAL_UNLOCK(htim); - - return HAL_OK; -} - -/** - * @brief Configure the TIM commutation event sequence with DMA. - * @note This function is mandatory to use the commutation event in order to - * update the configuration at each commutation detection on the TRGI input of the Timer, - * the typical use of this feature is with the use of another Timer(interface Timer) - * configured in Hall sensor interface, this interface Timer will generate the - * commutation at its TRGO output (connected to Timer used in this function) each time - * the TI1 of the Interface Timer detect a commutation at its input TI1. - * @note The user should configure the DMA in his own software, in This function only the COMDE bit is set - * @param htim TIM handle - * @param InputTrigger the Internal trigger corresponding to the Timer Interfacing with the Hall sensor - * This parameter can be one of the following values: - * @arg TIM_TS_ITR0: Internal trigger 0 selected - * @arg TIM_TS_ITR1: Internal trigger 1 selected - * @arg TIM_TS_ITR2: Internal trigger 2 selected - * @arg TIM_TS_ITR3: Internal trigger 3 selected - * @arg TIM_TS_NONE: No trigger is needed - * @param CommutationSource the Commutation Event source - * This parameter can be one of the following values: - * @arg TIM_COMMUTATION_TRGI: Commutation source is the TRGI of the Interface Timer - * @arg TIM_COMMUTATION_SOFTWARE: Commutation source is set by software using the COMG bit - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIMEx_ConfigCommutEvent_DMA(TIM_HandleTypeDef *htim, uint32_t InputTrigger, - uint32_t CommutationSource) -{ - /* Check the parameters */ - assert_param(IS_TIM_COMMUTATION_EVENT_INSTANCE(htim->Instance)); - assert_param(IS_TIM_INTERNAL_TRIGGEREVENT_SELECTION(InputTrigger)); - - __HAL_LOCK(htim); - - if ((InputTrigger == TIM_TS_ITR0) || (InputTrigger == TIM_TS_ITR1) || - (InputTrigger == TIM_TS_ITR2) || (InputTrigger == TIM_TS_ITR3)) - { - /* Select the Input trigger */ - htim->Instance->SMCR &= ~TIM_SMCR_TS; - htim->Instance->SMCR |= InputTrigger; - } - - /* Select the Capture Compare preload feature */ - htim->Instance->CR2 |= TIM_CR2_CCPC; - /* Select the Commutation event source */ - htim->Instance->CR2 &= ~TIM_CR2_CCUS; - htim->Instance->CR2 |= CommutationSource; - - /* Enable the Commutation DMA Request */ - /* Set the DMA Commutation Callback */ - htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback = TIMEx_DMACommutationCplt; - htim->hdma[TIM_DMA_ID_COMMUTATION]->XferHalfCpltCallback = TIMEx_DMACommutationHalfCplt; - /* Set the DMA error callback */ - htim->hdma[TIM_DMA_ID_COMMUTATION]->XferErrorCallback = TIM_DMAError; - - /* Disable Commutation Interrupt */ - __HAL_TIM_DISABLE_IT(htim, TIM_IT_COM); - - /* Enable the Commutation DMA Request */ - __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_COM); - - __HAL_UNLOCK(htim); - - return HAL_OK; -} - -/** - * @brief Configures the TIM in master mode. - * @param htim TIM handle. - * @param sMasterConfig pointer to a TIM_MasterConfigTypeDef structure that - * contains the selected trigger output (TRGO) and the Master/Slave - * mode. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIMEx_MasterConfigSynchronization(TIM_HandleTypeDef *htim, - TIM_MasterConfigTypeDef *sMasterConfig) -{ - uint32_t tmpcr2; - uint32_t tmpsmcr; - - /* Check the parameters */ - assert_param(IS_TIM_MASTER_INSTANCE(htim->Instance)); - assert_param(IS_TIM_TRGO_SOURCE(sMasterConfig->MasterOutputTrigger)); - assert_param(IS_TIM_MSM_STATE(sMasterConfig->MasterSlaveMode)); - - /* Check input state */ - __HAL_LOCK(htim); - - /* Change the handler state */ - htim->State = HAL_TIM_STATE_BUSY; - - /* Get the TIMx CR2 register value */ - tmpcr2 = htim->Instance->CR2; - - /* Get the TIMx SMCR register value */ - tmpsmcr = htim->Instance->SMCR; - - /* Reset the MMS Bits */ - tmpcr2 &= ~TIM_CR2_MMS; - /* Select the TRGO source */ - tmpcr2 |= sMasterConfig->MasterOutputTrigger; - - /* Update TIMx CR2 */ - htim->Instance->CR2 = tmpcr2; - - if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) - { - /* Reset the MSM Bit */ - tmpsmcr &= ~TIM_SMCR_MSM; - /* Set master mode */ - tmpsmcr |= sMasterConfig->MasterSlaveMode; - - /* Update TIMx SMCR */ - htim->Instance->SMCR = tmpsmcr; - } - - /* Change the htim state */ - htim->State = HAL_TIM_STATE_READY; - - __HAL_UNLOCK(htim); - - return HAL_OK; -} - -/** - * @brief Configures the Break feature, dead time, Lock level, OSSI/OSSR State - * and the AOE(automatic output enable). - * @param htim TIM handle - * @param sBreakDeadTimeConfig pointer to a TIM_ConfigBreakDeadConfigTypeDef structure that - * contains the BDTR Register configuration information for the TIM peripheral. - * @note Interrupts can be generated when an active level is detected on the - * break input, the break 2 input or the system break input. Break - * interrupt can be enabled by calling the @ref __HAL_TIM_ENABLE_IT macro. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIMEx_ConfigBreakDeadTime(TIM_HandleTypeDef *htim, - TIM_BreakDeadTimeConfigTypeDef *sBreakDeadTimeConfig) -{ - /* Keep this variable initialized to 0 as it is used to configure BDTR register */ - uint32_t tmpbdtr = 0U; - - /* Check the parameters */ - assert_param(IS_TIM_BREAK_INSTANCE(htim->Instance)); - assert_param(IS_TIM_OSSR_STATE(sBreakDeadTimeConfig->OffStateRunMode)); - assert_param(IS_TIM_OSSI_STATE(sBreakDeadTimeConfig->OffStateIDLEMode)); - assert_param(IS_TIM_LOCK_LEVEL(sBreakDeadTimeConfig->LockLevel)); - assert_param(IS_TIM_DEADTIME(sBreakDeadTimeConfig->DeadTime)); - assert_param(IS_TIM_BREAK_STATE(sBreakDeadTimeConfig->BreakState)); - assert_param(IS_TIM_BREAK_POLARITY(sBreakDeadTimeConfig->BreakPolarity)); - assert_param(IS_TIM_AUTOMATIC_OUTPUT_STATE(sBreakDeadTimeConfig->AutomaticOutput)); - - /* Check input state */ - __HAL_LOCK(htim); - - /* Set the Lock level, the Break enable Bit and the Polarity, the OSSR State, - the OSSI State, the dead time value and the Automatic Output Enable Bit */ - - /* Set the BDTR bits */ - MODIFY_REG(tmpbdtr, TIM_BDTR_DTG, sBreakDeadTimeConfig->DeadTime); - MODIFY_REG(tmpbdtr, TIM_BDTR_LOCK, sBreakDeadTimeConfig->LockLevel); - MODIFY_REG(tmpbdtr, TIM_BDTR_OSSI, sBreakDeadTimeConfig->OffStateIDLEMode); - MODIFY_REG(tmpbdtr, TIM_BDTR_OSSR, sBreakDeadTimeConfig->OffStateRunMode); - MODIFY_REG(tmpbdtr, TIM_BDTR_BKE, sBreakDeadTimeConfig->BreakState); - MODIFY_REG(tmpbdtr, TIM_BDTR_BKP, sBreakDeadTimeConfig->BreakPolarity); - MODIFY_REG(tmpbdtr, TIM_BDTR_AOE, sBreakDeadTimeConfig->AutomaticOutput); - - - /* Set TIMx_BDTR */ - htim->Instance->BDTR = tmpbdtr; - - __HAL_UNLOCK(htim); - - return HAL_OK; -} - -/** - * @brief Configures the TIMx Remapping input capabilities. - * @param htim TIM handle. - * @param Remap specifies the TIM remapping source. - * For TIM14, the parameter can have the following values: - * @arg TIM_TIM14_GPIO: TIM14 TI1 is connected to GPIO - * @arg TIM_TIM14_RTC: TIM14 TI1 is connected to RTC_clock - * @arg TIM_TIM14_HSE: TIM14 TI1 is connected to HSE/32 - * @arg TIM_TIM14_MCO: TIM14 TI1 is connected to MCO - * - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TIMEx_RemapConfig(TIM_HandleTypeDef *htim, uint32_t Remap) -{ - __HAL_LOCK(htim); - - /* Check parameters */ - assert_param(IS_TIM_REMAP(htim->Instance, Remap)); - - /* Set the Timer remapping configuration */ - WRITE_REG(htim->Instance->OR, Remap); - - __HAL_UNLOCK(htim); - - return HAL_OK; -} - -/** - * @} - */ - -/** @defgroup TIMEx_Exported_Functions_Group6 Extended Callbacks functions - * @brief Extended Callbacks functions - * -@verbatim - ============================================================================== - ##### Extended Callbacks functions ##### - ============================================================================== - [..] - This section provides Extended TIM callback functions: - (+) Timer Commutation callback - (+) Timer Break callback - -@endverbatim - * @{ - */ - -/** - * @brief Hall commutation changed callback in non-blocking mode - * @param htim TIM handle - * @retval None - */ -__weak void HAL_TIMEx_CommutCallback(TIM_HandleTypeDef *htim) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(htim); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_TIMEx_CommutCallback could be implemented in the user file - */ -} -/** - * @brief Hall commutation changed half complete callback in non-blocking mode - * @param htim TIM handle - * @retval None - */ -__weak void HAL_TIMEx_CommutHalfCpltCallback(TIM_HandleTypeDef *htim) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(htim); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_TIMEx_CommutHalfCpltCallback could be implemented in the user file - */ -} - -/** - * @brief Hall Break detection callback in non-blocking mode - * @param htim TIM handle - * @retval None - */ -__weak void HAL_TIMEx_BreakCallback(TIM_HandleTypeDef *htim) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(htim); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_TIMEx_BreakCallback could be implemented in the user file - */ -} -/** - * @} - */ - -/** @defgroup TIMEx_Exported_Functions_Group7 Extended Peripheral State functions - * @brief Extended Peripheral State functions - * -@verbatim - ============================================================================== - ##### Extended Peripheral State functions ##### - ============================================================================== - [..] - This subsection permits to get in run-time the status of the peripheral - and the data flow. - -@endverbatim - * @{ - */ - -/** - * @brief Return the TIM Hall Sensor interface handle state. - * @param htim TIM Hall Sensor handle - * @retval HAL state - */ -HAL_TIM_StateTypeDef HAL_TIMEx_HallSensor_GetState(TIM_HandleTypeDef *htim) -{ - return htim->State; -} - -/** - * @} - */ - -/** - * @} - */ - -/* Private functions ---------------------------------------------------------*/ -/** @defgroup TIMEx_Private_Functions TIMEx Private Functions - * @{ - */ - -/** - * @brief TIM DMA Commutation callback. - * @param hdma pointer to DMA handle. - * @retval None - */ -void TIMEx_DMACommutationCplt(DMA_HandleTypeDef *hdma) -{ - TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; - - /* Change the htim state */ - htim->State = HAL_TIM_STATE_READY; - -#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) - htim->CommutationCallback(htim); -#else - HAL_TIMEx_CommutCallback(htim); -#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ -} - -/** - * @brief TIM DMA Commutation half complete callback. - * @param hdma pointer to DMA handle. - * @retval None - */ -void TIMEx_DMACommutationHalfCplt(DMA_HandleTypeDef *hdma) -{ - TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; - - /* Change the htim state */ - htim->State = HAL_TIM_STATE_READY; - -#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) - htim->CommutationHalfCpltCallback(htim); -#else - HAL_TIMEx_CommutHalfCpltCallback(htim); -#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ -} - - -/** - * @brief Enables or disables the TIM Capture Compare Channel xN. - * @param TIMx to select the TIM peripheral - * @param Channel specifies the TIM Channel - * This parameter can be one of the following values: - * @arg TIM_CHANNEL_1: TIM Channel 1 - * @arg TIM_CHANNEL_2: TIM Channel 2 - * @arg TIM_CHANNEL_3: TIM Channel 3 - * @param ChannelNState specifies the TIM Channel CCxNE bit new state. - * This parameter can be: TIM_CCxN_ENABLE or TIM_CCxN_Disable. - * @retval None - */ -static void TIM_CCxNChannelCmd(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ChannelNState) -{ - uint32_t tmp; - - tmp = TIM_CCER_CC1NE << (Channel & 0x1FU); /* 0x1FU = 31 bits max shift */ - - /* Reset the CCxNE Bit */ - TIMx->CCER &= ~tmp; - - /* Set or reset the CCxNE Bit */ - TIMx->CCER |= (uint32_t)(ChannelNState << (Channel & 0x1FU)); /* 0x1FU = 31 bits max shift */ -} -/** - * @} - */ - -#endif /* HAL_TIM_MODULE_ENABLED */ -/** - * @} - */ - -/** - * @} - */ - -/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_timebase_rtc_alarm_template.c b/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_timebase_rtc_alarm_template.c deleted file mode 100644 index aafce9c..0000000 --- a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_timebase_rtc_alarm_template.c +++ /dev/null @@ -1,299 +0,0 @@ -/** - ****************************************************************************** - * @file stm32f0xx_hal_timebase_rtc_alarm_template.c - * @brief HAL time base based on the hardware RTC_ALARM Template. - * - * This file override the native HAL time base functions (defined as weak) - * to use the RTC ALARM for time base generation: - * + Intializes the RTC peripheral to increment the seconds registers each 1ms - * + The alarm is configured to assert an interrupt when the RTC reaches 1ms - * + HAL_IncTick is called at each Alarm event and the time is reset to 00:00:00 - * + HSE (default), LSE or LSI can be selected as RTC clock source - @verbatim - ============================================================================== - ##### How to use this driver ##### - ============================================================================== - [..] - This file must be copied to the application folder and modified as follows: - (#) Rename it to 'stm32f0xx_hal_timebase_rtc_alarm.c' - (#) Add this file and the RTC HAL drivers to your project and uncomment - HAL_RTC_MODULE_ENABLED define in stm32f0xx_hal_conf.h - - [..] - (@) HAL RTC alarm and HAL RTC wakeup drivers can’t be used with low power modes: - The wake up capability of the RTC may be intrusive in case of prior low power mode - configuration requiring different wake up sources. - Application/Example behavior is no more guaranteed - (@) The stm32f0xx_hal_timebase_tim use is recommended for the Applications/Examples - requiring low power modes - - @endverbatim - ****************************************************************************** - * @attention - * - *

© Copyright (c) 2016 STMicroelectronics. - * All rights reserved.

- * - * This software component is licensed by ST under BSD 3-Clause license, - * the "License"; You may not use this file except in compliance with the - * License. You may obtain a copy of the License at: - * opensource.org/licenses/BSD-3-Clause - * - ****************************************************************************** - */ - -/* Includes ------------------------------------------------------------------*/ -#include "stm32f0xx_hal.h" -/** @addtogroup STM32F0xx_HAL_Driver - * @{ - */ - -/** @defgroup HAL_TimeBase_RTC_Alarm_Template HAL TimeBase RTC Alarm Template - * @{ - */ - -/* Private typedef -----------------------------------------------------------*/ -/* Private define ------------------------------------------------------------*/ - -/* Uncomment the line below to select the appropriate RTC Clock source for your application: - + RTC_CLOCK_SOURCE_HSE: can be selected for applications requiring timing precision. - + RTC_CLOCK_SOURCE_LSE: can be selected for applications with low constraint on timing - precision. - + RTC_CLOCK_SOURCE_LSI: can be selected for applications with low constraint on timing - precision. - */ -#define RTC_CLOCK_SOURCE_HSE -/* #define RTC_CLOCK_SOURCE_LSE */ -/* #define RTC_CLOCK_SOURCE_LSI */ - -#if defined(RTC_CLOCK_SOURCE_HSE) - #define RTC_ASYNCH_PREDIV 49U - #define RTC_SYNCH_PREDIV 4U -#elif defined(RTC_CLOCK_SOURCE_LSE) - #define RTC_ASYNCH_PREDIV 0U - #define RTC_SYNCH_PREDIV 31U -#else /* CLOCK_SOURCE_LSI */ - #define RTC_ASYNCH_PREDIV 0U - #define RTC_SYNCH_PREDIV 39U -#endif /* RTC_CLOCK_SOURCE_HSE */ - -/* Private macro -------------------------------------------------------------*/ -/* Private variables ---------------------------------------------------------*/ -RTC_HandleTypeDef hRTC_Handle; -/* Private function prototypes -----------------------------------------------*/ -void RTC_IRQHandler(void); -/* Private functions ---------------------------------------------------------*/ - -/** - * @brief This function configures the RTC_ALARMA as a time base source. - * The time source is configured to have 1ms time base with a dedicated - * Tick interrupt priority. - * @note This function is called automatically at the beginning of program after - * reset by HAL_Init() or at any time when clock is configured, by HAL_RCC_ClockConfig(). - * @param TickPriority Tick interrupt priority. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_InitTick (uint32_t TickPriority) -{ - __IO uint32_t counter = 0U; - - RCC_OscInitTypeDef RCC_OscInitStruct; - RCC_PeriphCLKInitTypeDef PeriphClkInitStruct; - -#ifdef RTC_CLOCK_SOURCE_LSE - /* Configue LSE as RTC clock soucre */ - RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSE; - RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE; - RCC_OscInitStruct.LSEState = RCC_LSE_ON; - PeriphClkInitStruct.RTCClockSelection = RCC_RTCCLKSOURCE_LSE; -#elif defined (RTC_CLOCK_SOURCE_LSI) - /* Configue LSI as RTC clock soucre */ - RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSI; - RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE; - RCC_OscInitStruct.LSIState = RCC_LSI_ON; - PeriphClkInitStruct.RTCClockSelection = RCC_RTCCLKSOURCE_LSI; -#elif defined (RTC_CLOCK_SOURCE_HSE) - /* Configue HSE as RTC clock soucre */ - RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; - RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE; - RCC_OscInitStruct.HSEState = RCC_HSE_ON; - PeriphClkInitStruct.RTCClockSelection = RCC_RTCCLKSOURCE_HSE_DIV32; -#else -#error Please select the RTC Clock source -#endif /* RTC_CLOCK_SOURCE_LSE */ - - if(HAL_RCC_OscConfig(&RCC_OscInitStruct) == HAL_OK) - { - PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_RTC; - if(HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct) == HAL_OK) - { - /* Enable RTC Clock */ - __HAL_RCC_RTC_ENABLE(); - /* The time base should be 1ms - Time base = ((RTC_ASYNCH_PREDIV + 1) * (RTC_SYNCH_PREDIV + 1)) / RTC_CLOCK - HSE/32 as RTC clock and HSE 8MHz - Time base = ((49 + 1) * (4 + 1)) / 250kHz - = 1ms - LSE as RTC clock - Time base = ((31 + 1) * (0 + 1)) / 32.768KHz - = ~1ms - LSI as RTC clock - Time base = ((39 + 1) * (0 + 1)) / 40KHz - = 1ms - */ - hRTC_Handle.Instance = RTC; - hRTC_Handle.Init.HourFormat = RTC_HOURFORMAT_24; - hRTC_Handle.Init.AsynchPrediv = RTC_ASYNCH_PREDIV; - hRTC_Handle.Init.SynchPrediv = RTC_SYNCH_PREDIV; - hRTC_Handle.Init.OutPut = RTC_OUTPUT_DISABLE; - hRTC_Handle.Init.OutPutPolarity = RTC_OUTPUT_POLARITY_HIGH; - hRTC_Handle.Init.OutPutType = RTC_OUTPUT_TYPE_OPENDRAIN; - HAL_RTC_Init(&hRTC_Handle); - - /* Disable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_DISABLE(&hRTC_Handle); - - /* Disable the Alarm A interrupt */ - __HAL_RTC_ALARMA_DISABLE(&hRTC_Handle); - - /* Clear flag alarm A */ - __HAL_RTC_ALARM_CLEAR_FLAG(&hRTC_Handle, RTC_FLAG_ALRAF); - - counter = 0U; - /* Wait till RTC ALRAWF flag is set and if Time out is reached exit */ - while(__HAL_RTC_ALARM_GET_FLAG(&hRTC_Handle, RTC_FLAG_ALRAWF) == RESET) - { - if(counter++ == (SystemCoreClock /48U)) /* Timeout = ~ 1s */ - { - return HAL_ERROR; - } - } - - hRTC_Handle.Instance->ALRMAR = 0x01U; - - /* Configure the Alarm state: Enable Alarm */ - __HAL_RTC_ALARMA_ENABLE(&hRTC_Handle); - /* Configure the Alarm interrupt */ - __HAL_RTC_ALARM_ENABLE_IT(&hRTC_Handle, RTC_IT_ALRA); - - /* RTC Alarm Interrupt Configuration: EXTI configuration */ - __HAL_RTC_ALARM_EXTI_ENABLE_IT(); - __HAL_RTC_ALARM_EXTI_ENABLE_RISING_EDGE(); - - /* Check if the Initialization mode is set */ - if((hRTC_Handle.Instance->ISR & RTC_ISR_INITF) == (uint32_t)RESET) - { - /* Set the Initialization mode */ - hRTC_Handle.Instance->ISR = (uint32_t)RTC_INIT_MASK; - counter = 0U; - while((hRTC_Handle.Instance->ISR & RTC_ISR_INITF) == (uint32_t)RESET) - { - if(counter++ == (SystemCoreClock /48U)) /* Timeout = ~ 1s */ - { - return HAL_ERROR; - } - } - } - hRTC_Handle.Instance->DR = 0U; - hRTC_Handle.Instance->TR = 0U; - - hRTC_Handle.Instance->ISR &= (uint32_t)~RTC_ISR_INIT; - - /* Enable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_ENABLE(&hRTC_Handle); - - HAL_NVIC_SetPriority(RTC_IRQn, TickPriority, 0U); - HAL_NVIC_EnableIRQ(RTC_IRQn); - return HAL_OK; - } - } - return HAL_ERROR; -} - -/** - * @brief Suspend Tick increment. - * @note Disable the tick increment by disabling RTC ALARM interrupt. - * @param None - * @retval None - */ -void HAL_SuspendTick(void) -{ - /* Disable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_DISABLE(&hRTC_Handle); - /* Disable RTC ALARM update Interrupt */ - __HAL_RTC_ALARM_DISABLE_IT(&hRTC_Handle, RTC_IT_ALRA); - /* Enable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_ENABLE(&hRTC_Handle); -} - -/** - * @brief Resume Tick increment. - * @note Enable the tick increment by Enabling RTC ALARM interrupt. - * @param None - * @retval None - */ -void HAL_ResumeTick(void) -{ - /* Disable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_DISABLE(&hRTC_Handle); - /* Enable RTC ALARM Update interrupt */ - __HAL_RTC_ALARM_ENABLE_IT(&hRTC_Handle, RTC_IT_ALRA); - /* Enable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_ENABLE(&hRTC_Handle); -} - -/** - * @brief ALARM A Event Callback in non blocking mode - * @note This function is called when RTC_ALARM interrupt took place, inside - * RTC_IRQHandler(). It makes a direct call to HAL_IncTick() to increment - * a global variable "uwTick" used as application time base. - * @param hrtc RTC handle - * @retval None - */ -void HAL_RTC_AlarmAEventCallback(RTC_HandleTypeDef *hrtc) -{ - __IO uint32_t counter = 0U; - - HAL_IncTick(); - - __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); - - /* Set the Initialization mode */ - hrtc->Instance->ISR = (uint32_t)RTC_INIT_MASK; - - while((hrtc->Instance->ISR & RTC_ISR_INITF) == (uint32_t)RESET) - { - if(counter++ == (SystemCoreClock /48U)) /* Timeout = ~ 1s */ - { - break; - } - } - - hrtc->Instance->DR = 0U; - hrtc->Instance->TR = 0U; - - hrtc->Instance->ISR &= (uint32_t)~RTC_ISR_INIT; - - /* Enable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); -} - -/** - * @brief This function handles RTC ALARM interrupt request. - * @param None - * @retval None - */ -void RTC_IRQHandler(void) -{ - HAL_RTC_AlarmIRQHandler(&hRTC_Handle); -} - -/** - * @} - */ - -/** - * @} - */ - -/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_timebase_rtc_wakeup_template.c b/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_timebase_rtc_wakeup_template.c deleted file mode 100644 index d85387b..0000000 --- a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_timebase_rtc_wakeup_template.c +++ /dev/null @@ -1,278 +0,0 @@ -/** - ****************************************************************************** - * @file stm32f0xx_hal_timebase_rtc_wakeup_template.c - * @brief HAL time base based on the hardware RTC_WAKEUP Template. - * - * This file overrides the native HAL time base functions (defined as weak) - * to use the RTC WAKEUP for the time base generation: - * + Intializes the RTC peripheral and configures the wakeup timer to be - * incremented each 1ms - * + The wakeup feature is configured to assert an interrupt each 1ms - * + HAL_IncTick is called inside the HAL_RTCEx_WakeUpTimerEventCallback - * + HSE (default), LSE or LSI can be selected as RTC clock source - @verbatim - ============================================================================== - ##### How to use this driver ##### - ============================================================================== - [..] - This file must be copied to the application folder and modified as follows: - (#) Rename it to 'stm32f0xx_hal_timebase_rtc_wakeup.c' - (#) Add this file and the RTC HAL drivers to your project and uncomment - HAL_RTC_MODULE_ENABLED define in stm32f0xx_hal_conf.h - - [..] - (@) HAL RTC alarm and HAL RTC wakeup drivers can’t be used with low power modes: - The wake up capability of the RTC may be intrusive in case of prior low power mode - configuration requiring different wake up sources. - Application/Example behavior is no more guaranteed - (@) The stm32f0xx_hal_timebase_tim use is recommended for the Applications/Examples - requiring low power modes - - @endverbatim - ****************************************************************************** - * @attention - * - *

© Copyright (c) 2016 STMicroelectronics. - * All rights reserved.

- * - * This software component is licensed by ST under BSD 3-Clause license, - * the "License"; You may not use this file except in compliance with the - * License. You may obtain a copy of the License at: - * opensource.org/licenses/BSD-3-Clause - * - ****************************************************************************** - */ - -/* Includes ------------------------------------------------------------------*/ -#include "stm32f0xx_hal.h" -/** @addtogroup STM32F0xx_HAL_Driver - * @{ - */ - -/** @defgroup HAL_TimeBase_RTC_WakeUp_Template HAL TimeBase RTC WakeUp Template - * @{ - */ - -/* Private typedef -----------------------------------------------------------*/ -/* Private define ------------------------------------------------------------*/ - -/* Uncomment the line below to select the appropriate RTC Clock source for your application: - + RTC_CLOCK_SOURCE_HSE: can be selected for applications requiring timing precision. - + RTC_CLOCK_SOURCE_LSE: can be selected for applications with low constraint on timing - precision. - + RTC_CLOCK_SOURCE_LSI: can be selected for applications with low constraint on timing - precision. - */ -#define RTC_CLOCK_SOURCE_HSE -/* #define RTC_CLOCK_SOURCE_LSE */ -/* #define RTC_CLOCK_SOURCE_LSI */ - -#if defined(RTC_CLOCK_SOURCE_HSE) - #define RTC_ASYNCH_PREDIV 49U - #define RTC_SYNCH_PREDIV 4U -#elif defined(RTC_CLOCK_SOURCE_LSE) - #define RTC_ASYNCH_PREDIV 0U - #define RTC_SYNCH_PREDIV 31U -#else /* CLOCK_SOURCE_LSI */ - #define RTC_ASYNCH_PREDIV 0U - #define RTC_SYNCH_PREDIV 39U -#endif /* RTC_CLOCK_SOURCE_HSE */ - -/* Private macro -------------------------------------------------------------*/ -/* Private variables ---------------------------------------------------------*/ -RTC_HandleTypeDef hRTC_Handle; - -/* Private function prototypes -----------------------------------------------*/ -void RTC_IRQHandler(void); - -/* Private functions ---------------------------------------------------------*/ - -/** - * @brief This function configures the RTC_WKUP as a time base source. - * The time source is configured to have 1ms time base with a dedicated - * Tick interrupt priority. - * Wakeup Time base = ((RTC_ASYNCH_PREDIV + 1) * (RTC_SYNCH_PREDIV + 1)) / RTC_CLOCK - = 1ms - * Wakeup Time = WakeupTimebase * WakeUpCounter (0 + 1) - = 1 ms - * @note This function is called automatically at the beginning of program after - * reset by HAL_Init() or at any time when clock is configured, by HAL_RCC_ClockConfig(). - * @param TickPriority Tick interrupt priority. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_InitTick (uint32_t TickPriority) -{ - __IO uint32_t counter = 0U; - - RCC_OscInitTypeDef RCC_OscInitStruct; - RCC_PeriphCLKInitTypeDef PeriphClkInitStruct; - -#ifdef RTC_CLOCK_SOURCE_LSE - /* Configue LSE as RTC clock soucre */ - RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSE; - RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE; - RCC_OscInitStruct.LSEState = RCC_LSE_ON; - PeriphClkInitStruct.RTCClockSelection = RCC_RTCCLKSOURCE_LSE; -#elif defined (RTC_CLOCK_SOURCE_LSI) - /* Configue LSI as RTC clock soucre */ - RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSI; - RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE; - RCC_OscInitStruct.LSIState = RCC_LSI_ON; - PeriphClkInitStruct.RTCClockSelection = RCC_RTCCLKSOURCE_LSI; -#elif defined (RTC_CLOCK_SOURCE_HSE) - /* Configue HSE as RTC clock soucre */ - RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; - RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE; - RCC_OscInitStruct.HSEState = RCC_HSE_ON; - PeriphClkInitStruct.RTCClockSelection = RCC_RTCCLKSOURCE_HSE_DIV32; -#else -#error Please select the RTC Clock source -#endif /* RTC_CLOCK_SOURCE_LSE */ - - if(HAL_RCC_OscConfig(&RCC_OscInitStruct) == HAL_OK) - { - PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_RTC; - if(HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct) == HAL_OK) - { - /* Enable RTC Clock */ - __HAL_RCC_RTC_ENABLE(); - /* The time base should be 1ms - Time base = ((RTC_ASYNCH_PREDIV + 1) * (RTC_SYNCH_PREDIV + 1)) / RTC_CLOCK - HSE/32 as RTC clock and HSE 8MHz - Time base = ((49 + 1) * (4 + 1)) / 250kHz - = 1ms - LSE as RTC clock - Time base = ((31 + 1) * (0 + 1)) / 32.768Khz - = ~1ms - LSI as RTC clock - Time base = ((39 + 1) * (0 + 1)) / 40Khz - = 1ms - */ - hRTC_Handle.Instance = RTC; - hRTC_Handle.Init.HourFormat = RTC_HOURFORMAT_24; - hRTC_Handle.Init.AsynchPrediv = RTC_ASYNCH_PREDIV; - hRTC_Handle.Init.SynchPrediv = RTC_SYNCH_PREDIV; - hRTC_Handle.Init.OutPut = RTC_OUTPUT_DISABLE; - hRTC_Handle.Init.OutPutPolarity = RTC_OUTPUT_POLARITY_HIGH; - hRTC_Handle.Init.OutPutType = RTC_OUTPUT_TYPE_OPENDRAIN; - HAL_RTC_Init(&hRTC_Handle); - - /* Disable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_DISABLE(&hRTC_Handle); - - /* Disable the Wake-up Timer */ - __HAL_RTC_WAKEUPTIMER_DISABLE(&hRTC_Handle); - - /* In case of interrupt mode is used, the interrupt source must disabled */ - __HAL_RTC_WAKEUPTIMER_DISABLE_IT(&hRTC_Handle,RTC_IT_WUT); - - /* Wait till RTC WUTWF flag is set */ - while(__HAL_RTC_WAKEUPTIMER_GET_FLAG(&hRTC_Handle, RTC_FLAG_WUTWF) == RESET) - { - if(counter++ == (SystemCoreClock /48U)) - { - return HAL_ERROR; - } - } - - /* Clear PWR wake up Flag */ - __HAL_PWR_CLEAR_FLAG(PWR_FLAG_WU); - - /* Clear RTC Wake Up timer Flag */ - __HAL_RTC_WAKEUPTIMER_CLEAR_FLAG(&hRTC_Handle, RTC_FLAG_WUTF); - - /* Configure the Wake-up Timer counter */ - hRTC_Handle.Instance->WUTR = 0U; - - /* Clear the Wake-up Timer clock source bits in CR register */ - hRTC_Handle.Instance->CR &= (uint32_t)~RTC_CR_WUCKSEL; - - /* Configure the clock source */ - hRTC_Handle.Instance->CR |= (uint32_t)RTC_WAKEUPCLOCK_CK_SPRE_16BITS; - - /* RTC WakeUpTimer Interrupt Configuration: EXTI configuration */ - __HAL_RTC_WAKEUPTIMER_EXTI_ENABLE_IT(); - - __HAL_RTC_WAKEUPTIMER_EXTI_ENABLE_RISING_EDGE(); - - /* Configure the Interrupt in the RTC_CR register */ - __HAL_RTC_WAKEUPTIMER_ENABLE_IT(&hRTC_Handle,RTC_IT_WUT); - - /* Enable the Wake-up Timer */ - __HAL_RTC_WAKEUPTIMER_ENABLE(&hRTC_Handle); - - /* Enable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_ENABLE(&hRTC_Handle); - - HAL_NVIC_SetPriority(RTC_IRQn, TickPriority, 0U); - HAL_NVIC_EnableIRQ(RTC_IRQn); - return HAL_OK; - } - } - return HAL_ERROR; -} - -/** - * @brief Suspend Tick increment. - * @note Disable the tick increment by disabling RTC_WKUP interrupt. - * @param None - * @retval None - */ -void HAL_SuspendTick(void) -{ - /* Disable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_DISABLE(&hRTC_Handle); - /* Disable WAKE UP TIMER Interrupt */ - __HAL_RTC_WAKEUPTIMER_DISABLE_IT(&hRTC_Handle, RTC_IT_WUT); - /* Enable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_ENABLE(&hRTC_Handle); -} - -/** - * @brief Resume Tick increment. - * @note Enable the tick increment by Enabling RTC_WKUP interrupt. - * @param None - * @retval None - */ -void HAL_ResumeTick(void) -{ - /* Disable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_DISABLE(&hRTC_Handle); - /* Enable WAKE UP TIMER interrupt */ - __HAL_RTC_WAKEUPTIMER_ENABLE_IT(&hRTC_Handle, RTC_IT_WUT); - /* Enable the write protection for RTC registers */ - __HAL_RTC_WRITEPROTECTION_ENABLE(&hRTC_Handle); -} - -/** - * @brief Wake Up Timer Event Callback in non blocking mode - * @note This function is called when RTC_WKUP interrupt took place, inside - * RTC_IRQHandler(). It makes a direct call to HAL_IncTick() to increment - * a global variable "uwTick" used as application time base. - * @param hrtc RTC handle - * @retval None - */ -void HAL_RTCEx_WakeUpTimerEventCallback(RTC_HandleTypeDef *hrtc) -{ - HAL_IncTick(); -} - -/** - * @brief This function handles WAKE UP TIMER interrupt request. - * @param None - * @retval None - */ -void RTC_IRQHandler(void) -{ - HAL_RTCEx_WakeUpTimerIRQHandler(&hRTC_Handle); -} - -/** - * @} - */ - -/** - * @} - */ - -/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_timebase_tim_template.c b/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_timebase_tim_template.c deleted file mode 100644 index cf8a60b..0000000 --- a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_timebase_tim_template.c +++ /dev/null @@ -1,168 +0,0 @@ -/** - ****************************************************************************** - * @file stm32f0xx_hal_timebase_tim_template.c - * @brief HAL time base based on the hardware TIM Template. - * - * This file override the native HAL time base functions (defined as weak) - * the TIM time base: - * + Intializes the TIM peripheral generate a Period elapsed Event each 1ms - * + HAL_IncTick is called inside HAL_TIM_PeriodElapsedCallback ie each 1ms - * - ****************************************************************************** - * @attention - * - *

© Copyright (c) 2016 STMicroelectronics. - * All rights reserved.

- * - * This software component is licensed by ST under BSD 3-Clause license, - * the "License"; You may not use this file except in compliance with the - * License. You may obtain a copy of the License at: - * opensource.org/licenses/BSD-3-Clause - * - ****************************************************************************** - */ - -/* Includes ------------------------------------------------------------------*/ -#include "stm32f0xx_hal.h" - -/** @addtogroup STM32F0xx_HAL_Driver - * @{ - */ - -/** @addtogroup HAL_TimeBase_TIM - * @{ - */ - -/* Private typedef -----------------------------------------------------------*/ -/* Private define ------------------------------------------------------------*/ -/* Private macro -------------------------------------------------------------*/ -/* Private variables ---------------------------------------------------------*/ -TIM_HandleTypeDef TimHandle; -/* Private function prototypes -----------------------------------------------*/ -void TIM6_DAC_IRQHandler(void); -/* Private functions ---------------------------------------------------------*/ - -/** - * @brief This function configures the TIM6 as a time base source. - * The time source is configured to have 1ms time base with a dedicated - * Tick interrupt priority. - * @note This function is called automatically at the beginning of program after - * reset by HAL_Init() or at any time when clock is configured, by HAL_RCC_ClockConfig(). - * @param TickPriority Tick interrupt priority. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_InitTick (uint32_t TickPriority) -{ - RCC_ClkInitTypeDef clkconfig; - uint32_t uwTimclock, uwAPB1Prescaler = 0U; - uint32_t uwPrescalerValue = 0U; - uint32_t pFLatency; - - /*Configure the TIM6 IRQ priority */ - HAL_NVIC_SetPriority(TIM6_DAC_IRQn, TickPriority ,0U); - - /* Enable the TIM6 global Interrupt */ - HAL_NVIC_EnableIRQ(TIM6_DAC_IRQn); - - /* Enable TIM6 clock */ - __HAL_RCC_TIM6_CLK_ENABLE(); - - /* Get clock configuration */ - HAL_RCC_GetClockConfig(&clkconfig, &pFLatency); - - /* Get APB1 prescaler */ - uwAPB1Prescaler = clkconfig.APB1CLKDivider; - - /* Compute TIM6 clock */ - if (uwAPB1Prescaler == RCC_HCLK_DIV1) - { - uwTimclock = HAL_RCC_GetPCLK1Freq(); - } - else - { - uwTimclock = 2*HAL_RCC_GetPCLK1Freq(); - } - - /* Compute the prescaler value to have TIM6 counter clock equal to 1MHz */ - uwPrescalerValue = (uint32_t) ((uwTimclock / 1000000U) - 1U); - - /* Initialize TIM6 */ - TimHandle.Instance = TIM6; - - /* Initialize TIMx peripheral as follow: - + Period = [(TIM6CLK/1000) - 1]. to have a (1/1000) s time base. - + Prescaler = (uwTimclock/1000000 - 1) to have a 1MHz counter clock. - + ClockDivision = 0 - + Counter direction = Up - */ - TimHandle.Init.Period = (1000000U / 1000U) - 1U; - TimHandle.Init.Prescaler = uwPrescalerValue; - TimHandle.Init.ClockDivision = 0U; - TimHandle.Init.CounterMode = TIM_COUNTERMODE_UP; - TimHandle.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; - if(HAL_TIM_Base_Init(&TimHandle) == HAL_OK) - { - /* Start the TIM time Base generation in interrupt mode */ - return HAL_TIM_Base_Start_IT(&TimHandle); - } - - /* Return function status */ - return HAL_ERROR; -} - -/** - * @brief Suspend Tick increment. - * @note Disable the tick increment by disabling TIM6 update interrupt. - * @param None - * @retval None - */ -void HAL_SuspendTick(void) -{ - /* Disable TIM6 update Interrupt */ - __HAL_TIM_DISABLE_IT(&TimHandle, TIM_IT_UPDATE); -} - -/** - * @brief Resume Tick increment. - * @note Enable the tick increment by Enabling TIM6 update interrupt. - * @param None - * @retval None - */ -void HAL_ResumeTick(void) -{ - /* Enable TIM6 Update interrupt */ - __HAL_TIM_ENABLE_IT(&TimHandle, TIM_IT_UPDATE); -} - -/** - * @brief Period elapsed callback in non blocking mode - * @note This function is called when TIM6 interrupt took place, inside - * HAL_TIM_IRQHandler(). It makes a direct call to HAL_IncTick() to increment - * a global variable "uwTick" used as application time base. - * @param htim TIM handle - * @retval None - */ -void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) -{ - HAL_IncTick(); -} - -/** - * @brief This function handles TIM interrupt request. - * @param None - * @retval None - */ -void TIM6_DAC_IRQHandler(void) -{ - HAL_TIM_IRQHandler(&TimHandle); -} - -/** - * @} - */ - -/** - * @} - */ - -/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_tsc.c b/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_tsc.c deleted file mode 100644 index f4ee5cf..0000000 --- a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_tsc.c +++ /dev/null @@ -1,1078 +0,0 @@ -/** - ****************************************************************************** - * @file stm32f0xx_hal_tsc.c - * @author MCD Application Team - * @brief This file provides firmware functions to manage the following - * functionalities of the Touch Sensing Controller (TSC) peripheral: - * + Initialization and De-initialization - * + Channel IOs, Shield IOs and Sampling IOs configuration - * + Start and Stop an acquisition - * + Read acquisition result - * + Interrupts and flags management - * - @verbatim -================================================================================ - ##### TSC specific features ##### -================================================================================ - [..] - (#) Proven and robust surface charge transfer acquisition principle - - (#) Supports up to 3 capacitive sensing channels per group - - (#) Capacitive sensing channels can be acquired in parallel offering a very good - response time - - (#) Spread spectrum feature to improve system robustness in noisy environments - - (#) Full hardware management of the charge transfer acquisition sequence - - (#) Programmable charge transfer frequency - - (#) Programmable sampling capacitor I/O pin - - (#) Programmable channel I/O pin - - (#) Programmable max count value to avoid long acquisition when a channel is faulty - - (#) Dedicated end of acquisition and max count error flags with interrupt capability - - (#) One sampling capacitor for up to 3 capacitive sensing channels to reduce the system - components - - (#) Compatible with proximity, touchkey, linear and rotary touch sensor implementation - - ##### How to use this driver ##### -================================================================================ - [..] - (#) Enable the TSC interface clock using __HAL_RCC_TSC_CLK_ENABLE() macro. - - (#) GPIO pins configuration - (++) Enable the clock for the TSC GPIOs using __HAL_RCC_GPIOx_CLK_ENABLE() macro. - (++) Configure the TSC pins used as sampling IOs in alternate function output Open-Drain mode, - and TSC pins used as channel/shield IOs in alternate function output Push-Pull mode - using HAL_GPIO_Init() function. - - (#) Interrupts configuration - (++) Configure the NVIC (if the interrupt model is used) using HAL_NVIC_SetPriority() - and HAL_NVIC_EnableIRQ() and function. - - (#) TSC configuration - (++) Configure all TSC parameters and used TSC IOs using HAL_TSC_Init() function. - - [..] TSC peripheral alternate functions are mapped on AF9. - - *** Acquisition sequence *** - =================================== - [..] - (+) Discharge all IOs using HAL_TSC_IODischarge() function. - (+) Wait a certain time allowing a good discharge of all capacitors. This delay depends - of the sampling capacitor and electrodes design. - (+) Select the channel IOs to be acquired using HAL_TSC_IOConfig() function. - (+) Launch the acquisition using either HAL_TSC_Start() or HAL_TSC_Start_IT() function. - If the synchronized mode is selected, the acquisition will start as soon as the signal - is received on the synchro pin. - (+) Wait the end of acquisition using either HAL_TSC_PollForAcquisition() or - HAL_TSC_GetState() function or using WFI instruction for example. - (+) Check the group acquisition status using HAL_TSC_GroupGetStatus() function. - (+) Read the acquisition value using HAL_TSC_GroupGetValue() function. - - *** Callback registration *** - ============================================= - - [..] - The compilation flag USE_HAL_TSC_REGISTER_CALLBACKS when set to 1 - allows the user to configure dynamically the driver callbacks. - Use Functions @ref HAL_TSC_RegisterCallback() to register an interrupt callback. - - [..] - Function @ref HAL_TSC_RegisterCallback() allows to register following callbacks: - (+) ConvCpltCallback : callback for conversion complete process. - (+) ErrorCallback : callback for error detection. - (+) MspInitCallback : callback for Msp Init. - (+) MspDeInitCallback : callback for Msp DeInit. - [..] - This function takes as parameters the HAL peripheral handle, the Callback ID - and a pointer to the user callback function. - - [..] - Use function @ref HAL_TSC_UnRegisterCallback to reset a callback to the default - weak function. - @ref HAL_TSC_UnRegisterCallback takes as parameters the HAL peripheral handle, - and the Callback ID. - [..] - This function allows to reset following callbacks: - (+) ConvCpltCallback : callback for conversion complete process. - (+) ErrorCallback : callback for error detection. - (+) MspInitCallback : callback for Msp Init. - (+) MspDeInitCallback : callback for Msp DeInit. - - [..] - By default, after the @ref HAL_TSC_Init() and when the state is @ref HAL_TSC_STATE_RESET - all callbacks are set to the corresponding weak functions: - examples @ref HAL_TSC_ConvCpltCallback(), @ref HAL_TSC_ErrorCallback(). - Exception done for MspInit and MspDeInit functions that are - reset to the legacy weak functions in the @ref HAL_TSC_Init()/ @ref HAL_TSC_DeInit() only when - these callbacks are null (not registered beforehand). - If MspInit or MspDeInit are not null, the @ref HAL_TSC_Init()/ @ref HAL_TSC_DeInit() - keep and use the user MspInit/MspDeInit callbacks (registered beforehand) whatever the state. - - [..] - Callbacks can be registered/unregistered in @ref HAL_TSC_STATE_READY state only. - Exception done MspInit/MspDeInit functions that can be registered/unregistered - in @ref HAL_TSC_STATE_READY or @ref HAL_TSC_STATE_RESET state, - thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit. - Then, the user first registers the MspInit/MspDeInit user callbacks - using @ref HAL_TSC_RegisterCallback() before calling @ref HAL_TSC_DeInit() - or @ref HAL_TSC_Init() function. - - [..] - When the compilation flag USE_HAL_TSC_REGISTER_CALLBACKS is set to 0 or - not defined, the callback registration feature is not available and all callbacks - are set to the corresponding weak functions. - - @endverbatim - ****************************************************************************** - ****************************************************************************** - * @attention - * - *

© Copyright (c) 2016 STMicroelectronics. - * All rights reserved.

- * - * This software component is licensed by ST under BSD 3-Clause license, - * the "License"; You may not use this file except in compliance with the - * License. You may obtain a copy of the License at: - * opensource.org/licenses/BSD-3-Clause - * - ****************************************************************************** - */ - -/* Includes ------------------------------------------------------------------*/ -#include "stm32f0xx_hal.h" - -#if defined(TSC) -/** @addtogroup STM32F0xx_HAL_Driver - * @{ - */ - -/** @defgroup TSC TSC - * @brief HAL TSC module driver - * @{ - */ - -#ifdef HAL_TSC_MODULE_ENABLED - -/* Private typedef -----------------------------------------------------------*/ -/* Private define ------------------------------------------------------------*/ -/* Private macro -------------------------------------------------------------*/ -/* Private variables ---------------------------------------------------------*/ -/* Private function prototypes -----------------------------------------------*/ -static uint32_t TSC_extract_groups(uint32_t iomask); - -/* Exported functions --------------------------------------------------------*/ - -/** @defgroup TSC_Exported_Functions TSC Exported Functions - * @{ - */ - -/** @defgroup TSC_Exported_Functions_Group1 Initialization and de-initialization functions - * @brief Initialization and Configuration functions - * -@verbatim - =============================================================================== - ##### Initialization and de-initialization functions ##### - =============================================================================== - [..] This section provides functions allowing to: - (+) Initialize and configure the TSC. - (+) De-initialize the TSC. -@endverbatim - * @{ - */ - -/** - * @brief Initialize the TSC peripheral according to the specified parameters - * in the TSC_InitTypeDef structure and initialize the associated handle. - * @param htsc TSC handle - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TSC_Init(TSC_HandleTypeDef *htsc) -{ - /* Check TSC handle allocation */ - if (htsc == NULL) - { - return HAL_ERROR; - } - - /* Check the parameters */ - assert_param(IS_TSC_ALL_INSTANCE(htsc->Instance)); - assert_param(IS_TSC_CTPH(htsc->Init.CTPulseHighLength)); - assert_param(IS_TSC_CTPL(htsc->Init.CTPulseLowLength)); - assert_param(IS_TSC_SS(htsc->Init.SpreadSpectrum)); - assert_param(IS_TSC_SSD(htsc->Init.SpreadSpectrumDeviation)); - assert_param(IS_TSC_SS_PRESC(htsc->Init.SpreadSpectrumPrescaler)); - assert_param(IS_TSC_PG_PRESC(htsc->Init.PulseGeneratorPrescaler)); - assert_param(IS_TSC_MCV(htsc->Init.MaxCountValue)); - assert_param(IS_TSC_IODEF(htsc->Init.IODefaultMode)); - assert_param(IS_TSC_SYNC_POL(htsc->Init.SynchroPinPolarity)); - assert_param(IS_TSC_ACQ_MODE(htsc->Init.AcquisitionMode)); - assert_param(IS_TSC_MCE_IT(htsc->Init.MaxCountInterrupt)); - assert_param(IS_TSC_GROUP(htsc->Init.ChannelIOs)); - assert_param(IS_TSC_GROUP(htsc->Init.ShieldIOs)); - assert_param(IS_TSC_GROUP(htsc->Init.SamplingIOs)); - - if (htsc->State == HAL_TSC_STATE_RESET) - { - /* Allocate lock resource and initialize it */ - htsc->Lock = HAL_UNLOCKED; - -#if (USE_HAL_TSC_REGISTER_CALLBACKS == 1) - /* Init the TSC Callback settings */ - htsc->ConvCpltCallback = HAL_TSC_ConvCpltCallback; /* Legacy weak ConvCpltCallback */ - htsc->ErrorCallback = HAL_TSC_ErrorCallback; /* Legacy weak ErrorCallback */ - - if (htsc->MspInitCallback == NULL) - { - htsc->MspInitCallback = HAL_TSC_MspInit; /* Legacy weak MspInit */ - } - - /* Init the low level hardware : GPIO, CLOCK, CORTEX...etc */ - htsc->MspInitCallback(htsc); -#else - /* Init the low level hardware : GPIO, CLOCK, CORTEX */ - HAL_TSC_MspInit(htsc); -#endif /* USE_HAL_TSC_REGISTER_CALLBACKS */ - } - - /* Initialize the TSC state */ - htsc->State = HAL_TSC_STATE_BUSY; - - /*--------------------------------------------------------------------------*/ - /* Set TSC parameters */ - - /* Enable TSC */ - htsc->Instance->CR = TSC_CR_TSCE; - - /* Set all functions */ - htsc->Instance->CR |= (htsc->Init.CTPulseHighLength | - htsc->Init.CTPulseLowLength | - (htsc->Init.SpreadSpectrumDeviation << TSC_CR_SSD_Pos) | - htsc->Init.SpreadSpectrumPrescaler | - htsc->Init.PulseGeneratorPrescaler | - htsc->Init.MaxCountValue | - htsc->Init.SynchroPinPolarity | - htsc->Init.AcquisitionMode); - - /* Spread spectrum */ - if (htsc->Init.SpreadSpectrum == ENABLE) - { - htsc->Instance->CR |= TSC_CR_SSE; - } - - /* Disable Schmitt trigger hysteresis on all used TSC IOs */ - htsc->Instance->IOHCR = (~(htsc->Init.ChannelIOs | htsc->Init.ShieldIOs | htsc->Init.SamplingIOs)); - - /* Set channel and shield IOs */ - htsc->Instance->IOCCR = (htsc->Init.ChannelIOs | htsc->Init.ShieldIOs); - - /* Set sampling IOs */ - htsc->Instance->IOSCR = htsc->Init.SamplingIOs; - - /* Set the groups to be acquired */ - htsc->Instance->IOGCSR = TSC_extract_groups(htsc->Init.ChannelIOs); - - /* Disable interrupts */ - htsc->Instance->IER &= (~(TSC_IT_EOA | TSC_IT_MCE)); - - /* Clear flags */ - htsc->Instance->ICR = (TSC_FLAG_EOA | TSC_FLAG_MCE); - - /*--------------------------------------------------------------------------*/ - - /* Initialize the TSC state */ - htsc->State = HAL_TSC_STATE_READY; - - /* Return function status */ - return HAL_OK; -} - -/** - * @brief Deinitialize the TSC peripheral registers to their default reset values. - * @param htsc TSC handle - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TSC_DeInit(TSC_HandleTypeDef *htsc) -{ - /* Check TSC handle allocation */ - if (htsc == NULL) - { - return HAL_ERROR; - } - - /* Check the parameters */ - assert_param(IS_TSC_ALL_INSTANCE(htsc->Instance)); - - /* Change TSC state */ - htsc->State = HAL_TSC_STATE_BUSY; - -#if (USE_HAL_TSC_REGISTER_CALLBACKS == 1) - if (htsc->MspDeInitCallback == NULL) - { - htsc->MspDeInitCallback = HAL_TSC_MspDeInit; /* Legacy weak MspDeInit */ - } - - /* DeInit the low level hardware: GPIO, CLOCK, NVIC */ - htsc->MspDeInitCallback(htsc); -#else - /* DeInit the low level hardware */ - HAL_TSC_MspDeInit(htsc); -#endif /* USE_HAL_TSC_REGISTER_CALLBACKS */ - - /* Change TSC state */ - htsc->State = HAL_TSC_STATE_RESET; - - /* Process unlocked */ - __HAL_UNLOCK(htsc); - - /* Return function status */ - return HAL_OK; -} - -/** - * @brief Initialize the TSC MSP. - * @param htsc Pointer to a TSC_HandleTypeDef structure that contains - * the configuration information for the specified TSC. - * @retval None - */ -__weak void HAL_TSC_MspInit(TSC_HandleTypeDef *htsc) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(htsc); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_TSC_MspInit could be implemented in the user file. - */ -} - -/** - * @brief DeInitialize the TSC MSP. - * @param htsc Pointer to a TSC_HandleTypeDef structure that contains - * the configuration information for the specified TSC. - * @retval None - */ -__weak void HAL_TSC_MspDeInit(TSC_HandleTypeDef *htsc) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(htsc); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_TSC_MspDeInit could be implemented in the user file. - */ -} - -#if (USE_HAL_TSC_REGISTER_CALLBACKS == 1) -/** - * @brief Register a User TSC Callback - * To be used instead of the weak predefined callback - * @param htsc Pointer to a TSC_HandleTypeDef structure that contains - * the configuration information for the specified TSC. - * @param CallbackID ID of the callback to be registered - * This parameter can be one of the following values: - * @arg @ref HAL_TSC_CONV_COMPLETE_CB_ID Conversion completed callback ID - * @arg @ref HAL_TSC_ERROR_CB_ID Error callback ID - * @arg @ref HAL_TSC_MSPINIT_CB_ID MspInit callback ID - * @arg @ref HAL_TSC_MSPDEINIT_CB_ID MspDeInit callback ID - * @param pCallback pointer to the Callback function - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TSC_RegisterCallback(TSC_HandleTypeDef *htsc, HAL_TSC_CallbackIDTypeDef CallbackID, pTSC_CallbackTypeDef pCallback) -{ - HAL_StatusTypeDef status = HAL_OK; - - if (pCallback == NULL) - { - /* Update the error code */ - htsc->ErrorCode |= HAL_TSC_ERROR_INVALID_CALLBACK; - - return HAL_ERROR; - } - /* Process locked */ - __HAL_LOCK(htsc); - - if (HAL_TSC_STATE_READY == htsc->State) - { - switch (CallbackID) - { - case HAL_TSC_CONV_COMPLETE_CB_ID : - htsc->ConvCpltCallback = pCallback; - break; - - case HAL_TSC_ERROR_CB_ID : - htsc->ErrorCallback = pCallback; - break; - - case HAL_TSC_MSPINIT_CB_ID : - htsc->MspInitCallback = pCallback; - break; - - case HAL_TSC_MSPDEINIT_CB_ID : - htsc->MspDeInitCallback = pCallback; - break; - - default : - /* Update the error code */ - htsc->ErrorCode |= HAL_TSC_ERROR_INVALID_CALLBACK; - - /* Return error status */ - status = HAL_ERROR; - break; - } - } - else if (HAL_TSC_STATE_RESET == htsc->State) - { - switch (CallbackID) - { - case HAL_TSC_MSPINIT_CB_ID : - htsc->MspInitCallback = pCallback; - break; - - case HAL_TSC_MSPDEINIT_CB_ID : - htsc->MspDeInitCallback = pCallback; - break; - - default : - /* Update the error code */ - htsc->ErrorCode |= HAL_TSC_ERROR_INVALID_CALLBACK; - - /* Return error status */ - status = HAL_ERROR; - break; - } - } - else - { - /* Update the error code */ - htsc->ErrorCode |= HAL_TSC_ERROR_INVALID_CALLBACK; - - /* Return error status */ - status = HAL_ERROR; - } - - /* Release Lock */ - __HAL_UNLOCK(htsc); - return status; -} - -/** - * @brief Unregister an TSC Callback - * TSC callback is redirected to the weak predefined callback - * @param htsc Pointer to a TSC_HandleTypeDef structure that contains - * the configuration information for the specified TSC. - * @param CallbackID ID of the callback to be unregistered - * This parameter can be one of the following values: - * This parameter can be one of the following values: - * @arg @ref HAL_TSC_CONV_COMPLETE_CB_ID Conversion completed callback ID - * @arg @ref HAL_TSC_ERROR_CB_ID Error callback ID - * @arg @ref HAL_TSC_MSPINIT_CB_ID MspInit callback ID - * @arg @ref HAL_TSC_MSPDEINIT_CB_ID MspDeInit callback ID - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TSC_UnRegisterCallback(TSC_HandleTypeDef *htsc, HAL_TSC_CallbackIDTypeDef CallbackID) -{ - HAL_StatusTypeDef status = HAL_OK; - - /* Process locked */ - __HAL_LOCK(htsc); - - if (HAL_TSC_STATE_READY == htsc->State) - { - switch (CallbackID) - { - case HAL_TSC_CONV_COMPLETE_CB_ID : - htsc->ConvCpltCallback = HAL_TSC_ConvCpltCallback; /* Legacy weak ConvCpltCallback */ - break; - - case HAL_TSC_ERROR_CB_ID : - htsc->ErrorCallback = HAL_TSC_ErrorCallback; /* Legacy weak ErrorCallback */ - break; - - case HAL_TSC_MSPINIT_CB_ID : - htsc->MspInitCallback = HAL_TSC_MspInit; /* Legacy weak MspInit */ - break; - - case HAL_TSC_MSPDEINIT_CB_ID : - htsc->MspDeInitCallback = HAL_TSC_MspDeInit; /* Legacy weak MspDeInit */ - break; - - default : - /* Update the error code */ - htsc->ErrorCode |= HAL_TSC_ERROR_INVALID_CALLBACK; - - /* Return error status */ - status = HAL_ERROR; - break; - } - } - else if (HAL_TSC_STATE_RESET == htsc->State) - { - switch (CallbackID) - { - case HAL_TSC_MSPINIT_CB_ID : - htsc->MspInitCallback = HAL_TSC_MspInit; /* Legacy weak MspInit */ - break; - - case HAL_TSC_MSPDEINIT_CB_ID : - htsc->MspDeInitCallback = HAL_TSC_MspDeInit; /* Legacy weak MspDeInit */ - break; - - default : - /* Update the error code */ - htsc->ErrorCode |= HAL_TSC_ERROR_INVALID_CALLBACK; - - /* Return error status */ - status = HAL_ERROR; - break; - } - } - else - { - /* Update the error code */ - htsc->ErrorCode |= HAL_TSC_ERROR_INVALID_CALLBACK; - - /* Return error status */ - status = HAL_ERROR; - } - - /* Release Lock */ - __HAL_UNLOCK(htsc); - return status; -} - -#endif /* USE_HAL_TSC_REGISTER_CALLBACKS */ - -/** - * @} - */ - -/** @defgroup TSC_Exported_Functions_Group2 Input and Output operation functions - * @brief Input and Output operation functions - * -@verbatim - =============================================================================== - ##### IO Operation functions ##### - =============================================================================== - [..] This section provides functions allowing to: - (+) Start acquisition in polling mode. - (+) Start acquisition in interrupt mode. - (+) Stop conversion in polling mode. - (+) Stop conversion in interrupt mode. - (+) Poll for acquisition completed. - (+) Get group acquisition status. - (+) Get group acquisition value. -@endverbatim - * @{ - */ - -/** - * @brief Start the acquisition. - * @param htsc Pointer to a TSC_HandleTypeDef structure that contains - * the configuration information for the specified TSC. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TSC_Start(TSC_HandleTypeDef *htsc) -{ - /* Check the parameters */ - assert_param(IS_TSC_ALL_INSTANCE(htsc->Instance)); - - /* Process locked */ - __HAL_LOCK(htsc); - - /* Change TSC state */ - htsc->State = HAL_TSC_STATE_BUSY; - - /* Clear interrupts */ - __HAL_TSC_DISABLE_IT(htsc, (TSC_IT_EOA | TSC_IT_MCE)); - - /* Clear flags */ - __HAL_TSC_CLEAR_FLAG(htsc, (TSC_FLAG_EOA | TSC_FLAG_MCE)); - - /* Set touch sensing IOs not acquired to the specified IODefaultMode */ - if (htsc->Init.IODefaultMode == TSC_IODEF_OUT_PP_LOW) - { - __HAL_TSC_SET_IODEF_OUTPPLOW(htsc); - } - else - { - __HAL_TSC_SET_IODEF_INFLOAT(htsc); - } - - /* Launch the acquisition */ - __HAL_TSC_START_ACQ(htsc); - - /* Process unlocked */ - __HAL_UNLOCK(htsc); - - /* Return function status */ - return HAL_OK; -} - -/** - * @brief Start the acquisition in interrupt mode. - * @param htsc Pointer to a TSC_HandleTypeDef structure that contains - * the configuration information for the specified TSC. - * @retval HAL status. - */ -HAL_StatusTypeDef HAL_TSC_Start_IT(TSC_HandleTypeDef *htsc) -{ - /* Check the parameters */ - assert_param(IS_TSC_ALL_INSTANCE(htsc->Instance)); - assert_param(IS_TSC_MCE_IT(htsc->Init.MaxCountInterrupt)); - - /* Process locked */ - __HAL_LOCK(htsc); - - /* Change TSC state */ - htsc->State = HAL_TSC_STATE_BUSY; - - /* Enable end of acquisition interrupt */ - __HAL_TSC_ENABLE_IT(htsc, TSC_IT_EOA); - - /* Enable max count error interrupt (optional) */ - if (htsc->Init.MaxCountInterrupt == ENABLE) - { - __HAL_TSC_ENABLE_IT(htsc, TSC_IT_MCE); - } - else - { - __HAL_TSC_DISABLE_IT(htsc, TSC_IT_MCE); - } - - /* Clear flags */ - __HAL_TSC_CLEAR_FLAG(htsc, (TSC_FLAG_EOA | TSC_FLAG_MCE)); - - /* Set touch sensing IOs not acquired to the specified IODefaultMode */ - if (htsc->Init.IODefaultMode == TSC_IODEF_OUT_PP_LOW) - { - __HAL_TSC_SET_IODEF_OUTPPLOW(htsc); - } - else - { - __HAL_TSC_SET_IODEF_INFLOAT(htsc); - } - - /* Launch the acquisition */ - __HAL_TSC_START_ACQ(htsc); - - /* Process unlocked */ - __HAL_UNLOCK(htsc); - - /* Return function status */ - return HAL_OK; -} - -/** - * @brief Stop the acquisition previously launched in polling mode. - * @param htsc Pointer to a TSC_HandleTypeDef structure that contains - * the configuration information for the specified TSC. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TSC_Stop(TSC_HandleTypeDef *htsc) -{ - /* Check the parameters */ - assert_param(IS_TSC_ALL_INSTANCE(htsc->Instance)); - - /* Process locked */ - __HAL_LOCK(htsc); - - /* Stop the acquisition */ - __HAL_TSC_STOP_ACQ(htsc); - - /* Set touch sensing IOs in low power mode (output push-pull) */ - __HAL_TSC_SET_IODEF_OUTPPLOW(htsc); - - /* Clear flags */ - __HAL_TSC_CLEAR_FLAG(htsc, (TSC_FLAG_EOA | TSC_FLAG_MCE)); - - /* Change TSC state */ - htsc->State = HAL_TSC_STATE_READY; - - /* Process unlocked */ - __HAL_UNLOCK(htsc); - - /* Return function status */ - return HAL_OK; -} - -/** - * @brief Stop the acquisition previously launched in interrupt mode. - * @param htsc Pointer to a TSC_HandleTypeDef structure that contains - * the configuration information for the specified TSC. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TSC_Stop_IT(TSC_HandleTypeDef *htsc) -{ - /* Check the parameters */ - assert_param(IS_TSC_ALL_INSTANCE(htsc->Instance)); - - /* Process locked */ - __HAL_LOCK(htsc); - - /* Stop the acquisition */ - __HAL_TSC_STOP_ACQ(htsc); - - /* Set touch sensing IOs in low power mode (output push-pull) */ - __HAL_TSC_SET_IODEF_OUTPPLOW(htsc); - - /* Disable interrupts */ - __HAL_TSC_DISABLE_IT(htsc, (TSC_IT_EOA | TSC_IT_MCE)); - - /* Clear flags */ - __HAL_TSC_CLEAR_FLAG(htsc, (TSC_FLAG_EOA | TSC_FLAG_MCE)); - - /* Change TSC state */ - htsc->State = HAL_TSC_STATE_READY; - - /* Process unlocked */ - __HAL_UNLOCK(htsc); - - /* Return function status */ - return HAL_OK; -} - -/** - * @brief Start acquisition and wait until completion. - * @note There is no need of a timeout parameter as the max count error is already - * managed by the TSC peripheral. - * @param htsc Pointer to a TSC_HandleTypeDef structure that contains - * the configuration information for the specified TSC. - * @retval HAL state - */ -HAL_StatusTypeDef HAL_TSC_PollForAcquisition(TSC_HandleTypeDef *htsc) -{ - /* Check the parameters */ - assert_param(IS_TSC_ALL_INSTANCE(htsc->Instance)); - - /* Process locked */ - __HAL_LOCK(htsc); - - /* Check end of acquisition */ - while (HAL_TSC_GetState(htsc) == HAL_TSC_STATE_BUSY) - { - /* The timeout (max count error) is managed by the TSC peripheral itself. */ - } - - /* Process unlocked */ - __HAL_UNLOCK(htsc); - - return HAL_OK; -} - -/** - * @brief Get the acquisition status for a group. - * @param htsc Pointer to a TSC_HandleTypeDef structure that contains - * the configuration information for the specified TSC. - * @param gx_index Index of the group - * @retval Group status - */ -TSC_GroupStatusTypeDef HAL_TSC_GroupGetStatus(TSC_HandleTypeDef *htsc, uint32_t gx_index) -{ - /* Check the parameters */ - assert_param(IS_TSC_ALL_INSTANCE(htsc->Instance)); - assert_param(IS_TSC_GROUP_INDEX(gx_index)); - - /* Return the group status */ - return (__HAL_TSC_GET_GROUP_STATUS(htsc, gx_index)); -} - -/** - * @brief Get the acquisition measure for a group. - * @param htsc Pointer to a TSC_HandleTypeDef structure that contains - * the configuration information for the specified TSC. - * @param gx_index Index of the group - * @retval Acquisition measure - */ -uint32_t HAL_TSC_GroupGetValue(TSC_HandleTypeDef *htsc, uint32_t gx_index) -{ - /* Check the parameters */ - assert_param(IS_TSC_ALL_INSTANCE(htsc->Instance)); - assert_param(IS_TSC_GROUP_INDEX(gx_index)); - - /* Return the group acquisition counter */ - return htsc->Instance->IOGXCR[gx_index]; -} - -/** - * @} - */ - -/** @defgroup TSC_Exported_Functions_Group3 Peripheral Control functions - * @brief Peripheral Control functions - * -@verbatim - =============================================================================== - ##### Peripheral Control functions ##### - =============================================================================== - [..] This section provides functions allowing to: - (+) Configure TSC IOs - (+) Discharge TSC IOs -@endverbatim - * @{ - */ - -/** - * @brief Configure TSC IOs. - * @param htsc Pointer to a TSC_HandleTypeDef structure that contains - * the configuration information for the specified TSC. - * @param config Pointer to the configuration structure. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TSC_IOConfig(TSC_HandleTypeDef *htsc, TSC_IOConfigTypeDef *config) -{ - /* Check the parameters */ - assert_param(IS_TSC_ALL_INSTANCE(htsc->Instance)); - assert_param(IS_TSC_GROUP(config->ChannelIOs)); - assert_param(IS_TSC_GROUP(config->ShieldIOs)); - assert_param(IS_TSC_GROUP(config->SamplingIOs)); - - /* Process locked */ - __HAL_LOCK(htsc); - - /* Stop acquisition */ - __HAL_TSC_STOP_ACQ(htsc); - - /* Disable Schmitt trigger hysteresis on all used TSC IOs */ - htsc->Instance->IOHCR = (~(config->ChannelIOs | config->ShieldIOs | config->SamplingIOs)); - - /* Set channel and shield IOs */ - htsc->Instance->IOCCR = (config->ChannelIOs | config->ShieldIOs); - - /* Set sampling IOs */ - htsc->Instance->IOSCR = config->SamplingIOs; - - /* Set groups to be acquired */ - htsc->Instance->IOGCSR = TSC_extract_groups(config->ChannelIOs); - - /* Process unlocked */ - __HAL_UNLOCK(htsc); - - /* Return function status */ - return HAL_OK; -} - -/** - * @brief Discharge TSC IOs. - * @param htsc Pointer to a TSC_HandleTypeDef structure that contains - * the configuration information for the specified TSC. - * @param choice This parameter can be set to ENABLE or DISABLE. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_TSC_IODischarge(TSC_HandleTypeDef *htsc, FunctionalState choice) -{ - /* Check the parameters */ - assert_param(IS_TSC_ALL_INSTANCE(htsc->Instance)); - - /* Process locked */ - __HAL_LOCK(htsc); - - if (choice == ENABLE) - { - __HAL_TSC_SET_IODEF_OUTPPLOW(htsc); - } - else - { - __HAL_TSC_SET_IODEF_INFLOAT(htsc); - } - - /* Process unlocked */ - __HAL_UNLOCK(htsc); - - /* Return the group acquisition counter */ - return HAL_OK; -} - -/** - * @} - */ - -/** @defgroup TSC_Exported_Functions_Group4 Peripheral State and Errors functions - * @brief Peripheral State and Errors functions - * -@verbatim - =============================================================================== - ##### State and Errors functions ##### - =============================================================================== - [..] - This subsection provides functions allowing to - (+) Get TSC state. - -@endverbatim - * @{ - */ - -/** - * @brief Return the TSC handle state. - * @param htsc Pointer to a TSC_HandleTypeDef structure that contains - * the configuration information for the specified TSC. - * @retval HAL state - */ -HAL_TSC_StateTypeDef HAL_TSC_GetState(TSC_HandleTypeDef *htsc) -{ - /* Check the parameters */ - assert_param(IS_TSC_ALL_INSTANCE(htsc->Instance)); - - if (htsc->State == HAL_TSC_STATE_BUSY) - { - /* Check end of acquisition flag */ - if (__HAL_TSC_GET_FLAG(htsc, TSC_FLAG_EOA) != RESET) - { - /* Check max count error flag */ - if (__HAL_TSC_GET_FLAG(htsc, TSC_FLAG_MCE) != RESET) - { - /* Change TSC state */ - htsc->State = HAL_TSC_STATE_ERROR; - } - else - { - /* Change TSC state */ - htsc->State = HAL_TSC_STATE_READY; - } - } - } - - /* Return TSC state */ - return htsc->State; -} - -/** - * @} - */ - -/** @defgroup TSC_IRQ_Handler_and_Callbacks IRQ Handler and Callbacks - * @{ - */ - -/** - * @brief Handle TSC interrupt request. - * @param htsc Pointer to a TSC_HandleTypeDef structure that contains - * the configuration information for the specified TSC. - * @retval None - */ -void HAL_TSC_IRQHandler(TSC_HandleTypeDef *htsc) -{ - /* Check the parameters */ - assert_param(IS_TSC_ALL_INSTANCE(htsc->Instance)); - - /* Check if the end of acquisition occurred */ - if (__HAL_TSC_GET_FLAG(htsc, TSC_FLAG_EOA) != RESET) - { - /* Clear EOA flag */ - __HAL_TSC_CLEAR_FLAG(htsc, TSC_FLAG_EOA); - } - - /* Check if max count error occurred */ - if (__HAL_TSC_GET_FLAG(htsc, TSC_FLAG_MCE) != RESET) - { - /* Clear MCE flag */ - __HAL_TSC_CLEAR_FLAG(htsc, TSC_FLAG_MCE); - /* Change TSC state */ - htsc->State = HAL_TSC_STATE_ERROR; -#if (USE_HAL_TSC_REGISTER_CALLBACKS == 1) - htsc->ErrorCallback(htsc); -#else - /* Conversion completed callback */ - HAL_TSC_ErrorCallback(htsc); -#endif /* USE_HAL_TSC_REGISTER_CALLBACKS */ - } - else - { - /* Change TSC state */ - htsc->State = HAL_TSC_STATE_READY; -#if (USE_HAL_TSC_REGISTER_CALLBACKS == 1) - htsc->ConvCpltCallback(htsc); -#else - /* Conversion completed callback */ - HAL_TSC_ConvCpltCallback(htsc); -#endif /* USE_HAL_TSC_REGISTER_CALLBACKS */ - } -} - -/** - * @brief Acquisition completed callback in non-blocking mode. - * @param htsc Pointer to a TSC_HandleTypeDef structure that contains - * the configuration information for the specified TSC. - * @retval None - */ -__weak void HAL_TSC_ConvCpltCallback(TSC_HandleTypeDef *htsc) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(htsc); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_TSC_ConvCpltCallback could be implemented in the user file. - */ -} - -/** - * @brief Error callback in non-blocking mode. - * @param htsc Pointer to a TSC_HandleTypeDef structure that contains - * the configuration information for the specified TSC. - * @retval None - */ -__weak void HAL_TSC_ErrorCallback(TSC_HandleTypeDef *htsc) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(htsc); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_TSC_ErrorCallback could be implemented in the user file. - */ -} - -/** - * @} - */ - -/** - * @} - */ - -/* Private functions ---------------------------------------------------------*/ -/** @defgroup TSC_Private_Functions TSC Private Functions - * @{ - */ - -/** - * @brief Utility function used to set the acquired groups mask. - * @param iomask Channels IOs mask - * @retval Acquired groups mask - */ -static uint32_t TSC_extract_groups(uint32_t iomask) -{ - uint32_t groups = 0UL; - uint32_t idx; - - for (idx = 0UL; idx < (uint32_t)TSC_NB_OF_GROUPS; idx++) - { - if ((iomask & (0x0FUL << (idx * 4UL))) != 0UL ) - { - groups |= (1UL << idx); - } - } - - return groups; -} - -/** - * @} - */ - -#endif /* HAL_TSC_MODULE_ENABLED */ - -/** - * @} - */ - -/** - * @} - */ - -#endif /* TSC */ -/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_uart.c b/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_uart.c deleted file mode 100644 index cc0a879..0000000 --- a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_uart.c +++ /dev/null @@ -1,3738 +0,0 @@ -/** - ****************************************************************************** - * @file stm32f0xx_hal_uart.c - * @author MCD Application Team - * @brief UART HAL module driver. - * This file provides firmware functions to manage the following - * functionalities of the Universal Asynchronous Receiver Transmitter Peripheral (UART). - * + Initialization and de-initialization functions - * + IO operation functions - * + Peripheral Control functions - * - * - @verbatim - =============================================================================== - ##### How to use this driver ##### - =============================================================================== - [..] - The UART HAL driver can be used as follows: - - (#) Declare a UART_HandleTypeDef handle structure (eg. UART_HandleTypeDef huart). - (#) Initialize the UART low level resources by implementing the HAL_UART_MspInit() API: - (++) Enable the USARTx interface clock. - (++) UART pins configuration: - (+++) Enable the clock for the UART GPIOs. - (+++) Configure these UART pins as alternate function pull-up. - (++) NVIC configuration if you need to use interrupt process (HAL_UART_Transmit_IT() - and HAL_UART_Receive_IT() APIs): - (+++) Configure the USARTx interrupt priority. - (+++) Enable the NVIC USART IRQ handle. - (++) UART interrupts handling: - -@@- The specific UART interrupts (Transmission complete interrupt, - RXNE interrupt, RX/TX FIFOs related interrupts and Error Interrupts) - are managed using the macros __HAL_UART_ENABLE_IT() and __HAL_UART_DISABLE_IT() - inside the transmit and receive processes. - (++) DMA Configuration if you need to use DMA process (HAL_UART_Transmit_DMA() - and HAL_UART_Receive_DMA() APIs): - (+++) Declare a DMA handle structure for the Tx/Rx channel. - (+++) Enable the DMAx interface clock. - (+++) Configure the declared DMA handle structure with the required Tx/Rx parameters. - (+++) Configure the DMA Tx/Rx channel. - (+++) Associate the initialized DMA handle to the UART DMA Tx/Rx handle. - (+++) Configure the priority and enable the NVIC for the transfer complete interrupt on the DMA Tx/Rx channel. - - (#) Program the Baud Rate, Word Length, Stop Bit, Parity, Hardware - flow control and Mode (Receiver/Transmitter) in the huart handle Init structure. - - (#) If required, program UART advanced features (TX/RX pins swap, auto Baud rate detection,...) - in the huart handle AdvancedInit structure. - - (#) For the UART asynchronous mode, initialize the UART registers by calling - the HAL_UART_Init() API. - - (#) For the UART Half duplex mode, initialize the UART registers by calling - the HAL_HalfDuplex_Init() API. - - (#) For the UART LIN (Local Interconnection Network) mode, initialize the UART registers - by calling the HAL_LIN_Init() API. - - (#) For the UART Multiprocessor mode, initialize the UART registers - by calling the HAL_MultiProcessor_Init() API. - - (#) For the UART RS485 Driver Enabled mode, initialize the UART registers - by calling the HAL_RS485Ex_Init() API. - - [..] - (@) These API's (HAL_UART_Init(), HAL_HalfDuplex_Init(), HAL_LIN_Init(), HAL_MultiProcessor_Init(), - also configure the low level Hardware GPIO, CLOCK, CORTEX...etc) by - calling the customized HAL_UART_MspInit() API. - - ##### Callback registration ##### - ================================== - - [..] - The compilation define USE_HAL_UART_REGISTER_CALLBACKS when set to 1 - allows the user to configure dynamically the driver callbacks. - - [..] - Use Function @ref HAL_UART_RegisterCallback() to register a user callback. - Function @ref HAL_UART_RegisterCallback() allows to register following callbacks: - (+) TxHalfCpltCallback : Tx Half Complete Callback. - (+) TxCpltCallback : Tx Complete Callback. - (+) RxHalfCpltCallback : Rx Half Complete Callback. - (+) RxCpltCallback : Rx Complete Callback. - (+) ErrorCallback : Error Callback. - (+) AbortCpltCallback : Abort Complete Callback. - (+) AbortTransmitCpltCallback : Abort Transmit Complete Callback. - (+) AbortReceiveCpltCallback : Abort Receive Complete Callback. - (+) WakeupCallback : Wakeup Callback. - (+) RxFifoFullCallback : Rx Fifo Full Callback. - (+) TxFifoEmptyCallback : Tx Fifo Empty Callback. - (+) MspInitCallback : UART MspInit. - (+) MspDeInitCallback : UART MspDeInit. - This function takes as parameters the HAL peripheral handle, the Callback ID - and a pointer to the user callback function. - - [..] - Use function @ref HAL_UART_UnRegisterCallback() to reset a callback to the default - weak (surcharged) function. - @ref HAL_UART_UnRegisterCallback() takes as parameters the HAL peripheral handle, - and the Callback ID. - This function allows to reset following callbacks: - (+) TxHalfCpltCallback : Tx Half Complete Callback. - (+) TxCpltCallback : Tx Complete Callback. - (+) RxHalfCpltCallback : Rx Half Complete Callback. - (+) RxCpltCallback : Rx Complete Callback. - (+) ErrorCallback : Error Callback. - (+) AbortCpltCallback : Abort Complete Callback. - (+) AbortTransmitCpltCallback : Abort Transmit Complete Callback. - (+) AbortReceiveCpltCallback : Abort Receive Complete Callback. - (+) WakeupCallback : Wakeup Callback. - (+) RxFifoFullCallback : Rx Fifo Full Callback. - (+) TxFifoEmptyCallback : Tx Fifo Empty Callback. - (+) MspInitCallback : UART MspInit. - (+) MspDeInitCallback : UART MspDeInit. - - [..] - By default, after the @ref HAL_UART_Init() and when the state is HAL_UART_STATE_RESET - all callbacks are set to the corresponding weak (surcharged) functions: - examples @ref HAL_UART_TxCpltCallback(), @ref HAL_UART_RxHalfCpltCallback(). - Exception done for MspInit and MspDeInit functions that are respectively - reset to the legacy weak (surcharged) functions in the @ref HAL_UART_Init() - and @ref HAL_UART_DeInit() only when these callbacks are null (not registered beforehand). - If not, MspInit or MspDeInit are not null, the @ref HAL_UART_Init() and @ref HAL_UART_DeInit() - keep and use the user MspInit/MspDeInit callbacks (registered beforehand). - - [..] - Callbacks can be registered/unregistered in HAL_UART_STATE_READY state only. - Exception done MspInit/MspDeInit that can be registered/unregistered - in HAL_UART_STATE_READY or HAL_UART_STATE_RESET state, thus registered (user) - MspInit/DeInit callbacks can be used during the Init/DeInit. - In that case first register the MspInit/MspDeInit user callbacks - using @ref HAL_UART_RegisterCallback() before calling @ref HAL_UART_DeInit() - or @ref HAL_UART_Init() function. - - [..] - When The compilation define USE_HAL_UART_REGISTER_CALLBACKS is set to 0 or - not defined, the callback registration feature is not available - and weak (surcharged) callbacks are used. - - - @endverbatim - ****************************************************************************** - * @attention - * - *

© Copyright (c) 2016 STMicroelectronics. - * All rights reserved.

- * - * This software component is licensed by ST under BSD 3-Clause license, - * the "License"; You may not use this file except in compliance with the - * License. You may obtain a copy of the License at: - * opensource.org/licenses/BSD-3-Clause - * - ****************************************************************************** - */ - -/* Includes ------------------------------------------------------------------*/ -#include "stm32f0xx_hal.h" - -/** @addtogroup STM32F0xx_HAL_Driver - * @{ - */ - -/** @defgroup UART UART - * @brief HAL UART module driver - * @{ - */ - -#ifdef HAL_UART_MODULE_ENABLED - -/* Private typedef -----------------------------------------------------------*/ -/* Private define ------------------------------------------------------------*/ -/** @defgroup UART_Private_Constants UART Private Constants - * @{ - */ -#define USART_CR1_FIELDS ((uint32_t)(USART_CR1_M | USART_CR1_PCE | USART_CR1_PS | \ - USART_CR1_TE | USART_CR1_RE | USART_CR1_OVER8 )) /*!< UART or USART CR1 fields of parameters set by UART_SetConfig API */ - -#define USART_CR3_FIELDS ((uint32_t)(USART_CR3_RTSE | USART_CR3_CTSE | USART_CR3_ONEBIT)) /*!< UART or USART CR3 fields of parameters set by UART_SetConfig API */ - - -#define UART_BRR_MIN 0x10U /* UART BRR minimum authorized value */ -#define UART_BRR_MAX 0x0000FFFFU /* UART BRR maximum authorized value */ - -/** - * @} - */ - -/* Private macros ------------------------------------------------------------*/ -/* Private variables ---------------------------------------------------------*/ -/* Private function prototypes -----------------------------------------------*/ -/** @addtogroup UART_Private_Functions - * @{ - */ -static void UART_EndTxTransfer(UART_HandleTypeDef *huart); -static void UART_EndRxTransfer(UART_HandleTypeDef *huart); -static void UART_DMATransmitCplt(DMA_HandleTypeDef *hdma); -static void UART_DMAReceiveCplt(DMA_HandleTypeDef *hdma); -static void UART_DMARxHalfCplt(DMA_HandleTypeDef *hdma); -static void UART_DMATxHalfCplt(DMA_HandleTypeDef *hdma); -static void UART_DMAError(DMA_HandleTypeDef *hdma); -static void UART_DMAAbortOnError(DMA_HandleTypeDef *hdma); -static void UART_DMATxAbortCallback(DMA_HandleTypeDef *hdma); -static void UART_DMARxAbortCallback(DMA_HandleTypeDef *hdma); -static void UART_DMATxOnlyAbortCallback(DMA_HandleTypeDef *hdma); -static void UART_DMARxOnlyAbortCallback(DMA_HandleTypeDef *hdma); -static void UART_TxISR_8BIT(UART_HandleTypeDef *huart); -static void UART_TxISR_16BIT(UART_HandleTypeDef *huart); -static void UART_EndTransmit_IT(UART_HandleTypeDef *huart); -static void UART_RxISR_8BIT(UART_HandleTypeDef *huart); -static void UART_RxISR_16BIT(UART_HandleTypeDef *huart); -/** - * @} - */ - -/* Exported functions --------------------------------------------------------*/ - -/** @defgroup UART_Exported_Functions UART Exported Functions - * @{ - */ - -/** @defgroup UART_Exported_Functions_Group1 Initialization and de-initialization functions - * @brief Initialization and Configuration functions - * -@verbatim -=============================================================================== - ##### Initialization and Configuration functions ##### - =============================================================================== - [..] - This subsection provides a set of functions allowing to initialize the USARTx or the UARTy - in asynchronous mode. - (+) For the asynchronous mode the parameters below can be configured: - (++) Baud Rate - (++) Word Length - (++) Stop Bit - (++) Parity: If the parity is enabled, then the MSB bit of the data written - in the data register is transmitted but is changed by the parity bit. - (++) Hardware flow control - (++) Receiver/transmitter modes - (++) Over Sampling Method - (++) One-Bit Sampling Method - (+) For the asynchronous mode, the following advanced features can be configured as well: - (++) TX and/or RX pin level inversion - (++) data logical level inversion - (++) RX and TX pins swap - (++) RX overrun detection disabling - (++) DMA disabling on RX error - (++) MSB first on communication line - (++) auto Baud rate detection - [..] - The HAL_UART_Init(), HAL_HalfDuplex_Init(), HAL_LIN_Init()and HAL_MultiProcessor_Init()API - follow respectively the UART asynchronous, UART Half duplex, UART LIN mode - and UART multiprocessor mode configuration procedures (details for the procedures - are available in reference manual). - -@endverbatim - - Depending on the frame length defined by the M1 and M0 bits (7-bit, - 8-bit or 9-bit), the possible UART formats are listed in the - following table. - - Table 1. UART frame format. - +-----------------------------------------------------------------------+ - | M1 bit | M0 bit | PCE bit | UART frame | - |---------|---------|-----------|---------------------------------------| - | 0 | 0 | 0 | | SB | 8 bit data | STB | | - |---------|---------|-----------|---------------------------------------| - | 0 | 0 | 1 | | SB | 7 bit data | PB | STB | | - |---------|---------|-----------|---------------------------------------| - | 0 | 1 | 0 | | SB | 9 bit data | STB | | - |---------|---------|-----------|---------------------------------------| - | 0 | 1 | 1 | | SB | 8 bit data | PB | STB | | - |---------|---------|-----------|---------------------------------------| - | 1 | 0 | 0 | | SB | 7 bit data | STB | | - |---------|---------|-----------|---------------------------------------| - | 1 | 0 | 1 | | SB | 6 bit data | PB | STB | | - +-----------------------------------------------------------------------+ - - * @{ - */ - -/** - * @brief Initialize the UART mode according to the specified - * parameters in the UART_InitTypeDef and initialize the associated handle. - * @param huart UART handle. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_UART_Init(UART_HandleTypeDef *huart) -{ - /* Check the UART handle allocation */ - if (huart == NULL) - { - return HAL_ERROR; - } - - if (huart->Init.HwFlowCtl != UART_HWCONTROL_NONE) - { - /* Check the parameters */ - assert_param(IS_UART_HWFLOW_INSTANCE(huart->Instance)); - } - else - { - /* Check the parameters */ - assert_param(IS_UART_INSTANCE(huart->Instance)); - } - - if (huart->gState == HAL_UART_STATE_RESET) - { - /* Allocate lock resource and initialize it */ - huart->Lock = HAL_UNLOCKED; - -#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) - UART_InitCallbacksToDefault(huart); - - if (huart->MspInitCallback == NULL) - { - huart->MspInitCallback = HAL_UART_MspInit; - } - - /* Init the low level hardware */ - huart->MspInitCallback(huart); -#else - /* Init the low level hardware : GPIO, CLOCK */ - HAL_UART_MspInit(huart); -#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */ - } - - huart->gState = HAL_UART_STATE_BUSY; - - __HAL_UART_DISABLE(huart); - - /* Set the UART Communication parameters */ - if (UART_SetConfig(huart) == HAL_ERROR) - { - return HAL_ERROR; - } - - if (huart->AdvancedInit.AdvFeatureInit != UART_ADVFEATURE_NO_INIT) - { - UART_AdvFeatureConfig(huart); - } - - /* In asynchronous mode, the following bits must be kept cleared: - - LINEN (if LIN is supported) and CLKEN bits in the USART_CR2 register, - - SCEN (if Smartcard is supported), HDSEL and IREN (if IrDA is supported) bits in the USART_CR3 register.*/ -#if defined (USART_CR2_LINEN) - CLEAR_BIT(huart->Instance->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN)); -#else - CLEAR_BIT(huart->Instance->CR2, USART_CR2_CLKEN); -#endif /* USART_CR2_LINEN */ -#if defined (USART_CR3_SCEN) -#if defined (USART_CR3_IREN) - CLEAR_BIT(huart->Instance->CR3, (USART_CR3_SCEN | USART_CR3_HDSEL | USART_CR3_IREN)); -#else - CLEAR_BIT(huart->Instance->CR3, (USART_CR3_SCEN | USART_CR3_HDSEL)); -#endif /* USART_CR3_IREN */ -#else -#if defined (USART_CR3_IREN) - CLEAR_BIT(huart->Instance->CR3, (USART_CR3_HDSEL | USART_CR3_IREN)); -#else - CLEAR_BIT(huart->Instance->CR3, USART_CR3_HDSEL); -#endif /* USART_CR3_IREN*/ -#endif /* USART_CR3_SCEN */ - - __HAL_UART_ENABLE(huart); - - /* TEACK and/or REACK to check before moving huart->gState and huart->RxState to Ready */ - return (UART_CheckIdleState(huart)); -} - -/** - * @brief Initialize the half-duplex mode according to the specified - * parameters in the UART_InitTypeDef and creates the associated handle. - * @param huart UART handle. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_HalfDuplex_Init(UART_HandleTypeDef *huart) -{ - /* Check the UART handle allocation */ - if (huart == NULL) - { - return HAL_ERROR; - } - - /* Check UART instance */ - assert_param(IS_UART_HALFDUPLEX_INSTANCE(huart->Instance)); - - if (huart->gState == HAL_UART_STATE_RESET) - { - /* Allocate lock resource and initialize it */ - huart->Lock = HAL_UNLOCKED; - -#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) - UART_InitCallbacksToDefault(huart); - - if (huart->MspInitCallback == NULL) - { - huart->MspInitCallback = HAL_UART_MspInit; - } - - /* Init the low level hardware */ - huart->MspInitCallback(huart); -#else - /* Init the low level hardware : GPIO, CLOCK */ - HAL_UART_MspInit(huart); -#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */ - } - - huart->gState = HAL_UART_STATE_BUSY; - - __HAL_UART_DISABLE(huart); - - /* Set the UART Communication parameters */ - if (UART_SetConfig(huart) == HAL_ERROR) - { - return HAL_ERROR; - } - - if (huart->AdvancedInit.AdvFeatureInit != UART_ADVFEATURE_NO_INIT) - { - UART_AdvFeatureConfig(huart); - } - - /* In half-duplex mode, the following bits must be kept cleared: - - LINEN (if LIN is supported) and CLKEN bits in the USART_CR2 register, - - SCEN (if Smartcard is supported) and IREN (if IrDA is supported) bits in the USART_CR3 register.*/ -#if defined (USART_CR2_LINEN) - CLEAR_BIT(huart->Instance->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN)); -#else - CLEAR_BIT(huart->Instance->CR2, USART_CR2_CLKEN); -#endif /* USART_CR2_LINEN */ -#if defined (USART_CR3_SCEN) -#if defined (USART_CR3_IREN) - CLEAR_BIT(huart->Instance->CR3, (USART_CR3_IREN | USART_CR3_SCEN)); -#else - CLEAR_BIT(huart->Instance->CR3, USART_CR3_SCEN); -#endif /* USART_CR3_IREN */ -#else -#if defined (USART_CR3_IREN) - CLEAR_BIT(huart->Instance->CR3, USART_CR3_IREN); -#endif /* USART_CR3_IREN */ -#endif /* USART_CR3_SCEN */ - - /* Enable the Half-Duplex mode by setting the HDSEL bit in the CR3 register */ - SET_BIT(huart->Instance->CR3, USART_CR3_HDSEL); - - __HAL_UART_ENABLE(huart); - - /* TEACK and/or REACK to check before moving huart->gState and huart->RxState to Ready */ - return (UART_CheckIdleState(huart)); -} - - -#if defined(USART_CR2_LINEN) -/** - * @brief Initialize the LIN mode according to the specified - * parameters in the UART_InitTypeDef and creates the associated handle. - * @param huart UART handle. - * @param BreakDetectLength Specifies the LIN break detection length. - * This parameter can be one of the following values: - * @arg @ref UART_LINBREAKDETECTLENGTH_10B 10-bit break detection - * @arg @ref UART_LINBREAKDETECTLENGTH_11B 11-bit break detection - * @retval HAL status - */ -HAL_StatusTypeDef HAL_LIN_Init(UART_HandleTypeDef *huart, uint32_t BreakDetectLength) -{ - /* Check the UART handle allocation */ - if (huart == NULL) - { - return HAL_ERROR; - } - - /* Check the LIN UART instance */ - assert_param(IS_UART_LIN_INSTANCE(huart->Instance)); - /* Check the Break detection length parameter */ - assert_param(IS_UART_LIN_BREAK_DETECT_LENGTH(BreakDetectLength)); - - /* LIN mode limited to 16-bit oversampling only */ - if (huart->Init.OverSampling == UART_OVERSAMPLING_8) - { - return HAL_ERROR; - } - /* LIN mode limited to 8-bit data length */ - if (huart->Init.WordLength != UART_WORDLENGTH_8B) - { - return HAL_ERROR; - } - - if (huart->gState == HAL_UART_STATE_RESET) - { - /* Allocate lock resource and initialize it */ - huart->Lock = HAL_UNLOCKED; - -#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) - UART_InitCallbacksToDefault(huart); - - if (huart->MspInitCallback == NULL) - { - huart->MspInitCallback = HAL_UART_MspInit; - } - - /* Init the low level hardware */ - huart->MspInitCallback(huart); -#else - /* Init the low level hardware : GPIO, CLOCK */ - HAL_UART_MspInit(huart); -#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */ - } - - huart->gState = HAL_UART_STATE_BUSY; - - __HAL_UART_DISABLE(huart); - - /* Set the UART Communication parameters */ - if (UART_SetConfig(huart) == HAL_ERROR) - { - return HAL_ERROR; - } - - if (huart->AdvancedInit.AdvFeatureInit != UART_ADVFEATURE_NO_INIT) - { - UART_AdvFeatureConfig(huart); - } - - /* In LIN mode, the following bits must be kept cleared: - - LINEN and CLKEN bits in the USART_CR2 register, - - SCEN(if Smartcard is supported) and IREN(if IrDA is supported) bits in the USART_CR3 register.*/ - CLEAR_BIT(huart->Instance->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN)); -#if defined (USART_CR3_SCEN) -#if defined (USART_CR3_IREN) - CLEAR_BIT(huart->Instance->CR3, (USART_CR3_SCEN | USART_CR3_HDSEL | USART_CR3_IREN)); -#else - CLEAR_BIT(huart->Instance->CR3, (USART_CR3_SCEN | USART_CR3_HDSEL)); -#endif /* USART_CR3_IREN */ -#else -#if defined (USART_CR3_IREN) - CLEAR_BIT(huart->Instance->CR3, (USART_CR3_HDSEL | USART_CR3_IREN)); -#else - CLEAR_BIT(huart->Instance->CR3, USART_CR3_HDSEL); -#endif /* USART_CR3_IREN*/ -#endif /* USART_CR3_SCEN */ - - /* Enable the LIN mode by setting the LINEN bit in the CR2 register */ - SET_BIT(huart->Instance->CR2, USART_CR2_LINEN); - - /* Set the USART LIN Break detection length. */ - MODIFY_REG(huart->Instance->CR2, USART_CR2_LBDL, BreakDetectLength); - - __HAL_UART_ENABLE(huart); - - /* TEACK and/or REACK to check before moving huart->gState and huart->RxState to Ready */ - return (UART_CheckIdleState(huart)); -} -#endif /* USART_CR2_LINEN */ - - -/** - * @brief Initialize the multiprocessor mode according to the specified - * parameters in the UART_InitTypeDef and initialize the associated handle. - * @param huart UART handle. - * @param Address UART node address (4-, 6-, 7- or 8-bit long). - * @param WakeUpMethod Specifies the UART wakeup method. - * This parameter can be one of the following values: - * @arg @ref UART_WAKEUPMETHOD_IDLELINE WakeUp by an idle line detection - * @arg @ref UART_WAKEUPMETHOD_ADDRESSMARK WakeUp by an address mark - * @note If the user resorts to idle line detection wake up, the Address parameter - * is useless and ignored by the initialization function. - * @note If the user resorts to address mark wake up, the address length detection - * is configured by default to 4 bits only. For the UART to be able to - * manage 6-, 7- or 8-bit long addresses detection, the API - * HAL_MultiProcessorEx_AddressLength_Set() must be called after - * HAL_MultiProcessor_Init(). - * @retval HAL status - */ -HAL_StatusTypeDef HAL_MultiProcessor_Init(UART_HandleTypeDef *huart, uint8_t Address, uint32_t WakeUpMethod) -{ - /* Check the UART handle allocation */ - if (huart == NULL) - { - return HAL_ERROR; - } - - /* Check the wake up method parameter */ - assert_param(IS_UART_WAKEUPMETHOD(WakeUpMethod)); - - if (huart->gState == HAL_UART_STATE_RESET) - { - /* Allocate lock resource and initialize it */ - huart->Lock = HAL_UNLOCKED; - -#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) - UART_InitCallbacksToDefault(huart); - - if (huart->MspInitCallback == NULL) - { - huart->MspInitCallback = HAL_UART_MspInit; - } - - /* Init the low level hardware */ - huart->MspInitCallback(huart); -#else - /* Init the low level hardware : GPIO, CLOCK */ - HAL_UART_MspInit(huart); -#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */ - } - - huart->gState = HAL_UART_STATE_BUSY; - - __HAL_UART_DISABLE(huart); - - /* Set the UART Communication parameters */ - if (UART_SetConfig(huart) == HAL_ERROR) - { - return HAL_ERROR; - } - - if (huart->AdvancedInit.AdvFeatureInit != UART_ADVFEATURE_NO_INIT) - { - UART_AdvFeatureConfig(huart); - } - - /* In multiprocessor mode, the following bits must be kept cleared: - - LINEN (if LIN is supported) and CLKEN bits in the USART_CR2 register, - - SCEN (if Smartcard is supported), HDSEL and IREN (if IrDA is supported) bits in the USART_CR3 register. */ -#if defined (USART_CR2_LINEN) - CLEAR_BIT(huart->Instance->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN)); -#else - CLEAR_BIT(huart->Instance->CR2, USART_CR2_CLKEN); -#endif /* USART_CR2_LINEN */ -#if defined (USART_CR3_SCEN) -#if defined (USART_CR3_IREN) - CLEAR_BIT(huart->Instance->CR3, (USART_CR3_SCEN | USART_CR3_HDSEL | USART_CR3_IREN)); -#else - CLEAR_BIT(huart->Instance->CR3, (USART_CR3_SCEN | USART_CR3_HDSEL)); -#endif /* USART_CR3_IREN */ -#else -#if defined (USART_CR3_IREN) - CLEAR_BIT(huart->Instance->CR3, (USART_CR3_HDSEL | USART_CR3_IREN)); -#else - CLEAR_BIT(huart->Instance->CR3, USART_CR3_HDSEL); -#endif /* USART_CR3_IREN */ -#endif /* USART_CR3_SCEN */ - - if (WakeUpMethod == UART_WAKEUPMETHOD_ADDRESSMARK) - { - /* If address mark wake up method is chosen, set the USART address node */ - MODIFY_REG(huart->Instance->CR2, USART_CR2_ADD, ((uint32_t)Address << UART_CR2_ADDRESS_LSB_POS)); - } - - /* Set the wake up method by setting the WAKE bit in the CR1 register */ - MODIFY_REG(huart->Instance->CR1, USART_CR1_WAKE, WakeUpMethod); - - __HAL_UART_ENABLE(huart); - - /* TEACK and/or REACK to check before moving huart->gState and huart->RxState to Ready */ - return (UART_CheckIdleState(huart)); -} - - -/** - * @brief DeInitialize the UART peripheral. - * @param huart UART handle. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_UART_DeInit(UART_HandleTypeDef *huart) -{ - /* Check the UART handle allocation */ - if (huart == NULL) - { - return HAL_ERROR; - } - - /* Check the parameters */ - assert_param(IS_UART_INSTANCE(huart->Instance)); - - huart->gState = HAL_UART_STATE_BUSY; - - __HAL_UART_DISABLE(huart); - - huart->Instance->CR1 = 0x0U; - huart->Instance->CR2 = 0x0U; - huart->Instance->CR3 = 0x0U; - -#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) - if (huart->MspDeInitCallback == NULL) - { - huart->MspDeInitCallback = HAL_UART_MspDeInit; - } - /* DeInit the low level hardware */ - huart->MspDeInitCallback(huart); -#else - /* DeInit the low level hardware */ - HAL_UART_MspDeInit(huart); -#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */ - - huart->ErrorCode = HAL_UART_ERROR_NONE; - huart->gState = HAL_UART_STATE_RESET; - huart->RxState = HAL_UART_STATE_RESET; - - __HAL_UNLOCK(huart); - - return HAL_OK; -} - -/** - * @brief Initialize the UART MSP. - * @param huart UART handle. - * @retval None - */ -__weak void HAL_UART_MspInit(UART_HandleTypeDef *huart) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(huart); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_UART_MspInit can be implemented in the user file - */ -} - -/** - * @brief DeInitialize the UART MSP. - * @param huart UART handle. - * @retval None - */ -__weak void HAL_UART_MspDeInit(UART_HandleTypeDef *huart) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(huart); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_UART_MspDeInit can be implemented in the user file - */ -} - -#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) -/** - * @brief Register a User UART Callback - * To be used instead of the weak predefined callback - * @param huart uart handle - * @param CallbackID ID of the callback to be registered - * This parameter can be one of the following values: - * @arg @ref HAL_UART_TX_HALFCOMPLETE_CB_ID Tx Half Complete Callback ID - * @arg @ref HAL_UART_TX_COMPLETE_CB_ID Tx Complete Callback ID - * @arg @ref HAL_UART_RX_HALFCOMPLETE_CB_ID Rx Half Complete Callback ID - * @arg @ref HAL_UART_RX_COMPLETE_CB_ID Rx Complete Callback ID - * @arg @ref HAL_UART_ERROR_CB_ID Error Callback ID - * @arg @ref HAL_UART_ABORT_COMPLETE_CB_ID Abort Complete Callback ID - * @arg @ref HAL_UART_ABORT_TRANSMIT_COMPLETE_CB_ID Abort Transmit Complete Callback ID - * @arg @ref HAL_UART_ABORT_RECEIVE_COMPLETE_CB_ID Abort Receive Complete Callback ID - * @arg @ref HAL_UART_WAKEUP_CB_ID Wakeup Callback ID - * @arg @ref HAL_UART_RX_FIFO_FULL_CB_ID Rx Fifo Full Callback ID - * @arg @ref HAL_UART_TX_FIFO_EMPTY_CB_ID Tx Fifo Empty Callback ID - * @arg @ref HAL_UART_MSPINIT_CB_ID MspInit Callback ID - * @arg @ref HAL_UART_MSPDEINIT_CB_ID MspDeInit Callback ID - * @param pCallback pointer to the Callback function - * @retval HAL status - */ -HAL_StatusTypeDef HAL_UART_RegisterCallback(UART_HandleTypeDef *huart, HAL_UART_CallbackIDTypeDef CallbackID, - pUART_CallbackTypeDef pCallback) -{ - HAL_StatusTypeDef status = HAL_OK; - - if (pCallback == NULL) - { - huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK; - - return HAL_ERROR; - } - - __HAL_LOCK(huart); - - if (huart->gState == HAL_UART_STATE_READY) - { - switch (CallbackID) - { - case HAL_UART_TX_HALFCOMPLETE_CB_ID : - huart->TxHalfCpltCallback = pCallback; - break; - - case HAL_UART_TX_COMPLETE_CB_ID : - huart->TxCpltCallback = pCallback; - break; - - case HAL_UART_RX_HALFCOMPLETE_CB_ID : - huart->RxHalfCpltCallback = pCallback; - break; - - case HAL_UART_RX_COMPLETE_CB_ID : - huart->RxCpltCallback = pCallback; - break; - - case HAL_UART_ERROR_CB_ID : - huart->ErrorCallback = pCallback; - break; - - case HAL_UART_ABORT_COMPLETE_CB_ID : - huart->AbortCpltCallback = pCallback; - break; - - case HAL_UART_ABORT_TRANSMIT_COMPLETE_CB_ID : - huart->AbortTransmitCpltCallback = pCallback; - break; - - case HAL_UART_ABORT_RECEIVE_COMPLETE_CB_ID : - huart->AbortReceiveCpltCallback = pCallback; - break; - - case HAL_UART_WAKEUP_CB_ID : - huart->WakeupCallback = pCallback; - break; - - - case HAL_UART_MSPINIT_CB_ID : - huart->MspInitCallback = pCallback; - break; - - case HAL_UART_MSPDEINIT_CB_ID : - huart->MspDeInitCallback = pCallback; - break; - - default : - huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK; - - status = HAL_ERROR; - break; - } - } - else if (huart->gState == HAL_UART_STATE_RESET) - { - switch (CallbackID) - { - case HAL_UART_MSPINIT_CB_ID : - huart->MspInitCallback = pCallback; - break; - - case HAL_UART_MSPDEINIT_CB_ID : - huart->MspDeInitCallback = pCallback; - break; - - default : - huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK; - - status = HAL_ERROR; - break; - } - } - else - { - huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK; - - status = HAL_ERROR; - } - - __HAL_UNLOCK(huart); - - return status; -} - -/** - * @brief Unregister an UART Callback - * UART callaback is redirected to the weak predefined callback - * @param huart uart handle - * @param CallbackID ID of the callback to be unregistered - * This parameter can be one of the following values: - * @arg @ref HAL_UART_TX_HALFCOMPLETE_CB_ID Tx Half Complete Callback ID - * @arg @ref HAL_UART_TX_COMPLETE_CB_ID Tx Complete Callback ID - * @arg @ref HAL_UART_RX_HALFCOMPLETE_CB_ID Rx Half Complete Callback ID - * @arg @ref HAL_UART_RX_COMPLETE_CB_ID Rx Complete Callback ID - * @arg @ref HAL_UART_ERROR_CB_ID Error Callback ID - * @arg @ref HAL_UART_ABORT_COMPLETE_CB_ID Abort Complete Callback ID - * @arg @ref HAL_UART_ABORT_TRANSMIT_COMPLETE_CB_ID Abort Transmit Complete Callback ID - * @arg @ref HAL_UART_ABORT_RECEIVE_COMPLETE_CB_ID Abort Receive Complete Callback ID - * @arg @ref HAL_UART_WAKEUP_CB_ID Wakeup Callback ID - * @arg @ref HAL_UART_RX_FIFO_FULL_CB_ID Rx Fifo Full Callback ID - * @arg @ref HAL_UART_TX_FIFO_EMPTY_CB_ID Tx Fifo Empty Callback ID - * @arg @ref HAL_UART_MSPINIT_CB_ID MspInit Callback ID - * @arg @ref HAL_UART_MSPDEINIT_CB_ID MspDeInit Callback ID - * @retval HAL status - */ -HAL_StatusTypeDef HAL_UART_UnRegisterCallback(UART_HandleTypeDef *huart, HAL_UART_CallbackIDTypeDef CallbackID) -{ - HAL_StatusTypeDef status = HAL_OK; - - __HAL_LOCK(huart); - - if (HAL_UART_STATE_READY == huart->gState) - { - switch (CallbackID) - { - case HAL_UART_TX_HALFCOMPLETE_CB_ID : - huart->TxHalfCpltCallback = HAL_UART_TxHalfCpltCallback; /* Legacy weak TxHalfCpltCallback */ - break; - - case HAL_UART_TX_COMPLETE_CB_ID : - huart->TxCpltCallback = HAL_UART_TxCpltCallback; /* Legacy weak TxCpltCallback */ - break; - - case HAL_UART_RX_HALFCOMPLETE_CB_ID : - huart->RxHalfCpltCallback = HAL_UART_RxHalfCpltCallback; /* Legacy weak RxHalfCpltCallback */ - break; - - case HAL_UART_RX_COMPLETE_CB_ID : - huart->RxCpltCallback = HAL_UART_RxCpltCallback; /* Legacy weak RxCpltCallback */ - break; - - case HAL_UART_ERROR_CB_ID : - huart->ErrorCallback = HAL_UART_ErrorCallback; /* Legacy weak ErrorCallback */ - break; - - case HAL_UART_ABORT_COMPLETE_CB_ID : - huart->AbortCpltCallback = HAL_UART_AbortCpltCallback; /* Legacy weak AbortCpltCallback */ - break; - - case HAL_UART_ABORT_TRANSMIT_COMPLETE_CB_ID : - huart->AbortTransmitCpltCallback = HAL_UART_AbortTransmitCpltCallback; /* Legacy weak AbortTransmitCpltCallback */ - break; - - case HAL_UART_ABORT_RECEIVE_COMPLETE_CB_ID : - huart->AbortReceiveCpltCallback = HAL_UART_AbortReceiveCpltCallback; /* Legacy weak AbortReceiveCpltCallback */ - break; - -#if defined(USART_CR1_UESM) - case HAL_UART_WAKEUP_CB_ID : - huart->WakeupCallback = HAL_UARTEx_WakeupCallback; /* Legacy weak WakeupCallback */ - break; - -#endif /* USART_CR1_UESM */ - case HAL_UART_MSPINIT_CB_ID : - huart->MspInitCallback = HAL_UART_MspInit; /* Legacy weak MspInitCallback */ - break; - - case HAL_UART_MSPDEINIT_CB_ID : - huart->MspDeInitCallback = HAL_UART_MspDeInit; /* Legacy weak MspDeInitCallback */ - break; - - default : - huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK; - - status = HAL_ERROR; - break; - } - } - else if (HAL_UART_STATE_RESET == huart->gState) - { - switch (CallbackID) - { - case HAL_UART_MSPINIT_CB_ID : - huart->MspInitCallback = HAL_UART_MspInit; - break; - - case HAL_UART_MSPDEINIT_CB_ID : - huart->MspDeInitCallback = HAL_UART_MspDeInit; - break; - - default : - huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK; - - status = HAL_ERROR; - break; - } - } - else - { - huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK; - - status = HAL_ERROR; - } - - __HAL_UNLOCK(huart); - - return status; -} -#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ - -/** - * @} - */ - -/** @defgroup UART_Exported_Functions_Group2 IO operation functions - * @brief UART Transmit/Receive functions - * -@verbatim - =============================================================================== - ##### IO operation functions ##### - =============================================================================== - This subsection provides a set of functions allowing to manage the UART asynchronous - and Half duplex data transfers. - - (#) There are two mode of transfer: - (+) Blocking mode: The communication is performed in polling mode. - The HAL status of all data processing is returned by the same function - after finishing transfer. - (+) Non-Blocking mode: The communication is performed using Interrupts - or DMA, These API's return the HAL status. - The end of the data processing will be indicated through the - dedicated UART IRQ when using Interrupt mode or the DMA IRQ when - using DMA mode. - The HAL_UART_TxCpltCallback(), HAL_UART_RxCpltCallback() user callbacks - will be executed respectively at the end of the transmit or Receive process - The HAL_UART_ErrorCallback()user callback will be executed when a communication error is detected - - (#) Blocking mode API's are : - (+) HAL_UART_Transmit() - (+) HAL_UART_Receive() - - (#) Non-Blocking mode API's with Interrupt are : - (+) HAL_UART_Transmit_IT() - (+) HAL_UART_Receive_IT() - (+) HAL_UART_IRQHandler() - - (#) Non-Blocking mode API's with DMA are : - (+) HAL_UART_Transmit_DMA() - (+) HAL_UART_Receive_DMA() - (+) HAL_UART_DMAPause() - (+) HAL_UART_DMAResume() - (+) HAL_UART_DMAStop() - - (#) A set of Transfer Complete Callbacks are provided in Non_Blocking mode: - (+) HAL_UART_TxHalfCpltCallback() - (+) HAL_UART_TxCpltCallback() - (+) HAL_UART_RxHalfCpltCallback() - (+) HAL_UART_RxCpltCallback() - (+) HAL_UART_ErrorCallback() - - (#) Non-Blocking mode transfers could be aborted using Abort API's : - (+) HAL_UART_Abort() - (+) HAL_UART_AbortTransmit() - (+) HAL_UART_AbortReceive() - (+) HAL_UART_Abort_IT() - (+) HAL_UART_AbortTransmit_IT() - (+) HAL_UART_AbortReceive_IT() - - (#) For Abort services based on interrupts (HAL_UART_Abortxxx_IT), a set of Abort Complete Callbacks are provided: - (+) HAL_UART_AbortCpltCallback() - (+) HAL_UART_AbortTransmitCpltCallback() - (+) HAL_UART_AbortReceiveCpltCallback() - - (#) In Non-Blocking mode transfers, possible errors are split into 2 categories. - Errors are handled as follows : - (+) Error is considered as Recoverable and non blocking : Transfer could go till end, but error severity is - to be evaluated by user : this concerns Frame Error, Parity Error or Noise Error in Interrupt mode reception . - Received character is then retrieved and stored in Rx buffer, Error code is set to allow user to identify error type, - and HAL_UART_ErrorCallback() user callback is executed. Transfer is kept ongoing on UART side. - If user wants to abort it, Abort services should be called by user. - (+) Error is considered as Blocking : Transfer could not be completed properly and is aborted. - This concerns Overrun Error In Interrupt mode reception and all errors in DMA mode. - Error code is set to allow user to identify error type, and HAL_UART_ErrorCallback() user callback is executed. - - -@- In the Half duplex communication, it is forbidden to run the transmit - and receive process in parallel, the UART state HAL_UART_STATE_BUSY_TX_RX can't be useful. - -@endverbatim - * @{ - */ - -/** - * @brief Send an amount of data in blocking mode. - * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), - * the sent data is handled as a set of u16. In this case, Size must indicate the number - * of u16 provided through pData. - * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), - * address of user data buffer containing data to be sent, should be aligned on a half word frontier (16 bits) - * (as sent data will be handled using u16 pointer cast). Depending on compilation chain, - * use of specific alignment compilation directives or pragmas might be required to ensure proper alignment for pData. - * @param huart UART handle. - * @param pData Pointer to data buffer (u8 or u16 data elements). - * @param Size Amount of data elements (u8 or u16) to be sent. - * @param Timeout Timeout duration. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_UART_Transmit(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint32_t Timeout) -{ - uint8_t *pdata8bits; - uint16_t *pdata16bits; - uint32_t tickstart; - - /* Check that a Tx process is not already ongoing */ - if (huart->gState == HAL_UART_STATE_READY) - { - if ((pData == NULL) || (Size == 0U)) - { - return HAL_ERROR; - } - - /* In case of 9bits/No Parity transfer, pData buffer provided as input parameter - should be aligned on a u16 frontier, as data to be filled into TDR will be - handled through a u16 cast. */ - if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE)) - { - if ((((uint32_t)pData) & 1U) != 0U) - { - return HAL_ERROR; - } - } - - __HAL_LOCK(huart); - - huart->ErrorCode = HAL_UART_ERROR_NONE; - huart->gState = HAL_UART_STATE_BUSY_TX; - - /* Init tickstart for timeout managment*/ - tickstart = HAL_GetTick(); - - huart->TxXferSize = Size; - huart->TxXferCount = Size; - - /* In case of 9bits/No Parity transfer, pData needs to be handled as a uint16_t pointer */ - if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE)) - { - pdata8bits = NULL; - pdata16bits = (uint16_t *) pData; - } - else - { - pdata8bits = pData; - pdata16bits = NULL; - } - - while (huart->TxXferCount > 0U) - { - if (UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_TXE, RESET, tickstart, Timeout) != HAL_OK) - { - return HAL_TIMEOUT; - } - if (pdata8bits == NULL) - { - huart->Instance->TDR = (uint16_t)(*pdata16bits & 0x01FFU); - pdata16bits++; - } - else - { - huart->Instance->TDR = (uint8_t)(*pdata8bits & 0xFFU); - pdata8bits++; - } - huart->TxXferCount--; - } - - if (UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_TC, RESET, tickstart, Timeout) != HAL_OK) - { - return HAL_TIMEOUT; - } - - /* At end of Tx process, restore huart->gState to Ready */ - huart->gState = HAL_UART_STATE_READY; - - __HAL_UNLOCK(huart); - - return HAL_OK; - } - else - { - return HAL_BUSY; - } -} - -/** - * @brief Receive an amount of data in blocking mode. - * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), - * the received data is handled as a set of u16. In this case, Size must indicate the number - * of u16 available through pData. - * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), - * address of user data buffer for storing data to be received, should be aligned on a half word frontier (16 bits) - * (as received data will be handled using u16 pointer cast). Depending on compilation chain, - * use of specific alignment compilation directives or pragmas might be required to ensure proper alignment for pData. - * @param huart UART handle. - * @param pData Pointer to data buffer (u8 or u16 data elements). - * @param Size Amount of data elements (u8 or u16) to be received. - * @param Timeout Timeout duration. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_UART_Receive(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint32_t Timeout) -{ - uint8_t *pdata8bits; - uint16_t *pdata16bits; - uint16_t uhMask; - uint32_t tickstart; - - /* Check that a Rx process is not already ongoing */ - if (huart->RxState == HAL_UART_STATE_READY) - { - if ((pData == NULL) || (Size == 0U)) - { - return HAL_ERROR; - } - - /* In case of 9bits/No Parity transfer, pData buffer provided as input parameter - should be aligned on a u16 frontier, as data to be received from RDR will be - handled through a u16 cast. */ - if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE)) - { - if ((((uint32_t)pData) & 1U) != 0U) - { - return HAL_ERROR; - } - } - - __HAL_LOCK(huart); - - huart->ErrorCode = HAL_UART_ERROR_NONE; - huart->RxState = HAL_UART_STATE_BUSY_RX; - - /* Init tickstart for timeout managment*/ - tickstart = HAL_GetTick(); - - huart->RxXferSize = Size; - huart->RxXferCount = Size; - - /* Computation of UART mask to apply to RDR register */ - UART_MASK_COMPUTATION(huart); - uhMask = huart->Mask; - - /* In case of 9bits/No Parity transfer, pRxData needs to be handled as a uint16_t pointer */ - if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE)) - { - pdata8bits = NULL; - pdata16bits = (uint16_t *) pData; - } - else - { - pdata8bits = pData; - pdata16bits = NULL; - } - - /* as long as data have to be received */ - while (huart->RxXferCount > 0U) - { - if (UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_RXNE, RESET, tickstart, Timeout) != HAL_OK) - { - return HAL_TIMEOUT; - } - if (pdata8bits == NULL) - { - *pdata16bits = (uint16_t)(huart->Instance->RDR & uhMask); - pdata16bits++; - } - else - { - *pdata8bits = (uint8_t)(huart->Instance->RDR & (uint8_t)uhMask); - pdata8bits++; - } - huart->RxXferCount--; - } - - /* At end of Rx process, restore huart->RxState to Ready */ - huart->RxState = HAL_UART_STATE_READY; - - __HAL_UNLOCK(huart); - - return HAL_OK; - } - else - { - return HAL_BUSY; - } -} - -/** - * @brief Send an amount of data in interrupt mode. - * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), - * the sent data is handled as a set of u16. In this case, Size must indicate the number - * of u16 provided through pData. - * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), - * address of user data buffer containing data to be sent, should be aligned on a half word frontier (16 bits) - * (as sent data will be handled using u16 pointer cast). Depending on compilation chain, - * use of specific alignment compilation directives or pragmas might be required to ensure proper alignment for pData. - * @param huart UART handle. - * @param pData Pointer to data buffer (u8 or u16 data elements). - * @param Size Amount of data elements (u8 or u16) to be sent. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_UART_Transmit_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size) -{ - /* Check that a Tx process is not already ongoing */ - if (huart->gState == HAL_UART_STATE_READY) - { - if ((pData == NULL) || (Size == 0U)) - { - return HAL_ERROR; - } - - /* In case of 9bits/No Parity transfer, pData buffer provided as input parameter - should be aligned on a u16 frontier, as data to be filled into TDR will be - handled through a u16 cast. */ - if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE)) - { - if ((((uint32_t)pData) & 1U) != 0U) - { - return HAL_ERROR; - } - } - - __HAL_LOCK(huart); - - huart->pTxBuffPtr = pData; - huart->TxXferSize = Size; - huart->TxXferCount = Size; - huart->TxISR = NULL; - - huart->ErrorCode = HAL_UART_ERROR_NONE; - huart->gState = HAL_UART_STATE_BUSY_TX; - - /* Set the Tx ISR function pointer according to the data word length */ - if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE)) - { - huart->TxISR = UART_TxISR_16BIT; - } - else - { - huart->TxISR = UART_TxISR_8BIT; - } - - __HAL_UNLOCK(huart); - - /* Enable the Transmit Data Register Empty interrupt */ - SET_BIT(huart->Instance->CR1, USART_CR1_TXEIE); - - return HAL_OK; - } - else - { - return HAL_BUSY; - } -} - -/** - * @brief Receive an amount of data in interrupt mode. - * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), - * the received data is handled as a set of u16. In this case, Size must indicate the number - * of u16 available through pData. - * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), - * address of user data buffer for storing data to be received, should be aligned on a half word frontier (16 bits) - * (as received data will be handled using u16 pointer cast). Depending on compilation chain, - * use of specific alignment compilation directives or pragmas might be required to ensure proper alignment for pData. - * @param huart UART handle. - * @param pData Pointer to data buffer (u8 or u16 data elements). - * @param Size Amount of data elements (u8 or u16) to be received. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_UART_Receive_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size) -{ - /* Check that a Rx process is not already ongoing */ - if (huart->RxState == HAL_UART_STATE_READY) - { - if ((pData == NULL) || (Size == 0U)) - { - return HAL_ERROR; - } - - /* In case of 9bits/No Parity transfer, pData buffer provided as input parameter - should be aligned on a u16 frontier, as data to be received from RDR will be - handled through a u16 cast. */ - if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE)) - { - if ((((uint32_t)pData) & 1U) != 0U) - { - return HAL_ERROR; - } - } - - __HAL_LOCK(huart); - - huart->pRxBuffPtr = pData; - huart->RxXferSize = Size; - huart->RxXferCount = Size; - huart->RxISR = NULL; - - /* Computation of UART mask to apply to RDR register */ - UART_MASK_COMPUTATION(huart); - - huart->ErrorCode = HAL_UART_ERROR_NONE; - huart->RxState = HAL_UART_STATE_BUSY_RX; - - /* Enable the UART Error Interrupt: (Frame error, noise error, overrun error) */ - SET_BIT(huart->Instance->CR3, USART_CR3_EIE); - - /* Set the Rx ISR function pointer according to the data word length */ - if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE)) - { - huart->RxISR = UART_RxISR_16BIT; - } - else - { - huart->RxISR = UART_RxISR_8BIT; - } - - __HAL_UNLOCK(huart); - - /* Enable the UART Parity Error interrupt and Data Register Not Empty interrupt */ - SET_BIT(huart->Instance->CR1, USART_CR1_PEIE | USART_CR1_RXNEIE); - - return HAL_OK; - } - else - { - return HAL_BUSY; - } -} - -/** - * @brief Send an amount of data in DMA mode. - * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), - * the sent data is handled as a set of u16. In this case, Size must indicate the number - * of u16 provided through pData. - * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), - * address of user data buffer containing data to be sent, should be aligned on a half word frontier (16 bits) - * (as sent data will be handled by DMA from halfword frontier). Depending on compilation chain, - * use of specific alignment compilation directives or pragmas might be required to ensure proper alignment for pData. - * @param huart UART handle. - * @param pData Pointer to data buffer (u8 or u16 data elements). - * @param Size Amount of data elements (u8 or u16) to be sent. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_UART_Transmit_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size) -{ - /* Check that a Tx process is not already ongoing */ - if (huart->gState == HAL_UART_STATE_READY) - { - if ((pData == NULL) || (Size == 0U)) - { - return HAL_ERROR; - } - - /* In case of 9bits/No Parity transfer, pData buffer provided as input parameter - should be aligned on a u16 frontier, as data copy into TDR will be - handled by DMA from a u16 frontier. */ - if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE)) - { - if ((((uint32_t)pData) & 1U) != 0U) - { - return HAL_ERROR; - } - } - - __HAL_LOCK(huart); - - huart->pTxBuffPtr = pData; - huart->TxXferSize = Size; - huart->TxXferCount = Size; - - huart->ErrorCode = HAL_UART_ERROR_NONE; - huart->gState = HAL_UART_STATE_BUSY_TX; - - if (huart->hdmatx != NULL) - { - /* Set the UART DMA transfer complete callback */ - huart->hdmatx->XferCpltCallback = UART_DMATransmitCplt; - - /* Set the UART DMA Half transfer complete callback */ - huart->hdmatx->XferHalfCpltCallback = UART_DMATxHalfCplt; - - /* Set the DMA error callback */ - huart->hdmatx->XferErrorCallback = UART_DMAError; - - /* Set the DMA abort callback */ - huart->hdmatx->XferAbortCallback = NULL; - - /* Enable the UART transmit DMA channel */ - if (HAL_DMA_Start_IT(huart->hdmatx, (uint32_t)huart->pTxBuffPtr, (uint32_t)&huart->Instance->TDR, Size) != HAL_OK) - { - /* Set error code to DMA */ - huart->ErrorCode = HAL_UART_ERROR_DMA; - - __HAL_UNLOCK(huart); - - /* Restore huart->gState to ready */ - huart->gState = HAL_UART_STATE_READY; - - return HAL_ERROR; - } - } - /* Clear the TC flag in the ICR register */ - __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_TCF); - - __HAL_UNLOCK(huart); - - /* Enable the DMA transfer for transmit request by setting the DMAT bit - in the UART CR3 register */ - SET_BIT(huart->Instance->CR3, USART_CR3_DMAT); - - return HAL_OK; - } - else - { - return HAL_BUSY; - } -} - -/** - * @brief Receive an amount of data in DMA mode. - * @note When the UART parity is enabled (PCE = 1), the received data contain - * the parity bit (MSB position). - * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), - * the received data is handled as a set of u16. In this case, Size must indicate the number - * of u16 available through pData. - * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), - * address of user data buffer for storing data to be received, should be aligned on a half word frontier (16 bits) - * (as received data will be handled by DMA from halfword frontier). Depending on compilation chain, - * use of specific alignment compilation directives or pragmas might be required to ensure proper alignment for pData. - * @param huart UART handle. - * @param pData Pointer to data buffer (u8 or u16 data elements). - * @param Size Amount of data elements (u8 or u16) to be received. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_UART_Receive_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size) -{ - /* Check that a Rx process is not already ongoing */ - if (huart->RxState == HAL_UART_STATE_READY) - { - if ((pData == NULL) || (Size == 0U)) - { - return HAL_ERROR; - } - - /* In case of 9bits/No Parity transfer, pData buffer provided as input parameter - should be aligned on a u16 frontier, as data copy from RDR will be - handled by DMA from a u16 frontier. */ - if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE)) - { - if ((((uint32_t)pData) & 1U) != 0U) - { - return HAL_ERROR; - } - } - - __HAL_LOCK(huart); - - huart->pRxBuffPtr = pData; - huart->RxXferSize = Size; - - huart->ErrorCode = HAL_UART_ERROR_NONE; - huart->RxState = HAL_UART_STATE_BUSY_RX; - - if (huart->hdmarx != NULL) - { - /* Set the UART DMA transfer complete callback */ - huart->hdmarx->XferCpltCallback = UART_DMAReceiveCplt; - - /* Set the UART DMA Half transfer complete callback */ - huart->hdmarx->XferHalfCpltCallback = UART_DMARxHalfCplt; - - /* Set the DMA error callback */ - huart->hdmarx->XferErrorCallback = UART_DMAError; - - /* Set the DMA abort callback */ - huart->hdmarx->XferAbortCallback = NULL; - - /* Enable the DMA channel */ - if (HAL_DMA_Start_IT(huart->hdmarx, (uint32_t)&huart->Instance->RDR, (uint32_t)huart->pRxBuffPtr, Size) != HAL_OK) - { - /* Set error code to DMA */ - huart->ErrorCode = HAL_UART_ERROR_DMA; - - __HAL_UNLOCK(huart); - - /* Restore huart->gState to ready */ - huart->gState = HAL_UART_STATE_READY; - - return HAL_ERROR; - } - } - __HAL_UNLOCK(huart); - - /* Enable the UART Parity Error Interrupt */ - SET_BIT(huart->Instance->CR1, USART_CR1_PEIE); - - /* Enable the UART Error Interrupt: (Frame error, noise error, overrun error) */ - SET_BIT(huart->Instance->CR3, USART_CR3_EIE); - - /* Enable the DMA transfer for the receiver request by setting the DMAR bit - in the UART CR3 register */ - SET_BIT(huart->Instance->CR3, USART_CR3_DMAR); - - return HAL_OK; - } - else - { - return HAL_BUSY; - } -} - -/** - * @brief Pause the DMA Transfer. - * @param huart UART handle. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_UART_DMAPause(UART_HandleTypeDef *huart) -{ - const HAL_UART_StateTypeDef gstate = huart->gState; - const HAL_UART_StateTypeDef rxstate = huart->RxState; - - __HAL_LOCK(huart); - - if ((HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT)) && - (gstate == HAL_UART_STATE_BUSY_TX)) - { - /* Disable the UART DMA Tx request */ - CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT); - } - if ((HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR)) && - (rxstate == HAL_UART_STATE_BUSY_RX)) - { - /* Disable PE and ERR (Frame error, noise error, overrun error) interrupts */ - CLEAR_BIT(huart->Instance->CR1, USART_CR1_PEIE); - CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE); - - /* Disable the UART DMA Rx request */ - CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR); - } - - __HAL_UNLOCK(huart); - - return HAL_OK; -} - -/** - * @brief Resume the DMA Transfer. - * @param huart UART handle. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_UART_DMAResume(UART_HandleTypeDef *huart) -{ - __HAL_LOCK(huart); - - if (huart->gState == HAL_UART_STATE_BUSY_TX) - { - /* Enable the UART DMA Tx request */ - SET_BIT(huart->Instance->CR3, USART_CR3_DMAT); - } - if (huart->RxState == HAL_UART_STATE_BUSY_RX) - { - /* Clear the Overrun flag before resuming the Rx transfer */ - __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF); - - /* Reenable PE and ERR (Frame error, noise error, overrun error) interrupts */ - SET_BIT(huart->Instance->CR1, USART_CR1_PEIE); - SET_BIT(huart->Instance->CR3, USART_CR3_EIE); - - /* Enable the UART DMA Rx request */ - SET_BIT(huart->Instance->CR3, USART_CR3_DMAR); - } - - __HAL_UNLOCK(huart); - - return HAL_OK; -} - -/** - * @brief Stop the DMA Transfer. - * @param huart UART handle. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_UART_DMAStop(UART_HandleTypeDef *huart) -{ - /* The Lock is not implemented on this API to allow the user application - to call the HAL UART API under callbacks HAL_UART_TxCpltCallback() / HAL_UART_RxCpltCallback() / - HAL_UART_TxHalfCpltCallback / HAL_UART_RxHalfCpltCallback: - indeed, when HAL_DMA_Abort() API is called, the DMA TX/RX Transfer or Half Transfer complete - interrupt is generated if the DMA transfer interruption occurs at the middle or at the end of - the stream and the corresponding call back is executed. */ - - const HAL_UART_StateTypeDef gstate = huart->gState; - const HAL_UART_StateTypeDef rxstate = huart->RxState; - - /* Stop UART DMA Tx request if ongoing */ - if ((HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT)) && - (gstate == HAL_UART_STATE_BUSY_TX)) - { - CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT); - - /* Abort the UART DMA Tx channel */ - if (huart->hdmatx != NULL) - { - if (HAL_DMA_Abort(huart->hdmatx) != HAL_OK) - { - if (HAL_DMA_GetError(huart->hdmatx) == HAL_DMA_ERROR_TIMEOUT) - { - /* Set error code to DMA */ - huart->ErrorCode = HAL_UART_ERROR_DMA; - - return HAL_TIMEOUT; - } - } - } - - UART_EndTxTransfer(huart); - } - - /* Stop UART DMA Rx request if ongoing */ - if ((HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR)) && - (rxstate == HAL_UART_STATE_BUSY_RX)) - { - CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR); - - /* Abort the UART DMA Rx channel */ - if (huart->hdmarx != NULL) - { - if (HAL_DMA_Abort(huart->hdmarx) != HAL_OK) - { - if (HAL_DMA_GetError(huart->hdmarx) == HAL_DMA_ERROR_TIMEOUT) - { - /* Set error code to DMA */ - huart->ErrorCode = HAL_UART_ERROR_DMA; - - return HAL_TIMEOUT; - } - } - } - - UART_EndRxTransfer(huart); - } - - return HAL_OK; -} - -/** - * @brief Abort ongoing transfers (blocking mode). - * @param huart UART handle. - * @note This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode. - * This procedure performs following operations : - * - Disable UART Interrupts (Tx and Rx) - * - Disable the DMA transfer in the peripheral register (if enabled) - * - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode) - * - Set handle State to READY - * @note This procedure is executed in blocking mode : when exiting function, Abort is considered as completed. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_UART_Abort(UART_HandleTypeDef *huart) -{ - /* Disable TXEIE, TCIE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */ - CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE | USART_CR1_TXEIE | USART_CR1_TCIE)); - CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE); - - /* Disable the UART DMA Tx request if enabled */ - if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT)) - { - CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT); - - /* Abort the UART DMA Tx channel : use blocking DMA Abort API (no callback) */ - if (huart->hdmatx != NULL) - { - /* Set the UART DMA Abort callback to Null. - No call back execution at end of DMA abort procedure */ - huart->hdmatx->XferAbortCallback = NULL; - - if (HAL_DMA_Abort(huart->hdmatx) != HAL_OK) - { - if (HAL_DMA_GetError(huart->hdmatx) == HAL_DMA_ERROR_TIMEOUT) - { - /* Set error code to DMA */ - huart->ErrorCode = HAL_UART_ERROR_DMA; - - return HAL_TIMEOUT; - } - } - } - } - - /* Disable the UART DMA Rx request if enabled */ - if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR)) - { - CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR); - - /* Abort the UART DMA Rx channel : use blocking DMA Abort API (no callback) */ - if (huart->hdmarx != NULL) - { - /* Set the UART DMA Abort callback to Null. - No call back execution at end of DMA abort procedure */ - huart->hdmarx->XferAbortCallback = NULL; - - if (HAL_DMA_Abort(huart->hdmarx) != HAL_OK) - { - if (HAL_DMA_GetError(huart->hdmarx) == HAL_DMA_ERROR_TIMEOUT) - { - /* Set error code to DMA */ - huart->ErrorCode = HAL_UART_ERROR_DMA; - - return HAL_TIMEOUT; - } - } - } - } - - /* Reset Tx and Rx transfer counters */ - huart->TxXferCount = 0U; - huart->RxXferCount = 0U; - - /* Clear the Error flags in the ICR register */ - __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF | UART_CLEAR_NEF | UART_CLEAR_PEF | UART_CLEAR_FEF); - - - /* Discard the received data */ - __HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST); - - /* Restore huart->gState and huart->RxState to Ready */ - huart->gState = HAL_UART_STATE_READY; - huart->RxState = HAL_UART_STATE_READY; - - huart->ErrorCode = HAL_UART_ERROR_NONE; - - return HAL_OK; -} - -/** - * @brief Abort ongoing Transmit transfer (blocking mode). - * @param huart UART handle. - * @note This procedure could be used for aborting any ongoing Tx transfer started in Interrupt or DMA mode. - * This procedure performs following operations : - * - Disable UART Interrupts (Tx) - * - Disable the DMA transfer in the peripheral register (if enabled) - * - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode) - * - Set handle State to READY - * @note This procedure is executed in blocking mode : when exiting function, Abort is considered as completed. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_UART_AbortTransmit(UART_HandleTypeDef *huart) -{ - /* Disable TXEIE and TCIE interrupts */ - CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TXEIE | USART_CR1_TCIE)); - - /* Disable the UART DMA Tx request if enabled */ - if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT)) - { - CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT); - - /* Abort the UART DMA Tx channel : use blocking DMA Abort API (no callback) */ - if (huart->hdmatx != NULL) - { - /* Set the UART DMA Abort callback to Null. - No call back execution at end of DMA abort procedure */ - huart->hdmatx->XferAbortCallback = NULL; - - if (HAL_DMA_Abort(huart->hdmatx) != HAL_OK) - { - if (HAL_DMA_GetError(huart->hdmatx) == HAL_DMA_ERROR_TIMEOUT) - { - /* Set error code to DMA */ - huart->ErrorCode = HAL_UART_ERROR_DMA; - - return HAL_TIMEOUT; - } - } - } - } - - /* Reset Tx transfer counter */ - huart->TxXferCount = 0U; - - - /* Restore huart->gState to Ready */ - huart->gState = HAL_UART_STATE_READY; - - return HAL_OK; -} - -/** - * @brief Abort ongoing Receive transfer (blocking mode). - * @param huart UART handle. - * @note This procedure could be used for aborting any ongoing Rx transfer started in Interrupt or DMA mode. - * This procedure performs following operations : - * - Disable UART Interrupts (Rx) - * - Disable the DMA transfer in the peripheral register (if enabled) - * - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode) - * - Set handle State to READY - * @note This procedure is executed in blocking mode : when exiting function, Abort is considered as completed. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_UART_AbortReceive(UART_HandleTypeDef *huart) -{ - /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */ - CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE)); - CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE); - - /* Disable the UART DMA Rx request if enabled */ - if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR)) - { - CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR); - - /* Abort the UART DMA Rx channel : use blocking DMA Abort API (no callback) */ - if (huart->hdmarx != NULL) - { - /* Set the UART DMA Abort callback to Null. - No call back execution at end of DMA abort procedure */ - huart->hdmarx->XferAbortCallback = NULL; - - if (HAL_DMA_Abort(huart->hdmarx) != HAL_OK) - { - if (HAL_DMA_GetError(huart->hdmarx) == HAL_DMA_ERROR_TIMEOUT) - { - /* Set error code to DMA */ - huart->ErrorCode = HAL_UART_ERROR_DMA; - - return HAL_TIMEOUT; - } - } - } - } - - /* Reset Rx transfer counter */ - huart->RxXferCount = 0U; - - /* Clear the Error flags in the ICR register */ - __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF | UART_CLEAR_NEF | UART_CLEAR_PEF | UART_CLEAR_FEF); - - /* Discard the received data */ - __HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST); - - /* Restore huart->RxState to Ready */ - huart->RxState = HAL_UART_STATE_READY; - - return HAL_OK; -} - -/** - * @brief Abort ongoing transfers (Interrupt mode). - * @param huart UART handle. - * @note This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode. - * This procedure performs following operations : - * - Disable UART Interrupts (Tx and Rx) - * - Disable the DMA transfer in the peripheral register (if enabled) - * - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode) - * - Set handle State to READY - * - At abort completion, call user abort complete callback - * @note This procedure is executed in Interrupt mode, meaning that abort procedure could be - * considered as completed only when user abort complete callback is executed (not when exiting function). - * @retval HAL status - */ -HAL_StatusTypeDef HAL_UART_Abort_IT(UART_HandleTypeDef *huart) -{ - uint32_t abortcplt = 1U; - - /* Disable interrupts */ - CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE | USART_CR1_TXEIE | USART_CR1_TCIE)); - CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE); - - /* If DMA Tx and/or DMA Rx Handles are associated to UART Handle, DMA Abort complete callbacks should be initialised - before any call to DMA Abort functions */ - /* DMA Tx Handle is valid */ - if (huart->hdmatx != NULL) - { - /* Set DMA Abort Complete callback if UART DMA Tx request if enabled. - Otherwise, set it to NULL */ - if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT)) - { - huart->hdmatx->XferAbortCallback = UART_DMATxAbortCallback; - } - else - { - huart->hdmatx->XferAbortCallback = NULL; - } - } - /* DMA Rx Handle is valid */ - if (huart->hdmarx != NULL) - { - /* Set DMA Abort Complete callback if UART DMA Rx request if enabled. - Otherwise, set it to NULL */ - if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR)) - { - huart->hdmarx->XferAbortCallback = UART_DMARxAbortCallback; - } - else - { - huart->hdmarx->XferAbortCallback = NULL; - } - } - - /* Disable the UART DMA Tx request if enabled */ - if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT)) - { - /* Disable DMA Tx at UART level */ - CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT); - - /* Abort the UART DMA Tx channel : use non blocking DMA Abort API (callback) */ - if (huart->hdmatx != NULL) - { - /* UART Tx DMA Abort callback has already been initialised : - will lead to call HAL_UART_AbortCpltCallback() at end of DMA abort procedure */ - - /* Abort DMA TX */ - if (HAL_DMA_Abort_IT(huart->hdmatx) != HAL_OK) - { - huart->hdmatx->XferAbortCallback = NULL; - } - else - { - abortcplt = 0U; - } - } - } - - /* Disable the UART DMA Rx request if enabled */ - if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR)) - { - CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR); - - /* Abort the UART DMA Rx channel : use non blocking DMA Abort API (callback) */ - if (huart->hdmarx != NULL) - { - /* UART Rx DMA Abort callback has already been initialised : - will lead to call HAL_UART_AbortCpltCallback() at end of DMA abort procedure */ - - /* Abort DMA RX */ - if (HAL_DMA_Abort_IT(huart->hdmarx) != HAL_OK) - { - huart->hdmarx->XferAbortCallback = NULL; - abortcplt = 1U; - } - else - { - abortcplt = 0U; - } - } - } - - /* if no DMA abort complete callback execution is required => call user Abort Complete callback */ - if (abortcplt == 1U) - { - /* Reset Tx and Rx transfer counters */ - huart->TxXferCount = 0U; - huart->RxXferCount = 0U; - - /* Clear ISR function pointers */ - huart->RxISR = NULL; - huart->TxISR = NULL; - - /* Reset errorCode */ - huart->ErrorCode = HAL_UART_ERROR_NONE; - - /* Clear the Error flags in the ICR register */ - __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF | UART_CLEAR_NEF | UART_CLEAR_PEF | UART_CLEAR_FEF); - - - /* Discard the received data */ - __HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST); - - /* Restore huart->gState and huart->RxState to Ready */ - huart->gState = HAL_UART_STATE_READY; - huart->RxState = HAL_UART_STATE_READY; - - /* As no DMA to be aborted, call directly user Abort complete callback */ -#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) - /* Call registered Abort complete callback */ - huart->AbortCpltCallback(huart); -#else - /* Call legacy weak Abort complete callback */ - HAL_UART_AbortCpltCallback(huart); -#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ - } - - return HAL_OK; -} - -/** - * @brief Abort ongoing Transmit transfer (Interrupt mode). - * @param huart UART handle. - * @note This procedure could be used for aborting any ongoing Tx transfer started in Interrupt or DMA mode. - * This procedure performs following operations : - * - Disable UART Interrupts (Tx) - * - Disable the DMA transfer in the peripheral register (if enabled) - * - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode) - * - Set handle State to READY - * - At abort completion, call user abort complete callback - * @note This procedure is executed in Interrupt mode, meaning that abort procedure could be - * considered as completed only when user abort complete callback is executed (not when exiting function). - * @retval HAL status - */ -HAL_StatusTypeDef HAL_UART_AbortTransmit_IT(UART_HandleTypeDef *huart) -{ - /* Disable interrupts */ - CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TXEIE | USART_CR1_TCIE)); - - /* Disable the UART DMA Tx request if enabled */ - if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT)) - { - CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT); - - /* Abort the UART DMA Tx channel : use non blocking DMA Abort API (callback) */ - if (huart->hdmatx != NULL) - { - /* Set the UART DMA Abort callback : - will lead to call HAL_UART_AbortCpltCallback() at end of DMA abort procedure */ - huart->hdmatx->XferAbortCallback = UART_DMATxOnlyAbortCallback; - - /* Abort DMA TX */ - if (HAL_DMA_Abort_IT(huart->hdmatx) != HAL_OK) - { - /* Call Directly huart->hdmatx->XferAbortCallback function in case of error */ - huart->hdmatx->XferAbortCallback(huart->hdmatx); - } - } - else - { - /* Reset Tx transfer counter */ - huart->TxXferCount = 0U; - - /* Clear TxISR function pointers */ - huart->TxISR = NULL; - - /* Restore huart->gState to Ready */ - huart->gState = HAL_UART_STATE_READY; - - /* As no DMA to be aborted, call directly user Abort complete callback */ -#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) - /* Call registered Abort Transmit Complete Callback */ - huart->AbortTransmitCpltCallback(huart); -#else - /* Call legacy weak Abort Transmit Complete Callback */ - HAL_UART_AbortTransmitCpltCallback(huart); -#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ - } - } - else - { - /* Reset Tx transfer counter */ - huart->TxXferCount = 0U; - - /* Clear TxISR function pointers */ - huart->TxISR = NULL; - - - /* Restore huart->gState to Ready */ - huart->gState = HAL_UART_STATE_READY; - - /* As no DMA to be aborted, call directly user Abort complete callback */ -#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) - /* Call registered Abort Transmit Complete Callback */ - huart->AbortTransmitCpltCallback(huart); -#else - /* Call legacy weak Abort Transmit Complete Callback */ - HAL_UART_AbortTransmitCpltCallback(huart); -#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ - } - - return HAL_OK; -} - -/** - * @brief Abort ongoing Receive transfer (Interrupt mode). - * @param huart UART handle. - * @note This procedure could be used for aborting any ongoing Rx transfer started in Interrupt or DMA mode. - * This procedure performs following operations : - * - Disable UART Interrupts (Rx) - * - Disable the DMA transfer in the peripheral register (if enabled) - * - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode) - * - Set handle State to READY - * - At abort completion, call user abort complete callback - * @note This procedure is executed in Interrupt mode, meaning that abort procedure could be - * considered as completed only when user abort complete callback is executed (not when exiting function). - * @retval HAL status - */ -HAL_StatusTypeDef HAL_UART_AbortReceive_IT(UART_HandleTypeDef *huart) -{ - /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */ - CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE)); - CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE); - - /* Disable the UART DMA Rx request if enabled */ - if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR)) - { - CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR); - - /* Abort the UART DMA Rx channel : use non blocking DMA Abort API (callback) */ - if (huart->hdmarx != NULL) - { - /* Set the UART DMA Abort callback : - will lead to call HAL_UART_AbortCpltCallback() at end of DMA abort procedure */ - huart->hdmarx->XferAbortCallback = UART_DMARxOnlyAbortCallback; - - /* Abort DMA RX */ - if (HAL_DMA_Abort_IT(huart->hdmarx) != HAL_OK) - { - /* Call Directly huart->hdmarx->XferAbortCallback function in case of error */ - huart->hdmarx->XferAbortCallback(huart->hdmarx); - } - } - else - { - /* Reset Rx transfer counter */ - huart->RxXferCount = 0U; - - /* Clear RxISR function pointer */ - huart->pRxBuffPtr = NULL; - - /* Clear the Error flags in the ICR register */ - __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF | UART_CLEAR_NEF | UART_CLEAR_PEF | UART_CLEAR_FEF); - - /* Discard the received data */ - __HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST); - - /* Restore huart->RxState to Ready */ - huart->RxState = HAL_UART_STATE_READY; - - /* As no DMA to be aborted, call directly user Abort complete callback */ -#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) - /* Call registered Abort Receive Complete Callback */ - huart->AbortReceiveCpltCallback(huart); -#else - /* Call legacy weak Abort Receive Complete Callback */ - HAL_UART_AbortReceiveCpltCallback(huart); -#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ - } - } - else - { - /* Reset Rx transfer counter */ - huart->RxXferCount = 0U; - - /* Clear RxISR function pointer */ - huart->pRxBuffPtr = NULL; - - /* Clear the Error flags in the ICR register */ - __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF | UART_CLEAR_NEF | UART_CLEAR_PEF | UART_CLEAR_FEF); - - /* Restore huart->RxState to Ready */ - huart->RxState = HAL_UART_STATE_READY; - - /* As no DMA to be aborted, call directly user Abort complete callback */ -#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) - /* Call registered Abort Receive Complete Callback */ - huart->AbortReceiveCpltCallback(huart); -#else - /* Call legacy weak Abort Receive Complete Callback */ - HAL_UART_AbortReceiveCpltCallback(huart); -#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ - } - - return HAL_OK; -} - -/** - * @brief Handle UART interrupt request. - * @param huart UART handle. - * @retval None - */ -void HAL_UART_IRQHandler(UART_HandleTypeDef *huart) -{ - uint32_t isrflags = READ_REG(huart->Instance->ISR); - uint32_t cr1its = READ_REG(huart->Instance->CR1); - uint32_t cr3its = READ_REG(huart->Instance->CR3); - - uint32_t errorflags; - uint32_t errorcode; - - /* If no error occurs */ - errorflags = (isrflags & (uint32_t)(USART_ISR_PE | USART_ISR_FE | USART_ISR_ORE | USART_ISR_NE | USART_ISR_RTOF)); - if (errorflags == 0U) - { - /* UART in mode Receiver ---------------------------------------------------*/ - if (((isrflags & USART_ISR_RXNE) != 0U) - && ((cr1its & USART_CR1_RXNEIE) != 0U)) - { - if (huart->RxISR != NULL) - { - huart->RxISR(huart); - } - return; - } - } - - /* If some errors occur */ - if ((errorflags != 0U) - && (((cr3its & USART_CR3_EIE) != 0U) - || ((cr1its & (USART_CR1_RXNEIE | USART_CR1_PEIE)) != 0U))) - { - /* UART parity error interrupt occurred -------------------------------------*/ - if (((isrflags & USART_ISR_PE) != 0U) && ((cr1its & USART_CR1_PEIE) != 0U)) - { - __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_PEF); - - huart->ErrorCode |= HAL_UART_ERROR_PE; - } - - /* UART frame error interrupt occurred --------------------------------------*/ - if (((isrflags & USART_ISR_FE) != 0U) && ((cr3its & USART_CR3_EIE) != 0U)) - { - __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_FEF); - - huart->ErrorCode |= HAL_UART_ERROR_FE; - } - - /* UART noise error interrupt occurred --------------------------------------*/ - if (((isrflags & USART_ISR_NE) != 0U) && ((cr3its & USART_CR3_EIE) != 0U)) - { - __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_NEF); - - huart->ErrorCode |= HAL_UART_ERROR_NE; - } - - /* UART Over-Run interrupt occurred -----------------------------------------*/ - if (((isrflags & USART_ISR_ORE) != 0U) - && (((cr1its & USART_CR1_RXNEIE) != 0U) || - ((cr3its & USART_CR3_EIE) != 0U))) - { - __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF); - - huart->ErrorCode |= HAL_UART_ERROR_ORE; - } - - /* UART Receiver Timeout interrupt occurred ---------------------------------*/ - if (((isrflags & USART_ISR_RTOF) != 0U) && ((cr1its & USART_CR1_RTOIE) != 0U)) - { - __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_RTOF); - - huart->ErrorCode |= HAL_UART_ERROR_RTO; - } - - /* Call UART Error Call back function if need be ----------------------------*/ - if (huart->ErrorCode != HAL_UART_ERROR_NONE) - { - /* UART in mode Receiver --------------------------------------------------*/ - if (((isrflags & USART_ISR_RXNE) != 0U) - && ((cr1its & USART_CR1_RXNEIE) != 0U)) - { - if (huart->RxISR != NULL) - { - huart->RxISR(huart); - } - } - - /* If Error is to be considered as blocking : - - Receiver Timeout error in Reception - - Overrun error in Reception - - any error occurs in DMA mode reception - */ - errorcode = huart->ErrorCode; - if ((HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR)) || - ((errorcode & (HAL_UART_ERROR_RTO | HAL_UART_ERROR_ORE)) != 0U)) - { - /* Blocking error : transfer is aborted - Set the UART state ready to be able to start again the process, - Disable Rx Interrupts, and disable Rx DMA request, if ongoing */ - UART_EndRxTransfer(huart); - - /* Disable the UART DMA Rx request if enabled */ - if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR)) - { - CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR); - - /* Abort the UART DMA Rx channel */ - if (huart->hdmarx != NULL) - { - /* Set the UART DMA Abort callback : - will lead to call HAL_UART_ErrorCallback() at end of DMA abort procedure */ - huart->hdmarx->XferAbortCallback = UART_DMAAbortOnError; - - /* Abort DMA RX */ - if (HAL_DMA_Abort_IT(huart->hdmarx) != HAL_OK) - { - /* Call Directly huart->hdmarx->XferAbortCallback function in case of error */ - huart->hdmarx->XferAbortCallback(huart->hdmarx); - } - } - else - { - /* Call user error callback */ -#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) - /*Call registered error callback*/ - huart->ErrorCallback(huart); -#else - /*Call legacy weak error callback*/ - HAL_UART_ErrorCallback(huart); -#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ - - } - } - else - { - /* Call user error callback */ -#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) - /*Call registered error callback*/ - huart->ErrorCallback(huart); -#else - /*Call legacy weak error callback*/ - HAL_UART_ErrorCallback(huart); -#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ - } - } - else - { - /* Non Blocking error : transfer could go on. - Error is notified to user through user error callback */ -#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) - /*Call registered error callback*/ - huart->ErrorCallback(huart); -#else - /*Call legacy weak error callback*/ - HAL_UART_ErrorCallback(huart); -#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ - huart->ErrorCode = HAL_UART_ERROR_NONE; - } - } - return; - - } /* End if some error occurs */ -#if defined(USART_CR1_UESM) - - /* UART wakeup from Stop mode interrupt occurred ---------------------------*/ - if (((isrflags & USART_ISR_WUF) != 0U) && ((cr3its & USART_CR3_WUFIE) != 0U)) - { - __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_WUF); - - /* UART Rx state is not reset as a reception process might be ongoing. - If UART handle state fields need to be reset to READY, this could be done in Wakeup callback */ - -#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) - /* Call registered Wakeup Callback */ - huart->WakeupCallback(huart); -#else - /* Call legacy weak Wakeup Callback */ - HAL_UARTEx_WakeupCallback(huart); -#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ - return; - } -#endif /* USART_CR1_UESM */ - - /* UART in mode Transmitter ------------------------------------------------*/ - if (((isrflags & USART_ISR_TXE) != 0U) - && ((cr1its & USART_CR1_TXEIE) != 0U)) - { - if (huart->TxISR != NULL) - { - huart->TxISR(huart); - } - return; - } - - /* UART in mode Transmitter (transmission end) -----------------------------*/ - if (((isrflags & USART_ISR_TC) != 0U) && ((cr1its & USART_CR1_TCIE) != 0U)) - { - UART_EndTransmit_IT(huart); - return; - } - -} - -/** - * @brief Tx Transfer completed callback. - * @param huart UART handle. - * @retval None - */ -__weak void HAL_UART_TxCpltCallback(UART_HandleTypeDef *huart) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(huart); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_UART_TxCpltCallback can be implemented in the user file. - */ -} - -/** - * @brief Tx Half Transfer completed callback. - * @param huart UART handle. - * @retval None - */ -__weak void HAL_UART_TxHalfCpltCallback(UART_HandleTypeDef *huart) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(huart); - - /* NOTE: This function should not be modified, when the callback is needed, - the HAL_UART_TxHalfCpltCallback can be implemented in the user file. - */ -} - -/** - * @brief Rx Transfer completed callback. - * @param huart UART handle. - * @retval None - */ -__weak void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(huart); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_UART_RxCpltCallback can be implemented in the user file. - */ -} - -/** - * @brief Rx Half Transfer completed callback. - * @param huart UART handle. - * @retval None - */ -__weak void HAL_UART_RxHalfCpltCallback(UART_HandleTypeDef *huart) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(huart); - - /* NOTE: This function should not be modified, when the callback is needed, - the HAL_UART_RxHalfCpltCallback can be implemented in the user file. - */ -} - -/** - * @brief UART error callback. - * @param huart UART handle. - * @retval None - */ -__weak void HAL_UART_ErrorCallback(UART_HandleTypeDef *huart) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(huart); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_UART_ErrorCallback can be implemented in the user file. - */ -} - -/** - * @brief UART Abort Complete callback. - * @param huart UART handle. - * @retval None - */ -__weak void HAL_UART_AbortCpltCallback(UART_HandleTypeDef *huart) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(huart); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_UART_AbortCpltCallback can be implemented in the user file. - */ -} - -/** - * @brief UART Abort Complete callback. - * @param huart UART handle. - * @retval None - */ -__weak void HAL_UART_AbortTransmitCpltCallback(UART_HandleTypeDef *huart) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(huart); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_UART_AbortTransmitCpltCallback can be implemented in the user file. - */ -} - -/** - * @brief UART Abort Receive Complete callback. - * @param huart UART handle. - * @retval None - */ -__weak void HAL_UART_AbortReceiveCpltCallback(UART_HandleTypeDef *huart) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(huart); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_UART_AbortReceiveCpltCallback can be implemented in the user file. - */ -} - -/** - * @} - */ - -/** @defgroup UART_Exported_Functions_Group3 Peripheral Control functions - * @brief UART control functions - * -@verbatim - =============================================================================== - ##### Peripheral Control functions ##### - =============================================================================== - [..] - This subsection provides a set of functions allowing to control the UART. - (+) HAL_UART_ReceiverTimeout_Config() API allows to configure the receiver timeout value on the fly - (+) HAL_UART_EnableReceiverTimeout() API enables the receiver timeout feature - (+) HAL_UART_DisableReceiverTimeout() API disables the receiver timeout feature - (+) HAL_MultiProcessor_EnableMuteMode() API enables mute mode - (+) HAL_MultiProcessor_DisableMuteMode() API disables mute mode - (+) HAL_MultiProcessor_EnterMuteMode() API enters mute mode - (+) UART_SetConfig() API configures the UART peripheral - (+) UART_AdvFeatureConfig() API optionally configures the UART advanced features - (+) UART_CheckIdleState() API ensures that TEACK and/or REACK are set after initialization - (+) HAL_HalfDuplex_EnableTransmitter() API disables receiver and enables transmitter - (+) HAL_HalfDuplex_EnableReceiver() API disables transmitter and enables receiver - (+) HAL_LIN_SendBreak() API transmits the break characters -@endverbatim - * @{ - */ - -/** - * @brief Update on the fly the receiver timeout value in RTOR register. - * @param huart Pointer to a UART_HandleTypeDef structure that contains - * the configuration information for the specified UART module. - * @param TimeoutValue receiver timeout value in number of baud blocks. The timeout - * value must be less or equal to 0x0FFFFFFFF. - * @retval None - */ -void HAL_UART_ReceiverTimeout_Config(UART_HandleTypeDef *huart, uint32_t TimeoutValue) -{ - assert_param(IS_UART_RECEIVER_TIMEOUT_VALUE(TimeoutValue)); - MODIFY_REG(huart->Instance->RTOR, USART_RTOR_RTO, TimeoutValue); -} - -/** - * @brief Enable the UART receiver timeout feature. - * @param huart Pointer to a UART_HandleTypeDef structure that contains - * the configuration information for the specified UART module. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_UART_EnableReceiverTimeout(UART_HandleTypeDef *huart) -{ - if (huart->gState == HAL_UART_STATE_READY) - { - /* Process Locked */ - __HAL_LOCK(huart); - - huart->gState = HAL_UART_STATE_BUSY; - - /* Set the USART RTOEN bit */ - SET_BIT(huart->Instance->CR2, USART_CR2_RTOEN); - - huart->gState = HAL_UART_STATE_READY; - - /* Process Unlocked */ - __HAL_UNLOCK(huart); - - return HAL_OK; - } - else - { - return HAL_BUSY; - } -} - -/** - * @brief Disable the UART receiver timeout feature. - * @param huart Pointer to a UART_HandleTypeDef structure that contains - * the configuration information for the specified UART module. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_UART_DisableReceiverTimeout(UART_HandleTypeDef *huart) -{ - if (huart->gState == HAL_UART_STATE_READY) - { - /* Process Locked */ - __HAL_LOCK(huart); - - huart->gState = HAL_UART_STATE_BUSY; - - /* Clear the USART RTOEN bit */ - CLEAR_BIT(huart->Instance->CR2, USART_CR2_RTOEN); - - huart->gState = HAL_UART_STATE_READY; - - /* Process Unlocked */ - __HAL_UNLOCK(huart); - - return HAL_OK; - } - else - { - return HAL_BUSY; - } -} - -/** - * @brief Enable UART in mute mode (does not mean UART enters mute mode; - * to enter mute mode, HAL_MultiProcessor_EnterMuteMode() API must be called). - * @param huart UART handle. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_MultiProcessor_EnableMuteMode(UART_HandleTypeDef *huart) -{ - __HAL_LOCK(huart); - - huart->gState = HAL_UART_STATE_BUSY; - - /* Enable USART mute mode by setting the MME bit in the CR1 register */ - SET_BIT(huart->Instance->CR1, USART_CR1_MME); - - huart->gState = HAL_UART_STATE_READY; - - return (UART_CheckIdleState(huart)); -} - -/** - * @brief Disable UART mute mode (does not mean the UART actually exits mute mode - * as it may not have been in mute mode at this very moment). - * @param huart UART handle. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_MultiProcessor_DisableMuteMode(UART_HandleTypeDef *huart) -{ - __HAL_LOCK(huart); - - huart->gState = HAL_UART_STATE_BUSY; - - /* Disable USART mute mode by clearing the MME bit in the CR1 register */ - CLEAR_BIT(huart->Instance->CR1, USART_CR1_MME); - - huart->gState = HAL_UART_STATE_READY; - - return (UART_CheckIdleState(huart)); -} - -/** - * @brief Enter UART mute mode (means UART actually enters mute mode). - * @note To exit from mute mode, HAL_MultiProcessor_DisableMuteMode() API must be called. - * @param huart UART handle. - * @retval None - */ -void HAL_MultiProcessor_EnterMuteMode(UART_HandleTypeDef *huart) -{ - __HAL_UART_SEND_REQ(huart, UART_MUTE_MODE_REQUEST); -} - -/** - * @brief Enable the UART transmitter and disable the UART receiver. - * @param huart UART handle. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_HalfDuplex_EnableTransmitter(UART_HandleTypeDef *huart) -{ - __HAL_LOCK(huart); - huart->gState = HAL_UART_STATE_BUSY; - - /* Clear TE and RE bits */ - CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TE | USART_CR1_RE)); - - /* Enable the USART's transmit interface by setting the TE bit in the USART CR1 register */ - SET_BIT(huart->Instance->CR1, USART_CR1_TE); - - huart->gState = HAL_UART_STATE_READY; - - __HAL_UNLOCK(huart); - - return HAL_OK; -} - -/** - * @brief Enable the UART receiver and disable the UART transmitter. - * @param huart UART handle. - * @retval HAL status. - */ -HAL_StatusTypeDef HAL_HalfDuplex_EnableReceiver(UART_HandleTypeDef *huart) -{ - __HAL_LOCK(huart); - huart->gState = HAL_UART_STATE_BUSY; - - /* Clear TE and RE bits */ - CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TE | USART_CR1_RE)); - - /* Enable the USART's receive interface by setting the RE bit in the USART CR1 register */ - SET_BIT(huart->Instance->CR1, USART_CR1_RE); - - huart->gState = HAL_UART_STATE_READY; - - __HAL_UNLOCK(huart); - - return HAL_OK; -} - - -#if defined(USART_CR2_LINEN) -/** - * @brief Transmit break characters. - * @param huart UART handle. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_LIN_SendBreak(UART_HandleTypeDef *huart) -{ - /* Check the parameters */ - assert_param(IS_UART_LIN_INSTANCE(huart->Instance)); - - __HAL_LOCK(huart); - - huart->gState = HAL_UART_STATE_BUSY; - - /* Send break characters */ - __HAL_UART_SEND_REQ(huart, UART_SENDBREAK_REQUEST); - - huart->gState = HAL_UART_STATE_READY; - - __HAL_UNLOCK(huart); - - return HAL_OK; -} -#endif /* USART_CR2_LINEN */ - -/** - * @} - */ - -/** @defgroup UART_Exported_Functions_Group4 Peripheral State and Error functions - * @brief UART Peripheral State functions - * -@verbatim - ============================================================================== - ##### Peripheral State and Error functions ##### - ============================================================================== - [..] - This subsection provides functions allowing to : - (+) Return the UART handle state. - (+) Return the UART handle error code - -@endverbatim - * @{ - */ - -/** - * @brief Return the UART handle state. - * @param huart Pointer to a UART_HandleTypeDef structure that contains - * the configuration information for the specified UART. - * @retval HAL state - */ -HAL_UART_StateTypeDef HAL_UART_GetState(UART_HandleTypeDef *huart) -{ - uint32_t temp1; - uint32_t temp2; - temp1 = huart->gState; - temp2 = huart->RxState; - - return (HAL_UART_StateTypeDef)(temp1 | temp2); -} - -/** - * @brief Return the UART handle error code. - * @param huart Pointer to a UART_HandleTypeDef structure that contains - * the configuration information for the specified UART. - * @retval UART Error Code - */ -uint32_t HAL_UART_GetError(UART_HandleTypeDef *huart) -{ - return huart->ErrorCode; -} -/** - * @} - */ - -/** - * @} - */ - -/** @defgroup UART_Private_Functions UART Private Functions - * @{ - */ - -/** - * @brief Initialize the callbacks to their default values. - * @param huart UART handle. - * @retval none - */ -#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) -void UART_InitCallbacksToDefault(UART_HandleTypeDef *huart) -{ - /* Init the UART Callback settings */ - huart->TxHalfCpltCallback = HAL_UART_TxHalfCpltCallback; /* Legacy weak TxHalfCpltCallback */ - huart->TxCpltCallback = HAL_UART_TxCpltCallback; /* Legacy weak TxCpltCallback */ - huart->RxHalfCpltCallback = HAL_UART_RxHalfCpltCallback; /* Legacy weak RxHalfCpltCallback */ - huart->RxCpltCallback = HAL_UART_RxCpltCallback; /* Legacy weak RxCpltCallback */ - huart->ErrorCallback = HAL_UART_ErrorCallback; /* Legacy weak ErrorCallback */ - huart->AbortCpltCallback = HAL_UART_AbortCpltCallback; /* Legacy weak AbortCpltCallback */ - huart->AbortTransmitCpltCallback = HAL_UART_AbortTransmitCpltCallback; /* Legacy weak AbortTransmitCpltCallback */ - huart->AbortReceiveCpltCallback = HAL_UART_AbortReceiveCpltCallback; /* Legacy weak AbortReceiveCpltCallback */ -#if defined(USART_CR1_UESM) - huart->WakeupCallback = HAL_UARTEx_WakeupCallback; /* Legacy weak WakeupCallback */ -#endif /* USART_CR1_UESM */ - -} -#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ - -/** - * @brief Configure the UART peripheral. - * @param huart UART handle. - * @retval HAL status - */ -HAL_StatusTypeDef UART_SetConfig(UART_HandleTypeDef *huart) -{ - uint32_t tmpreg; - uint16_t brrtemp; - UART_ClockSourceTypeDef clocksource; - uint32_t usartdiv = 0x00000000U; - HAL_StatusTypeDef ret = HAL_OK; - uint32_t pclk; - - /* Check the parameters */ - assert_param(IS_UART_BAUDRATE(huart->Init.BaudRate)); - assert_param(IS_UART_WORD_LENGTH(huart->Init.WordLength)); - assert_param(IS_UART_STOPBITS(huart->Init.StopBits)); - assert_param(IS_UART_ONE_BIT_SAMPLE(huart->Init.OneBitSampling)); - - assert_param(IS_UART_PARITY(huart->Init.Parity)); - assert_param(IS_UART_MODE(huart->Init.Mode)); - assert_param(IS_UART_HARDWARE_FLOW_CONTROL(huart->Init.HwFlowCtl)); - assert_param(IS_UART_OVERSAMPLING(huart->Init.OverSampling)); - - /*-------------------------- USART CR1 Configuration -----------------------*/ - /* Clear M, PCE, PS, TE, RE and OVER8 bits and configure - * the UART Word Length, Parity, Mode and oversampling: - * set the M bits according to huart->Init.WordLength value - * set PCE and PS bits according to huart->Init.Parity value - * set TE and RE bits according to huart->Init.Mode value - * set OVER8 bit according to huart->Init.OverSampling value */ - tmpreg = (uint32_t)huart->Init.WordLength | huart->Init.Parity | huart->Init.Mode | huart->Init.OverSampling ; - MODIFY_REG(huart->Instance->CR1, USART_CR1_FIELDS, tmpreg); - - /*-------------------------- USART CR2 Configuration -----------------------*/ - /* Configure the UART Stop Bits: Set STOP[13:12] bits according - * to huart->Init.StopBits value */ - MODIFY_REG(huart->Instance->CR2, USART_CR2_STOP, huart->Init.StopBits); - - /*-------------------------- USART CR3 Configuration -----------------------*/ - /* Configure - * - UART HardWare Flow Control: set CTSE and RTSE bits according - * to huart->Init.HwFlowCtl value - * - one-bit sampling method versus three samples' majority rule according - * to huart->Init.OneBitSampling (not applicable to LPUART) */ - tmpreg = (uint32_t)huart->Init.HwFlowCtl; - - tmpreg |= huart->Init.OneBitSampling; - MODIFY_REG(huart->Instance->CR3, USART_CR3_FIELDS, tmpreg); - - - /*-------------------------- USART BRR Configuration -----------------------*/ - UART_GETCLOCKSOURCE(huart, clocksource); - - if (huart->Init.OverSampling == UART_OVERSAMPLING_8) - { - switch (clocksource) - { - case UART_CLOCKSOURCE_PCLK1: - pclk = HAL_RCC_GetPCLK1Freq(); - usartdiv = (uint16_t)(UART_DIV_SAMPLING8(pclk, huart->Init.BaudRate)); - break; - case UART_CLOCKSOURCE_HSI: - usartdiv = (uint16_t)(UART_DIV_SAMPLING8(HSI_VALUE, huart->Init.BaudRate)); - break; - case UART_CLOCKSOURCE_SYSCLK: - pclk = HAL_RCC_GetSysClockFreq(); - usartdiv = (uint16_t)(UART_DIV_SAMPLING8(pclk, huart->Init.BaudRate)); - break; - case UART_CLOCKSOURCE_LSE: - usartdiv = (uint16_t)(UART_DIV_SAMPLING8(LSE_VALUE, huart->Init.BaudRate)); - break; - default: - ret = HAL_ERROR; - break; - } - - /* USARTDIV must be greater than or equal to 0d16 */ - if ((usartdiv >= UART_BRR_MIN) && (usartdiv <= UART_BRR_MAX)) - { - brrtemp = (uint16_t)(usartdiv & 0xFFF0U); - brrtemp |= (uint16_t)((usartdiv & (uint16_t)0x000FU) >> 1U); - huart->Instance->BRR = brrtemp; - } - else - { - ret = HAL_ERROR; - } - } - else - { - switch (clocksource) - { - case UART_CLOCKSOURCE_PCLK1: - pclk = HAL_RCC_GetPCLK1Freq(); - usartdiv = (uint16_t)(UART_DIV_SAMPLING16(pclk, huart->Init.BaudRate)); - break; - case UART_CLOCKSOURCE_HSI: - usartdiv = (uint16_t)(UART_DIV_SAMPLING16(HSI_VALUE, huart->Init.BaudRate)); - break; - case UART_CLOCKSOURCE_SYSCLK: - pclk = HAL_RCC_GetSysClockFreq(); - usartdiv = (uint16_t)(UART_DIV_SAMPLING16(pclk, huart->Init.BaudRate)); - break; - case UART_CLOCKSOURCE_LSE: - usartdiv = (uint16_t)(UART_DIV_SAMPLING16(LSE_VALUE, huart->Init.BaudRate)); - break; - default: - ret = HAL_ERROR; - break; - } - - /* USARTDIV must be greater than or equal to 0d16 */ - if ((usartdiv >= UART_BRR_MIN) && (usartdiv <= UART_BRR_MAX)) - { - huart->Instance->BRR = usartdiv; - } - else - { - ret = HAL_ERROR; - } - } - - - /* Clear ISR function pointers */ - huart->RxISR = NULL; - huart->TxISR = NULL; - - return ret; -} - -/** - * @brief Configure the UART peripheral advanced features. - * @param huart UART handle. - * @retval None - */ -void UART_AdvFeatureConfig(UART_HandleTypeDef *huart) -{ - /* Check whether the set of advanced features to configure is properly set */ - assert_param(IS_UART_ADVFEATURE_INIT(huart->AdvancedInit.AdvFeatureInit)); - - /* if required, configure TX pin active level inversion */ - if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_TXINVERT_INIT)) - { - assert_param(IS_UART_ADVFEATURE_TXINV(huart->AdvancedInit.TxPinLevelInvert)); - MODIFY_REG(huart->Instance->CR2, USART_CR2_TXINV, huart->AdvancedInit.TxPinLevelInvert); - } - - /* if required, configure RX pin active level inversion */ - if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_RXINVERT_INIT)) - { - assert_param(IS_UART_ADVFEATURE_RXINV(huart->AdvancedInit.RxPinLevelInvert)); - MODIFY_REG(huart->Instance->CR2, USART_CR2_RXINV, huart->AdvancedInit.RxPinLevelInvert); - } - - /* if required, configure data inversion */ - if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_DATAINVERT_INIT)) - { - assert_param(IS_UART_ADVFEATURE_DATAINV(huart->AdvancedInit.DataInvert)); - MODIFY_REG(huart->Instance->CR2, USART_CR2_DATAINV, huart->AdvancedInit.DataInvert); - } - - /* if required, configure RX/TX pins swap */ - if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_SWAP_INIT)) - { - assert_param(IS_UART_ADVFEATURE_SWAP(huart->AdvancedInit.Swap)); - MODIFY_REG(huart->Instance->CR2, USART_CR2_SWAP, huart->AdvancedInit.Swap); - } - - /* if required, configure RX overrun detection disabling */ - if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_RXOVERRUNDISABLE_INIT)) - { - assert_param(IS_UART_OVERRUN(huart->AdvancedInit.OverrunDisable)); - MODIFY_REG(huart->Instance->CR3, USART_CR3_OVRDIS, huart->AdvancedInit.OverrunDisable); - } - - /* if required, configure DMA disabling on reception error */ - if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_DMADISABLEONERROR_INIT)) - { - assert_param(IS_UART_ADVFEATURE_DMAONRXERROR(huart->AdvancedInit.DMADisableonRxError)); - MODIFY_REG(huart->Instance->CR3, USART_CR3_DDRE, huart->AdvancedInit.DMADisableonRxError); - } - - /* if required, configure auto Baud rate detection scheme */ - if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_AUTOBAUDRATE_INIT)) - { - assert_param(IS_USART_AUTOBAUDRATE_DETECTION_INSTANCE(huart->Instance)); - assert_param(IS_UART_ADVFEATURE_AUTOBAUDRATE(huart->AdvancedInit.AutoBaudRateEnable)); - MODIFY_REG(huart->Instance->CR2, USART_CR2_ABREN, huart->AdvancedInit.AutoBaudRateEnable); - /* set auto Baudrate detection parameters if detection is enabled */ - if (huart->AdvancedInit.AutoBaudRateEnable == UART_ADVFEATURE_AUTOBAUDRATE_ENABLE) - { - assert_param(IS_UART_ADVFEATURE_AUTOBAUDRATEMODE(huart->AdvancedInit.AutoBaudRateMode)); - MODIFY_REG(huart->Instance->CR2, USART_CR2_ABRMODE, huart->AdvancedInit.AutoBaudRateMode); - } - } - - /* if required, configure MSB first on communication line */ - if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_MSBFIRST_INIT)) - { - assert_param(IS_UART_ADVFEATURE_MSBFIRST(huart->AdvancedInit.MSBFirst)); - MODIFY_REG(huart->Instance->CR2, USART_CR2_MSBFIRST, huart->AdvancedInit.MSBFirst); - } -} - -/** - * @brief Check the UART Idle State. - * @param huart UART handle. - * @retval HAL status - */ -HAL_StatusTypeDef UART_CheckIdleState(UART_HandleTypeDef *huart) -{ - uint32_t tickstart; - - /* Initialize the UART ErrorCode */ - huart->ErrorCode = HAL_UART_ERROR_NONE; - - /* Init tickstart for timeout managment*/ - tickstart = HAL_GetTick(); - - /* Check if the Transmitter is enabled */ - if ((huart->Instance->CR1 & USART_CR1_TE) == USART_CR1_TE) - { - /* Wait until TEACK flag is set */ - if (UART_WaitOnFlagUntilTimeout(huart, USART_ISR_TEACK, RESET, tickstart, HAL_UART_TIMEOUT_VALUE) != HAL_OK) - { - /* Timeout occurred */ - return HAL_TIMEOUT; - } - } - - /* Check if the Receiver is enabled */ - if ((huart->Instance->CR1 & USART_CR1_RE) == USART_CR1_RE) - { - /* Wait until REACK flag is set */ - if (UART_WaitOnFlagUntilTimeout(huart, USART_ISR_REACK, RESET, tickstart, HAL_UART_TIMEOUT_VALUE) != HAL_OK) - { - /* Timeout occurred */ - return HAL_TIMEOUT; - } - } - - /* Initialize the UART State */ - huart->gState = HAL_UART_STATE_READY; - huart->RxState = HAL_UART_STATE_READY; - - __HAL_UNLOCK(huart); - - return HAL_OK; -} - -/** - * @brief Handle UART Communication Timeout. - * @param huart UART handle. - * @param Flag Specifies the UART flag to check - * @param Status Flag status (SET or RESET) - * @param Tickstart Tick start value - * @param Timeout Timeout duration - * @retval HAL status - */ -HAL_StatusTypeDef UART_WaitOnFlagUntilTimeout(UART_HandleTypeDef *huart, uint32_t Flag, FlagStatus Status, - uint32_t Tickstart, uint32_t Timeout) -{ - /* Wait until flag is set */ - while ((__HAL_UART_GET_FLAG(huart, Flag) ? SET : RESET) == Status) - { - /* Check for the Timeout */ - if (Timeout != HAL_MAX_DELAY) - { - if (((HAL_GetTick() - Tickstart) > Timeout) || (Timeout == 0U)) - { - /* Disable TXE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts for the interrupt process */ - CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE | USART_CR1_TXEIE)); - CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE); - - huart->gState = HAL_UART_STATE_READY; - huart->RxState = HAL_UART_STATE_READY; - - __HAL_UNLOCK(huart); - - return HAL_TIMEOUT; - } - - if (READ_BIT(huart->Instance->CR1, USART_CR1_RE) != 0U) - { - if (__HAL_UART_GET_FLAG(huart, UART_FLAG_RTOF) == SET) - { - /* Clear Receiver Timeout flag*/ - __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_RTOF); - - /* Disable TXE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts for the interrupt process */ - CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE | USART_CR1_TXEIE)); - CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE); - - huart->gState = HAL_UART_STATE_READY; - huart->RxState = HAL_UART_STATE_READY; - huart->ErrorCode = HAL_UART_ERROR_RTO; - - /* Process Unlocked */ - __HAL_UNLOCK(huart); - - return HAL_TIMEOUT; - } - } - } - } - return HAL_OK; -} - - -/** - * @brief End ongoing Tx transfer on UART peripheral (following error detection or Transmit completion). - * @param huart UART handle. - * @retval None - */ -static void UART_EndTxTransfer(UART_HandleTypeDef *huart) -{ - /* Disable TXEIE and TCIE interrupts */ - CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TXEIE | USART_CR1_TCIE)); - - /* At end of Tx process, restore huart->gState to Ready */ - huart->gState = HAL_UART_STATE_READY; -} - - -/** - * @brief End ongoing Rx transfer on UART peripheral (following error detection or Reception completion). - * @param huart UART handle. - * @retval None - */ -static void UART_EndRxTransfer(UART_HandleTypeDef *huart) -{ - /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */ - CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE)); - CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE); - - /* At end of Rx process, restore huart->RxState to Ready */ - huart->RxState = HAL_UART_STATE_READY; - - /* Reset RxIsr function pointer */ - huart->RxISR = NULL; -} - - -/** - * @brief DMA UART transmit process complete callback. - * @param hdma DMA handle. - * @retval None - */ -static void UART_DMATransmitCplt(DMA_HandleTypeDef *hdma) -{ - UART_HandleTypeDef *huart = (UART_HandleTypeDef *)(hdma->Parent); - - /* DMA Normal mode */ - if (hdma->Init.Mode != DMA_CIRCULAR) - { - huart->TxXferCount = 0U; - - /* Disable the DMA transfer for transmit request by resetting the DMAT bit - in the UART CR3 register */ - CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT); - - /* Enable the UART Transmit Complete Interrupt */ - SET_BIT(huart->Instance->CR1, USART_CR1_TCIE); - } - /* DMA Circular mode */ - else - { -#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) - /*Call registered Tx complete callback*/ - huart->TxCpltCallback(huart); -#else - /*Call legacy weak Tx complete callback*/ - HAL_UART_TxCpltCallback(huart); -#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ - } -} - -/** - * @brief DMA UART transmit process half complete callback. - * @param hdma DMA handle. - * @retval None - */ -static void UART_DMATxHalfCplt(DMA_HandleTypeDef *hdma) -{ - UART_HandleTypeDef *huart = (UART_HandleTypeDef *)(hdma->Parent); - -#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) - /*Call registered Tx Half complete callback*/ - huart->TxHalfCpltCallback(huart); -#else - /*Call legacy weak Tx Half complete callback*/ - HAL_UART_TxHalfCpltCallback(huart); -#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ -} - -/** - * @brief DMA UART receive process complete callback. - * @param hdma DMA handle. - * @retval None - */ -static void UART_DMAReceiveCplt(DMA_HandleTypeDef *hdma) -{ - UART_HandleTypeDef *huart = (UART_HandleTypeDef *)(hdma->Parent); - - /* DMA Normal mode */ - if (hdma->Init.Mode != DMA_CIRCULAR) - { - huart->RxXferCount = 0U; - - /* Disable PE and ERR (Frame error, noise error, overrun error) interrupts */ - CLEAR_BIT(huart->Instance->CR1, USART_CR1_PEIE); - CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE); - - /* Disable the DMA transfer for the receiver request by resetting the DMAR bit - in the UART CR3 register */ - CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR); - - /* At end of Rx process, restore huart->RxState to Ready */ - huart->RxState = HAL_UART_STATE_READY; - } - -#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) - /*Call registered Rx complete callback*/ - huart->RxCpltCallback(huart); -#else - /*Call legacy weak Rx complete callback*/ - HAL_UART_RxCpltCallback(huart); -#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ -} - -/** - * @brief DMA UART receive process half complete callback. - * @param hdma DMA handle. - * @retval None - */ -static void UART_DMARxHalfCplt(DMA_HandleTypeDef *hdma) -{ - UART_HandleTypeDef *huart = (UART_HandleTypeDef *)(hdma->Parent); - -#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) - /*Call registered Rx Half complete callback*/ - huart->RxHalfCpltCallback(huart); -#else - /*Call legacy weak Rx Half complete callback*/ - HAL_UART_RxHalfCpltCallback(huart); -#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ -} - -/** - * @brief DMA UART communication error callback. - * @param hdma DMA handle. - * @retval None - */ -static void UART_DMAError(DMA_HandleTypeDef *hdma) -{ - UART_HandleTypeDef *huart = (UART_HandleTypeDef *)(hdma->Parent); - - const HAL_UART_StateTypeDef gstate = huart->gState; - const HAL_UART_StateTypeDef rxstate = huart->RxState; - - /* Stop UART DMA Tx request if ongoing */ - if ((HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT)) && - (gstate == HAL_UART_STATE_BUSY_TX)) - { - huart->TxXferCount = 0U; - UART_EndTxTransfer(huart); - } - - /* Stop UART DMA Rx request if ongoing */ - if ((HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR)) && - (rxstate == HAL_UART_STATE_BUSY_RX)) - { - huart->RxXferCount = 0U; - UART_EndRxTransfer(huart); - } - - huart->ErrorCode |= HAL_UART_ERROR_DMA; - -#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) - /*Call registered error callback*/ - huart->ErrorCallback(huart); -#else - /*Call legacy weak error callback*/ - HAL_UART_ErrorCallback(huart); -#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ -} - -/** - * @brief DMA UART communication abort callback, when initiated by HAL services on Error - * (To be called at end of DMA Abort procedure following error occurrence). - * @param hdma DMA handle. - * @retval None - */ -static void UART_DMAAbortOnError(DMA_HandleTypeDef *hdma) -{ - UART_HandleTypeDef *huart = (UART_HandleTypeDef *)(hdma->Parent); - huart->RxXferCount = 0U; - huart->TxXferCount = 0U; - -#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) - /*Call registered error callback*/ - huart->ErrorCallback(huart); -#else - /*Call legacy weak error callback*/ - HAL_UART_ErrorCallback(huart); -#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ -} - -/** - * @brief DMA UART Tx communication abort callback, when initiated by user - * (To be called at end of DMA Tx Abort procedure following user abort request). - * @note When this callback is executed, User Abort complete call back is called only if no - * Abort still ongoing for Rx DMA Handle. - * @param hdma DMA handle. - * @retval None - */ -static void UART_DMATxAbortCallback(DMA_HandleTypeDef *hdma) -{ - UART_HandleTypeDef *huart = (UART_HandleTypeDef *)(hdma->Parent); - - huart->hdmatx->XferAbortCallback = NULL; - - /* Check if an Abort process is still ongoing */ - if (huart->hdmarx != NULL) - { - if (huart->hdmarx->XferAbortCallback != NULL) - { - return; - } - } - - /* No Abort process still ongoing : All DMA channels are aborted, call user Abort Complete callback */ - huart->TxXferCount = 0U; - huart->RxXferCount = 0U; - - /* Reset errorCode */ - huart->ErrorCode = HAL_UART_ERROR_NONE; - - /* Clear the Error flags in the ICR register */ - __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF | UART_CLEAR_NEF | UART_CLEAR_PEF | UART_CLEAR_FEF); - - - /* Restore huart->gState and huart->RxState to Ready */ - huart->gState = HAL_UART_STATE_READY; - huart->RxState = HAL_UART_STATE_READY; - - /* Call user Abort complete callback */ -#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) - /* Call registered Abort complete callback */ - huart->AbortCpltCallback(huart); -#else - /* Call legacy weak Abort complete callback */ - HAL_UART_AbortCpltCallback(huart); -#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ -} - - -/** - * @brief DMA UART Rx communication abort callback, when initiated by user - * (To be called at end of DMA Rx Abort procedure following user abort request). - * @note When this callback is executed, User Abort complete call back is called only if no - * Abort still ongoing for Tx DMA Handle. - * @param hdma DMA handle. - * @retval None - */ -static void UART_DMARxAbortCallback(DMA_HandleTypeDef *hdma) -{ - UART_HandleTypeDef *huart = (UART_HandleTypeDef *)(hdma->Parent); - - huart->hdmarx->XferAbortCallback = NULL; - - /* Check if an Abort process is still ongoing */ - if (huart->hdmatx != NULL) - { - if (huart->hdmatx->XferAbortCallback != NULL) - { - return; - } - } - - /* No Abort process still ongoing : All DMA channels are aborted, call user Abort Complete callback */ - huart->TxXferCount = 0U; - huart->RxXferCount = 0U; - - /* Reset errorCode */ - huart->ErrorCode = HAL_UART_ERROR_NONE; - - /* Clear the Error flags in the ICR register */ - __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF | UART_CLEAR_NEF | UART_CLEAR_PEF | UART_CLEAR_FEF); - - /* Discard the received data */ - __HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST); - - /* Restore huart->gState and huart->RxState to Ready */ - huart->gState = HAL_UART_STATE_READY; - huart->RxState = HAL_UART_STATE_READY; - - /* Call user Abort complete callback */ -#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) - /* Call registered Abort complete callback */ - huart->AbortCpltCallback(huart); -#else - /* Call legacy weak Abort complete callback */ - HAL_UART_AbortCpltCallback(huart); -#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ -} - - -/** - * @brief DMA UART Tx communication abort callback, when initiated by user by a call to - * HAL_UART_AbortTransmit_IT API (Abort only Tx transfer) - * (This callback is executed at end of DMA Tx Abort procedure following user abort request, - * and leads to user Tx Abort Complete callback execution). - * @param hdma DMA handle. - * @retval None - */ -static void UART_DMATxOnlyAbortCallback(DMA_HandleTypeDef *hdma) -{ - UART_HandleTypeDef *huart = (UART_HandleTypeDef *)(hdma->Parent); - - huart->TxXferCount = 0U; - - - /* Restore huart->gState to Ready */ - huart->gState = HAL_UART_STATE_READY; - - /* Call user Abort complete callback */ -#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) - /* Call registered Abort Transmit Complete Callback */ - huart->AbortTransmitCpltCallback(huart); -#else - /* Call legacy weak Abort Transmit Complete Callback */ - HAL_UART_AbortTransmitCpltCallback(huart); -#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ -} - -/** - * @brief DMA UART Rx communication abort callback, when initiated by user by a call to - * HAL_UART_AbortReceive_IT API (Abort only Rx transfer) - * (This callback is executed at end of DMA Rx Abort procedure following user abort request, - * and leads to user Rx Abort Complete callback execution). - * @param hdma DMA handle. - * @retval None - */ -static void UART_DMARxOnlyAbortCallback(DMA_HandleTypeDef *hdma) -{ - UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; - - huart->RxXferCount = 0U; - - /* Clear the Error flags in the ICR register */ - __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF | UART_CLEAR_NEF | UART_CLEAR_PEF | UART_CLEAR_FEF); - - /* Discard the received data */ - __HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST); - - /* Restore huart->RxState to Ready */ - huart->RxState = HAL_UART_STATE_READY; - - /* Call user Abort complete callback */ -#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) - /* Call registered Abort Receive Complete Callback */ - huart->AbortReceiveCpltCallback(huart); -#else - /* Call legacy weak Abort Receive Complete Callback */ - HAL_UART_AbortReceiveCpltCallback(huart); -#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ -} - -/** - * @brief TX interrrupt handler for 7 or 8 bits data word length . - * @note Function is called under interruption only, once - * interruptions have been enabled by HAL_UART_Transmit_IT(). - * @param huart UART handle. - * @retval None - */ -static void UART_TxISR_8BIT(UART_HandleTypeDef *huart) -{ - /* Check that a Tx process is ongoing */ - if (huart->gState == HAL_UART_STATE_BUSY_TX) - { - if (huart->TxXferCount == 0U) - { - /* Disable the UART Transmit Data Register Empty Interrupt */ - CLEAR_BIT(huart->Instance->CR1, USART_CR1_TXEIE); - - /* Enable the UART Transmit Complete Interrupt */ - SET_BIT(huart->Instance->CR1, USART_CR1_TCIE); - } - else - { - huart->Instance->TDR = (uint8_t)(*huart->pTxBuffPtr & (uint8_t)0xFF); - huart->pTxBuffPtr++; - huart->TxXferCount--; - } - } -} - -/** - * @brief TX interrrupt handler for 9 bits data word length. - * @note Function is called under interruption only, once - * interruptions have been enabled by HAL_UART_Transmit_IT(). - * @param huart UART handle. - * @retval None - */ -static void UART_TxISR_16BIT(UART_HandleTypeDef *huart) -{ - uint16_t *tmp; - - /* Check that a Tx process is ongoing */ - if (huart->gState == HAL_UART_STATE_BUSY_TX) - { - if (huart->TxXferCount == 0U) - { - /* Disable the UART Transmit Data Register Empty Interrupt */ - CLEAR_BIT(huart->Instance->CR1, USART_CR1_TXEIE); - - /* Enable the UART Transmit Complete Interrupt */ - SET_BIT(huart->Instance->CR1, USART_CR1_TCIE); - } - else - { - tmp = (uint16_t *) huart->pTxBuffPtr; - huart->Instance->TDR = (((uint32_t)(*tmp)) & 0x01FFUL); - huart->pTxBuffPtr += 2U; - huart->TxXferCount--; - } - } -} - - -/** - * @brief Wrap up transmission in non-blocking mode. - * @param huart pointer to a UART_HandleTypeDef structure that contains - * the configuration information for the specified UART module. - * @retval None - */ -static void UART_EndTransmit_IT(UART_HandleTypeDef *huart) -{ - /* Disable the UART Transmit Complete Interrupt */ - CLEAR_BIT(huart->Instance->CR1, USART_CR1_TCIE); - - /* Tx process is ended, restore huart->gState to Ready */ - huart->gState = HAL_UART_STATE_READY; - - /* Cleat TxISR function pointer */ - huart->TxISR = NULL; - -#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) - /*Call registered Tx complete callback*/ - huart->TxCpltCallback(huart); -#else - /*Call legacy weak Tx complete callback*/ - HAL_UART_TxCpltCallback(huart); -#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ -} - -/** - * @brief RX interrrupt handler for 7 or 8 bits data word length . - * @param huart UART handle. - * @retval None - */ -static void UART_RxISR_8BIT(UART_HandleTypeDef *huart) -{ - uint16_t uhMask = huart->Mask; - uint16_t uhdata; - - /* Check that a Rx process is ongoing */ - if (huart->RxState == HAL_UART_STATE_BUSY_RX) - { - uhdata = (uint16_t) READ_REG(huart->Instance->RDR); - *huart->pRxBuffPtr = (uint8_t)(uhdata & (uint8_t)uhMask); - huart->pRxBuffPtr++; - huart->RxXferCount--; - - if (huart->RxXferCount == 0U) - { - /* Disable the UART Parity Error Interrupt and RXNE interrupts */ - CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE)); - - /* Disable the UART Error Interrupt: (Frame error, noise error, overrun error) */ - CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE); - - /* Rx process is completed, restore huart->RxState to Ready */ - huart->RxState = HAL_UART_STATE_READY; - - /* Clear RxISR function pointer */ - huart->RxISR = NULL; - -#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) - /*Call registered Rx complete callback*/ - huart->RxCpltCallback(huart); -#else - /*Call legacy weak Rx complete callback*/ - HAL_UART_RxCpltCallback(huart); -#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ - } - } - else - { - /* Clear RXNE interrupt flag */ - __HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST); - } -} - -/** - * @brief RX interrrupt handler for 9 bits data word length . - * @note Function is called under interruption only, once - * interruptions have been enabled by HAL_UART_Receive_IT() - * @param huart UART handle. - * @retval None - */ -static void UART_RxISR_16BIT(UART_HandleTypeDef *huart) -{ - uint16_t *tmp; - uint16_t uhMask = huart->Mask; - uint16_t uhdata; - - /* Check that a Rx process is ongoing */ - if (huart->RxState == HAL_UART_STATE_BUSY_RX) - { - uhdata = (uint16_t) READ_REG(huart->Instance->RDR); - tmp = (uint16_t *) huart->pRxBuffPtr ; - *tmp = (uint16_t)(uhdata & uhMask); - huart->pRxBuffPtr += 2U; - huart->RxXferCount--; - - if (huart->RxXferCount == 0U) - { - /* Disable the UART Parity Error Interrupt and RXNE interrupt*/ - CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE)); - - /* Disable the UART Error Interrupt: (Frame error, noise error, overrun error) */ - CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE); - - /* Rx process is completed, restore huart->RxState to Ready */ - huart->RxState = HAL_UART_STATE_READY; - - /* Clear RxISR function pointer */ - huart->RxISR = NULL; - -#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) - /*Call registered Rx complete callback*/ - huart->RxCpltCallback(huart); -#else - /*Call legacy weak Rx complete callback*/ - HAL_UART_RxCpltCallback(huart); -#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ - } - } - else - { - /* Clear RXNE interrupt flag */ - __HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST); - } -} - - -/** - * @} - */ - -#endif /* HAL_UART_MODULE_ENABLED */ -/** - * @} - */ - -/** - * @} - */ - -/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_uart_ex.c b/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_uart_ex.c deleted file mode 100644 index d84e85a..0000000 --- a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_uart_ex.c +++ /dev/null @@ -1,478 +0,0 @@ -/** - ****************************************************************************** - * @file stm32f0xx_hal_uart_ex.c - * @author MCD Application Team - * @brief Extended UART HAL module driver. - * This file provides firmware functions to manage the following extended - * functionalities of the Universal Asynchronous Receiver Transmitter Peripheral (UART). - * + Initialization and de-initialization functions - * + Peripheral Control functions - * - * - @verbatim - ============================================================================== - ##### UART peripheral extended features ##### - ============================================================================== - - (#) Declare a UART_HandleTypeDef handle structure. - - (#) For the UART RS485 Driver Enable mode, initialize the UART registers - by calling the HAL_RS485Ex_Init() API. - - @endverbatim - ****************************************************************************** - * @attention - * - *

© Copyright (c) 2016 STMicroelectronics. - * All rights reserved.

- * - * This software component is licensed by ST under BSD 3-Clause license, - * the "License"; You may not use this file except in compliance with the - * License. You may obtain a copy of the License at: - * opensource.org/licenses/BSD-3-Clause - * - ****************************************************************************** - */ - -/* Includes ------------------------------------------------------------------*/ -#include "stm32f0xx_hal.h" - -/** @addtogroup STM32F0xx_HAL_Driver - * @{ - */ - -/** @defgroup UARTEx UARTEx - * @brief UART Extended HAL module driver - * @{ - */ - -#ifdef HAL_UART_MODULE_ENABLED - -/* Private typedef -----------------------------------------------------------*/ -/* Private define ------------------------------------------------------------*/ - -/* Private macros ------------------------------------------------------------*/ -/* Private variables ---------------------------------------------------------*/ -/* Private function prototypes -----------------------------------------------*/ -/** @defgroup UARTEx_Private_Functions UARTEx Private Functions - * @{ - */ -#if defined(USART_CR1_UESM) -static void UARTEx_Wakeup_AddressConfig(UART_HandleTypeDef *huart, UART_WakeUpTypeDef WakeUpSelection); -#endif /* USART_CR1_UESM */ -/** - * @} - */ - -/* Exported functions --------------------------------------------------------*/ - -/** @defgroup UARTEx_Exported_Functions UARTEx Exported Functions - * @{ - */ - -/** @defgroup UARTEx_Exported_Functions_Group1 Initialization and de-initialization functions - * @brief Extended Initialization and Configuration Functions - * -@verbatim -=============================================================================== - ##### Initialization and Configuration functions ##### - =============================================================================== - [..] - This subsection provides a set of functions allowing to initialize the USARTx or the UARTy - in asynchronous mode. - (+) For the asynchronous mode the parameters below can be configured: - (++) Baud Rate - (++) Word Length - (++) Stop Bit - (++) Parity: If the parity is enabled, then the MSB bit of the data written - in the data register is transmitted but is changed by the parity bit. - (++) Hardware flow control - (++) Receiver/transmitter modes - (++) Over Sampling Method - (++) One-Bit Sampling Method - (+) For the asynchronous mode, the following advanced features can be configured as well: - (++) TX and/or RX pin level inversion - (++) data logical level inversion - (++) RX and TX pins swap - (++) RX overrun detection disabling - (++) DMA disabling on RX error - (++) MSB first on communication line - (++) auto Baud rate detection - [..] - The HAL_RS485Ex_Init() API follows the UART RS485 mode configuration - procedures (details for the procedures are available in reference manual). - -@endverbatim - - Depending on the frame length defined by the M1 and M0 bits (7-bit, - 8-bit or 9-bit), the possible UART formats are listed in the - following table. - - Table 1. UART frame format. - +-----------------------------------------------------------------------+ - | M1 bit | M0 bit | PCE bit | UART frame | - |---------|---------|-----------|---------------------------------------| - | 0 | 0 | 0 | | SB | 8 bit data | STB | | - |---------|---------|-----------|---------------------------------------| - | 0 | 0 | 1 | | SB | 7 bit data | PB | STB | | - |---------|---------|-----------|---------------------------------------| - | 0 | 1 | 0 | | SB | 9 bit data | STB | | - |---------|---------|-----------|---------------------------------------| - | 0 | 1 | 1 | | SB | 8 bit data | PB | STB | | - |---------|---------|-----------|---------------------------------------| - | 1 | 0 | 0 | | SB | 7 bit data | STB | | - |---------|---------|-----------|---------------------------------------| - | 1 | 0 | 1 | | SB | 6 bit data | PB | STB | | - +-----------------------------------------------------------------------+ - - * @{ - */ - -/** - * @brief Initialize the RS485 Driver enable feature according to the specified - * parameters in the UART_InitTypeDef and creates the associated handle. - * @param huart UART handle. - * @param Polarity Select the driver enable polarity. - * This parameter can be one of the following values: - * @arg @ref UART_DE_POLARITY_HIGH DE signal is active high - * @arg @ref UART_DE_POLARITY_LOW DE signal is active low - * @param AssertionTime Driver Enable assertion time: - * 5-bit value defining the time between the activation of the DE (Driver Enable) - * signal and the beginning of the start bit. It is expressed in sample time - * units (1/8 or 1/16 bit time, depending on the oversampling rate) - * @param DeassertionTime Driver Enable deassertion time: - * 5-bit value defining the time between the end of the last stop bit, in a - * transmitted message, and the de-activation of the DE (Driver Enable) signal. - * It is expressed in sample time units (1/8 or 1/16 bit time, depending on the - * oversampling rate). - * @retval HAL status - */ -HAL_StatusTypeDef HAL_RS485Ex_Init(UART_HandleTypeDef *huart, uint32_t Polarity, uint32_t AssertionTime, - uint32_t DeassertionTime) -{ - uint32_t temp; - - /* Check the UART handle allocation */ - if (huart == NULL) - { - return HAL_ERROR; - } - /* Check the Driver Enable UART instance */ - assert_param(IS_UART_DRIVER_ENABLE_INSTANCE(huart->Instance)); - - /* Check the Driver Enable polarity */ - assert_param(IS_UART_DE_POLARITY(Polarity)); - - /* Check the Driver Enable assertion time */ - assert_param(IS_UART_ASSERTIONTIME(AssertionTime)); - - /* Check the Driver Enable deassertion time */ - assert_param(IS_UART_DEASSERTIONTIME(DeassertionTime)); - - if (huart->gState == HAL_UART_STATE_RESET) - { - /* Allocate lock resource and initialize it */ - huart->Lock = HAL_UNLOCKED; - -#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) - UART_InitCallbacksToDefault(huart); - - if (huart->MspInitCallback == NULL) - { - huart->MspInitCallback = HAL_UART_MspInit; - } - - /* Init the low level hardware */ - huart->MspInitCallback(huart); -#else - /* Init the low level hardware : GPIO, CLOCK, CORTEX */ - HAL_UART_MspInit(huart); -#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */ - } - - huart->gState = HAL_UART_STATE_BUSY; - - /* Disable the Peripheral */ - __HAL_UART_DISABLE(huart); - - /* Set the UART Communication parameters */ - if (UART_SetConfig(huart) == HAL_ERROR) - { - return HAL_ERROR; - } - - if (huart->AdvancedInit.AdvFeatureInit != UART_ADVFEATURE_NO_INIT) - { - UART_AdvFeatureConfig(huart); - } - - /* Enable the Driver Enable mode by setting the DEM bit in the CR3 register */ - SET_BIT(huart->Instance->CR3, USART_CR3_DEM); - - /* Set the Driver Enable polarity */ - MODIFY_REG(huart->Instance->CR3, USART_CR3_DEP, Polarity); - - /* Set the Driver Enable assertion and deassertion times */ - temp = (AssertionTime << UART_CR1_DEAT_ADDRESS_LSB_POS); - temp |= (DeassertionTime << UART_CR1_DEDT_ADDRESS_LSB_POS); - MODIFY_REG(huart->Instance->CR1, (USART_CR1_DEDT | USART_CR1_DEAT), temp); - - /* Enable the Peripheral */ - __HAL_UART_ENABLE(huart); - - /* TEACK and/or REACK to check before moving huart->gState and huart->RxState to Ready */ - return (UART_CheckIdleState(huart)); -} - -/** - * @} - */ - -/** @defgroup UARTEx_Exported_Functions_Group2 IO operation functions - * @brief Extended functions - * -@verbatim - =============================================================================== - ##### IO operation functions ##### - =============================================================================== - This subsection provides a set of Wakeup and FIFO mode related callback functions. - -#if defined(USART_CR1_UESM) - (#) Wakeup from Stop mode Callback: - (+) HAL_UARTEx_WakeupCallback() - -#endif -@endverbatim - * @{ - */ - -#if defined(USART_CR1_UESM) -/** - * @brief UART wakeup from Stop mode callback. - * @param huart UART handle. - * @retval None - */ -__weak void HAL_UARTEx_WakeupCallback(UART_HandleTypeDef *huart) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(huart); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_UARTEx_WakeupCallback can be implemented in the user file. - */ -} - -#endif /* USART_CR1_UESM */ - -/** - * @} - */ - -/** @defgroup UARTEx_Exported_Functions_Group3 Peripheral Control functions - * @brief Extended Peripheral Control functions - * -@verbatim - =============================================================================== - ##### Peripheral Control functions ##### - =============================================================================== - [..] This section provides the following functions: - (+) HAL_MultiProcessorEx_AddressLength_Set() API optionally sets the UART node address - detection length to more than 4 bits for multiprocessor address mark wake up. -#if defined(USART_CR1_UESM) - (+) HAL_UARTEx_StopModeWakeUpSourceConfig() API defines the wake-up from stop mode - trigger: address match, Start Bit detection or RXNE bit status. - (+) HAL_UARTEx_EnableStopMode() API enables the UART to wake up the MCU from stop mode - (+) HAL_UARTEx_DisableStopMode() API disables the above functionality -#endif - -@endverbatim - * @{ - */ - -/** - * @brief By default in multiprocessor mode, when the wake up method is set - * to address mark, the UART handles only 4-bit long addresses detection; - * this API allows to enable longer addresses detection (6-, 7- or 8-bit - * long). - * @note Addresses detection lengths are: 6-bit address detection in 7-bit data mode, - * 7-bit address detection in 8-bit data mode, 8-bit address detection in 9-bit data mode. - * @param huart UART handle. - * @param AddressLength This parameter can be one of the following values: - * @arg @ref UART_ADDRESS_DETECT_4B 4-bit long address - * @arg @ref UART_ADDRESS_DETECT_7B 6-, 7- or 8-bit long address - * @retval HAL status - */ -HAL_StatusTypeDef HAL_MultiProcessorEx_AddressLength_Set(UART_HandleTypeDef *huart, uint32_t AddressLength) -{ - /* Check the UART handle allocation */ - if (huart == NULL) - { - return HAL_ERROR; - } - - /* Check the address length parameter */ - assert_param(IS_UART_ADDRESSLENGTH_DETECT(AddressLength)); - - huart->gState = HAL_UART_STATE_BUSY; - - /* Disable the Peripheral */ - __HAL_UART_DISABLE(huart); - - /* Set the address length */ - MODIFY_REG(huart->Instance->CR2, USART_CR2_ADDM7, AddressLength); - - /* Enable the Peripheral */ - __HAL_UART_ENABLE(huart); - - /* TEACK and/or REACK to check before moving huart->gState to Ready */ - return (UART_CheckIdleState(huart)); -} - -#if defined(USART_CR1_UESM) -/** - * @brief Set Wakeup from Stop mode interrupt flag selection. - * @note It is the application responsibility to enable the interrupt used as - * usart_wkup interrupt source before entering low-power mode. - * @param huart UART handle. - * @param WakeUpSelection Address match, Start Bit detection or RXNE/RXFNE bit status. - * This parameter can be one of the following values: - * @arg @ref UART_WAKEUP_ON_ADDRESS - * @arg @ref UART_WAKEUP_ON_STARTBIT - * @arg @ref UART_WAKEUP_ON_READDATA_NONEMPTY - * @retval HAL status - */ -HAL_StatusTypeDef HAL_UARTEx_StopModeWakeUpSourceConfig(UART_HandleTypeDef *huart, UART_WakeUpTypeDef WakeUpSelection) -{ - HAL_StatusTypeDef status = HAL_OK; - uint32_t tickstart; - - /* check the wake-up from stop mode UART instance */ - assert_param(IS_UART_WAKEUP_FROMSTOP_INSTANCE(huart->Instance)); - /* check the wake-up selection parameter */ - assert_param(IS_UART_WAKEUP_SELECTION(WakeUpSelection.WakeUpEvent)); - - /* Process Locked */ - __HAL_LOCK(huart); - - huart->gState = HAL_UART_STATE_BUSY; - - /* Disable the Peripheral */ - __HAL_UART_DISABLE(huart); - - /* Set the wake-up selection scheme */ - MODIFY_REG(huart->Instance->CR3, USART_CR3_WUS, WakeUpSelection.WakeUpEvent); - - if (WakeUpSelection.WakeUpEvent == UART_WAKEUP_ON_ADDRESS) - { - UARTEx_Wakeup_AddressConfig(huart, WakeUpSelection); - } - - /* Enable the Peripheral */ - __HAL_UART_ENABLE(huart); - - /* Init tickstart for timeout managment*/ - tickstart = HAL_GetTick(); - - /* Wait until REACK flag is set */ - if (UART_WaitOnFlagUntilTimeout(huart, USART_ISR_REACK, RESET, tickstart, HAL_UART_TIMEOUT_VALUE) != HAL_OK) - { - status = HAL_TIMEOUT; - } - else - { - /* Initialize the UART State */ - huart->gState = HAL_UART_STATE_READY; - } - - /* Process Unlocked */ - __HAL_UNLOCK(huart); - - return status; -} - -/** - * @brief Enable UART Stop Mode. - * @note The UART is able to wake up the MCU from Stop 1 mode as long as UART clock is HSI or LSE. - * @param huart UART handle. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_UARTEx_EnableStopMode(UART_HandleTypeDef *huart) -{ - /* Process Locked */ - __HAL_LOCK(huart); - - /* Set UESM bit */ - SET_BIT(huart->Instance->CR1, USART_CR1_UESM); - - /* Process Unlocked */ - __HAL_UNLOCK(huart); - - return HAL_OK; -} - -/** - * @brief Disable UART Stop Mode. - * @param huart UART handle. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_UARTEx_DisableStopMode(UART_HandleTypeDef *huart) -{ - /* Process Locked */ - __HAL_LOCK(huart); - - /* Clear UESM bit */ - CLEAR_BIT(huart->Instance->CR1, USART_CR1_UESM); - - /* Process Unlocked */ - __HAL_UNLOCK(huart); - - return HAL_OK; -} - -#endif /* USART_CR1_UESM */ -/** - * @} - */ - -/** - * @} - */ - -/** @addtogroup UARTEx_Private_Functions - * @{ - */ -#if defined(USART_CR1_UESM) - -/** - * @brief Initialize the UART wake-up from stop mode parameters when triggered by address detection. - * @param huart UART handle. - * @param WakeUpSelection UART wake up from stop mode parameters. - * @retval None - */ -static void UARTEx_Wakeup_AddressConfig(UART_HandleTypeDef *huart, UART_WakeUpTypeDef WakeUpSelection) -{ - assert_param(IS_UART_ADDRESSLENGTH_DETECT(WakeUpSelection.AddressLength)); - - /* Set the USART address length */ - MODIFY_REG(huart->Instance->CR2, USART_CR2_ADDM7, WakeUpSelection.AddressLength); - - /* Set the USART address node */ - MODIFY_REG(huart->Instance->CR2, USART_CR2_ADD, ((uint32_t)WakeUpSelection.Address << UART_CR2_ADDRESS_LSB_POS)); -} -#endif /* USART_CR1_UESM */ - -/** - * @} - */ - -#endif /* HAL_UART_MODULE_ENABLED */ - -/** - * @} - */ - -/** - * @} - */ - -/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_usart.c b/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_usart.c deleted file mode 100644 index d480193..0000000 --- a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_usart.c +++ /dev/null @@ -1,3249 +0,0 @@ -/** - ****************************************************************************** - * @file stm32f0xx_hal_usart.c - * @author MCD Application Team - * @brief USART HAL module driver. - * This file provides firmware functions to manage the following - * functionalities of the Universal Synchronous/Asynchronous Receiver Transmitter - * Peripheral (USART). - * + Initialization and de-initialization functions - * + IO operation functions - * + Peripheral Control functions - * + Peripheral State and Error functions - * - @verbatim - =============================================================================== - ##### How to use this driver ##### - =============================================================================== - [..] - The USART HAL driver can be used as follows: - - (#) Declare a USART_HandleTypeDef handle structure (eg. USART_HandleTypeDef husart). - (#) Initialize the USART low level resources by implementing the HAL_USART_MspInit() API: - (++) Enable the USARTx interface clock. - (++) USART pins configuration: - (+++) Enable the clock for the USART GPIOs. - (+++) Configure these USART pins as alternate function pull-up. - (++) NVIC configuration if you need to use interrupt process (HAL_USART_Transmit_IT(), - HAL_USART_Receive_IT() and HAL_USART_TransmitReceive_IT() APIs): - (+++) Configure the USARTx interrupt priority. - (+++) Enable the NVIC USART IRQ handle. - (++) USART interrupts handling: - -@@- The specific USART interrupts (Transmission complete interrupt, - RXNE interrupt and Error Interrupts) will be managed using the macros - __HAL_USART_ENABLE_IT() and __HAL_USART_DISABLE_IT() inside the transmit and receive process. - (++) DMA Configuration if you need to use DMA process (HAL_USART_Transmit_DMA() - HAL_USART_Receive_DMA() and HAL_USART_TransmitReceive_DMA() APIs): - (+++) Declare a DMA handle structure for the Tx/Rx channel. - (+++) Enable the DMAx interface clock. - (+++) Configure the declared DMA handle structure with the required Tx/Rx parameters. - (+++) Configure the DMA Tx/Rx channel. - (+++) Associate the initialized DMA handle to the USART DMA Tx/Rx handle. - (+++) Configure the priority and enable the NVIC for the transfer complete interrupt on the DMA Tx/Rx channel. - - (#) Program the Baud Rate, Word Length, Stop Bit, Parity, and Mode - (Receiver/Transmitter) in the husart handle Init structure. - - (#) Initialize the USART registers by calling the HAL_USART_Init() API: - (++) This API configures also the low level Hardware GPIO, CLOCK, CORTEX...etc) - by calling the customized HAL_USART_MspInit(&husart) API. - - [..] - (@) To configure and enable/disable the USART to wake up the MCU from stop mode, resort to UART API's - HAL_UARTEx_StopModeWakeUpSourceConfig(), HAL_UARTEx_EnableStopMode() and - HAL_UARTEx_DisableStopMode() in casting the USART handle to UART type UART_HandleTypeDef. - - ##### Callback registration ##### - ================================== - - [..] - The compilation define USE_HAL_USART_REGISTER_CALLBACKS when set to 1 - allows the user to configure dynamically the driver callbacks. - - [..] - Use Function @ref HAL_USART_RegisterCallback() to register a user callback. - Function @ref HAL_USART_RegisterCallback() allows to register following callbacks: - (+) TxHalfCpltCallback : Tx Half Complete Callback. - (+) TxCpltCallback : Tx Complete Callback. - (+) RxHalfCpltCallback : Rx Half Complete Callback. - (+) RxCpltCallback : Rx Complete Callback. - (+) TxRxCpltCallback : Tx Rx Complete Callback. - (+) ErrorCallback : Error Callback. - (+) AbortCpltCallback : Abort Complete Callback. - (+) MspInitCallback : USART MspInit. - (+) MspDeInitCallback : USART MspDeInit. - This function takes as parameters the HAL peripheral handle, the Callback ID - and a pointer to the user callback function. - - [..] - Use function @ref HAL_USART_UnRegisterCallback() to reset a callback to the default - weak (surcharged) function. - @ref HAL_USART_UnRegisterCallback() takes as parameters the HAL peripheral handle, - and the Callback ID. - This function allows to reset following callbacks: - (+) TxHalfCpltCallback : Tx Half Complete Callback. - (+) TxCpltCallback : Tx Complete Callback. - (+) RxHalfCpltCallback : Rx Half Complete Callback. - (+) RxCpltCallback : Rx Complete Callback. - (+) TxRxCpltCallback : Tx Rx Complete Callback. - (+) ErrorCallback : Error Callback. - (+) AbortCpltCallback : Abort Complete Callback. - (+) MspInitCallback : USART MspInit. - (+) MspDeInitCallback : USART MspDeInit. - - [..] - By default, after the @ref HAL_USART_Init() and when the state is HAL_USART_STATE_RESET - all callbacks are set to the corresponding weak (surcharged) functions: - examples @ref HAL_USART_TxCpltCallback(), @ref HAL_USART_RxHalfCpltCallback(). - Exception done for MspInit and MspDeInit functions that are respectively - reset to the legacy weak (surcharged) functions in the @ref HAL_USART_Init() - and @ref HAL_USART_DeInit() only when these callbacks are null (not registered beforehand). - If not, MspInit or MspDeInit are not null, the @ref HAL_USART_Init() and @ref HAL_USART_DeInit() - keep and use the user MspInit/MspDeInit callbacks (registered beforehand). - - [..] - Callbacks can be registered/unregistered in HAL_USART_STATE_READY state only. - Exception done MspInit/MspDeInit that can be registered/unregistered - in HAL_USART_STATE_READY or HAL_USART_STATE_RESET state, thus registered (user) - MspInit/DeInit callbacks can be used during the Init/DeInit. - In that case first register the MspInit/MspDeInit user callbacks - using @ref HAL_USART_RegisterCallback() before calling @ref HAL_USART_DeInit() - or @ref HAL_USART_Init() function. - - [..] - When The compilation define USE_HAL_USART_REGISTER_CALLBACKS is set to 0 or - not defined, the callback registration feature is not available - and weak (surcharged) callbacks are used. - - - @endverbatim - ****************************************************************************** - * @attention - * - *

© Copyright (c) 2016 STMicroelectronics. - * All rights reserved.

- * - * This software component is licensed by ST under BSD 3-Clause license, - * the "License"; You may not use this file except in compliance with the - * License. You may obtain a copy of the License at: - * opensource.org/licenses/BSD-3-Clause - * - ****************************************************************************** - */ - -/* Includes ------------------------------------------------------------------*/ -#include "stm32f0xx_hal.h" - -/** @addtogroup STM32F0xx_HAL_Driver - * @{ - */ - -/** @defgroup USART USART - * @brief HAL USART Synchronous module driver - * @{ - */ - -#ifdef HAL_USART_MODULE_ENABLED - -/* Private typedef -----------------------------------------------------------*/ -/* Private define ------------------------------------------------------------*/ -/** @defgroup USART_Private_Constants USART Private Constants - * @{ - */ -#define USART_DUMMY_DATA ((uint16_t) 0xFFFF) /*!< USART transmitted dummy data */ -#define USART_TEACK_REACK_TIMEOUT 1000U /*!< USART TX or RX enable acknowledge time-out value */ -#define USART_CR1_FIELDS ((uint32_t)(USART_CR1_M | USART_CR1_PCE | USART_CR1_PS | \ - USART_CR1_TE | USART_CR1_RE | USART_CR1_OVER8)) /*!< USART CR1 fields of parameters set by USART_SetConfig API */ -#define USART_CR2_FIELDS ((uint32_t)(USART_CR2_CPHA | USART_CR2_CPOL | \ - USART_CR2_CLKEN | USART_CR2_LBCL | USART_CR2_STOP)) /*!< USART CR2 fields of parameters set by USART_SetConfig API */ - -#define USART_BRR_MIN 0x10U /* USART BRR minimum authorized value */ -#define USART_BRR_MAX 0xFFFFU /* USART BRR maximum authorized value */ -/** - * @} - */ - -/* Private macros ------------------------------------------------------------*/ -/* Private variables ---------------------------------------------------------*/ -/* Private function prototypes -----------------------------------------------*/ -/** @addtogroup USART_Private_Functions - * @{ - */ -#if (USE_HAL_USART_REGISTER_CALLBACKS == 1) -void USART_InitCallbacksToDefault(USART_HandleTypeDef *husart); -#endif /* USE_HAL_USART_REGISTER_CALLBACKS */ -static void USART_EndTransfer(USART_HandleTypeDef *husart); -static void USART_DMATransmitCplt(DMA_HandleTypeDef *hdma); -static void USART_DMAReceiveCplt(DMA_HandleTypeDef *hdma); -static void USART_DMATxHalfCplt(DMA_HandleTypeDef *hdma); -static void USART_DMARxHalfCplt(DMA_HandleTypeDef *hdma); -static void USART_DMAError(DMA_HandleTypeDef *hdma); -static void USART_DMAAbortOnError(DMA_HandleTypeDef *hdma); -static void USART_DMATxAbortCallback(DMA_HandleTypeDef *hdma); -static void USART_DMARxAbortCallback(DMA_HandleTypeDef *hdma); -static HAL_StatusTypeDef USART_WaitOnFlagUntilTimeout(USART_HandleTypeDef *husart, uint32_t Flag, FlagStatus Status, - uint32_t Tickstart, uint32_t Timeout); -static HAL_StatusTypeDef USART_SetConfig(USART_HandleTypeDef *husart); -static HAL_StatusTypeDef USART_CheckIdleState(USART_HandleTypeDef *husart); -static void USART_TxISR_8BIT(USART_HandleTypeDef *husart); -static void USART_TxISR_16BIT(USART_HandleTypeDef *husart); -static void USART_EndTransmit_IT(USART_HandleTypeDef *husart); -static void USART_RxISR_8BIT(USART_HandleTypeDef *husart); -static void USART_RxISR_16BIT(USART_HandleTypeDef *husart); - - -/** - * @} - */ - -/* Exported functions --------------------------------------------------------*/ - -/** @defgroup USART_Exported_Functions USART Exported Functions - * @{ - */ - -/** @defgroup USART_Exported_Functions_Group1 Initialization and de-initialization functions - * @brief Initialization and Configuration functions - * -@verbatim - =============================================================================== - ##### Initialization and Configuration functions ##### - =============================================================================== - [..] - This subsection provides a set of functions allowing to initialize the USART - in asynchronous and in synchronous modes. - (+) For the asynchronous mode only these parameters can be configured: - (++) Baud Rate - (++) Word Length - (++) Stop Bit - (++) Parity: If the parity is enabled, then the MSB bit of the data written - in the data register is transmitted but is changed by the parity bit. - (++) USART polarity - (++) USART phase - (++) USART LastBit - (++) Receiver/transmitter modes - - [..] - The HAL_USART_Init() function follows the USART synchronous configuration - procedure (details for the procedure are available in reference manual). - -@endverbatim - - Depending on the frame length either defined by the M1 and M0 bits (7-bit, - 8-bit or 9-bit) or by the M bit (8-bits or 9-bits), the possible USART formats - are listed in the following table. - - Table 1. USART frame format. - +-----------------------------------------------------------------------+ - | M bit | PCE bit | USART frame | - |-------------------|-----------|---------------------------------------| - | 0 | 0 | | SB | 8-bit data | STB | | - |-------------------|-----------|---------------------------------------| - | 0 | 1 | | SB | 7-bit data | PB | STB | | - |-------------------|-----------|---------------------------------------| - | 1 | 0 | | SB | 9-bit data | STB | | - |-------------------|-----------|---------------------------------------| - | 1 | 1 | | SB | 8-bit data | PB | STB | | - +-----------------------------------------------------------------------+ - +-----------------------------------------------------------------------+ - | M1 bit | M0 bit | PCE bit | USART frame | - |---------|---------|-----------|---------------------------------------| - | 0 | 0 | 0 | | SB | 8 bit data | STB | | - |---------|---------|-----------|---------------------------------------| - | 0 | 0 | 1 | | SB | 7 bit data | PB | STB | | - |---------|---------|-----------|---------------------------------------| - | 0 | 1 | 0 | | SB | 9 bit data | STB | | - |---------|---------|-----------|---------------------------------------| - | 0 | 1 | 1 | | SB | 8 bit data | PB | STB | | - |---------|---------|-----------|---------------------------------------| - | 1 | 0 | 0 | | SB | 7 bit data | STB | | - |---------|---------|-----------|---------------------------------------| - | 1 | 0 | 1 | | SB | 6 bit data | PB | STB | | - +-----------------------------------------------------------------------+ - - * @{ - */ - -/** - * @brief Initialize the USART mode according to the specified - * parameters in the USART_InitTypeDef and initialize the associated handle. - * @param husart USART handle. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_USART_Init(USART_HandleTypeDef *husart) -{ - /* Check the USART handle allocation */ - if (husart == NULL) - { - return HAL_ERROR; - } - - /* Check the parameters */ - assert_param(IS_USART_INSTANCE(husart->Instance)); - - if (husart->State == HAL_USART_STATE_RESET) - { - /* Allocate lock resource and initialize it */ - husart->Lock = HAL_UNLOCKED; - -#if (USE_HAL_USART_REGISTER_CALLBACKS == 1) - USART_InitCallbacksToDefault(husart); - - if (husart->MspInitCallback == NULL) - { - husart->MspInitCallback = HAL_USART_MspInit; - } - - /* Init the low level hardware */ - husart->MspInitCallback(husart); -#else - /* Init the low level hardware : GPIO, CLOCK */ - HAL_USART_MspInit(husart); -#endif /* USE_HAL_USART_REGISTER_CALLBACKS */ - } - - husart->State = HAL_USART_STATE_BUSY; - - /* Disable the Peripheral */ - __HAL_USART_DISABLE(husart); - - /* Set the Usart Communication parameters */ - if (USART_SetConfig(husart) == HAL_ERROR) - { - return HAL_ERROR; - } - - /* In Synchronous mode, the following bits must be kept cleared: - - LINEN bit (if LIN is supported) in the USART_CR2 register - - SCEN (if Smartcard is supported), HDSEL and IREN (if IrDA is supported) bits in the USART_CR3 register. - */ -#if defined (USART_CR2_LINEN) - husart->Instance->CR2 &= ~USART_CR2_LINEN; -#endif /* USART_CR2_LINEN */ -#if defined (USART_CR3_SCEN) -#if defined (USART_CR3_IREN) - husart->Instance->CR3 &= ~(USART_CR3_SCEN | USART_CR3_HDSEL | USART_CR3_IREN); -#else - husart->Instance->CR3 &= ~(USART_CR3_SCEN | USART_CR3_HDSEL); -#endif /* USART_CR3_IREN */ -#else -#if defined (USART_CR3_IREN) - husart->Instance->CR3 &= ~(USART_CR3_HDSEL | USART_CR3_IREN); -#else - husart->Instance->CR3 &= ~(USART_CR3_HDSEL); -#endif /* USART_CR3_IREN */ -#endif /* USART_CR3_SCEN */ - - /* Enable the Peripheral */ - __HAL_USART_ENABLE(husart); - - /* TEACK and/or REACK to check before moving husart->State to Ready */ - return (USART_CheckIdleState(husart)); -} - -/** - * @brief DeInitialize the USART peripheral. - * @param husart USART handle. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_USART_DeInit(USART_HandleTypeDef *husart) -{ - /* Check the USART handle allocation */ - if (husart == NULL) - { - return HAL_ERROR; - } - - /* Check the parameters */ - assert_param(IS_USART_INSTANCE(husart->Instance)); - - husart->State = HAL_USART_STATE_BUSY; - - husart->Instance->CR1 = 0x0U; - husart->Instance->CR2 = 0x0U; - husart->Instance->CR3 = 0x0U; - -#if (USE_HAL_USART_REGISTER_CALLBACKS == 1) - if (husart->MspDeInitCallback == NULL) - { - husart->MspDeInitCallback = HAL_USART_MspDeInit; - } - /* DeInit the low level hardware */ - husart->MspDeInitCallback(husart); -#else - /* DeInit the low level hardware */ - HAL_USART_MspDeInit(husart); -#endif /* USE_HAL_USART_REGISTER_CALLBACKS */ - - husart->ErrorCode = HAL_USART_ERROR_NONE; - husart->State = HAL_USART_STATE_RESET; - - /* Process Unlock */ - __HAL_UNLOCK(husart); - - return HAL_OK; -} - -/** - * @brief Initialize the USART MSP. - * @param husart USART handle. - * @retval None - */ -__weak void HAL_USART_MspInit(USART_HandleTypeDef *husart) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(husart); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_USART_MspInit can be implemented in the user file - */ -} - -/** - * @brief DeInitialize the USART MSP. - * @param husart USART handle. - * @retval None - */ -__weak void HAL_USART_MspDeInit(USART_HandleTypeDef *husart) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(husart); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_USART_MspDeInit can be implemented in the user file - */ -} - -#if (USE_HAL_USART_REGISTER_CALLBACKS == 1) -/** - * @brief Register a User USART Callback - * To be used instead of the weak predefined callback - * @param husart usart handle - * @param CallbackID ID of the callback to be registered - * This parameter can be one of the following values: - * @arg @ref HAL_USART_TX_HALFCOMPLETE_CB_ID Tx Half Complete Callback ID - * @arg @ref HAL_USART_TX_COMPLETE_CB_ID Tx Complete Callback ID - * @arg @ref HAL_USART_RX_HALFCOMPLETE_CB_ID Rx Half Complete Callback ID - * @arg @ref HAL_USART_RX_COMPLETE_CB_ID Rx Complete Callback ID - * @arg @ref HAL_USART_TX_RX_COMPLETE_CB_ID Rx Complete Callback ID - * @arg @ref HAL_USART_ERROR_CB_ID Error Callback ID - * @arg @ref HAL_USART_ABORT_COMPLETE_CB_ID Abort Complete Callback ID - * @arg @ref HAL_USART_MSPINIT_CB_ID MspInit Callback ID - * @arg @ref HAL_USART_MSPDEINIT_CB_ID MspDeInit Callback ID - * @param pCallback pointer to the Callback function - * @retval HAL status -+ */ -HAL_StatusTypeDef HAL_USART_RegisterCallback(USART_HandleTypeDef *husart, HAL_USART_CallbackIDTypeDef CallbackID, - pUSART_CallbackTypeDef pCallback) -{ - HAL_StatusTypeDef status = HAL_OK; - - if (pCallback == NULL) - { - /* Update the error code */ - husart->ErrorCode |= HAL_USART_ERROR_INVALID_CALLBACK; - - return HAL_ERROR; - } - /* Process locked */ - __HAL_LOCK(husart); - - if (husart->State == HAL_USART_STATE_READY) - { - switch (CallbackID) - { - case HAL_USART_TX_HALFCOMPLETE_CB_ID : - husart->TxHalfCpltCallback = pCallback; - break; - - case HAL_USART_TX_COMPLETE_CB_ID : - husart->TxCpltCallback = pCallback; - break; - - case HAL_USART_RX_HALFCOMPLETE_CB_ID : - husart->RxHalfCpltCallback = pCallback; - break; - - case HAL_USART_RX_COMPLETE_CB_ID : - husart->RxCpltCallback = pCallback; - break; - - case HAL_USART_TX_RX_COMPLETE_CB_ID : - husart->TxRxCpltCallback = pCallback; - break; - - case HAL_USART_ERROR_CB_ID : - husart->ErrorCallback = pCallback; - break; - - case HAL_USART_ABORT_COMPLETE_CB_ID : - husart->AbortCpltCallback = pCallback; - break; - - - case HAL_USART_MSPINIT_CB_ID : - husart->MspInitCallback = pCallback; - break; - - case HAL_USART_MSPDEINIT_CB_ID : - husart->MspDeInitCallback = pCallback; - break; - - default : - /* Update the error code */ - husart->ErrorCode |= HAL_USART_ERROR_INVALID_CALLBACK; - - /* Return error status */ - status = HAL_ERROR; - break; - } - } - else if (husart->State == HAL_USART_STATE_RESET) - { - switch (CallbackID) - { - case HAL_USART_MSPINIT_CB_ID : - husart->MspInitCallback = pCallback; - break; - - case HAL_USART_MSPDEINIT_CB_ID : - husart->MspDeInitCallback = pCallback; - break; - - default : - /* Update the error code */ - husart->ErrorCode |= HAL_USART_ERROR_INVALID_CALLBACK; - - /* Return error status */ - status = HAL_ERROR; - break; - } - } - else - { - /* Update the error code */ - husart->ErrorCode |= HAL_USART_ERROR_INVALID_CALLBACK; - - /* Return error status */ - status = HAL_ERROR; - } - - /* Release Lock */ - __HAL_UNLOCK(husart); - - return status; -} - -/** - * @brief Unregister an UART Callback - * UART callaback is redirected to the weak predefined callback - * @param husart uart handle - * @param CallbackID ID of the callback to be unregistered - * This parameter can be one of the following values: - * @arg @ref HAL_USART_TX_HALFCOMPLETE_CB_ID Tx Half Complete Callback ID - * @arg @ref HAL_USART_TX_COMPLETE_CB_ID Tx Complete Callback ID - * @arg @ref HAL_USART_RX_HALFCOMPLETE_CB_ID Rx Half Complete Callback ID - * @arg @ref HAL_USART_RX_COMPLETE_CB_ID Rx Complete Callback ID - * @arg @ref HAL_USART_TX_RX_COMPLETE_CB_ID Rx Complete Callback ID - * @arg @ref HAL_USART_ERROR_CB_ID Error Callback ID - * @arg @ref HAL_USART_ABORT_COMPLETE_CB_ID Abort Complete Callback ID - * @arg @ref HAL_USART_MSPINIT_CB_ID MspInit Callback ID - * @arg @ref HAL_USART_MSPDEINIT_CB_ID MspDeInit Callback ID - * @retval HAL status - */ -HAL_StatusTypeDef HAL_USART_UnRegisterCallback(USART_HandleTypeDef *husart, HAL_USART_CallbackIDTypeDef CallbackID) -{ - HAL_StatusTypeDef status = HAL_OK; - - /* Process locked */ - __HAL_LOCK(husart); - - if (HAL_USART_STATE_READY == husart->State) - { - switch (CallbackID) - { - case HAL_USART_TX_HALFCOMPLETE_CB_ID : - husart->TxHalfCpltCallback = HAL_USART_TxHalfCpltCallback; /* Legacy weak TxHalfCpltCallback */ - break; - - case HAL_USART_TX_COMPLETE_CB_ID : - husart->TxCpltCallback = HAL_USART_TxCpltCallback; /* Legacy weak TxCpltCallback */ - break; - - case HAL_USART_RX_HALFCOMPLETE_CB_ID : - husart->RxHalfCpltCallback = HAL_USART_RxHalfCpltCallback; /* Legacy weak RxHalfCpltCallback */ - break; - - case HAL_USART_RX_COMPLETE_CB_ID : - husart->RxCpltCallback = HAL_USART_RxCpltCallback; /* Legacy weak RxCpltCallback */ - break; - - case HAL_USART_TX_RX_COMPLETE_CB_ID : - husart->TxRxCpltCallback = HAL_USART_TxRxCpltCallback; /* Legacy weak TxRxCpltCallback */ - break; - - case HAL_USART_ERROR_CB_ID : - husart->ErrorCallback = HAL_USART_ErrorCallback; /* Legacy weak ErrorCallback */ - break; - - case HAL_USART_ABORT_COMPLETE_CB_ID : - husart->AbortCpltCallback = HAL_USART_AbortCpltCallback; /* Legacy weak AbortCpltCallback */ - break; - - - case HAL_USART_MSPINIT_CB_ID : - husart->MspInitCallback = HAL_USART_MspInit; /* Legacy weak MspInitCallback */ - break; - - case HAL_USART_MSPDEINIT_CB_ID : - husart->MspDeInitCallback = HAL_USART_MspDeInit; /* Legacy weak MspDeInitCallback */ - break; - - default : - /* Update the error code */ - husart->ErrorCode |= HAL_USART_ERROR_INVALID_CALLBACK; - - /* Return error status */ - status = HAL_ERROR; - break; - } - } - else if (HAL_USART_STATE_RESET == husart->State) - { - switch (CallbackID) - { - case HAL_USART_MSPINIT_CB_ID : - husart->MspInitCallback = HAL_USART_MspInit; - break; - - case HAL_USART_MSPDEINIT_CB_ID : - husart->MspDeInitCallback = HAL_USART_MspDeInit; - break; - - default : - /* Update the error code */ - husart->ErrorCode |= HAL_USART_ERROR_INVALID_CALLBACK; - - /* Return error status */ - status = HAL_ERROR; - break; - } - } - else - { - /* Update the error code */ - husart->ErrorCode |= HAL_USART_ERROR_INVALID_CALLBACK; - - /* Return error status */ - status = HAL_ERROR; - } - - /* Release Lock */ - __HAL_UNLOCK(husart); - - return status; -} -#endif /* USE_HAL_USART_REGISTER_CALLBACKS */ - - -/** - * @} - */ - -/** @defgroup USART_Exported_Functions_Group2 IO operation functions - * @brief USART Transmit and Receive functions - * -@verbatim - =============================================================================== - ##### IO operation functions ##### - =============================================================================== - [..] This subsection provides a set of functions allowing to manage the USART synchronous - data transfers. - - [..] The USART supports master mode only: it cannot receive or send data related to an input - clock (SCLK is always an output). - - [..] - - (#) There are two modes of transfer: - (++) Blocking mode: The communication is performed in polling mode. - The HAL status of all data processing is returned by the same function - after finishing transfer. - (++) No-Blocking mode: The communication is performed using Interrupts - or DMA, These API's return the HAL status. - The end of the data processing will be indicated through the - dedicated USART IRQ when using Interrupt mode or the DMA IRQ when - using DMA mode. - The HAL_USART_TxCpltCallback(), HAL_USART_RxCpltCallback() and HAL_USART_TxRxCpltCallback() user callbacks - will be executed respectively at the end of the transmit or Receive process - The HAL_USART_ErrorCallback()user callback will be executed when a communication error is detected - - (#) Blocking mode API's are : - (++) HAL_USART_Transmit() in simplex mode - (++) HAL_USART_Receive() in full duplex receive only - (++) HAL_USART_TransmitReceive() in full duplex mode - - (#) Non-Blocking mode API's with Interrupt are : - (++) HAL_USART_Transmit_IT() in simplex mode - (++) HAL_USART_Receive_IT() in full duplex receive only - (++) HAL_USART_TransmitReceive_IT() in full duplex mode - (++) HAL_USART_IRQHandler() - - (#) No-Blocking mode API's with DMA are : - (++) HAL_USART_Transmit_DMA() in simplex mode - (++) HAL_USART_Receive_DMA() in full duplex receive only - (++) HAL_USART_TransmitReceive_DMA() in full duplex mode - (++) HAL_USART_DMAPause() - (++) HAL_USART_DMAResume() - (++) HAL_USART_DMAStop() - - (#) A set of Transfer Complete Callbacks are provided in Non_Blocking mode: - (++) HAL_USART_TxCpltCallback() - (++) HAL_USART_RxCpltCallback() - (++) HAL_USART_TxHalfCpltCallback() - (++) HAL_USART_RxHalfCpltCallback() - (++) HAL_USART_ErrorCallback() - (++) HAL_USART_TxRxCpltCallback() - - (#) Non-Blocking mode transfers could be aborted using Abort API's : - (++) HAL_USART_Abort() - (++) HAL_USART_Abort_IT() - - (#) For Abort services based on interrupts (HAL_USART_Abort_IT), a Abort Complete Callbacks is provided: - (++) HAL_USART_AbortCpltCallback() - - (#) In Non-Blocking mode transfers, possible errors are split into 2 categories. - Errors are handled as follows : - (++) Error is considered as Recoverable and non blocking : Transfer could go till end, but error severity is - to be evaluated by user : this concerns Frame Error, Parity Error or Noise Error in Interrupt mode reception . - Received character is then retrieved and stored in Rx buffer, Error code is set to allow user to identify error type, - and HAL_USART_ErrorCallback() user callback is executed. Transfer is kept ongoing on USART side. - If user wants to abort it, Abort services should be called by user. - (++) Error is considered as Blocking : Transfer could not be completed properly and is aborted. - This concerns Overrun Error In Interrupt mode reception and all errors in DMA mode. - Error code is set to allow user to identify error type, and HAL_USART_ErrorCallback() user callback is executed. - -@endverbatim - * @{ - */ - -/** - * @brief Simplex send an amount of data in blocking mode. - * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), - * the sent data is handled as a set of u16. In this case, Size must indicate the number - * of u16 provided through pTxData. - * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), - * address of user data buffer containing data to be sent, should be aligned on a half word frontier (16 bits) - * (as sent data will be handled using u16 pointer cast). Depending on compilation chain, - * use of specific alignment compilation directives or pragmas might be required to ensure proper alignment for pTxData. - * @param husart USART handle. - * @param pTxData Pointer to data buffer (u8 or u16 data elements). - * @param Size Amount of data elements (u8 or u16) to be sent. - * @param Timeout Timeout duration. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_USART_Transmit(USART_HandleTypeDef *husart, uint8_t *pTxData, uint16_t Size, uint32_t Timeout) -{ - uint8_t *ptxdata8bits; - uint16_t *ptxdata16bits; - uint32_t tickstart; - - if (husart->State == HAL_USART_STATE_READY) - { - if ((pTxData == NULL) || (Size == 0U)) - { - return HAL_ERROR; - } - - /* In case of 9bits/No Parity transfer, pTxData buffer provided as input parameter - should be aligned on a u16 frontier, as data to be filled into TDR will be - handled through a u16 cast. */ - if ((husart->Init.WordLength == USART_WORDLENGTH_9B) && (husart->Init.Parity == USART_PARITY_NONE)) - { - if ((((uint32_t)pTxData) & 1U) != 0U) - { - return HAL_ERROR; - } - } - - /* Process Locked */ - __HAL_LOCK(husart); - - husart->ErrorCode = HAL_USART_ERROR_NONE; - husart->State = HAL_USART_STATE_BUSY_TX; - - /* Init tickstart for timeout managment*/ - tickstart = HAL_GetTick(); - - husart->TxXferSize = Size; - husart->TxXferCount = Size; - - /* In case of 9bits/No Parity transfer, pTxData needs to be handled as a uint16_t pointer */ - if ((husart->Init.WordLength == USART_WORDLENGTH_9B) && (husart->Init.Parity == USART_PARITY_NONE)) - { - ptxdata8bits = NULL; - ptxdata16bits = (uint16_t *) pTxData; - } - else - { - ptxdata8bits = pTxData; - ptxdata16bits = NULL; - } - - /* Check the remaining data to be sent */ - while (husart->TxXferCount > 0U) - { - if (USART_WaitOnFlagUntilTimeout(husart, USART_FLAG_TXE, RESET, tickstart, Timeout) != HAL_OK) - { - return HAL_TIMEOUT; - } - if (ptxdata8bits == NULL) - { - husart->Instance->TDR = (uint16_t)(*ptxdata16bits & 0x01FFU); - ptxdata16bits++; - } - else - { - husart->Instance->TDR = (uint8_t)(*ptxdata8bits & 0xFFU); - ptxdata8bits++; - } - - husart->TxXferCount--; - } - - if (USART_WaitOnFlagUntilTimeout(husart, USART_FLAG_TC, RESET, tickstart, Timeout) != HAL_OK) - { - return HAL_TIMEOUT; - } - - /* Clear Transmission Complete Flag */ - __HAL_USART_CLEAR_FLAG(husart, USART_CLEAR_TCF); - - /* Clear overrun flag and discard the received data */ - __HAL_USART_CLEAR_OREFLAG(husart); - __HAL_USART_SEND_REQ(husart, USART_RXDATA_FLUSH_REQUEST); -#if defined(USART_RQR_TXFRQ) - __HAL_USART_SEND_REQ(husart, USART_TXDATA_FLUSH_REQUEST); -#endif /* USART_RQR_TXFRQ */ - - /* At end of Tx process, restore husart->State to Ready */ - husart->State = HAL_USART_STATE_READY; - - /* Process Unlocked */ - __HAL_UNLOCK(husart); - - return HAL_OK; - } - else - { - return HAL_BUSY; - } -} - -/** - * @brief Receive an amount of data in blocking mode. - * @note To receive synchronous data, dummy data are simultaneously transmitted. - * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), - * the received data is handled as a set of u16. In this case, Size must indicate the number - * of u16 available through pRxData. - * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), - * address of user data buffer for storing data to be received, should be aligned on a half word frontier (16 bits) - * (as received data will be handled using u16 pointer cast). Depending on compilation chain, - * use of specific alignment compilation directives or pragmas might be required to ensure proper alignment for pRxData. - * @param husart USART handle. - * @param pRxData Pointer to data buffer (u8 or u16 data elements). - * @param Size Amount of data elements (u8 or u16) to be received. - * @param Timeout Timeout duration. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_USART_Receive(USART_HandleTypeDef *husart, uint8_t *pRxData, uint16_t Size, uint32_t Timeout) -{ - uint8_t *prxdata8bits; - uint16_t *prxdata16bits; - uint16_t uhMask; - uint32_t tickstart; - - if (husart->State == HAL_USART_STATE_READY) - { - if ((pRxData == NULL) || (Size == 0U)) - { - return HAL_ERROR; - } - - /* In case of 9bits/No Parity transfer, pRxData buffer provided as input parameter - should be aligned on a u16 frontier, as data to be received from RDR will be - handled through a u16 cast. */ - if ((husart->Init.WordLength == USART_WORDLENGTH_9B) && (husart->Init.Parity == USART_PARITY_NONE)) - { - if ((((uint32_t)pRxData) & 1U) != 0U) - { - return HAL_ERROR; - } - } - - /* Process Locked */ - __HAL_LOCK(husart); - - husart->ErrorCode = HAL_USART_ERROR_NONE; - husart->State = HAL_USART_STATE_BUSY_RX; - - /* Init tickstart for timeout managment*/ - tickstart = HAL_GetTick(); - - husart->RxXferSize = Size; - husart->RxXferCount = Size; - - /* Computation of USART mask to apply to RDR register */ - USART_MASK_COMPUTATION(husart); - uhMask = husart->Mask; - - /* In case of 9bits/No Parity transfer, pRxData needs to be handled as a uint16_t pointer */ - if ((husart->Init.WordLength == USART_WORDLENGTH_9B) && (husart->Init.Parity == USART_PARITY_NONE)) - { - prxdata8bits = NULL; - prxdata16bits = (uint16_t *) pRxData; - } - else - { - prxdata8bits = pRxData; - prxdata16bits = NULL; - } - - /* as long as data have to be received */ - while (husart->RxXferCount > 0U) - { - { - /* Wait until TXE flag is set to send dummy byte in order to generate the - * clock for the slave to send data. - * Whatever the frame length (7, 8 or 9-bit long), the same dummy value - * can be written for all the cases. */ - if (USART_WaitOnFlagUntilTimeout(husart, USART_FLAG_TXE, RESET, tickstart, Timeout) != HAL_OK) - { - return HAL_TIMEOUT; - } - husart->Instance->TDR = (USART_DUMMY_DATA & (uint16_t)0x0FF); - } - - /* Wait for RXNE Flag */ - if (USART_WaitOnFlagUntilTimeout(husart, USART_FLAG_RXNE, RESET, tickstart, Timeout) != HAL_OK) - { - return HAL_TIMEOUT; - } - - if (prxdata8bits == NULL) - { - *prxdata16bits = (uint16_t)(husart->Instance->RDR & uhMask); - prxdata16bits++; - } - else - { - *prxdata8bits = (uint8_t)(husart->Instance->RDR & (uint8_t)(uhMask & 0xFFU)); - prxdata8bits++; - } - - husart->RxXferCount--; - - } - - - /* At end of Rx process, restore husart->State to Ready */ - husart->State = HAL_USART_STATE_READY; - - /* Process Unlocked */ - __HAL_UNLOCK(husart); - - return HAL_OK; - } - else - { - return HAL_BUSY; - } -} - -/** - * @brief Full-Duplex Send and Receive an amount of data in blocking mode. - * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), - * the sent data and the received data are handled as sets of u16. In this case, Size must indicate the number - * of u16 available through pTxData and through pRxData. - * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), - * address of user data buffers containing data to be sent/received, should be aligned on a half word frontier (16 bits) - * (as sent/received data will be handled using u16 pointer cast). Depending on compilation chain, - * use of specific alignment compilation directives or pragmas might be required to ensure proper alignment for pTxData and pRxData. - * @param husart USART handle. - * @param pTxData pointer to TX data buffer (u8 or u16 data elements). - * @param pRxData pointer to RX data buffer (u8 or u16 data elements). - * @param Size amount of data elements (u8 or u16) to be sent (same amount to be received). - * @param Timeout Timeout duration. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_USART_TransmitReceive(USART_HandleTypeDef *husart, uint8_t *pTxData, uint8_t *pRxData, - uint16_t Size, uint32_t Timeout) -{ - uint8_t *prxdata8bits; - uint16_t *prxdata16bits; - uint8_t *ptxdata8bits; - uint16_t *ptxdata16bits; - uint16_t uhMask; - uint16_t rxdatacount; - uint32_t tickstart; - - if (husart->State == HAL_USART_STATE_READY) - { - if ((pTxData == NULL) || (pRxData == NULL) || (Size == 0U)) - { - return HAL_ERROR; - } - - /* In case of 9bits/No Parity transfer, pTxData and pRxData buffers provided as input parameter - should be aligned on a u16 frontier, as data to be filled into TDR/retrieved from RDR will be - handled through a u16 cast. */ - if ((husart->Init.WordLength == USART_WORDLENGTH_9B) && (husart->Init.Parity == USART_PARITY_NONE)) - { - if (((((uint32_t)pTxData) & 1U) != 0U) || ((((uint32_t)pRxData) & 1U) != 0U)) - { - return HAL_ERROR; - } - } - - /* Process Locked */ - __HAL_LOCK(husart); - - husart->ErrorCode = HAL_USART_ERROR_NONE; - husart->State = HAL_USART_STATE_BUSY_RX; - - /* Init tickstart for timeout managment*/ - tickstart = HAL_GetTick(); - - husart->RxXferSize = Size; - husart->TxXferSize = Size; - husart->TxXferCount = Size; - husart->RxXferCount = Size; - - /* Computation of USART mask to apply to RDR register */ - USART_MASK_COMPUTATION(husart); - uhMask = husart->Mask; - - /* In case of 9bits/No Parity transfer, pRxData needs to be handled as a uint16_t pointer */ - if ((husart->Init.WordLength == USART_WORDLENGTH_9B) && (husart->Init.Parity == USART_PARITY_NONE)) - { - prxdata8bits = NULL; - ptxdata8bits = NULL; - ptxdata16bits = (uint16_t *) pTxData; - prxdata16bits = (uint16_t *) pRxData; - } - else - { - prxdata8bits = pRxData; - ptxdata8bits = pTxData; - ptxdata16bits = NULL; - prxdata16bits = NULL; - } - - if (husart->TxXferCount == 0x01U) - { - /* Wait until TXE flag is set to send data */ - if (USART_WaitOnFlagUntilTimeout(husart, USART_FLAG_TXE, RESET, tickstart, Timeout) != HAL_OK) - { - return HAL_TIMEOUT; - } - if (ptxdata8bits == NULL) - { - husart->Instance->TDR = (uint16_t)(*ptxdata16bits & uhMask); - ptxdata16bits++; - } - else - { - husart->Instance->TDR = (uint8_t)(*ptxdata8bits & (uint8_t)(uhMask & 0xFFU)); - ptxdata8bits++; - } - - husart->TxXferCount--; - } - - /* Check the remain data to be sent */ - /* rxdatacount is a temporary variable for MISRAC2012-Rule-13.5 */ - rxdatacount = husart->RxXferCount; - while ((husart->TxXferCount > 0U) || (rxdatacount > 0U)) - { - if (husart->TxXferCount > 0U) - { - /* Wait until TXE flag is set to send data */ - if (USART_WaitOnFlagUntilTimeout(husart, USART_FLAG_TXE, RESET, tickstart, Timeout) != HAL_OK) - { - return HAL_TIMEOUT; - } - if (ptxdata8bits == NULL) - { - husart->Instance->TDR = (uint16_t)(*ptxdata16bits & uhMask); - ptxdata16bits++; - } - else - { - husart->Instance->TDR = (uint8_t)(*ptxdata8bits & (uint8_t)(uhMask & 0xFFU)); - ptxdata8bits++; - } - - husart->TxXferCount--; - } - - if (husart->RxXferCount > 0U) - { - /* Wait for RXNE Flag */ - if (USART_WaitOnFlagUntilTimeout(husart, USART_FLAG_RXNE, RESET, tickstart, Timeout) != HAL_OK) - { - return HAL_TIMEOUT; - } - - if (prxdata8bits == NULL) - { - *prxdata16bits = (uint16_t)(husart->Instance->RDR & uhMask); - prxdata16bits++; - } - else - { - *prxdata8bits = (uint8_t)(husart->Instance->RDR & (uint8_t)(uhMask & 0xFFU)); - prxdata8bits++; - } - - husart->RxXferCount--; - } - rxdatacount = husart->RxXferCount; - } - - /* At end of TxRx process, restore husart->State to Ready */ - husart->State = HAL_USART_STATE_READY; - - /* Process Unlocked */ - __HAL_UNLOCK(husart); - - return HAL_OK; - } - else - { - return HAL_BUSY; - } -} - -/** - * @brief Send an amount of data in interrupt mode. - * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), - * the sent data is handled as a set of u16. In this case, Size must indicate the number - * of u16 provided through pTxData. - * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), - * address of user data buffer containing data to be sent, should be aligned on a half word frontier (16 bits) - * (as sent data will be handled using u16 pointer cast). Depending on compilation chain, - * use of specific alignment compilation directives or pragmas might be required to ensure proper alignment for pTxData. - * @param husart USART handle. - * @param pTxData pointer to data buffer (u8 or u16 data elements). - * @param Size amount of data elements (u8 or u16) to be sent. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_USART_Transmit_IT(USART_HandleTypeDef *husart, uint8_t *pTxData, uint16_t Size) -{ - if (husart->State == HAL_USART_STATE_READY) - { - if ((pTxData == NULL) || (Size == 0U)) - { - return HAL_ERROR; - } - - /* In case of 9bits/No Parity transfer, pTxData buffer provided as input parameter - should be aligned on a u16 frontier, as data to be filled into TDR will be - handled through a u16 cast. */ - if ((husart->Init.WordLength == USART_WORDLENGTH_9B) && (husart->Init.Parity == USART_PARITY_NONE)) - { - if ((((uint32_t)pTxData) & 1U) != 0U) - { - return HAL_ERROR; - } - } - - /* Process Locked */ - __HAL_LOCK(husart); - - husart->pTxBuffPtr = pTxData; - husart->TxXferSize = Size; - husart->TxXferCount = Size; - husart->TxISR = NULL; - - husart->ErrorCode = HAL_USART_ERROR_NONE; - husart->State = HAL_USART_STATE_BUSY_TX; - - /* The USART Error Interrupts: (Frame error, noise error, overrun error) - are not managed by the USART Transmit Process to avoid the overrun interrupt - when the usart mode is configured for transmit and receive "USART_MODE_TX_RX" - to benefit for the frame error and noise interrupts the usart mode should be - configured only for transmit "USART_MODE_TX" */ - - { - /* Set the Tx ISR function pointer according to the data word length */ - if ((husart->Init.WordLength == USART_WORDLENGTH_9B) && (husart->Init.Parity == USART_PARITY_NONE)) - { - husart->TxISR = USART_TxISR_16BIT; - } - else - { - husart->TxISR = USART_TxISR_8BIT; - } - - /* Process Unlocked */ - __HAL_UNLOCK(husart); - - /* Enable the USART Transmit Data Register Empty Interrupt */ - __HAL_USART_ENABLE_IT(husart, USART_IT_TXE); - } - - return HAL_OK; - } - else - { - return HAL_BUSY; - } -} - -/** - * @brief Receive an amount of data in interrupt mode. - * @note To receive synchronous data, dummy data are simultaneously transmitted. - * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), - * the received data is handled as a set of u16. In this case, Size must indicate the number - * of u16 available through pRxData. - * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), - * address of user data buffer for storing data to be received, should be aligned on a half word frontier (16 bits) - * (as received data will be handled using u16 pointer cast). Depending on compilation chain, - * use of specific alignment compilation directives or pragmas might be required to ensure proper alignment for pRxData. - * @param husart USART handle. - * @param pRxData pointer to data buffer (u8 or u16 data elements). - * @param Size amount of data elements (u8 or u16) to be received. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_USART_Receive_IT(USART_HandleTypeDef *husart, uint8_t *pRxData, uint16_t Size) -{ - - if (husart->State == HAL_USART_STATE_READY) - { - if ((pRxData == NULL) || (Size == 0U)) - { - return HAL_ERROR; - } - - /* In case of 9bits/No Parity transfer, pRxData buffer provided as input parameter - should be aligned on a u16 frontier, as data to be received from RDR will be - handled through a u16 cast. */ - if ((husart->Init.WordLength == USART_WORDLENGTH_9B) && (husart->Init.Parity == USART_PARITY_NONE)) - { - if ((((uint32_t)pRxData) & 1U) != 0U) - { - return HAL_ERROR; - } - } - - /* Process Locked */ - __HAL_LOCK(husart); - - husart->pRxBuffPtr = pRxData; - husart->RxXferSize = Size; - husart->RxXferCount = Size; - husart->RxISR = NULL; - - USART_MASK_COMPUTATION(husart); - - husart->ErrorCode = HAL_USART_ERROR_NONE; - husart->State = HAL_USART_STATE_BUSY_RX; - - /* Enable the USART Error Interrupt: (Frame error, noise error, overrun error) */ - SET_BIT(husart->Instance->CR3, USART_CR3_EIE); - - { - /* Set the Rx ISR function pointer according to the data word length */ - if ((husart->Init.WordLength == USART_WORDLENGTH_9B) && (husart->Init.Parity == USART_PARITY_NONE)) - { - husart->RxISR = USART_RxISR_16BIT; - } - else - { - husart->RxISR = USART_RxISR_8BIT; - } - - /* Process Unlocked */ - __HAL_UNLOCK(husart); - - /* Enable the USART Parity Error and Data Register not empty Interrupts */ - SET_BIT(husart->Instance->CR1, USART_CR1_PEIE | USART_CR1_RXNEIE); - } - - { - /* Send dummy data in order to generate the clock for the Slave to send the next data. - */ - { - husart->Instance->TDR = (USART_DUMMY_DATA & (uint16_t)0x00FF); - } - } - - return HAL_OK; - } - else - { - return HAL_BUSY; - } -} - -/** - * @brief Full-Duplex Send and Receive an amount of data in interrupt mode. - * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), - * the sent data and the received data are handled as sets of u16. In this case, Size must indicate the number - * of u16 available through pTxData and through pRxData. - * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), - * address of user data buffers containing data to be sent/received, should be aligned on a half word frontier (16 bits) - * (as sent/received data will be handled using u16 pointer cast). Depending on compilation chain, - * use of specific alignment compilation directives or pragmas might be required to ensure proper alignment for pTxData and pRxData. - * @param husart USART handle. - * @param pTxData pointer to TX data buffer (u8 or u16 data elements). - * @param pRxData pointer to RX data buffer (u8 or u16 data elements). - * @param Size amount of data elements (u8 or u16) to be sent (same amount to be received). - * @retval HAL status - */ -HAL_StatusTypeDef HAL_USART_TransmitReceive_IT(USART_HandleTypeDef *husart, uint8_t *pTxData, uint8_t *pRxData, - uint16_t Size) -{ - - if (husart->State == HAL_USART_STATE_READY) - { - if ((pTxData == NULL) || (pRxData == NULL) || (Size == 0U)) - { - return HAL_ERROR; - } - - /* In case of 9bits/No Parity transfer, pTxData and pRxData buffers provided as input parameter - should be aligned on a u16 frontier, as data to be filled into TDR/retrieved from RDR will be - handled through a u16 cast. */ - if ((husart->Init.WordLength == USART_WORDLENGTH_9B) && (husart->Init.Parity == USART_PARITY_NONE)) - { - if (((((uint32_t)pTxData) & 1U) != 0U) || ((((uint32_t)pRxData) & 1U) != 0U)) - { - return HAL_ERROR; - } - } - - /* Process Locked */ - __HAL_LOCK(husart); - - husart->pRxBuffPtr = pRxData; - husart->RxXferSize = Size; - husart->RxXferCount = Size; - husart->pTxBuffPtr = pTxData; - husart->TxXferSize = Size; - husart->TxXferCount = Size; - - /* Computation of USART mask to apply to RDR register */ - USART_MASK_COMPUTATION(husart); - - husart->ErrorCode = HAL_USART_ERROR_NONE; - husart->State = HAL_USART_STATE_BUSY_TX_RX; - - { - if ((husart->Init.WordLength == USART_WORDLENGTH_9B) && (husart->Init.Parity == USART_PARITY_NONE)) - { - husart->TxISR = USART_TxISR_16BIT; - husart->RxISR = USART_RxISR_16BIT; - } - else - { - husart->TxISR = USART_TxISR_8BIT; - husart->RxISR = USART_RxISR_8BIT; - } - - /* Process Locked */ - __HAL_UNLOCK(husart); - - /* Enable the USART Error Interrupt: (Frame error, noise error, overrun error) */ - SET_BIT(husart->Instance->CR3, USART_CR3_EIE); - - /* Enable the USART Parity Error and USART Data Register not empty Interrupts */ - SET_BIT(husart->Instance->CR1, USART_CR1_PEIE | USART_CR1_RXNEIE); - - /* Enable the USART Transmit Data Register Empty Interrupt */ - SET_BIT(husart->Instance->CR1, USART_CR1_TXEIE); - } - - return HAL_OK; - } - else - { - return HAL_BUSY; - } -} - -/** - * @brief Send an amount of data in DMA mode. - * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), - * the sent data is handled as a set of u16. In this case, Size must indicate the number - * of u16 provided through pTxData. - * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), - * address of user data buffer containing data to be sent, should be aligned on a half word frontier (16 bits) - * (as sent data will be handled by DMA from halfword frontier). Depending on compilation chain, - * use of specific alignment compilation directives or pragmas might be required to ensure proper alignment for pTxData. - * @param husart USART handle. - * @param pTxData pointer to data buffer (u8 or u16 data elements). - * @param Size amount of data elements (u8 or u16) to be sent. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_USART_Transmit_DMA(USART_HandleTypeDef *husart, uint8_t *pTxData, uint16_t Size) -{ - HAL_StatusTypeDef status = HAL_OK; - uint32_t *tmp; - - if (husart->State == HAL_USART_STATE_READY) - { - if ((pTxData == NULL) || (Size == 0U)) - { - return HAL_ERROR; - } - - /* In case of 9bits/No Parity transfer, pTxData buffer provided as input parameter - should be aligned on a u16 frontier, as data copy into TDR will be - handled by DMA from a u16 frontier. */ - if ((husart->Init.WordLength == USART_WORDLENGTH_9B) && (husart->Init.Parity == USART_PARITY_NONE)) - { - if ((((uint32_t)pTxData) & 1U) != 0U) - { - return HAL_ERROR; - } - } - - /* Process Locked */ - __HAL_LOCK(husart); - - husart->pTxBuffPtr = pTxData; - husart->TxXferSize = Size; - husart->TxXferCount = Size; - - husart->ErrorCode = HAL_USART_ERROR_NONE; - husart->State = HAL_USART_STATE_BUSY_TX; - - if (husart->hdmatx != NULL) - { - /* Set the USART DMA transfer complete callback */ - husart->hdmatx->XferCpltCallback = USART_DMATransmitCplt; - - /* Set the USART DMA Half transfer complete callback */ - husart->hdmatx->XferHalfCpltCallback = USART_DMATxHalfCplt; - - /* Set the DMA error callback */ - husart->hdmatx->XferErrorCallback = USART_DMAError; - - /* Enable the USART transmit DMA channel */ - tmp = (uint32_t *)&pTxData; - status = HAL_DMA_Start_IT(husart->hdmatx, *(uint32_t *)tmp, (uint32_t)&husart->Instance->TDR, Size); - } - - if (status == HAL_OK) - { - /* Clear the TC flag in the ICR register */ - __HAL_USART_CLEAR_FLAG(husart, USART_CLEAR_TCF); - - /* Process Unlocked */ - __HAL_UNLOCK(husart); - - /* Enable the DMA transfer for transmit request by setting the DMAT bit - in the USART CR3 register */ - SET_BIT(husart->Instance->CR3, USART_CR3_DMAT); - - return HAL_OK; - } - else - { - /* Set error code to DMA */ - husart->ErrorCode = HAL_USART_ERROR_DMA; - - /* Process Unlocked */ - __HAL_UNLOCK(husart); - - /* Restore husart->State to ready */ - husart->State = HAL_USART_STATE_READY; - - return HAL_ERROR; - } - } - else - { - return HAL_BUSY; - } -} - -/** - * @brief Receive an amount of data in DMA mode. - * @note When the USART parity is enabled (PCE = 1), the received data contain - * the parity bit (MSB position). - * @note The USART DMA transmit channel must be configured in order to generate the clock for the slave. - * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), - * the received data is handled as a set of u16. In this case, Size must indicate the number - * of u16 available through pRxData. - * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), - * address of user data buffer for storing data to be received, should be aligned on a half word frontier (16 bits) - * (as received data will be handled by DMA from halfword frontier). Depending on compilation chain, - * use of specific alignment compilation directives or pragmas might be required to ensure proper alignment for pRxData. - * @param husart USART handle. - * @param pRxData pointer to data buffer (u8 or u16 data elements). - * @param Size amount of data elements (u8 or u16) to be received. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_USART_Receive_DMA(USART_HandleTypeDef *husart, uint8_t *pRxData, uint16_t Size) -{ - HAL_StatusTypeDef status = HAL_OK; - uint32_t *tmp = (uint32_t *)&pRxData; - - /* Check that a Rx process is not already ongoing */ - if (husart->State == HAL_USART_STATE_READY) - { - if ((pRxData == NULL) || (Size == 0U)) - { - return HAL_ERROR; - } - - /* In case of 9bits/No Parity transfer, pRxData buffer provided as input parameter - should be aligned on a u16 frontier, as data copy from RDR will be - handled by DMA from a u16 frontier. */ - if ((husart->Init.WordLength == USART_WORDLENGTH_9B) && (husart->Init.Parity == USART_PARITY_NONE)) - { - if ((((uint32_t)pRxData) & 1U) != 0U) - { - return HAL_ERROR; - } - } - - /* Process Locked */ - __HAL_LOCK(husart); - - husart->pRxBuffPtr = pRxData; - husart->RxXferSize = Size; - husart->pTxBuffPtr = pRxData; - husart->TxXferSize = Size; - - husart->ErrorCode = HAL_USART_ERROR_NONE; - husart->State = HAL_USART_STATE_BUSY_RX; - - if (husart->hdmarx != NULL) - { - /* Set the USART DMA Rx transfer complete callback */ - husart->hdmarx->XferCpltCallback = USART_DMAReceiveCplt; - - /* Set the USART DMA Half transfer complete callback */ - husart->hdmarx->XferHalfCpltCallback = USART_DMARxHalfCplt; - - /* Set the USART DMA Rx transfer error callback */ - husart->hdmarx->XferErrorCallback = USART_DMAError; - - /* Enable the USART receive DMA channel */ - status = HAL_DMA_Start_IT(husart->hdmarx, (uint32_t)&husart->Instance->RDR, *(uint32_t *)tmp, Size); - } - - { - /* Enable the USART transmit DMA channel: the transmit channel is used in order - to generate in the non-blocking mode the clock to the slave device, - this mode isn't a simplex receive mode but a full-duplex receive mode */ - - /* Set the USART DMA Tx Complete and Error callback to Null */ - if (husart->hdmatx != NULL) - { - husart->hdmatx->XferErrorCallback = NULL; - husart->hdmatx->XferHalfCpltCallback = NULL; - husart->hdmatx->XferCpltCallback = NULL; - status = HAL_DMA_Start_IT(husart->hdmatx, *(uint32_t *)tmp, (uint32_t)&husart->Instance->TDR, Size); - } - } - - if (status == HAL_OK) - { - /* Process Unlocked */ - __HAL_UNLOCK(husart); - - /* Enable the USART Parity Error Interrupt */ - SET_BIT(husart->Instance->CR1, USART_CR1_PEIE); - - /* Enable the USART Error Interrupt: (Frame error, noise error, overrun error) */ - SET_BIT(husart->Instance->CR3, USART_CR3_EIE); - - /* Enable the DMA transfer for the receiver request by setting the DMAR bit - in the USART CR3 register */ - SET_BIT(husart->Instance->CR3, USART_CR3_DMAR); - - /* Enable the DMA transfer for transmit request by setting the DMAT bit - in the USART CR3 register */ - SET_BIT(husart->Instance->CR3, USART_CR3_DMAT); - - return HAL_OK; - } - else - { - if (husart->hdmarx != NULL) - { - status = HAL_DMA_Abort(husart->hdmarx); - } - - /* No need to check on error code */ - UNUSED(status); - - /* Set error code to DMA */ - husart->ErrorCode = HAL_USART_ERROR_DMA; - - /* Process Unlocked */ - __HAL_UNLOCK(husart); - - /* Restore husart->State to ready */ - husart->State = HAL_USART_STATE_READY; - - return HAL_ERROR; - } - } - else - { - return HAL_BUSY; - } -} - -/** - * @brief Full-Duplex Transmit Receive an amount of data in non-blocking mode. - * @note When the USART parity is enabled (PCE = 1) the data received contain the parity bit. - * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), - * the sent data and the received data are handled as sets of u16. In this case, Size must indicate the number - * of u16 available through pTxData and through pRxData. - * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), - * address of user data buffers containing data to be sent/received, should be aligned on a half word frontier (16 bits) - * (as sent/received data will be handled by DMA from halfword frontier). Depending on compilation chain, - * use of specific alignment compilation directives or pragmas might be required to ensure proper alignment for pTxData and pRxData. - * @param husart USART handle. - * @param pTxData pointer to TX data buffer (u8 or u16 data elements). - * @param pRxData pointer to RX data buffer (u8 or u16 data elements). - * @param Size amount of data elements (u8 or u16) to be received/sent. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_USART_TransmitReceive_DMA(USART_HandleTypeDef *husart, uint8_t *pTxData, uint8_t *pRxData, - uint16_t Size) -{ - HAL_StatusTypeDef status; - uint32_t *tmp; - - if (husart->State == HAL_USART_STATE_READY) - { - if ((pTxData == NULL) || (pRxData == NULL) || (Size == 0U)) - { - return HAL_ERROR; - } - - /* In case of 9bits/No Parity transfer, pTxData and pRxData buffers provided as input parameter - should be aligned on a u16 frontier, as data copy to/from TDR/RDR will be - handled by DMA from a u16 frontier. */ - if ((husart->Init.WordLength == USART_WORDLENGTH_9B) && (husart->Init.Parity == USART_PARITY_NONE)) - { - if (((((uint32_t)pTxData) & 1U) != 0U) || ((((uint32_t)pRxData) & 1U) != 0U)) - { - return HAL_ERROR; - } - } - - /* Process Locked */ - __HAL_LOCK(husart); - - husart->pRxBuffPtr = pRxData; - husart->RxXferSize = Size; - husart->pTxBuffPtr = pTxData; - husart->TxXferSize = Size; - - husart->ErrorCode = HAL_USART_ERROR_NONE; - husart->State = HAL_USART_STATE_BUSY_TX_RX; - - if ((husart->hdmarx != NULL) && (husart->hdmatx != NULL)) - { - /* Set the USART DMA Rx transfer complete callback */ - husart->hdmarx->XferCpltCallback = USART_DMAReceiveCplt; - - /* Set the USART DMA Half transfer complete callback */ - husart->hdmarx->XferHalfCpltCallback = USART_DMARxHalfCplt; - - /* Set the USART DMA Tx transfer complete callback */ - husart->hdmatx->XferCpltCallback = USART_DMATransmitCplt; - - /* Set the USART DMA Half transfer complete callback */ - husart->hdmatx->XferHalfCpltCallback = USART_DMATxHalfCplt; - - /* Set the USART DMA Tx transfer error callback */ - husart->hdmatx->XferErrorCallback = USART_DMAError; - - /* Set the USART DMA Rx transfer error callback */ - husart->hdmarx->XferErrorCallback = USART_DMAError; - - /* Enable the USART receive DMA channel */ - tmp = (uint32_t *)&pRxData; - status = HAL_DMA_Start_IT(husart->hdmarx, (uint32_t)&husart->Instance->RDR, *(uint32_t *)tmp, Size); - - /* Enable the USART transmit DMA channel */ - if (status == HAL_OK) - { - tmp = (uint32_t *)&pTxData; - status = HAL_DMA_Start_IT(husart->hdmatx, *(uint32_t *)tmp, (uint32_t)&husart->Instance->TDR, Size); - } - } - else - { - status = HAL_ERROR; - } - - if (status == HAL_OK) - { - /* Process Unlocked */ - __HAL_UNLOCK(husart); - - /* Enable the USART Parity Error Interrupt */ - SET_BIT(husart->Instance->CR1, USART_CR1_PEIE); - - /* Enable the USART Error Interrupt: (Frame error, noise error, overrun error) */ - SET_BIT(husart->Instance->CR3, USART_CR3_EIE); - - /* Clear the TC flag in the ICR register */ - __HAL_USART_CLEAR_FLAG(husart, USART_CLEAR_TCF); - - /* Enable the DMA transfer for the receiver request by setting the DMAR bit - in the USART CR3 register */ - SET_BIT(husart->Instance->CR3, USART_CR3_DMAR); - - /* Enable the DMA transfer for transmit request by setting the DMAT bit - in the USART CR3 register */ - SET_BIT(husart->Instance->CR3, USART_CR3_DMAT); - - return HAL_OK; - } - else - { - if (husart->hdmarx != NULL) - { - status = HAL_DMA_Abort(husart->hdmarx); - } - - /* No need to check on error code */ - UNUSED(status); - - /* Set error code to DMA */ - husart->ErrorCode = HAL_USART_ERROR_DMA; - - /* Process Unlocked */ - __HAL_UNLOCK(husart); - - /* Restore husart->State to ready */ - husart->State = HAL_USART_STATE_READY; - - return HAL_ERROR; - } - } - else - { - return HAL_BUSY; - } -} - -/** - * @brief Pause the DMA Transfer. - * @param husart USART handle. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_USART_DMAPause(USART_HandleTypeDef *husart) -{ - const HAL_USART_StateTypeDef state = husart->State; - - /* Process Locked */ - __HAL_LOCK(husart); - - if ((HAL_IS_BIT_SET(husart->Instance->CR3, USART_CR3_DMAT)) && - (state == HAL_USART_STATE_BUSY_TX)) - { - /* Disable the USART DMA Tx request */ - CLEAR_BIT(husart->Instance->CR3, USART_CR3_DMAT); - } - else if ((state == HAL_USART_STATE_BUSY_RX) || - (state == HAL_USART_STATE_BUSY_TX_RX)) - { - if (HAL_IS_BIT_SET(husart->Instance->CR3, USART_CR3_DMAT)) - { - /* Disable the USART DMA Tx request */ - CLEAR_BIT(husart->Instance->CR3, USART_CR3_DMAT); - } - if (HAL_IS_BIT_SET(husart->Instance->CR3, USART_CR3_DMAR)) - { - /* Disable PE and ERR (Frame error, noise error, overrun error) interrupts */ - CLEAR_BIT(husart->Instance->CR1, USART_CR1_PEIE); - CLEAR_BIT(husart->Instance->CR3, USART_CR3_EIE); - - /* Disable the USART DMA Rx request */ - CLEAR_BIT(husart->Instance->CR3, USART_CR3_DMAR); - } - } - else - { - /* Nothing to do */ - } - - /* Process Unlocked */ - __HAL_UNLOCK(husart); - - return HAL_OK; -} - -/** - * @brief Resume the DMA Transfer. - * @param husart USART handle. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_USART_DMAResume(USART_HandleTypeDef *husart) -{ - const HAL_USART_StateTypeDef state = husart->State; - - /* Process Locked */ - __HAL_LOCK(husart); - - if (state == HAL_USART_STATE_BUSY_TX) - { - /* Enable the USART DMA Tx request */ - SET_BIT(husart->Instance->CR3, USART_CR3_DMAT); - } - else if ((state == HAL_USART_STATE_BUSY_RX) || - (state == HAL_USART_STATE_BUSY_TX_RX)) - { - /* Clear the Overrun flag before resuming the Rx transfer*/ - __HAL_USART_CLEAR_FLAG(husart, USART_CLEAR_OREF); - - /* Reenable PE and ERR (Frame error, noise error, overrun error) interrupts */ - SET_BIT(husart->Instance->CR1, USART_CR1_PEIE); - SET_BIT(husart->Instance->CR3, USART_CR3_EIE); - - /* Enable the USART DMA Rx request before the DMA Tx request */ - SET_BIT(husart->Instance->CR3, USART_CR3_DMAR); - - /* Enable the USART DMA Tx request */ - SET_BIT(husart->Instance->CR3, USART_CR3_DMAT); - } - else - { - /* Nothing to do */ - } - - /* Process Unlocked */ - __HAL_UNLOCK(husart); - - return HAL_OK; -} - -/** - * @brief Stop the DMA Transfer. - * @param husart USART handle. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_USART_DMAStop(USART_HandleTypeDef *husart) -{ - /* The Lock is not implemented on this API to allow the user application - to call the HAL USART API under callbacks HAL_USART_TxCpltCallback() / HAL_USART_RxCpltCallback() / - HAL_USART_TxHalfCpltCallback / HAL_USART_RxHalfCpltCallback: - indeed, when HAL_DMA_Abort() API is called, the DMA TX/RX Transfer or Half Transfer complete - interrupt is generated if the DMA transfer interruption occurs at the middle or at the end of - the stream and the corresponding call back is executed. */ - - /* Disable the USART Tx/Rx DMA requests */ - CLEAR_BIT(husart->Instance->CR3, USART_CR3_DMAT); - CLEAR_BIT(husart->Instance->CR3, USART_CR3_DMAR); - - /* Abort the USART DMA tx channel */ - if (husart->hdmatx != NULL) - { - if (HAL_DMA_Abort(husart->hdmatx) != HAL_OK) - { - if (HAL_DMA_GetError(husart->hdmatx) == HAL_DMA_ERROR_TIMEOUT) - { - /* Set error code to DMA */ - husart->ErrorCode = HAL_USART_ERROR_DMA; - - return HAL_TIMEOUT; - } - } - } - /* Abort the USART DMA rx channel */ - if (husart->hdmarx != NULL) - { - if (HAL_DMA_Abort(husart->hdmarx) != HAL_OK) - { - if (HAL_DMA_GetError(husart->hdmarx) == HAL_DMA_ERROR_TIMEOUT) - { - /* Set error code to DMA */ - husart->ErrorCode = HAL_USART_ERROR_DMA; - - return HAL_TIMEOUT; - } - } - } - - USART_EndTransfer(husart); - husart->State = HAL_USART_STATE_READY; - - return HAL_OK; -} - -/** - * @brief Abort ongoing transfers (blocking mode). - * @param husart USART handle. - * @note This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode. - * This procedure performs following operations : - * - Disable USART Interrupts (Tx and Rx) - * - Disable the DMA transfer in the peripheral register (if enabled) - * - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode) - * - Set handle State to READY - * @note This procedure is executed in blocking mode : when exiting function, Abort is considered as completed. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_USART_Abort(USART_HandleTypeDef *husart) -{ - CLEAR_BIT(husart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE | USART_CR1_TXEIE | USART_CR1_TCIE)); - CLEAR_BIT(husart->Instance->CR3, USART_CR3_EIE); - - /* Disable the USART DMA Tx request if enabled */ - if (HAL_IS_BIT_SET(husart->Instance->CR3, USART_CR3_DMAT)) - { - CLEAR_BIT(husart->Instance->CR3, USART_CR3_DMAT); - - /* Abort the USART DMA Tx channel : use blocking DMA Abort API (no callback) */ - if (husart->hdmatx != NULL) - { - /* Set the USART DMA Abort callback to Null. - No call back execution at end of DMA abort procedure */ - husart->hdmatx->XferAbortCallback = NULL; - - if (HAL_DMA_Abort(husart->hdmatx) != HAL_OK) - { - if (HAL_DMA_GetError(husart->hdmatx) == HAL_DMA_ERROR_TIMEOUT) - { - /* Set error code to DMA */ - husart->ErrorCode = HAL_USART_ERROR_DMA; - - return HAL_TIMEOUT; - } - } - } - } - - /* Disable the USART DMA Rx request if enabled */ - if (HAL_IS_BIT_SET(husart->Instance->CR3, USART_CR3_DMAR)) - { - CLEAR_BIT(husart->Instance->CR3, USART_CR3_DMAR); - - /* Abort the USART DMA Rx channel : use blocking DMA Abort API (no callback) */ - if (husart->hdmarx != NULL) - { - /* Set the USART DMA Abort callback to Null. - No call back execution at end of DMA abort procedure */ - husart->hdmarx->XferAbortCallback = NULL; - - if (HAL_DMA_Abort(husart->hdmarx) != HAL_OK) - { - if (HAL_DMA_GetError(husart->hdmarx) == HAL_DMA_ERROR_TIMEOUT) - { - /* Set error code to DMA */ - husart->ErrorCode = HAL_USART_ERROR_DMA; - - return HAL_TIMEOUT; - } - } - } - } - - /* Reset Tx and Rx transfer counters */ - husart->TxXferCount = 0U; - husart->RxXferCount = 0U; - - /* Clear the Error flags in the ICR register */ - __HAL_USART_CLEAR_FLAG(husart, USART_CLEAR_OREF | USART_CLEAR_NEF | USART_CLEAR_PEF | USART_CLEAR_FEF); - - - /* Discard the received data */ - __HAL_USART_SEND_REQ(husart, USART_RXDATA_FLUSH_REQUEST); - - /* Restore husart->State to Ready */ - husart->State = HAL_USART_STATE_READY; - - /* Reset Handle ErrorCode to No Error */ - husart->ErrorCode = HAL_USART_ERROR_NONE; - - return HAL_OK; -} - -/** - * @brief Abort ongoing transfers (Interrupt mode). - * @param husart USART handle. - * @note This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode. - * This procedure performs following operations : - * - Disable USART Interrupts (Tx and Rx) - * - Disable the DMA transfer in the peripheral register (if enabled) - * - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode) - * - Set handle State to READY - * - At abort completion, call user abort complete callback - * @note This procedure is executed in Interrupt mode, meaning that abort procedure could be - * considered as completed only when user abort complete callback is executed (not when exiting function). - * @retval HAL status - */ -HAL_StatusTypeDef HAL_USART_Abort_IT(USART_HandleTypeDef *husart) -{ - uint32_t abortcplt = 1U; - - CLEAR_BIT(husart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE | USART_CR1_TXEIE | USART_CR1_TCIE)); - CLEAR_BIT(husart->Instance->CR3, USART_CR3_EIE); - - /* If DMA Tx and/or DMA Rx Handles are associated to USART Handle, DMA Abort complete callbacks should be initialised - before any call to DMA Abort functions */ - /* DMA Tx Handle is valid */ - if (husart->hdmatx != NULL) - { - /* Set DMA Abort Complete callback if USART DMA Tx request if enabled. - Otherwise, set it to NULL */ - if (HAL_IS_BIT_SET(husart->Instance->CR3, USART_CR3_DMAT)) - { - husart->hdmatx->XferAbortCallback = USART_DMATxAbortCallback; - } - else - { - husart->hdmatx->XferAbortCallback = NULL; - } - } - /* DMA Rx Handle is valid */ - if (husart->hdmarx != NULL) - { - /* Set DMA Abort Complete callback if USART DMA Rx request if enabled. - Otherwise, set it to NULL */ - if (HAL_IS_BIT_SET(husart->Instance->CR3, USART_CR3_DMAR)) - { - husart->hdmarx->XferAbortCallback = USART_DMARxAbortCallback; - } - else - { - husart->hdmarx->XferAbortCallback = NULL; - } - } - - /* Disable the USART DMA Tx request if enabled */ - if (HAL_IS_BIT_SET(husart->Instance->CR3, USART_CR3_DMAT)) - { - /* Disable DMA Tx at USART level */ - CLEAR_BIT(husart->Instance->CR3, USART_CR3_DMAT); - - /* Abort the USART DMA Tx channel : use non blocking DMA Abort API (callback) */ - if (husart->hdmatx != NULL) - { - /* USART Tx DMA Abort callback has already been initialised : - will lead to call HAL_USART_AbortCpltCallback() at end of DMA abort procedure */ - - /* Abort DMA TX */ - if (HAL_DMA_Abort_IT(husart->hdmatx) != HAL_OK) - { - husart->hdmatx->XferAbortCallback = NULL; - } - else - { - abortcplt = 0U; - } - } - } - - /* Disable the USART DMA Rx request if enabled */ - if (HAL_IS_BIT_SET(husart->Instance->CR3, USART_CR3_DMAR)) - { - CLEAR_BIT(husart->Instance->CR3, USART_CR3_DMAR); - - /* Abort the USART DMA Rx channel : use non blocking DMA Abort API (callback) */ - if (husart->hdmarx != NULL) - { - /* USART Rx DMA Abort callback has already been initialised : - will lead to call HAL_USART_AbortCpltCallback() at end of DMA abort procedure */ - - /* Abort DMA RX */ - if (HAL_DMA_Abort_IT(husart->hdmarx) != HAL_OK) - { - husart->hdmarx->XferAbortCallback = NULL; - abortcplt = 1U; - } - else - { - abortcplt = 0U; - } - } - } - - /* if no DMA abort complete callback execution is required => call user Abort Complete callback */ - if (abortcplt == 1U) - { - /* Reset Tx and Rx transfer counters */ - husart->TxXferCount = 0U; - husart->RxXferCount = 0U; - - /* Reset errorCode */ - husart->ErrorCode = HAL_USART_ERROR_NONE; - - /* Clear the Error flags in the ICR register */ - __HAL_USART_CLEAR_FLAG(husart, USART_CLEAR_OREF | USART_CLEAR_NEF | USART_CLEAR_PEF | USART_CLEAR_FEF); - - - /* Discard the received data */ - __HAL_USART_SEND_REQ(husart, USART_RXDATA_FLUSH_REQUEST); - - /* Restore husart->State to Ready */ - husart->State = HAL_USART_STATE_READY; - - /* As no DMA to be aborted, call directly user Abort complete callback */ -#if (USE_HAL_USART_REGISTER_CALLBACKS == 1) - /* Call registered Abort Complete Callback */ - husart->AbortCpltCallback(husart); -#else - /* Call legacy weak Abort Complete Callback */ - HAL_USART_AbortCpltCallback(husart); -#endif /* USE_HAL_USART_REGISTER_CALLBACKS */ - } - - return HAL_OK; -} - -/** - * @brief Handle USART interrupt request. - * @param husart USART handle. - * @retval None - */ -void HAL_USART_IRQHandler(USART_HandleTypeDef *husart) -{ - uint32_t isrflags = READ_REG(husart->Instance->ISR); - uint32_t cr1its = READ_REG(husart->Instance->CR1); - uint32_t cr3its = READ_REG(husart->Instance->CR3); - - uint32_t errorflags; - uint32_t errorcode; - - /* If no error occurs */ - errorflags = (isrflags & (uint32_t)(USART_ISR_PE | USART_ISR_FE | USART_ISR_ORE | USART_ISR_NE)); - if (errorflags == 0U) - { - /* USART in mode Receiver ---------------------------------------------------*/ - if (((isrflags & USART_ISR_RXNE) != 0U) - && ((cr1its & USART_CR1_RXNEIE) != 0U)) - { - if (husart->RxISR != NULL) - { - husart->RxISR(husart); - } - return; - } - } - - /* If some errors occur */ - if ((errorflags != 0U) - && (((cr3its & USART_CR3_EIE) != 0U) - || ((cr1its & (USART_CR1_RXNEIE | USART_CR1_PEIE)) != 0U))) - { - /* USART parity error interrupt occurred -------------------------------------*/ - if (((isrflags & USART_ISR_PE) != 0U) && ((cr1its & USART_CR1_PEIE) != 0U)) - { - __HAL_USART_CLEAR_IT(husart, USART_CLEAR_PEF); - - husart->ErrorCode |= HAL_USART_ERROR_PE; - } - - /* USART frame error interrupt occurred --------------------------------------*/ - if (((isrflags & USART_ISR_FE) != 0U) && ((cr3its & USART_CR3_EIE) != 0U)) - { - __HAL_USART_CLEAR_IT(husart, USART_CLEAR_FEF); - - husart->ErrorCode |= HAL_USART_ERROR_FE; - } - - /* USART noise error interrupt occurred --------------------------------------*/ - if (((isrflags & USART_ISR_NE) != 0U) && ((cr3its & USART_CR3_EIE) != 0U)) - { - __HAL_USART_CLEAR_IT(husart, USART_CLEAR_NEF); - - husart->ErrorCode |= HAL_USART_ERROR_NE; - } - - /* USART Over-Run interrupt occurred -----------------------------------------*/ - if (((isrflags & USART_ISR_ORE) != 0U) - && (((cr1its & USART_CR1_RXNEIE) != 0U) || - ((cr3its & USART_CR3_EIE) != 0U))) - { - __HAL_USART_CLEAR_IT(husart, USART_CLEAR_OREF); - - husart->ErrorCode |= HAL_USART_ERROR_ORE; - } - - - /* Call USART Error Call back function if need be --------------------------*/ - if (husart->ErrorCode != HAL_USART_ERROR_NONE) - { - /* USART in mode Receiver ---------------------------------------------------*/ - if (((isrflags & USART_ISR_RXNE) != 0U) - && ((cr1its & USART_CR1_RXNEIE) != 0U)) - { - if (husart->RxISR != NULL) - { - husart->RxISR(husart); - } - } - - /* If Overrun error occurs, or if any error occurs in DMA mode reception, - consider error as blocking */ - errorcode = husart->ErrorCode & HAL_USART_ERROR_ORE; - if ((HAL_IS_BIT_SET(husart->Instance->CR3, USART_CR3_DMAR)) || - (errorcode != 0U)) - { - /* Blocking error : transfer is aborted - Set the USART state ready to be able to start again the process, - Disable Interrupts, and disable DMA requests, if ongoing */ - USART_EndTransfer(husart); - - /* Disable the USART DMA Rx request if enabled */ - if (HAL_IS_BIT_SET(husart->Instance->CR3, USART_CR3_DMAR)) - { - CLEAR_BIT(husart->Instance->CR3, USART_CR3_DMAR | USART_CR3_DMAR); - - /* Abort the USART DMA Tx channel */ - if (husart->hdmatx != NULL) - { - /* Set the USART Tx DMA Abort callback to NULL : no callback - executed at end of DMA abort procedure */ - husart->hdmatx->XferAbortCallback = NULL; - - /* Abort DMA TX */ - (void)HAL_DMA_Abort_IT(husart->hdmatx); - } - - /* Abort the USART DMA Rx channel */ - if (husart->hdmarx != NULL) - { - /* Set the USART Rx DMA Abort callback : - will lead to call HAL_USART_ErrorCallback() at end of DMA abort procedure */ - husart->hdmarx->XferAbortCallback = USART_DMAAbortOnError; - - /* Abort DMA RX */ - if (HAL_DMA_Abort_IT(husart->hdmarx) != HAL_OK) - { - /* Call Directly husart->hdmarx->XferAbortCallback function in case of error */ - husart->hdmarx->XferAbortCallback(husart->hdmarx); - } - } - else - { - /* Call user error callback */ -#if (USE_HAL_USART_REGISTER_CALLBACKS == 1) - /* Call registered Error Callback */ - husart->ErrorCallback(husart); -#else - /* Call legacy weak Error Callback */ - HAL_USART_ErrorCallback(husart); -#endif /* USE_HAL_USART_REGISTER_CALLBACKS */ - } - } - else - { - /* Call user error callback */ -#if (USE_HAL_USART_REGISTER_CALLBACKS == 1) - /* Call registered Error Callback */ - husart->ErrorCallback(husart); -#else - /* Call legacy weak Error Callback */ - HAL_USART_ErrorCallback(husart); -#endif /* USE_HAL_USART_REGISTER_CALLBACKS */ - } - } - else - { - /* Non Blocking error : transfer could go on. - Error is notified to user through user error callback */ -#if (USE_HAL_USART_REGISTER_CALLBACKS == 1) - /* Call registered Error Callback */ - husart->ErrorCallback(husart); -#else - /* Call legacy weak Error Callback */ - HAL_USART_ErrorCallback(husart); -#endif /* USE_HAL_USART_REGISTER_CALLBACKS */ - husart->ErrorCode = HAL_USART_ERROR_NONE; - } - } - return; - - } /* End if some error occurs */ - - - /* USART in mode Transmitter ------------------------------------------------*/ - if (((isrflags & USART_ISR_TXE) != 0U) - && ((cr1its & USART_CR1_TXEIE) != 0U)) - { - if (husart->TxISR != NULL) - { - husart->TxISR(husart); - } - return; - } - - /* USART in mode Transmitter (transmission end) -----------------------------*/ - if (((isrflags & USART_ISR_TC) != 0U) && ((cr1its & USART_CR1_TCIE) != 0U)) - { - USART_EndTransmit_IT(husart); - return; - } - -} - -/** - * @brief Tx Transfer completed callback. - * @param husart USART handle. - * @retval None - */ -__weak void HAL_USART_TxCpltCallback(USART_HandleTypeDef *husart) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(husart); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_USART_TxCpltCallback can be implemented in the user file. - */ -} - -/** - * @brief Tx Half Transfer completed callback. - * @param husart USART handle. - * @retval None - */ -__weak void HAL_USART_TxHalfCpltCallback(USART_HandleTypeDef *husart) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(husart); - - /* NOTE: This function should not be modified, when the callback is needed, - the HAL_USART_TxHalfCpltCallback can be implemented in the user file. - */ -} - -/** - * @brief Rx Transfer completed callback. - * @param husart USART handle. - * @retval None - */ -__weak void HAL_USART_RxCpltCallback(USART_HandleTypeDef *husart) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(husart); - - /* NOTE: This function should not be modified, when the callback is needed, - the HAL_USART_RxCpltCallback can be implemented in the user file. - */ -} - -/** - * @brief Rx Half Transfer completed callback. - * @param husart USART handle. - * @retval None - */ -__weak void HAL_USART_RxHalfCpltCallback(USART_HandleTypeDef *husart) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(husart); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_USART_RxHalfCpltCallback can be implemented in the user file - */ -} - -/** - * @brief Tx/Rx Transfers completed callback for the non-blocking process. - * @param husart USART handle. - * @retval None - */ -__weak void HAL_USART_TxRxCpltCallback(USART_HandleTypeDef *husart) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(husart); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_USART_TxRxCpltCallback can be implemented in the user file - */ -} - -/** - * @brief USART error callback. - * @param husart USART handle. - * @retval None - */ -__weak void HAL_USART_ErrorCallback(USART_HandleTypeDef *husart) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(husart); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_USART_ErrorCallback can be implemented in the user file. - */ -} - -/** - * @brief USART Abort Complete callback. - * @param husart USART handle. - * @retval None - */ -__weak void HAL_USART_AbortCpltCallback(USART_HandleTypeDef *husart) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(husart); - - /* NOTE : This function should not be modified, when the callback is needed, - the HAL_USART_AbortCpltCallback can be implemented in the user file. - */ -} - -/** - * @} - */ - -/** @defgroup USART_Exported_Functions_Group4 Peripheral State and Error functions - * @brief USART Peripheral State and Error functions - * -@verbatim - ============================================================================== - ##### Peripheral State and Error functions ##### - ============================================================================== - [..] - This subsection provides functions allowing to : - (+) Return the USART handle state - (+) Return the USART handle error code - -@endverbatim - * @{ - */ - - -/** - * @brief Return the USART handle state. - * @param husart pointer to a USART_HandleTypeDef structure that contains - * the configuration information for the specified USART. - * @retval USART handle state - */ -HAL_USART_StateTypeDef HAL_USART_GetState(USART_HandleTypeDef *husart) -{ - return husart->State; -} - -/** - * @brief Return the USART error code. - * @param husart pointer to a USART_HandleTypeDef structure that contains - * the configuration information for the specified USART. - * @retval USART handle Error Code - */ -uint32_t HAL_USART_GetError(USART_HandleTypeDef *husart) -{ - return husart->ErrorCode; -} - -/** - * @} - */ - -/** - * @} - */ - -/** @defgroup USART_Private_Functions USART Private Functions - * @{ - */ - -/** - * @brief Initialize the callbacks to their default values. - * @param husart USART handle. - * @retval none - */ -#if (USE_HAL_USART_REGISTER_CALLBACKS == 1) -void USART_InitCallbacksToDefault(USART_HandleTypeDef *husart) -{ - /* Init the USART Callback settings */ - husart->TxHalfCpltCallback = HAL_USART_TxHalfCpltCallback; /* Legacy weak TxHalfCpltCallback */ - husart->TxCpltCallback = HAL_USART_TxCpltCallback; /* Legacy weak TxCpltCallback */ - husart->RxHalfCpltCallback = HAL_USART_RxHalfCpltCallback; /* Legacy weak RxHalfCpltCallback */ - husart->RxCpltCallback = HAL_USART_RxCpltCallback; /* Legacy weak RxCpltCallback */ - husart->TxRxCpltCallback = HAL_USART_TxRxCpltCallback; /* Legacy weak TxRxCpltCallback */ - husart->ErrorCallback = HAL_USART_ErrorCallback; /* Legacy weak ErrorCallback */ - husart->AbortCpltCallback = HAL_USART_AbortCpltCallback; /* Legacy weak AbortCpltCallback */ -} -#endif /* USE_HAL_USART_REGISTER_CALLBACKS */ - -/** - * @brief End ongoing transfer on USART peripheral (following error detection or Transfer completion). - * @param husart USART handle. - * @retval None - */ -static void USART_EndTransfer(USART_HandleTypeDef *husart) -{ - /* Disable TXEIE, TCIE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */ - CLEAR_BIT(husart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE | USART_CR1_TXEIE | USART_CR1_TCIE)); - CLEAR_BIT(husart->Instance->CR3, USART_CR3_EIE); - - /* At end of process, restore husart->State to Ready */ - husart->State = HAL_USART_STATE_READY; -} - -/** - * @brief DMA USART transmit process complete callback. - * @param hdma DMA handle. - * @retval None - */ -static void USART_DMATransmitCplt(DMA_HandleTypeDef *hdma) -{ - USART_HandleTypeDef *husart = (USART_HandleTypeDef *)(hdma->Parent); - - /* DMA Normal mode */ - if (HAL_IS_BIT_CLR(hdma->Instance->CCR, DMA_CCR_CIRC)) - { - husart->TxXferCount = 0U; - - if (husart->State == HAL_USART_STATE_BUSY_TX) - { - /* Disable the DMA transfer for transmit request by resetting the DMAT bit - in the USART CR3 register */ - CLEAR_BIT(husart->Instance->CR3, USART_CR3_DMAT); - - /* Enable the USART Transmit Complete Interrupt */ - __HAL_USART_ENABLE_IT(husart, USART_IT_TC); - } - } - /* DMA Circular mode */ - else - { - if (husart->State == HAL_USART_STATE_BUSY_TX) - { -#if (USE_HAL_USART_REGISTER_CALLBACKS == 1) - /* Call registered Tx Complete Callback */ - husart->TxCpltCallback(husart); -#else - /* Call legacy weak Tx Complete Callback */ - HAL_USART_TxCpltCallback(husart); -#endif /* USE_HAL_USART_REGISTER_CALLBACKS */ - } - } -} - -/** - * @brief DMA USART transmit process half complete callback. - * @param hdma DMA handle. - * @retval None - */ -static void USART_DMATxHalfCplt(DMA_HandleTypeDef *hdma) -{ - USART_HandleTypeDef *husart = (USART_HandleTypeDef *)(hdma->Parent); - -#if (USE_HAL_USART_REGISTER_CALLBACKS == 1) - /* Call registered Tx Half Complete Callback */ - husart->TxHalfCpltCallback(husart); -#else - /* Call legacy weak Tx Half Complete Callback */ - HAL_USART_TxHalfCpltCallback(husart); -#endif /* USE_HAL_USART_REGISTER_CALLBACKS */ -} - -/** - * @brief DMA USART receive process complete callback. - * @param hdma DMA handle. - * @retval None - */ -static void USART_DMAReceiveCplt(DMA_HandleTypeDef *hdma) -{ - USART_HandleTypeDef *husart = (USART_HandleTypeDef *)(hdma->Parent); - - /* DMA Normal mode */ - if (HAL_IS_BIT_CLR(hdma->Instance->CCR, DMA_CCR_CIRC)) - { - husart->RxXferCount = 0U; - - /* Disable PE and ERR (Frame error, noise error, overrun error) interrupts */ - CLEAR_BIT(husart->Instance->CR1, USART_CR1_PEIE); - CLEAR_BIT(husart->Instance->CR3, USART_CR3_EIE); - - /* Disable the DMA RX transfer for the receiver request by resetting the DMAR bit - in USART CR3 register */ - CLEAR_BIT(husart->Instance->CR3, USART_CR3_DMAR); - /* similarly, disable the DMA TX transfer that was started to provide the - clock to the slave device */ - CLEAR_BIT(husart->Instance->CR3, USART_CR3_DMAT); - - if (husart->State == HAL_USART_STATE_BUSY_RX) - { -#if (USE_HAL_USART_REGISTER_CALLBACKS == 1) - /* Call registered Rx Complete Callback */ - husart->RxCpltCallback(husart); -#else - /* Call legacy weak Rx Complete Callback */ - HAL_USART_RxCpltCallback(husart); -#endif /* USE_HAL_USART_REGISTER_CALLBACKS */ - } - /* The USART state is HAL_USART_STATE_BUSY_TX_RX */ - else - { -#if (USE_HAL_USART_REGISTER_CALLBACKS == 1) - /* Call registered Tx Rx Complete Callback */ - husart->TxRxCpltCallback(husart); -#else - /* Call legacy weak Tx Rx Complete Callback */ - HAL_USART_TxRxCpltCallback(husart); -#endif /* USE_HAL_USART_REGISTER_CALLBACKS */ - } - husart->State = HAL_USART_STATE_READY; - } - /* DMA circular mode */ - else - { - if (husart->State == HAL_USART_STATE_BUSY_RX) - { -#if (USE_HAL_USART_REGISTER_CALLBACKS == 1) - /* Call registered Rx Complete Callback */ - husart->RxCpltCallback(husart); -#else - /* Call legacy weak Rx Complete Callback */ - HAL_USART_RxCpltCallback(husart); -#endif /* USE_HAL_USART_REGISTER_CALLBACKS */ - } - /* The USART state is HAL_USART_STATE_BUSY_TX_RX */ - else - { -#if (USE_HAL_USART_REGISTER_CALLBACKS == 1) - /* Call registered Tx Rx Complete Callback */ - husart->TxRxCpltCallback(husart); -#else - /* Call legacy weak Tx Rx Complete Callback */ - HAL_USART_TxRxCpltCallback(husart); -#endif /* USE_HAL_USART_REGISTER_CALLBACKS */ - } - } -} - -/** - * @brief DMA USART receive process half complete callback. - * @param hdma DMA handle. - * @retval None - */ -static void USART_DMARxHalfCplt(DMA_HandleTypeDef *hdma) -{ - USART_HandleTypeDef *husart = (USART_HandleTypeDef *)(hdma->Parent); - -#if (USE_HAL_USART_REGISTER_CALLBACKS == 1) - /* Call registered Rx Half Complete Callback */ - husart->RxHalfCpltCallback(husart); -#else - /* Call legacy weak Rx Half Complete Callback */ - HAL_USART_RxHalfCpltCallback(husart); -#endif /* USE_HAL_USART_REGISTER_CALLBACKS */ -} - -/** - * @brief DMA USART communication error callback. - * @param hdma DMA handle. - * @retval None - */ -static void USART_DMAError(DMA_HandleTypeDef *hdma) -{ - USART_HandleTypeDef *husart = (USART_HandleTypeDef *)(hdma->Parent); - - husart->RxXferCount = 0U; - husart->TxXferCount = 0U; - USART_EndTransfer(husart); - - husart->ErrorCode |= HAL_USART_ERROR_DMA; - husart->State = HAL_USART_STATE_READY; - -#if (USE_HAL_USART_REGISTER_CALLBACKS == 1) - /* Call registered Error Callback */ - husart->ErrorCallback(husart); -#else - /* Call legacy weak Error Callback */ - HAL_USART_ErrorCallback(husart); -#endif /* USE_HAL_USART_REGISTER_CALLBACKS */ -} - -/** - * @brief DMA USART communication abort callback, when initiated by HAL services on Error - * (To be called at end of DMA Abort procedure following error occurrence). - * @param hdma DMA handle. - * @retval None - */ -static void USART_DMAAbortOnError(DMA_HandleTypeDef *hdma) -{ - USART_HandleTypeDef *husart = (USART_HandleTypeDef *)(hdma->Parent); - husart->RxXferCount = 0U; - husart->TxXferCount = 0U; - -#if (USE_HAL_USART_REGISTER_CALLBACKS == 1) - /* Call registered Error Callback */ - husart->ErrorCallback(husart); -#else - /* Call legacy weak Error Callback */ - HAL_USART_ErrorCallback(husart); -#endif /* USE_HAL_USART_REGISTER_CALLBACKS */ -} - -/** - * @brief DMA USART Tx communication abort callback, when initiated by user - * (To be called at end of DMA Tx Abort procedure following user abort request). - * @note When this callback is executed, User Abort complete call back is called only if no - * Abort still ongoing for Rx DMA Handle. - * @param hdma DMA handle. - * @retval None - */ -static void USART_DMATxAbortCallback(DMA_HandleTypeDef *hdma) -{ - USART_HandleTypeDef *husart = (USART_HandleTypeDef *)(hdma->Parent); - - husart->hdmatx->XferAbortCallback = NULL; - - /* Check if an Abort process is still ongoing */ - if (husart->hdmarx != NULL) - { - if (husart->hdmarx->XferAbortCallback != NULL) - { - return; - } - } - - /* No Abort process still ongoing : All DMA channels are aborted, call user Abort Complete callback */ - husart->TxXferCount = 0U; - husart->RxXferCount = 0U; - - /* Reset errorCode */ - husart->ErrorCode = HAL_USART_ERROR_NONE; - - /* Clear the Error flags in the ICR register */ - __HAL_USART_CLEAR_FLAG(husart, USART_CLEAR_OREF | USART_CLEAR_NEF | USART_CLEAR_PEF | USART_CLEAR_FEF); - - /* Restore husart->State to Ready */ - husart->State = HAL_USART_STATE_READY; - - /* Call user Abort complete callback */ -#if (USE_HAL_USART_REGISTER_CALLBACKS == 1) - /* Call registered Abort Complete Callback */ - husart->AbortCpltCallback(husart); -#else - /* Call legacy weak Abort Complete Callback */ - HAL_USART_AbortCpltCallback(husart); -#endif /* USE_HAL_USART_REGISTER_CALLBACKS */ - -} - - -/** - * @brief DMA USART Rx communication abort callback, when initiated by user - * (To be called at end of DMA Rx Abort procedure following user abort request). - * @note When this callback is executed, User Abort complete call back is called only if no - * Abort still ongoing for Tx DMA Handle. - * @param hdma DMA handle. - * @retval None - */ -static void USART_DMARxAbortCallback(DMA_HandleTypeDef *hdma) -{ - USART_HandleTypeDef *husart = (USART_HandleTypeDef *)(hdma->Parent); - - husart->hdmarx->XferAbortCallback = NULL; - - /* Check if an Abort process is still ongoing */ - if (husart->hdmatx != NULL) - { - if (husart->hdmatx->XferAbortCallback != NULL) - { - return; - } - } - - /* No Abort process still ongoing : All DMA channels are aborted, call user Abort Complete callback */ - husart->TxXferCount = 0U; - husart->RxXferCount = 0U; - - /* Reset errorCode */ - husart->ErrorCode = HAL_USART_ERROR_NONE; - - /* Clear the Error flags in the ICR register */ - __HAL_USART_CLEAR_FLAG(husart, USART_CLEAR_OREF | USART_CLEAR_NEF | USART_CLEAR_PEF | USART_CLEAR_FEF); - - /* Restore husart->State to Ready */ - husart->State = HAL_USART_STATE_READY; - - /* Call user Abort complete callback */ -#if (USE_HAL_USART_REGISTER_CALLBACKS == 1) - /* Call registered Abort Complete Callback */ - husart->AbortCpltCallback(husart); -#else - /* Call legacy weak Abort Complete Callback */ - HAL_USART_AbortCpltCallback(husart); -#endif /* USE_HAL_USART_REGISTER_CALLBACKS */ -} - - -/** - * @brief Handle USART Communication Timeout. - * @param husart USART handle. - * @param Flag Specifies the USART flag to check. - * @param Status the Flag status (SET or RESET). - * @param Tickstart Tick start value - * @param Timeout timeout duration. - * @retval HAL status - */ -static HAL_StatusTypeDef USART_WaitOnFlagUntilTimeout(USART_HandleTypeDef *husart, uint32_t Flag, FlagStatus Status, - uint32_t Tickstart, uint32_t Timeout) -{ - /* Wait until flag is set */ - while ((__HAL_USART_GET_FLAG(husart, Flag) ? SET : RESET) == Status) - { - /* Check for the Timeout */ - if (Timeout != HAL_MAX_DELAY) - { - if (((HAL_GetTick() - Tickstart) > Timeout) || (Timeout == 0U)) - { - husart->State = HAL_USART_STATE_READY; - - /* Process Unlocked */ - __HAL_UNLOCK(husart); - - return HAL_TIMEOUT; - } - } - } - return HAL_OK; -} - -/** - * @brief Configure the USART peripheral. - * @param husart USART handle. - * @retval HAL status - */ -static HAL_StatusTypeDef USART_SetConfig(USART_HandleTypeDef *husart) -{ - uint32_t tmpreg; - USART_ClockSourceTypeDef clocksource; - HAL_StatusTypeDef ret = HAL_OK; - uint16_t brrtemp; - uint32_t usartdiv = 0x00000000; - uint32_t pclk; - - /* Check the parameters */ - assert_param(IS_USART_POLARITY(husart->Init.CLKPolarity)); - assert_param(IS_USART_PHASE(husart->Init.CLKPhase)); - assert_param(IS_USART_LASTBIT(husart->Init.CLKLastBit)); - assert_param(IS_USART_BAUDRATE(husart->Init.BaudRate)); - assert_param(IS_USART_WORD_LENGTH(husart->Init.WordLength)); - assert_param(IS_USART_STOPBITS(husart->Init.StopBits)); - assert_param(IS_USART_PARITY(husart->Init.Parity)); - assert_param(IS_USART_MODE(husart->Init.Mode)); - - /*-------------------------- USART CR1 Configuration -----------------------*/ - /* Clear M, PCE, PS, TE and RE bits and configure - * the USART Word Length, Parity and Mode: - * set the M bits according to husart->Init.WordLength value - * set PCE and PS bits according to husart->Init.Parity value - * set TE and RE bits according to husart->Init.Mode value - * force OVER8 to 1 to allow to reach the maximum speed (Fclock/8) */ - tmpreg = (uint32_t)husart->Init.WordLength | husart->Init.Parity | husart->Init.Mode | USART_CR1_OVER8; - MODIFY_REG(husart->Instance->CR1, USART_CR1_FIELDS, tmpreg); - - /*---------------------------- USART CR2 Configuration ---------------------*/ - /* Clear and configure the USART Clock, CPOL, CPHA, LBCL and STOP bits: - * set CPOL bit according to husart->Init.CLKPolarity value - * set CPHA bit according to husart->Init.CLKPhase value - * set LBCL bit according to husart->Init.CLKLastBit value (used in SPI master mode only) - * set STOP[13:12] bits according to husart->Init.StopBits value */ - tmpreg = (uint32_t)(USART_CLOCK_ENABLE); - tmpreg |= (uint32_t)husart->Init.CLKLastBit; - tmpreg |= ((uint32_t)husart->Init.CLKPolarity | (uint32_t)husart->Init.CLKPhase); - tmpreg |= (uint32_t)husart->Init.StopBits; - MODIFY_REG(husart->Instance->CR2, USART_CR2_FIELDS, tmpreg); - - - /*-------------------------- USART BRR Configuration -----------------------*/ - /* BRR is filled-up according to OVER8 bit setting which is forced to 1 */ - USART_GETCLOCKSOURCE(husart, clocksource); - - switch (clocksource) - { - case USART_CLOCKSOURCE_PCLK1: - pclk = HAL_RCC_GetPCLK1Freq(); - usartdiv = (uint32_t)(USART_DIV_SAMPLING8(pclk, husart->Init.BaudRate)); - break; - case USART_CLOCKSOURCE_HSI: - usartdiv = (uint32_t)(USART_DIV_SAMPLING8(HSI_VALUE, husart->Init.BaudRate)); - break; - case USART_CLOCKSOURCE_SYSCLK: - pclk = HAL_RCC_GetSysClockFreq(); - usartdiv = (uint32_t)(USART_DIV_SAMPLING8(pclk, husart->Init.BaudRate)); - break; - case USART_CLOCKSOURCE_LSE: - usartdiv = (uint32_t)(USART_DIV_SAMPLING8(LSE_VALUE, husart->Init.BaudRate)); - break; - default: - ret = HAL_ERROR; - break; - } - - /* USARTDIV must be greater than or equal to 0d16 and smaller than or equal to ffff */ - if ((usartdiv >= USART_BRR_MIN) && (usartdiv <= USART_BRR_MAX)) - { - brrtemp = (uint16_t)(usartdiv & 0xFFF0U); - brrtemp |= (uint16_t)((usartdiv & (uint16_t)0x000FU) >> 1U); - husart->Instance->BRR = brrtemp; - } - else - { - ret = HAL_ERROR; - } - - - /* Clear ISR function pointers */ - husart->RxISR = NULL; - husart->TxISR = NULL; - - return ret; -} - -/** - * @brief Check the USART Idle State. - * @param husart USART handle. - * @retval HAL status - */ -static HAL_StatusTypeDef USART_CheckIdleState(USART_HandleTypeDef *husart) -{ - uint32_t tickstart; - - /* Initialize the USART ErrorCode */ - husart->ErrorCode = HAL_USART_ERROR_NONE; - - /* Init tickstart for timeout managment*/ - tickstart = HAL_GetTick(); - - /* Check if the Transmitter is enabled */ - if ((husart->Instance->CR1 & USART_CR1_TE) == USART_CR1_TE) - { - /* Wait until TEACK flag is set */ - if (USART_WaitOnFlagUntilTimeout(husart, USART_ISR_TEACK, RESET, tickstart, USART_TEACK_REACK_TIMEOUT) != HAL_OK) - { - /* Timeout occurred */ - return HAL_TIMEOUT; - } - } - /* Check if the Receiver is enabled */ - if ((husart->Instance->CR1 & USART_CR1_RE) == USART_CR1_RE) - { - /* Wait until REACK flag is set */ - if (USART_WaitOnFlagUntilTimeout(husart, USART_ISR_REACK, RESET, tickstart, USART_TEACK_REACK_TIMEOUT) != HAL_OK) - { - /* Timeout occurred */ - return HAL_TIMEOUT; - } - } - - /* Initialize the USART state*/ - husart->State = HAL_USART_STATE_READY; - - /* Process Unlocked */ - __HAL_UNLOCK(husart); - - return HAL_OK; -} - -/** - * @brief Simplex send an amount of data in non-blocking mode. - * @note Function called under interruption only, once - * interruptions have been enabled by HAL_USART_Transmit_IT(). - * @note The USART errors are not managed to avoid the overrun error. - * @note ISR function executed when data word length is less than 9 bits long. - * @param husart USART handle. - * @retval None - */ -static void USART_TxISR_8BIT(USART_HandleTypeDef *husart) -{ - const HAL_USART_StateTypeDef state = husart->State; - - /* Check that a Tx process is ongoing */ - if ((state == HAL_USART_STATE_BUSY_TX) || - (state == HAL_USART_STATE_BUSY_TX_RX)) - { - if (husart->TxXferCount == 0U) - { - /* Disable the USART Transmit data register empty interrupt */ - __HAL_USART_DISABLE_IT(husart, USART_IT_TXE); - - /* Enable the USART Transmit Complete Interrupt */ - __HAL_USART_ENABLE_IT(husart, USART_IT_TC); - } - else - { - husart->Instance->TDR = (uint8_t)(*husart->pTxBuffPtr & (uint8_t)0xFF); - husart->pTxBuffPtr++; - husart->TxXferCount--; - } - } -} - -/** - * @brief Simplex send an amount of data in non-blocking mode. - * @note Function called under interruption only, once - * interruptions have been enabled by HAL_USART_Transmit_IT(). - * @note The USART errors are not managed to avoid the overrun error. - * @note ISR function executed when data word length is 9 bits long. - * @param husart USART handle. - * @retval None - */ -static void USART_TxISR_16BIT(USART_HandleTypeDef *husart) -{ - const HAL_USART_StateTypeDef state = husart->State; - uint16_t *tmp; - - if ((state == HAL_USART_STATE_BUSY_TX) || - (state == HAL_USART_STATE_BUSY_TX_RX)) - { - if (husart->TxXferCount == 0U) - { - /* Disable the USART Transmit data register empty interrupt */ - __HAL_USART_DISABLE_IT(husart, USART_IT_TXE); - - /* Enable the USART Transmit Complete Interrupt */ - __HAL_USART_ENABLE_IT(husart, USART_IT_TC); - } - else - { - tmp = (uint16_t *) husart->pTxBuffPtr; - husart->Instance->TDR = (uint16_t)(*tmp & 0x01FFU); - husart->pTxBuffPtr += 2U; - husart->TxXferCount--; - } - } -} - - -/** - * @brief Wraps up transmission in non-blocking mode. - * @param husart Pointer to a USART_HandleTypeDef structure that contains - * the configuration information for the specified USART module. - * @retval None - */ -static void USART_EndTransmit_IT(USART_HandleTypeDef *husart) -{ - /* Disable the USART Transmit Complete Interrupt */ - __HAL_USART_DISABLE_IT(husart, USART_IT_TC); - - /* Disable the USART Error Interrupt: (Frame error, noise error, overrun error) */ - __HAL_USART_DISABLE_IT(husart, USART_IT_ERR); - - /* Clear TxISR function pointer */ - husart->TxISR = NULL; - - if (husart->State == HAL_USART_STATE_BUSY_TX) - { - /* Clear overrun flag and discard the received data */ - __HAL_USART_CLEAR_OREFLAG(husart); - __HAL_USART_SEND_REQ(husart, USART_RXDATA_FLUSH_REQUEST); - - /* Tx process is completed, restore husart->State to Ready */ - husart->State = HAL_USART_STATE_READY; - -#if (USE_HAL_USART_REGISTER_CALLBACKS == 1) - /* Call registered Tx Complete Callback */ - husart->TxCpltCallback(husart); -#else - /* Call legacy weak Tx Complete Callback */ - HAL_USART_TxCpltCallback(husart); -#endif /* USE_HAL_USART_REGISTER_CALLBACKS */ - } - else if (husart->RxXferCount == 0U) - { - /* TxRx process is completed, restore husart->State to Ready */ - husart->State = HAL_USART_STATE_READY; - -#if (USE_HAL_USART_REGISTER_CALLBACKS == 1) - /* Call registered Tx Rx Complete Callback */ - husart->TxRxCpltCallback(husart); -#else - /* Call legacy weak Tx Rx Complete Callback */ - HAL_USART_TxRxCpltCallback(husart); -#endif /* USE_HAL_USART_REGISTER_CALLBACKS */ - } - else - { - /* Nothing to do */ - } -} - - -/** - * @brief Simplex receive an amount of data in non-blocking mode. - * @note Function called under interruption only, once - * interruptions have been enabled by HAL_USART_Receive_IT(). - * @note ISR function executed when data word length is less than 9 bits long. - * @param husart USART handle - * @retval None - */ -static void USART_RxISR_8BIT(USART_HandleTypeDef *husart) -{ - const HAL_USART_StateTypeDef state = husart->State; - uint16_t txdatacount; - uint16_t uhMask = husart->Mask; - - if ((state == HAL_USART_STATE_BUSY_RX) || - (state == HAL_USART_STATE_BUSY_TX_RX)) - { - *husart->pRxBuffPtr = (uint8_t)(husart->Instance->RDR & (uint8_t)uhMask); - husart->pRxBuffPtr++; - husart->RxXferCount--; - - if (husart->RxXferCount == 0U) - { - /* Disable the USART Parity Error Interrupt and RXNE interrupt*/ - CLEAR_BIT(husart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE)); - - /* Disable the USART Error Interrupt: (Frame error, noise error, overrun error) */ - CLEAR_BIT(husart->Instance->CR3, USART_CR3_EIE); - - /* Clear RxISR function pointer */ - husart->RxISR = NULL; - - /* txdatacount is a temporary variable for MISRAC2012-Rule-13.5 */ - txdatacount = husart->TxXferCount; - - if (state == HAL_USART_STATE_BUSY_RX) - { - - /* Rx process is completed, restore husart->State to Ready */ - husart->State = HAL_USART_STATE_READY; - -#if (USE_HAL_USART_REGISTER_CALLBACKS == 1) - /* Call registered Rx Complete Callback */ - husart->RxCpltCallback(husart); -#else - /* Call legacy weak Rx Complete Callback */ - HAL_USART_RxCpltCallback(husart); -#endif /* USE_HAL_USART_REGISTER_CALLBACKS */ - } - else if ((READ_BIT(husart->Instance->CR1, USART_CR1_TCIE) != USART_CR1_TCIE) && - (txdatacount == 0U)) - { - /* TxRx process is completed, restore husart->State to Ready */ - husart->State = HAL_USART_STATE_READY; - -#if (USE_HAL_USART_REGISTER_CALLBACKS == 1) - /* Call registered Tx Rx Complete Callback */ - husart->TxRxCpltCallback(husart); -#else - /* Call legacy weak Tx Rx Complete Callback */ - HAL_USART_TxRxCpltCallback(husart); -#endif /* USE_HAL_USART_REGISTER_CALLBACKS */ - } - else - { - /* Nothing to do */ - } - } - else if (state == HAL_USART_STATE_BUSY_RX) - { - /* Send dummy byte in order to generate the clock for the Slave to Send the next data */ - husart->Instance->TDR = (USART_DUMMY_DATA & (uint16_t)0x00FF); - } - else - { - /* Nothing to do */ - } - } -} - -/** - * @brief Simplex receive an amount of data in non-blocking mode. - * @note Function called under interruption only, once - * interruptions have been enabled by HAL_USART_Receive_IT(). - * @note ISR function executed when data word length is 9 bits long. - * @param husart USART handle - * @retval None - */ -static void USART_RxISR_16BIT(USART_HandleTypeDef *husart) -{ - const HAL_USART_StateTypeDef state = husart->State; - uint16_t txdatacount; - uint16_t *tmp; - uint16_t uhMask = husart->Mask; - - if ((state == HAL_USART_STATE_BUSY_RX) || - (state == HAL_USART_STATE_BUSY_TX_RX)) - { - tmp = (uint16_t *) husart->pRxBuffPtr; - *tmp = (uint16_t)(husart->Instance->RDR & uhMask); - husart->pRxBuffPtr += 2U; - husart->RxXferCount--; - - if (husart->RxXferCount == 0U) - { - /* Disable the USART Parity Error Interrupt and RXNE interrupt*/ - CLEAR_BIT(husart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE)); - - /* Disable the USART Error Interrupt: (Frame error, noise error, overrun error) */ - CLEAR_BIT(husart->Instance->CR3, USART_CR3_EIE); - - /* Clear RxISR function pointer */ - husart->RxISR = NULL; - - /* txdatacount is a temporary variable for MISRAC2012-Rule-13.5 */ - txdatacount = husart->TxXferCount; - - if (state == HAL_USART_STATE_BUSY_RX) - { - - /* Rx process is completed, restore husart->State to Ready */ - husart->State = HAL_USART_STATE_READY; - -#if (USE_HAL_USART_REGISTER_CALLBACKS == 1) - /* Call registered Rx Complete Callback */ - husart->RxCpltCallback(husart); -#else - /* Call legacy weak Rx Complete Callback */ - HAL_USART_RxCpltCallback(husart); -#endif /* USE_HAL_USART_REGISTER_CALLBACKS */ - } - else if ((READ_BIT(husart->Instance->CR1, USART_CR1_TCIE) != USART_CR1_TCIE) && - (txdatacount == 0U)) - { - /* TxRx process is completed, restore husart->State to Ready */ - husart->State = HAL_USART_STATE_READY; - -#if (USE_HAL_USART_REGISTER_CALLBACKS == 1) - /* Call registered Tx Rx Complete Callback */ - husart->TxRxCpltCallback(husart); -#else - /* Call legacy weak Tx Rx Complete Callback */ - HAL_USART_TxRxCpltCallback(husart); -#endif /* USE_HAL_USART_REGISTER_CALLBACKS */ - } - else - { - /* Nothing to do */ - } - } - else if (state == HAL_USART_STATE_BUSY_RX) - { - /* Send dummy byte in order to generate the clock for the Slave to Send the next data */ - husart->Instance->TDR = (USART_DUMMY_DATA & (uint16_t)0x00FF); - } - else - { - /* Nothing to do */ - } - } -} - - -/** - * @} - */ - -#endif /* HAL_USART_MODULE_ENABLED */ -/** - * @} - */ - -/** - * @} - */ - -/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_usart_ex.c b/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_usart_ex.c deleted file mode 100644 index 547bbc9..0000000 --- a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_usart_ex.c +++ /dev/null @@ -1,138 +0,0 @@ -/** - ****************************************************************************** - * @file stm32f0xx_hal_usart_ex.c - * @author MCD Application Team - * @brief Extended USART HAL module driver. - * This file provides firmware functions to manage the following extended - * functionalities of the Universal Synchronous Receiver Transmitter Peripheral (USART). - * + Peripheral Control functions - * - * - @verbatim - ============================================================================== - ##### USART peripheral extended features ##### - ============================================================================== - - (#) FIFO mode enabling/disabling and RX/TX FIFO threshold programming. - - -@- When USART operates in FIFO mode, FIFO mode must be enabled prior - starting RX/TX transfers. Also RX/TX FIFO thresholds must be - configured prior starting RX/TX transfers. - - (#) Slave mode enabling/disabling and NSS pin configuration. - - -@- When USART operates in Slave mode, Slave mode must be enabled prior - starting RX/TX transfers. - - @endverbatim - ****************************************************************************** - * @attention - * - *

© Copyright (c) 2016 STMicroelectronics. - * All rights reserved.

- * - * This software component is licensed by ST under BSD 3-Clause license, - * the "License"; You may not use this file except in compliance with the - * License. You may obtain a copy of the License at: - * opensource.org/licenses/BSD-3-Clause - * - ****************************************************************************** - */ - -/* Includes ------------------------------------------------------------------*/ -#include "stm32f0xx_hal.h" - -/** @addtogroup STM32F0xx_HAL_Driver - * @{ - */ - -/** @defgroup USARTEx USARTEx - * @brief USART Extended HAL module driver - * @{ - */ - -#ifdef HAL_USART_MODULE_ENABLED - -/* Private typedef -----------------------------------------------------------*/ -/* Private define ------------------------------------------------------------*/ -/* Private macros ------------------------------------------------------------*/ -/* Private variables ---------------------------------------------------------*/ -/* Private function prototypes -----------------------------------------------*/ - -/* Exported functions --------------------------------------------------------*/ - -/** @defgroup USARTEx_Exported_Functions USARTEx Exported Functions - * @{ - */ - -/** @defgroup USARTEx_Exported_Functions_Group1 IO operation functions - * @brief Extended USART Transmit/Receive functions - * -@verbatim - =============================================================================== - ##### IO operation functions ##### - =============================================================================== - This subsection provides a set of FIFO mode related callback functions. - - (#) TX/RX Fifos Callbacks: - (+) HAL_USARTEx_RxFifoFullCallback() - (+) HAL_USARTEx_TxFifoEmptyCallback() - -@endverbatim - * @{ - */ - - -/** - * @} - */ - -/** @defgroup USARTEx_Exported_Functions_Group2 Peripheral Control functions - * @brief Extended Peripheral Control functions - * -@verbatim - =============================================================================== - ##### Peripheral Control functions ##### - =============================================================================== - [..] This section provides the following functions: - (+) HAL_USARTEx_EnableSPISlaveMode() API enables the SPI slave mode - (+) HAL_USARTEx_DisableSPISlaveMode() API disables the SPI slave mode - (+) HAL_USARTEx_ConfigNSS API configures the Slave Select input pin (NSS) - (+) HAL_USARTEx_EnableFifoMode() API enables the FIFO mode - (+) HAL_USARTEx_DisableFifoMode() API disables the FIFO mode - (+) HAL_USARTEx_SetTxFifoThreshold() API sets the TX FIFO threshold - (+) HAL_USARTEx_SetRxFifoThreshold() API sets the RX FIFO threshold - - -@endverbatim - * @{ - */ - - -/** - * @} - */ - -/** - * @} - */ - -/** @addtogroup USARTEx_Private_Functions - * @{ - */ - -/** - * @} - */ - -#endif /* HAL_USART_MODULE_ENABLED */ - -/** - * @} - */ - -/** - * @} - */ - -/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_wwdg.c b/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_wwdg.c deleted file mode 100644 index ee67701..0000000 --- a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_wwdg.c +++ /dev/null @@ -1,414 +0,0 @@ -/** - ****************************************************************************** - * @file stm32f0xx_hal_wwdg.c - * @author MCD Application Team - * @brief WWDG HAL module driver. - * This file provides firmware functions to manage the following - * functionalities of the Window Watchdog (WWDG) peripheral: - * + Initialization and Configuration functions - * + IO operation functions - @verbatim - ============================================================================== - ##### WWDG Specific features ##### - ============================================================================== - [..] - Once enabled the WWDG generates a system reset on expiry of a programmed - time period, unless the program refreshes the counter (T[6;0] downcounter) - before reaching 0x3F value (i.e. a reset is generated when the counter - value rolls down from 0x40 to 0x3F). - - (+) An MCU reset is also generated if the counter value is refreshed - before the counter has reached the refresh window value. This - implies that the counter must be refreshed in a limited window. - (+) Once enabled the WWDG cannot be disabled except by a system reset. - (+) WWDGRST flag in RCC CSR register can be used to inform when a WWDG - reset occurs. - (+) The WWDG counter input clock is derived from the APB clock divided - by a programmable prescaler. - (+) WWDG clock (Hz) = PCLK1 / (4096 * Prescaler) - (+) WWDG timeout (mS) = 1000 * (T[5;0] + 1) / WWDG clock (Hz) - where T[5;0] are the lowest 6 bits of Counter. - (+) WWDG Counter refresh is allowed between the following limits : - (++) min time (mS) = 1000 * (Counter - Window) / WWDG clock - (++) max time (mS) = 1000 * (Counter - 0x40) / WWDG clock - (+) Typical values: - (++) Counter min (T[5;0] = 0x00) @56MHz (PCLK1) with zero prescaler: - max timeout before reset: approximately 73.14µs - (++) Counter max (T[5;0] = 0x3F) @56MHz (PCLK1) with prescaler dividing by 8: - max timeout before reset: approximately 599.18ms - - ============================================================================== - ##### How to use this driver ##### - ============================================================================== - - *** Common driver usage *** - =========================== - - [..] - (+) Enable WWDG APB1 clock using __HAL_RCC_WWDG_CLK_ENABLE(). - (+) Set the WWDG prescaler, refresh window and counter value - using HAL_WWDG_Init() function. - (+) Start the WWDG using HAL_WWDG_Start() function. - When the WWDG is enabled the counter value should be configured to - a value greater than 0x40 to prevent generating an immediate reset. - (+) Optionally you can enable the Early Wakeup Interrupt (EWI) which is - generated when the counter reaches 0x40, and then start the WWDG using - HAL_WWDG_Start_IT(). At EWI HAL_WWDG_WakeupCallback is executed and user can - add his own code by customization of callback HAL_WWDG_WakeupCallback. - Once enabled, EWI interrupt cannot be disabled except by a system reset. - (+) Then the application program must refresh the WWDG counter at regular - intervals during normal operation to prevent an MCU reset, using - HAL_WWDG_Refresh() function. This operation must occur only when - the counter is lower than the refresh window value already programmed. - - *** Callback registration *** - ============================= - - [..] - The compilation define USE_HAL_WWDG_REGISTER_CALLBACKS when set to 1 allows - the user to configure dynamically the driver callbacks. Use Functions - @ref HAL_WWDG_RegisterCallback() to register a user callback. - - (+) Function @ref HAL_WWDG_RegisterCallback() allows to register following - callbacks: - (++) EwiCallback : callback for Early WakeUp Interrupt. - (++) MspInitCallback : WWDG MspInit. - This function takes as parameters the HAL peripheral handle, the Callback ID - and a pointer to the user callback function. - - (+) Use function @ref HAL_WWDG_UnRegisterCallback() to reset a callback to - the default weak (surcharged) function. @ref HAL_WWDG_UnRegisterCallback() - takes as parameters the HAL peripheral handle and the Callback ID. - This function allows to reset following callbacks: - (++) EwiCallback : callback for Early WakeUp Interrupt. - (++) MspInitCallback : WWDG MspInit. - - [..] - When calling @ref HAL_WWDG_Init function, callbacks are reset to the - corresponding legacy weak (surcharged) functions: - @ref HAL_WWDG_EarlyWakeupCallback() and HAL_WWDG_MspInit() only if they have - not been registered before. - - [..] - When compilation define USE_HAL_WWDG_REGISTER_CALLBACKS is set to 0 or - not defined, the callback registering feature is not available - and weak (surcharged) callbacks are used. - - *** WWDG HAL driver macros list *** - =================================== - [..] - Below the list of most used macros in WWDG HAL driver. - (+) __HAL_WWDG_ENABLE: Enable the WWDG peripheral - (+) __HAL_WWDG_GET_FLAG: Get the selected WWDG's flag status - (+) __HAL_WWDG_CLEAR_FLAG: Clear the WWDG's pending flags - (+) __HAL_WWDG_ENABLE_IT: Enable the WWDG early wakeup interrupt - - @endverbatim - ****************************************************************************** - * @attention - * - *

© Copyright (c) 2016 STMicroelectronics. - * All rights reserved.

- * - * This software component is licensed by ST under BSD 3-Clause license, - * the "License"; You may not use this file except in compliance with the - * License. You may obtain a copy of the License at: - * opensource.org/licenses/BSD-3-Clause - * - ****************************************************************************** - */ - -/* Includes ------------------------------------------------------------------*/ -#include "stm32f0xx_hal.h" - -/** @addtogroup STM32F0xx_HAL_Driver - * @{ - */ - -#ifdef HAL_WWDG_MODULE_ENABLED -/** @defgroup WWDG WWDG - * @brief WWDG HAL module driver. - * @{ - */ - -/* Private typedef -----------------------------------------------------------*/ -/* Private define ------------------------------------------------------------*/ -/* Private macro -------------------------------------------------------------*/ -/* Private variables ---------------------------------------------------------*/ -/* Private function prototypes -----------------------------------------------*/ -/* Exported functions --------------------------------------------------------*/ - -/** @defgroup WWDG_Exported_Functions WWDG Exported Functions - * @{ - */ - -/** @defgroup WWDG_Exported_Functions_Group1 Initialization and Configuration functions - * @brief Initialization and Configuration functions. - * -@verbatim - ============================================================================== - ##### Initialization and Configuration functions ##### - ============================================================================== - [..] - This section provides functions allowing to: - (+) Initialize and start the WWDG according to the specified parameters - in the WWDG_InitTypeDef of associated handle. - (+) Initialize the WWDG MSP. - -@endverbatim - * @{ - */ - -/** - * @brief Initialize the WWDG according to the specified. - * parameters in the WWDG_InitTypeDef of associated handle. - * @param hwwdg pointer to a WWDG_HandleTypeDef structure that contains - * the configuration information for the specified WWDG module. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_WWDG_Init(WWDG_HandleTypeDef *hwwdg) -{ - /* Check the WWDG handle allocation */ - if (hwwdg == NULL) - { - return HAL_ERROR; - } - - /* Check the parameters */ - assert_param(IS_WWDG_ALL_INSTANCE(hwwdg->Instance)); - assert_param(IS_WWDG_PRESCALER(hwwdg->Init.Prescaler)); - assert_param(IS_WWDG_WINDOW(hwwdg->Init.Window)); - assert_param(IS_WWDG_COUNTER(hwwdg->Init.Counter)); - assert_param(IS_WWDG_EWI_MODE(hwwdg->Init.EWIMode)); - -#if (USE_HAL_WWDG_REGISTER_CALLBACKS == 1) - /* Reset Callback pointers */ - if (hwwdg->EwiCallback == NULL) - { - hwwdg->EwiCallback = HAL_WWDG_EarlyWakeupCallback; - } - - if (hwwdg->MspInitCallback == NULL) - { - hwwdg->MspInitCallback = HAL_WWDG_MspInit; - } - - /* Init the low level hardware */ - hwwdg->MspInitCallback(hwwdg); -#else - /* Init the low level hardware */ - HAL_WWDG_MspInit(hwwdg); -#endif - - /* Set WWDG Counter */ - WRITE_REG(hwwdg->Instance->CR, (WWDG_CR_WDGA | hwwdg->Init.Counter)); - - /* Set WWDG Prescaler and Window */ - WRITE_REG(hwwdg->Instance->CFR, (hwwdg->Init.EWIMode | hwwdg->Init.Prescaler | hwwdg->Init.Window)); - - /* Return function status */ - return HAL_OK; -} - - -/** - * @brief Initialize the WWDG MSP. - * @param hwwdg pointer to a WWDG_HandleTypeDef structure that contains - * the configuration information for the specified WWDG module. - * @note When rewriting this function in user file, mechanism may be added - * to avoid multiple initialize when HAL_WWDG_Init function is called - * again to change parameters. - * @retval None - */ -__weak void HAL_WWDG_MspInit(WWDG_HandleTypeDef *hwwdg) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hwwdg); - - /* NOTE: This function should not be modified, when the callback is needed, - the HAL_WWDG_MspInit could be implemented in the user file - */ -} - - -#if (USE_HAL_WWDG_REGISTER_CALLBACKS == 1) -/** - * @brief Register a User WWDG Callback - * To be used instead of the weak (surcharged) predefined callback - * @param hwwdg WWDG handle - * @param CallbackID ID of the callback to be registered - * This parameter can be one of the following values: - * @arg @ref HAL_WWDG_EWI_CB_ID Early WakeUp Interrupt Callback ID - * @arg @ref HAL_WWDG_MSPINIT_CB_ID MspInit callback ID - * @param pCallback pointer to the Callback function - * @retval status - */ -HAL_StatusTypeDef HAL_WWDG_RegisterCallback(WWDG_HandleTypeDef *hwwdg, HAL_WWDG_CallbackIDTypeDef CallbackID, pWWDG_CallbackTypeDef pCallback) -{ - HAL_StatusTypeDef status = HAL_OK; - - if (pCallback == NULL) - { - status = HAL_ERROR; - } - else - { - switch (CallbackID) - { - case HAL_WWDG_EWI_CB_ID: - hwwdg->EwiCallback = pCallback; - break; - - case HAL_WWDG_MSPINIT_CB_ID: - hwwdg->MspInitCallback = pCallback; - break; - - default: - status = HAL_ERROR; - break; - } - } - - return status; -} - - -/** - * @brief Unregister a WWDG Callback - * WWDG Callback is redirected to the weak (surcharged) predefined callback - * @param hwwdg WWDG handle - * @param CallbackID ID of the callback to be registered - * This parameter can be one of the following values: - * @arg @ref HAL_WWDG_EWI_CB_ID Early WakeUp Interrupt Callback ID - * @arg @ref HAL_WWDG_MSPINIT_CB_ID MspInit callback ID - * @retval status - */ -HAL_StatusTypeDef HAL_WWDG_UnRegisterCallback(WWDG_HandleTypeDef *hwwdg, HAL_WWDG_CallbackIDTypeDef CallbackID) -{ - HAL_StatusTypeDef status = HAL_OK; - - switch (CallbackID) - { - case HAL_WWDG_EWI_CB_ID: - hwwdg->EwiCallback = HAL_WWDG_EarlyWakeupCallback; - break; - - case HAL_WWDG_MSPINIT_CB_ID: - hwwdg->MspInitCallback = HAL_WWDG_MspInit; - break; - - default: - status = HAL_ERROR; - break; - } - - return status; -} -#endif - -/** - * @} - */ - -/** @defgroup WWDG_Exported_Functions_Group2 IO operation functions - * @brief IO operation functions - * -@verbatim - ============================================================================== - ##### IO operation functions ##### - ============================================================================== - [..] - This section provides functions allowing to: - (+) Refresh the WWDG. - (+) Handle WWDG interrupt request and associated function callback. - -@endverbatim - * @{ - */ - -/** - * @brief Refresh the WWDG. - * @param hwwdg pointer to a WWDG_HandleTypeDef structure that contains - * the configuration information for the specified WWDG module. - * @retval HAL status - */ -HAL_StatusTypeDef HAL_WWDG_Refresh(WWDG_HandleTypeDef *hwwdg) -{ - /* Write to WWDG CR the WWDG Counter value to refresh with */ - WRITE_REG(hwwdg->Instance->CR, (hwwdg->Init.Counter)); - - /* Return function status */ - return HAL_OK; -} - -/** - * @brief Handle WWDG interrupt request. - * @note The Early Wakeup Interrupt (EWI) can be used if specific safety operations - * or data logging must be performed before the actual reset is generated. - * The EWI interrupt is enabled by calling HAL_WWDG_Init function with - * EWIMode set to WWDG_EWI_ENABLE. - * When the downcounter reaches the value 0x40, and EWI interrupt is - * generated and the corresponding Interrupt Service Routine (ISR) can - * be used to trigger specific actions (such as communications or data - * logging), before resetting the device. - * @param hwwdg pointer to a WWDG_HandleTypeDef structure that contains - * the configuration information for the specified WWDG module. - * @retval None - */ -void HAL_WWDG_IRQHandler(WWDG_HandleTypeDef *hwwdg) -{ - /* Check if Early Wakeup Interrupt is enable */ - if (__HAL_WWDG_GET_IT_SOURCE(hwwdg, WWDG_IT_EWI) != RESET) - { - /* Check if WWDG Early Wakeup Interrupt occurred */ - if (__HAL_WWDG_GET_FLAG(hwwdg, WWDG_FLAG_EWIF) != RESET) - { - /* Clear the WWDG Early Wakeup flag */ - __HAL_WWDG_CLEAR_FLAG(hwwdg, WWDG_FLAG_EWIF); - -#if (USE_HAL_WWDG_REGISTER_CALLBACKS == 1) - /* Early Wakeup registered callback */ - hwwdg->EwiCallback(hwwdg); -#else - /* Early Wakeup callback */ - HAL_WWDG_EarlyWakeupCallback(hwwdg); -#endif - } - } -} - - -/** - * @brief WWDG Early Wakeup callback. - * @param hwwdg pointer to a WWDG_HandleTypeDef structure that contains - * the configuration information for the specified WWDG module. - * @retval None - */ -__weak void HAL_WWDG_EarlyWakeupCallback(WWDG_HandleTypeDef *hwwdg) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(hwwdg); - - /* NOTE: This function should not be modified, when the callback is needed, - the HAL_WWDG_EarlyWakeupCallback could be implemented in the user file - */ -} - -/** - * @} - */ - -/** - * @} - */ - -#endif /* HAL_WWDG_MODULE_ENABLED */ -/** - * @} - */ - -/** - * @} - */ - -/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_adc.c b/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_adc.c deleted file mode 100644 index 2b4d3d9..0000000 --- a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_adc.c +++ /dev/null @@ -1,557 +0,0 @@ -/** - ****************************************************************************** - * @file stm32f0xx_ll_adc.c - * @author MCD Application Team - * @brief ADC LL module driver - ****************************************************************************** - * @attention - * - *

© Copyright (c) 2016 STMicroelectronics. - * All rights reserved.

- * - * This software component is licensed by ST under BSD 3-Clause license, - * the "License"; You may not use this file except in compliance with the - * License. You may obtain a copy of the License at: - * opensource.org/licenses/BSD-3-Clause - * - ****************************************************************************** - */ - -#if defined(USE_FULL_LL_DRIVER) - -/* Includes ------------------------------------------------------------------*/ -#include "stm32f0xx_ll_adc.h" -#include "stm32f0xx_ll_bus.h" - -#ifdef USE_FULL_ASSERT - #include "stm32_assert.h" -#else - #define assert_param(expr) ((void)0U) -#endif - -/** @addtogroup STM32F0xx_LL_Driver - * @{ - */ - -#if defined (ADC1) - -/** @addtogroup ADC_LL ADC - * @{ - */ - -/* Private types -------------------------------------------------------------*/ -/* Private variables ---------------------------------------------------------*/ -/* Private constants ---------------------------------------------------------*/ -/** @addtogroup ADC_LL_Private_Constants - * @{ - */ - -/* Definitions of ADC hardware constraints delays */ -/* Note: Only ADC IP HW delays are defined in ADC LL driver driver, */ -/* not timeout values: */ -/* Timeout values for ADC operations are dependent to device clock */ -/* configuration (system clock versus ADC clock), */ -/* and therefore must be defined in user application. */ -/* Refer to @ref ADC_LL_EC_HW_DELAYS for description of ADC timeout */ -/* values definition. */ -/* Note: ADC timeout values are defined here in CPU cycles to be independent */ -/* of device clock setting. */ -/* In user application, ADC timeout values should be defined with */ -/* temporal values, in function of device clock settings. */ -/* Highest ratio CPU clock frequency vs ADC clock frequency: */ -/* - ADC clock from synchronous clock with AHB prescaler 512, */ -/* APB prescaler 16, ADC prescaler 4. */ -/* - ADC clock from asynchronous clock (HSI) with prescaler 1, */ -/* with highest ratio CPU clock frequency vs HSI clock frequency: */ -/* CPU clock frequency max 48MHz, HSI frequency 14MHz: ratio 4. */ -/* Unit: CPU cycles. */ -#define ADC_CLOCK_RATIO_VS_CPU_HIGHEST ((uint32_t) 512U * 16U * 4U) -#define ADC_TIMEOUT_DISABLE_CPU_CYCLES (ADC_CLOCK_RATIO_VS_CPU_HIGHEST * 1U) -#define ADC_TIMEOUT_STOP_CONVERSION_CPU_CYCLES (ADC_CLOCK_RATIO_VS_CPU_HIGHEST * 1U) - -/** - * @} - */ - -/* Private macros ------------------------------------------------------------*/ - -/** @addtogroup ADC_LL_Private_Macros - * @{ - */ - -/* Check of parameters for configuration of ADC hierarchical scope: */ -/* common to several ADC instances. */ -/* Check of parameters for configuration of ADC hierarchical scope: */ -/* ADC instance. */ -#define IS_LL_ADC_CLOCK(__CLOCK__) \ - ( ((__CLOCK__) == LL_ADC_CLOCK_SYNC_PCLK_DIV4) \ - || ((__CLOCK__) == LL_ADC_CLOCK_SYNC_PCLK_DIV2) \ - || ((__CLOCK__) == LL_ADC_CLOCK_ASYNC) \ - ) - -#define IS_LL_ADC_RESOLUTION(__RESOLUTION__) \ - ( ((__RESOLUTION__) == LL_ADC_RESOLUTION_12B) \ - || ((__RESOLUTION__) == LL_ADC_RESOLUTION_10B) \ - || ((__RESOLUTION__) == LL_ADC_RESOLUTION_8B) \ - || ((__RESOLUTION__) == LL_ADC_RESOLUTION_6B) \ - ) - -#define IS_LL_ADC_DATA_ALIGN(__DATA_ALIGN__) \ - ( ((__DATA_ALIGN__) == LL_ADC_DATA_ALIGN_RIGHT) \ - || ((__DATA_ALIGN__) == LL_ADC_DATA_ALIGN_LEFT) \ - ) - -#define IS_LL_ADC_LOW_POWER(__LOW_POWER__) \ - ( ((__LOW_POWER__) == LL_ADC_LP_MODE_NONE) \ - || ((__LOW_POWER__) == LL_ADC_LP_AUTOWAIT) \ - || ((__LOW_POWER__) == LL_ADC_LP_AUTOPOWEROFF) \ - || ((__LOW_POWER__) == LL_ADC_LP_AUTOWAIT_AUTOPOWEROFF) \ - ) - -/* Check of parameters for configuration of ADC hierarchical scope: */ -/* ADC group regular */ -#define IS_LL_ADC_REG_TRIG_SOURCE(__REG_TRIG_SOURCE__) \ - ( ((__REG_TRIG_SOURCE__) == LL_ADC_REG_TRIG_SOFTWARE) \ - || ((__REG_TRIG_SOURCE__) == LL_ADC_REG_TRIG_EXT_TIM1_TRGO) \ - || ((__REG_TRIG_SOURCE__) == LL_ADC_REG_TRIG_EXT_TIM1_CH4) \ - || ((__REG_TRIG_SOURCE__) == LL_ADC_REG_TRIG_EXT_TIM2_TRGO) \ - || ((__REG_TRIG_SOURCE__) == LL_ADC_REG_TRIG_EXT_TIM3_TRGO) \ - || ((__REG_TRIG_SOURCE__) == LL_ADC_REG_TRIG_EXT_TIM15_TRGO) \ - ) - -#define IS_LL_ADC_REG_CONTINUOUS_MODE(__REG_CONTINUOUS_MODE__) \ - ( ((__REG_CONTINUOUS_MODE__) == LL_ADC_REG_CONV_SINGLE) \ - || ((__REG_CONTINUOUS_MODE__) == LL_ADC_REG_CONV_CONTINUOUS) \ - ) - -#define IS_LL_ADC_REG_DMA_TRANSFER(__REG_DMA_TRANSFER__) \ - ( ((__REG_DMA_TRANSFER__) == LL_ADC_REG_DMA_TRANSFER_NONE) \ - || ((__REG_DMA_TRANSFER__) == LL_ADC_REG_DMA_TRANSFER_LIMITED) \ - || ((__REG_DMA_TRANSFER__) == LL_ADC_REG_DMA_TRANSFER_UNLIMITED) \ - ) - -#define IS_LL_ADC_REG_OVR_DATA_BEHAVIOR(__REG_OVR_DATA_BEHAVIOR__) \ - ( ((__REG_OVR_DATA_BEHAVIOR__) == LL_ADC_REG_OVR_DATA_PRESERVED) \ - || ((__REG_OVR_DATA_BEHAVIOR__) == LL_ADC_REG_OVR_DATA_OVERWRITTEN) \ - ) - -#define IS_LL_ADC_REG_SEQ_SCAN_DISCONT_MODE(__REG_SEQ_DISCONT_MODE__) \ - ( ((__REG_SEQ_DISCONT_MODE__) == LL_ADC_REG_SEQ_DISCONT_DISABLE) \ - || ((__REG_SEQ_DISCONT_MODE__) == LL_ADC_REG_SEQ_DISCONT_1RANK) \ - ) - -/** - * @} - */ - - -/* Private function prototypes -----------------------------------------------*/ - -/* Exported functions --------------------------------------------------------*/ -/** @addtogroup ADC_LL_Exported_Functions - * @{ - */ - -/** @addtogroup ADC_LL_EF_Init - * @{ - */ - -/** - * @brief De-initialize registers of all ADC instances belonging to - * the same ADC common instance to their default reset values. - * @note This function is performing a hard reset, using high level - * clock source RCC ADC reset. - * @param ADCxy_COMMON ADC common instance - * (can be set directly from CMSIS definition or by using helper macro @ref __LL_ADC_COMMON_INSTANCE() ) - * @retval An ErrorStatus enumeration value: - * - SUCCESS: ADC common registers are de-initialized - * - ERROR: not applicable - */ -ErrorStatus LL_ADC_CommonDeInit(ADC_Common_TypeDef *ADCxy_COMMON) -{ - /* Check the parameters */ - assert_param(IS_ADC_COMMON_INSTANCE(ADCxy_COMMON)); - - /* Force reset of ADC clock (core clock) */ - LL_APB1_GRP2_ForceReset(LL_APB1_GRP2_PERIPH_ADC1); - - /* Release reset of ADC clock (core clock) */ - LL_APB1_GRP2_ReleaseReset(LL_APB1_GRP2_PERIPH_ADC1); - - return SUCCESS; -} - - -/** - * @brief De-initialize registers of the selected ADC instance - * to their default reset values. - * @note To reset all ADC instances quickly (perform a hard reset), - * use function @ref LL_ADC_CommonDeInit(). - * @note If this functions returns error status, it means that ADC instance - * is in an unknown state. - * In this case, perform a hard reset using high level - * clock source RCC ADC reset. - * Refer to function @ref LL_ADC_CommonDeInit(). - * @param ADCx ADC instance - * @retval An ErrorStatus enumeration value: - * - SUCCESS: ADC registers are de-initialized - * - ERROR: ADC registers are not de-initialized - */ -ErrorStatus LL_ADC_DeInit(ADC_TypeDef *ADCx) -{ - ErrorStatus status = SUCCESS; - - __IO uint32_t timeout_cpu_cycles = 0U; - - /* Check the parameters */ - assert_param(IS_ADC_ALL_INSTANCE(ADCx)); - - /* Disable ADC instance if not already disabled. */ - if(LL_ADC_IsEnabled(ADCx) == 1U) - { - /* Set ADC group regular trigger source to SW start to ensure to not */ - /* have an external trigger event occurring during the conversion stop */ - /* ADC disable process. */ - LL_ADC_REG_SetTriggerSource(ADCx, LL_ADC_REG_TRIG_SOFTWARE); - - /* Stop potential ADC conversion on going on ADC group regular. */ - if(LL_ADC_REG_IsConversionOngoing(ADCx) != 0U) - { - if(LL_ADC_REG_IsStopConversionOngoing(ADCx) == 0U) - { - LL_ADC_REG_StopConversion(ADCx); - } - } - - /* Wait for ADC conversions are effectively stopped */ - timeout_cpu_cycles = ADC_TIMEOUT_STOP_CONVERSION_CPU_CYCLES; - while (LL_ADC_REG_IsStopConversionOngoing(ADCx) == 1U) - { - if(timeout_cpu_cycles-- == 0U) - { - /* Time-out error */ - status = ERROR; - } - } - - /* Disable the ADC instance */ - LL_ADC_Disable(ADCx); - - /* Wait for ADC instance is effectively disabled */ - timeout_cpu_cycles = ADC_TIMEOUT_DISABLE_CPU_CYCLES; - while (LL_ADC_IsDisableOngoing(ADCx) == 1U) - { - if(timeout_cpu_cycles-- == 0U) - { - /* Time-out error */ - status = ERROR; - } - } - } - - /* Check whether ADC state is compliant with expected state */ - if(READ_BIT(ADCx->CR, - ( ADC_CR_ADSTP | ADC_CR_ADSTART - | ADC_CR_ADDIS | ADC_CR_ADEN ) - ) - == 0U) - { - /* ========== Reset ADC registers ========== */ - /* Reset register IER */ - CLEAR_BIT(ADCx->IER, - ( LL_ADC_IT_ADRDY - | LL_ADC_IT_EOC - | LL_ADC_IT_EOS - | LL_ADC_IT_OVR - | LL_ADC_IT_EOSMP - | LL_ADC_IT_AWD1 ) - ); - - /* Reset register ISR */ - SET_BIT(ADCx->ISR, - ( LL_ADC_FLAG_ADRDY - | LL_ADC_FLAG_EOC - | LL_ADC_FLAG_EOS - | LL_ADC_FLAG_OVR - | LL_ADC_FLAG_EOSMP - | LL_ADC_FLAG_AWD1 ) - ); - - /* Reset register CR */ - /* Bits ADC_CR_ADCAL, ADC_CR_ADSTP, ADC_CR_ADSTART are in access mode */ - /* "read-set": no direct reset applicable. */ - /* No action on register CR */ - - /* Reset register CFGR1 */ - CLEAR_BIT(ADCx->CFGR1, - ( ADC_CFGR1_AWDCH | ADC_CFGR1_AWDEN | ADC_CFGR1_AWDSGL | ADC_CFGR1_DISCEN - | ADC_CFGR1_AUTOFF | ADC_CFGR1_WAIT | ADC_CFGR1_CONT | ADC_CFGR1_OVRMOD - | ADC_CFGR1_EXTEN | ADC_CFGR1_EXTSEL | ADC_CFGR1_ALIGN | ADC_CFGR1_RES - | ADC_CFGR1_SCANDIR | ADC_CFGR1_DMACFG | ADC_CFGR1_DMAEN ) - ); - - /* Reset register CFGR2 */ - /* Note: Update of ADC clock mode is conditioned to ADC state disabled: */ - /* already done above. */ - CLEAR_BIT(ADCx->CFGR2, ADC_CFGR2_CKMODE); - - /* Reset register SMPR */ - CLEAR_BIT(ADCx->SMPR, ADC_SMPR_SMP); - - /* Reset register TR */ - MODIFY_REG(ADCx->TR, ADC_TR_HT | ADC_TR_LT, ADC_TR_HT); - - /* Reset register CHSELR */ -#if defined(ADC_CCR_VBATEN) - CLEAR_BIT(ADCx->CHSELR, - ( ADC_CHSELR_CHSEL18 | ADC_CHSELR_CHSEL17 | ADC_CHSELR_CHSEL16 - | ADC_CHSELR_CHSEL15 | ADC_CHSELR_CHSEL14 | ADC_CHSELR_CHSEL13 | ADC_CHSELR_CHSEL12 - | ADC_CHSELR_CHSEL11 | ADC_CHSELR_CHSEL10 | ADC_CHSELR_CHSEL9 | ADC_CHSELR_CHSEL8 - | ADC_CHSELR_CHSEL7 | ADC_CHSELR_CHSEL6 | ADC_CHSELR_CHSEL5 | ADC_CHSELR_CHSEL4 - | ADC_CHSELR_CHSEL3 | ADC_CHSELR_CHSEL2 | ADC_CHSELR_CHSEL1 | ADC_CHSELR_CHSEL0 ) - ); -#else - CLEAR_BIT(ADCx->CHSELR, - ( ADC_CHSELR_CHSEL17 | ADC_CHSELR_CHSEL16 - | ADC_CHSELR_CHSEL15 | ADC_CHSELR_CHSEL14 | ADC_CHSELR_CHSEL13 | ADC_CHSELR_CHSEL12 - | ADC_CHSELR_CHSEL11 | ADC_CHSELR_CHSEL10 | ADC_CHSELR_CHSEL9 | ADC_CHSELR_CHSEL8 - | ADC_CHSELR_CHSEL7 | ADC_CHSELR_CHSEL6 | ADC_CHSELR_CHSEL5 | ADC_CHSELR_CHSEL4 - | ADC_CHSELR_CHSEL3 | ADC_CHSELR_CHSEL2 | ADC_CHSELR_CHSEL1 | ADC_CHSELR_CHSEL0 ) - ); -#endif - - /* Reset register DR */ - /* bits in access mode read only, no direct reset applicable */ - - } - else - { - /* ADC instance is in an unknown state */ - /* Need to performing a hard reset of ADC instance, using high level */ - /* clock source RCC ADC reset. */ - /* Caution: On this STM32 serie, if several ADC instances are available */ - /* on the selected device, RCC ADC reset will reset */ - /* all ADC instances belonging to the common ADC instance. */ - status = ERROR; - } - - return status; -} - -/** - * @brief Initialize some features of ADC instance. - * @note These parameters have an impact on ADC scope: ADC instance. - * Refer to corresponding unitary functions into - * @ref ADC_LL_EF_Configuration_ADC_Instance . - * @note The setting of these parameters by function @ref LL_ADC_Init() - * is conditioned to ADC state: - * ADC instance must be disabled. - * This condition is applied to all ADC features, for efficiency - * and compatibility over all STM32 families. However, the different - * features can be set under different ADC state conditions - * (setting possible with ADC enabled without conversion on going, - * ADC enabled with conversion on going, ...) - * Each feature can be updated afterwards with a unitary function - * and potentially with ADC in a different state than disabled, - * refer to description of each function for setting - * conditioned to ADC state. - * @note After using this function, some other features must be configured - * using LL unitary functions. - * The minimum configuration remaining to be done is: - * - Set ADC group regular sequencer: - * map channel on rank corresponding to channel number. - * Refer to function @ref LL_ADC_REG_SetSequencerChannels(); - * - Set ADC channel sampling time - * Refer to function LL_ADC_SetChannelSamplingTime(); - * @param ADCx ADC instance - * @param ADC_InitStruct Pointer to a @ref LL_ADC_REG_InitTypeDef structure - * @retval An ErrorStatus enumeration value: - * - SUCCESS: ADC registers are initialized - * - ERROR: ADC registers are not initialized - */ -ErrorStatus LL_ADC_Init(ADC_TypeDef *ADCx, LL_ADC_InitTypeDef *ADC_InitStruct) -{ - ErrorStatus status = SUCCESS; - - /* Check the parameters */ - assert_param(IS_ADC_ALL_INSTANCE(ADCx)); - - assert_param(IS_LL_ADC_CLOCK(ADC_InitStruct->Clock)); - assert_param(IS_LL_ADC_RESOLUTION(ADC_InitStruct->Resolution)); - assert_param(IS_LL_ADC_DATA_ALIGN(ADC_InitStruct->DataAlignment)); - assert_param(IS_LL_ADC_LOW_POWER(ADC_InitStruct->LowPowerMode)); - - /* Note: Hardware constraint (refer to description of this function): */ - /* ADC instance must be disabled. */ - if(LL_ADC_IsEnabled(ADCx) == 0U) - { - /* Configuration of ADC hierarchical scope: */ - /* - ADC instance */ - /* - Set ADC data resolution */ - /* - Set ADC conversion data alignment */ - /* - Set ADC low power mode */ - MODIFY_REG(ADCx->CFGR1, - ADC_CFGR1_RES - | ADC_CFGR1_ALIGN - | ADC_CFGR1_WAIT - | ADC_CFGR1_AUTOFF - , - ADC_InitStruct->Resolution - | ADC_InitStruct->DataAlignment - | ADC_InitStruct->LowPowerMode - ); - - MODIFY_REG(ADCx->CFGR2, - ADC_CFGR2_CKMODE - , - ADC_InitStruct->Clock - ); - } - else - { - /* Initialization error: ADC instance is not disabled. */ - status = ERROR; - } - return status; -} - -/** - * @brief Set each @ref LL_ADC_InitTypeDef field to default value. - * @param ADC_InitStruct Pointer to a @ref LL_ADC_InitTypeDef structure - * whose fields will be set to default values. - * @retval None - */ -void LL_ADC_StructInit(LL_ADC_InitTypeDef *ADC_InitStruct) -{ - /* Set ADC_InitStruct fields to default values */ - /* Set fields of ADC instance */ - ADC_InitStruct->Clock = LL_ADC_CLOCK_SYNC_PCLK_DIV2; - ADC_InitStruct->Resolution = LL_ADC_RESOLUTION_12B; - ADC_InitStruct->DataAlignment = LL_ADC_DATA_ALIGN_RIGHT; - ADC_InitStruct->LowPowerMode = LL_ADC_LP_MODE_NONE; - -} - -/** - * @brief Initialize some features of ADC group regular. - * @note These parameters have an impact on ADC scope: ADC group regular. - * Refer to corresponding unitary functions into - * @ref ADC_LL_EF_Configuration_ADC_Group_Regular - * (functions with prefix "REG"). - * @note The setting of these parameters by function @ref LL_ADC_Init() - * is conditioned to ADC state: - * ADC instance must be disabled. - * This condition is applied to all ADC features, for efficiency - * and compatibility over all STM32 families. However, the different - * features can be set under different ADC state conditions - * (setting possible with ADC enabled without conversion on going, - * ADC enabled with conversion on going, ...) - * Each feature can be updated afterwards with a unitary function - * and potentially with ADC in a different state than disabled, - * refer to description of each function for setting - * conditioned to ADC state. - * @note After using this function, other features must be configured - * using LL unitary functions. - * The minimum configuration remaining to be done is: - * - Set ADC group regular sequencer: - * map channel on rank corresponding to channel number. - * Refer to function @ref LL_ADC_REG_SetSequencerChannels(); - * - Set ADC channel sampling time - * Refer to function LL_ADC_SetChannelSamplingTime(); - * @param ADCx ADC instance - * @param ADC_REG_InitStruct Pointer to a @ref LL_ADC_REG_InitTypeDef structure - * @retval An ErrorStatus enumeration value: - * - SUCCESS: ADC registers are initialized - * - ERROR: ADC registers are not initialized - */ -ErrorStatus LL_ADC_REG_Init(ADC_TypeDef *ADCx, LL_ADC_REG_InitTypeDef *ADC_REG_InitStruct) -{ - ErrorStatus status = SUCCESS; - - /* Check the parameters */ - assert_param(IS_ADC_ALL_INSTANCE(ADCx)); - assert_param(IS_LL_ADC_REG_TRIG_SOURCE(ADC_REG_InitStruct->TriggerSource)); - assert_param(IS_LL_ADC_REG_SEQ_SCAN_DISCONT_MODE(ADC_REG_InitStruct->SequencerDiscont)); - assert_param(IS_LL_ADC_REG_CONTINUOUS_MODE(ADC_REG_InitStruct->ContinuousMode)); - assert_param(IS_LL_ADC_REG_DMA_TRANSFER(ADC_REG_InitStruct->DMATransfer)); - assert_param(IS_LL_ADC_REG_OVR_DATA_BEHAVIOR(ADC_REG_InitStruct->Overrun)); - - /* Note: Hardware constraint (refer to description of this function): */ - /* ADC instance must be disabled. */ - if(LL_ADC_IsEnabled(ADCx) == 0U) - { - /* Configuration of ADC hierarchical scope: */ - /* - ADC group regular */ - /* - Set ADC group regular trigger source */ - /* - Set ADC group regular sequencer discontinuous mode */ - /* - Set ADC group regular continuous mode */ - /* - Set ADC group regular conversion data transfer: no transfer or */ - /* transfer by DMA, and DMA requests mode */ - /* - Set ADC group regular overrun behavior */ - /* Note: On this STM32 serie, ADC trigger edge is set to value 0x0 by */ - /* setting of trigger source to SW start. */ - MODIFY_REG(ADCx->CFGR1, - ADC_CFGR1_EXTSEL - | ADC_CFGR1_EXTEN - | ADC_CFGR1_DISCEN - | ADC_CFGR1_CONT - | ADC_CFGR1_DMAEN - | ADC_CFGR1_DMACFG - | ADC_CFGR1_OVRMOD - , - ADC_REG_InitStruct->TriggerSource - | ADC_REG_InitStruct->SequencerDiscont - | ADC_REG_InitStruct->ContinuousMode - | ADC_REG_InitStruct->DMATransfer - | ADC_REG_InitStruct->Overrun - ); - - } - else - { - /* Initialization error: ADC instance is not disabled. */ - status = ERROR; - } - return status; -} - -/** - * @brief Set each @ref LL_ADC_REG_InitTypeDef field to default value. - * @param ADC_REG_InitStruct Pointer to a @ref LL_ADC_REG_InitTypeDef structure - * whose fields will be set to default values. - * @retval None - */ -void LL_ADC_REG_StructInit(LL_ADC_REG_InitTypeDef *ADC_REG_InitStruct) -{ - /* Set ADC_REG_InitStruct fields to default values */ - /* Set fields of ADC group regular */ - /* Note: On this STM32 serie, ADC trigger edge is set to value 0x0 by */ - /* setting of trigger source to SW start. */ - ADC_REG_InitStruct->TriggerSource = LL_ADC_REG_TRIG_SOFTWARE; - ADC_REG_InitStruct->SequencerDiscont = LL_ADC_REG_SEQ_DISCONT_DISABLE; - ADC_REG_InitStruct->ContinuousMode = LL_ADC_REG_CONV_SINGLE; - ADC_REG_InitStruct->DMATransfer = LL_ADC_REG_DMA_TRANSFER_NONE; - ADC_REG_InitStruct->Overrun = LL_ADC_REG_OVR_DATA_OVERWRITTEN; -} - -/** - * @} - */ - -/** - * @} - */ - -/** - * @} - */ - -#endif /* ADC1 */ - -/** - * @} - */ - -#endif /* USE_FULL_LL_DRIVER */ - -/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_comp.c b/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_comp.c deleted file mode 100644 index a108f40..0000000 --- a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_comp.c +++ /dev/null @@ -1,316 +0,0 @@ -/** - ****************************************************************************** - * @file stm32f0xx_ll_comp.c - * @author MCD Application Team - * @brief COMP LL module driver - ****************************************************************************** - * @attention - * - *

© Copyright (c) 2016 STMicroelectronics. - * All rights reserved.

- * - * This software component is licensed by ST under BSD 3-Clause license, - * the "License"; You may not use this file except in compliance with the - * License. You may obtain a copy of the License at: - * opensource.org/licenses/BSD-3-Clause - * - ****************************************************************************** - */ - -#if defined(USE_FULL_LL_DRIVER) - -/* Includes ------------------------------------------------------------------*/ -#include "stm32f0xx_ll_comp.h" - -#ifdef USE_FULL_ASSERT - #include "stm32_assert.h" -#else - #define assert_param(expr) ((void)0U) -#endif - -/** @addtogroup STM32F0xx_LL_Driver - * @{ - */ - -#if defined (COMP1) || defined (COMP2) - -/** @addtogroup COMP_LL COMP - * @{ - */ - -/* Private types -------------------------------------------------------------*/ -/* Private variables ---------------------------------------------------------*/ -/* Private constants ---------------------------------------------------------*/ -/* Private macros ------------------------------------------------------------*/ - -/** @addtogroup COMP_LL_Private_Macros - * @{ - */ - -/* Check of parameters for configuration of COMP hierarchical scope: */ -/* COMP instance. */ - -#define IS_LL_COMP_POWER_MODE(__POWER_MODE__) \ - ( ((__POWER_MODE__) == LL_COMP_POWERMODE_HIGHSPEED) \ - || ((__POWER_MODE__) == LL_COMP_POWERMODE_MEDIUMSPEED) \ - || ((__POWER_MODE__) == LL_COMP_POWERMODE_LOWPOWER) \ - || ((__POWER_MODE__) == LL_COMP_POWERMODE_ULTRALOWPOWER) \ - ) - -/* Note: On this STM32 serie, comparator input plus parameters are */ -/* the different depending on COMP instances. */ -#define IS_LL_COMP_INPUT_PLUS(__COMP_INSTANCE__, __INPUT_PLUS__) \ - (((__COMP_INSTANCE__) == COMP1) \ - ? ( \ - ((__INPUT_PLUS__) == LL_COMP_INPUT_PLUS_IO1) \ - || ((__INPUT_PLUS__) == LL_COMP_INPUT_PLUS_DAC1_CH1) \ - ) \ - : \ - ( \ - ((__INPUT_PLUS__) == LL_COMP_INPUT_PLUS_IO1) \ - ) \ - ) - -/* Note: On this STM32 serie, comparator input minus parameters are */ -/* the same on all COMP instances. */ -/* However, comparator instance kept as macro parameter for */ -/* compatibility with other STM32 families. */ -#define IS_LL_COMP_INPUT_MINUS(__COMP_INSTANCE__, __INPUT_MINUS__) \ - ( ((__INPUT_MINUS__) == LL_COMP_INPUT_MINUS_1_4VREFINT) \ - || ((__INPUT_MINUS__) == LL_COMP_INPUT_MINUS_1_2VREFINT) \ - || ((__INPUT_MINUS__) == LL_COMP_INPUT_MINUS_3_4VREFINT) \ - || ((__INPUT_MINUS__) == LL_COMP_INPUT_MINUS_VREFINT) \ - || ((__INPUT_MINUS__) == LL_COMP_INPUT_MINUS_DAC1_CH1) \ - || ((__INPUT_MINUS__) == LL_COMP_INPUT_MINUS_DAC1_CH2) \ - || ((__INPUT_MINUS__) == LL_COMP_INPUT_MINUS_IO1) \ - ) - -#define IS_LL_COMP_INPUT_HYSTERESIS(__INPUT_HYSTERESIS__) \ - ( ((__INPUT_HYSTERESIS__) == LL_COMP_HYSTERESIS_NONE) \ - || ((__INPUT_HYSTERESIS__) == LL_COMP_HYSTERESIS_LOW) \ - || ((__INPUT_HYSTERESIS__) == LL_COMP_HYSTERESIS_MEDIUM) \ - || ((__INPUT_HYSTERESIS__) == LL_COMP_HYSTERESIS_HIGH) \ - ) - -#define IS_LL_COMP_OUTPUT_SELECTION(__OUTPUT_SELECTION__) \ - ( ((__OUTPUT_SELECTION__) == LL_COMP_OUTPUT_NONE) \ - || ((__OUTPUT_SELECTION__) == LL_COMP_OUTPUT_TIM1_BKIN) \ - || ((__OUTPUT_SELECTION__) == LL_COMP_OUTPUT_TIM1_IC1) \ - || ((__OUTPUT_SELECTION__) == LL_COMP_OUTPUT_TIM1_OCCLR) \ - || ((__OUTPUT_SELECTION__) == LL_COMP_OUTPUT_TIM2_IC4) \ - || ((__OUTPUT_SELECTION__) == LL_COMP_OUTPUT_TIM2_OCCLR) \ - || ((__OUTPUT_SELECTION__) == LL_COMP_OUTPUT_TIM3_IC1) \ - || ((__OUTPUT_SELECTION__) == LL_COMP_OUTPUT_TIM3_OCCLR) \ - ) - -#define IS_LL_COMP_OUTPUT_POLARITY(__POLARITY__) \ - ( ((__POLARITY__) == LL_COMP_OUTPUTPOL_NONINVERTED) \ - || ((__POLARITY__) == LL_COMP_OUTPUTPOL_INVERTED) \ - ) - -/** - * @} - */ - - -/* Private function prototypes -----------------------------------------------*/ - -/* Exported functions --------------------------------------------------------*/ -/** @addtogroup COMP_LL_Exported_Functions - * @{ - */ - -/** @addtogroup COMP_LL_EF_Init - * @{ - */ - -/** - * @brief De-initialize registers of the selected COMP instance - * to their default reset values. - * @note If comparator is locked, de-initialization by software is - * not possible. - * The only way to unlock the comparator is a device hardware reset. - * @param COMPx COMP instance - * @retval An ErrorStatus enumeration value: - * - SUCCESS: COMP registers are de-initialized - * - ERROR: COMP registers are not de-initialized - */ -ErrorStatus LL_COMP_DeInit(COMP_TypeDef *COMPx) -{ - ErrorStatus status = SUCCESS; - - /* Check the parameters */ - assert_param(IS_COMP_ALL_INSTANCE(COMPx)); - - /* Note: Hardware constraint (refer to description of this function): */ - /* COMP instance must not be locked. */ - if(LL_COMP_IsLocked(COMPx) == 0U) - { - /* Note: Connection switch is applicable only to COMP instance COMP1, */ - /* therefore is COMP2 is selected the equivalent bit is */ - /* kept unmodified. */ - if(COMPx == COMP1) - { - CLEAR_BIT(COMP->CSR, - ( COMP_CSR_COMP1MODE - | COMP_CSR_COMP1INSEL - | COMP_CSR_COMP1SW1 - | COMP_CSR_COMP1OUTSEL - | COMP_CSR_COMP1HYST - | COMP_CSR_COMP1POL - | COMP_CSR_COMP1EN - ) << __COMP_BITOFFSET_INSTANCE(COMPx) - ); - } - else - { - CLEAR_BIT(COMP->CSR, - ( COMP_CSR_COMP1MODE - | COMP_CSR_COMP1INSEL - | COMP_CSR_COMP1OUTSEL - | COMP_CSR_COMP1HYST - | COMP_CSR_COMP1POL - | COMP_CSR_COMP1EN - ) << __COMP_BITOFFSET_INSTANCE(COMPx) - ); - } - - } - else - { - /* Comparator instance is locked: de-initialization by software is */ - /* not possible. */ - /* The only way to unlock the comparator is a device hardware reset. */ - status = ERROR; - } - - return status; -} - -/** - * @brief Initialize some features of COMP instance. - * @note This function configures features of the selected COMP instance. - * Some features are also available at scope COMP common instance - * (common to several COMP instances). - * Refer to functions having argument "COMPxy_COMMON" as parameter. - * @param COMPx COMP instance - * @param COMP_InitStruct Pointer to a @ref LL_COMP_InitTypeDef structure - * @retval An ErrorStatus enumeration value: - * - SUCCESS: COMP registers are initialized - * - ERROR: COMP registers are not initialized - */ -ErrorStatus LL_COMP_Init(COMP_TypeDef *COMPx, LL_COMP_InitTypeDef *COMP_InitStruct) -{ - ErrorStatus status = SUCCESS; - - /* Check the parameters */ - assert_param(IS_COMP_ALL_INSTANCE(COMPx)); - assert_param(IS_LL_COMP_POWER_MODE(COMP_InitStruct->PowerMode)); - assert_param(IS_LL_COMP_INPUT_PLUS(COMPx, COMP_InitStruct->InputPlus)); - assert_param(IS_LL_COMP_INPUT_MINUS(COMPx, COMP_InitStruct->InputMinus)); - assert_param(IS_LL_COMP_INPUT_HYSTERESIS(COMP_InitStruct->InputHysteresis)); - assert_param(IS_LL_COMP_OUTPUT_SELECTION(COMP_InitStruct->OutputSelection)); - assert_param(IS_LL_COMP_OUTPUT_POLARITY(COMP_InitStruct->OutputPolarity)); - - /* Note: Hardware constraint (refer to description of this function) */ - /* COMP instance must not be locked. */ - if(LL_COMP_IsLocked(COMPx) == 0U) - { - /* Configuration of comparator instance : */ - /* - PowerMode */ - /* - InputPlus */ - /* - InputMinus */ - /* - InputHysteresis */ - /* - OutputSelection */ - /* - OutputPolarity */ - /* Note: Connection switch is applicable only to COMP instance COMP1, */ - /* therefore is COMP2 is selected the equivalent bit is */ - /* kept unmodified. */ - if(COMPx == COMP1) - { - MODIFY_REG(COMP->CSR, - ( COMP_CSR_COMP1MODE - | COMP_CSR_COMP1INSEL - | COMP_CSR_COMP1SW1 - | COMP_CSR_COMP1OUTSEL - | COMP_CSR_COMP1HYST - | COMP_CSR_COMP1POL - ) << __COMP_BITOFFSET_INSTANCE(COMPx) - , - ( COMP_InitStruct->PowerMode - | COMP_InitStruct->InputPlus - | COMP_InitStruct->InputMinus - | COMP_InitStruct->InputHysteresis - | COMP_InitStruct->OutputSelection - | COMP_InitStruct->OutputPolarity - ) << __COMP_BITOFFSET_INSTANCE(COMPx) - ); - } - else - { - MODIFY_REG(COMP->CSR, - ( COMP_CSR_COMP1MODE - | COMP_CSR_COMP1INSEL - | COMP_CSR_COMP1OUTSEL - | COMP_CSR_COMP1HYST - | COMP_CSR_COMP1POL - ) << __COMP_BITOFFSET_INSTANCE(COMPx) - , - ( COMP_InitStruct->PowerMode - | COMP_InitStruct->InputPlus - | COMP_InitStruct->InputMinus - | COMP_InitStruct->InputHysteresis - | COMP_InitStruct->OutputSelection - | COMP_InitStruct->OutputPolarity - ) << __COMP_BITOFFSET_INSTANCE(COMPx) - ); - } - - } - else - { - /* Initialization error: COMP instance is locked. */ - status = ERROR; - } - - return status; -} - -/** - * @brief Set each @ref LL_COMP_InitTypeDef field to default value. - * @param COMP_InitStruct pointer to a @ref LL_COMP_InitTypeDef structure - * whose fields will be set to default values. - * @retval None - */ -void LL_COMP_StructInit(LL_COMP_InitTypeDef *COMP_InitStruct) -{ - /* Set COMP_InitStruct fields to default values */ - COMP_InitStruct->PowerMode = LL_COMP_POWERMODE_ULTRALOWPOWER; - COMP_InitStruct->InputPlus = LL_COMP_INPUT_PLUS_IO1; - COMP_InitStruct->InputMinus = LL_COMP_INPUT_MINUS_VREFINT; - COMP_InitStruct->InputHysteresis = LL_COMP_HYSTERESIS_NONE; - COMP_InitStruct->OutputSelection = LL_COMP_OUTPUT_NONE; - COMP_InitStruct->OutputPolarity = LL_COMP_OUTPUTPOL_NONINVERTED; -} - -/** - * @} - */ - -/** - * @} - */ - -/** - * @} - */ - -#endif /* COMP1 || COMP2 */ - -/** - * @} - */ - -#endif /* USE_FULL_LL_DRIVER */ - -/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_crc.c b/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_crc.c deleted file mode 100644 index c6c61e2..0000000 --- a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_crc.c +++ /dev/null @@ -1,122 +0,0 @@ -/** - ****************************************************************************** - * @file stm32f0xx_ll_crc.c - * @author MCD Application Team - * @brief CRC LL module driver. - ****************************************************************************** - * @attention - * - *

© Copyright (c) 2016 STMicroelectronics. - * All rights reserved.

- * - * This software component is licensed by ST under BSD 3-Clause license, - * the "License"; You may not use this file except in compliance with the - * License. You may obtain a copy of the License at: - * opensource.org/licenses/BSD-3-Clause - * - ****************************************************************************** - */ -#if defined(USE_FULL_LL_DRIVER) - -/* Includes ------------------------------------------------------------------*/ -#include "stm32f0xx_ll_crc.h" -#include "stm32f0xx_ll_bus.h" - -#ifdef USE_FULL_ASSERT -#include "stm32_assert.h" -#else -#define assert_param(expr) ((void)0U) -#endif - -/** @addtogroup STM32F0xx_LL_Driver - * @{ - */ - -#if defined (CRC) - -/** @addtogroup CRC_LL - * @{ - */ - -/* Private types -------------------------------------------------------------*/ -/* Private variables ---------------------------------------------------------*/ -/* Private constants ---------------------------------------------------------*/ -/* Private macros ------------------------------------------------------------*/ -/* Private function prototypes -----------------------------------------------*/ - -/* Exported functions --------------------------------------------------------*/ -/** @addtogroup CRC_LL_Exported_Functions - * @{ - */ - -/** @addtogroup CRC_LL_EF_Init - * @{ - */ - -/** - * @brief De-initialize CRC registers (Registers restored to their default values). - * @param CRCx CRC Instance - * @retval An ErrorStatus enumeration value: - * - SUCCESS: CRC registers are de-initialized - * - ERROR: CRC registers are not de-initialized - */ -ErrorStatus LL_CRC_DeInit(CRC_TypeDef *CRCx) -{ - ErrorStatus status = SUCCESS; - - /* Check the parameters */ - assert_param(IS_CRC_ALL_INSTANCE(CRCx)); - - if (CRCx == CRC) - { -#if defined(CRC_POL_POL) - /* Set programmable polynomial size in CR register to reset value (32 bits)*/ - LL_CRC_SetPolynomialSize(CRCx, LL_CRC_POLYLENGTH_32B); - - /* Set programmable polynomial in POL register to reset value */ - LL_CRC_SetPolynomialCoef(CRCx, LL_CRC_DEFAULT_CRC32_POLY); -#endif /* CRC_POL_POL */ - - /* Set INIT register to reset value */ - LL_CRC_SetInitialData(CRCx, LL_CRC_DEFAULT_CRC_INITVALUE); - - /* Set Reversibility options on I/O data values in CR register to reset value */ - LL_CRC_SetInputDataReverseMode(CRCx, LL_CRC_INDATA_REVERSE_NONE); - LL_CRC_SetOutputDataReverseMode(CRCx, LL_CRC_OUTDATA_REVERSE_NONE); - - /* Reset the CRC calculation unit */ - LL_CRC_ResetCRCCalculationUnit(CRCx); - - /* Reset IDR register */ - LL_CRC_Write_IDR(CRCx, 0x00U); - } - else - { - status = ERROR; - } - - return (status); -} - -/** - * @} - */ - -/** - * @} - */ - -/** - * @} - */ - -#endif /* defined (CRC) */ - -/** - * @} - */ - -#endif /* USE_FULL_LL_DRIVER */ - -/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ - diff --git a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_crs.c b/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_crs.c deleted file mode 100644 index ac186e9..0000000 --- a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_crs.c +++ /dev/null @@ -1,87 +0,0 @@ -/** - ****************************************************************************** - * @file stm32f0xx_ll_crs.h - * @author MCD Application Team - * @brief CRS LL module driver. - ****************************************************************************** - * @attention - * - *

© Copyright (c) 2016 STMicroelectronics. - * All rights reserved.

- * - * This software component is licensed by ST under BSD 3-Clause license, - * the "License"; You may not use this file except in compliance with the - * License. You may obtain a copy of the License at: - * opensource.org/licenses/BSD-3-Clause - * - ****************************************************************************** - */ - -#if defined(USE_FULL_LL_DRIVER) - -/* Includes ------------------------------------------------------------------*/ -#include "stm32f0xx_ll_crs.h" -#include "stm32f0xx_ll_bus.h" - -/** @addtogroup STM32F0xx_LL_Driver - * @{ - */ - -#if defined(CRS) - -/** @defgroup CRS_LL CRS - * @{ - */ - -/* Private types -------------------------------------------------------------*/ -/* Private variables ---------------------------------------------------------*/ -/* Private constants ---------------------------------------------------------*/ -/* Private macros ------------------------------------------------------------*/ -/* Private function prototypes -----------------------------------------------*/ - -/* Exported functions --------------------------------------------------------*/ -/** @addtogroup CRS_LL_Exported_Functions - * @{ - */ - -/** @addtogroup CRS_LL_EF_Init - * @{ - */ - -/** - * @brief De-Initializes CRS peripheral registers to their default reset values. - * @retval An ErrorStatus enumeration value: - * - SUCCESS: CRS registers are de-initialized - * - ERROR: not applicable - */ -ErrorStatus LL_CRS_DeInit(void) -{ - LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_CRS); - LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_CRS); - - return SUCCESS; -} - - - -/** - * @} - */ - -/** - * @} - */ - -/** - * @} - */ - -#endif /* defined(CRS) */ - -/** - * @} - */ - -#endif /* USE_FULL_LL_DRIVER */ - -/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_dac.c b/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_dac.c deleted file mode 100644 index c99828c..0000000 --- a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_dac.c +++ /dev/null @@ -1,276 +0,0 @@ -/** - ****************************************************************************** - * @file stm32f0xx_ll_dac.c - * @author MCD Application Team - * @brief DAC LL module driver - ****************************************************************************** - * @attention - * - *

© Copyright (c) 2016 STMicroelectronics. - * All rights reserved.

- * - * This software component is licensed by ST under BSD 3-Clause license, - * the "License"; You may not use this file except in compliance with the - * License. You may obtain a copy of the License at: - * opensource.org/licenses/BSD-3-Clause - * - ****************************************************************************** - */ -#if defined(USE_FULL_LL_DRIVER) - -/* Includes ------------------------------------------------------------------*/ -#include "stm32f0xx_ll_dac.h" -#include "stm32f0xx_ll_bus.h" - -#ifdef USE_FULL_ASSERT - #include "stm32_assert.h" -#else - #define assert_param(expr) ((void)0U) -#endif - -/** @addtogroup STM32F0xx_LL_Driver - * @{ - */ - -#if defined (DAC1) - -/** @addtogroup DAC_LL DAC - * @{ - */ - -/* Private types -------------------------------------------------------------*/ -/* Private variables ---------------------------------------------------------*/ -/* Private constants ---------------------------------------------------------*/ -/* Private macros ------------------------------------------------------------*/ - -/** @addtogroup DAC_LL_Private_Macros - * @{ - */ - -#if defined(DAC_CHANNEL2_SUPPORT) -#define IS_LL_DAC_CHANNEL(__DACX__, __DAC_CHANNEL__) \ - ( \ - ((__DAC_CHANNEL__) == LL_DAC_CHANNEL_1) \ - || ((__DAC_CHANNEL__) == LL_DAC_CHANNEL_2) \ - ) -#else -#define IS_LL_DAC_CHANNEL(__DACX__, __DAC_CHANNEL__) \ - ( \ - ((__DAC_CHANNEL__) == LL_DAC_CHANNEL_1) \ - ) -#endif /* DAC_CHANNEL2_SUPPORT */ - -#define IS_LL_DAC_TRIGGER_SOURCE(__TRIGGER_SOURCE__) \ - ( ((__TRIGGER_SOURCE__) == LL_DAC_TRIG_SOFTWARE) \ - || ((__TRIGGER_SOURCE__) == LL_DAC_TRIG_EXT_TIM2_TRGO) \ - || ((__TRIGGER_SOURCE__) == LL_DAC_TRIG_EXT_TIM3_TRGO) \ - || ((__TRIGGER_SOURCE__) == LL_DAC_TRIG_EXT_TIM4_TRGO) \ - || ((__TRIGGER_SOURCE__) == LL_DAC_TRIG_EXT_TIM6_TRGO) \ - || ((__TRIGGER_SOURCE__) == LL_DAC_TRIG_EXT_TIM7_TRGO) \ - || ((__TRIGGER_SOURCE__) == LL_DAC_TRIG_EXT_TIM15_TRGO) \ - || ((__TRIGGER_SOURCE__) == LL_DAC_TRIG_EXT_EXTI_LINE9) \ - ) - -#if defined(DAC_CR_WAVE1) -#define IS_LL_DAC_WAVE_AUTO_GENER_MODE(__WAVE_AUTO_GENERATION_MODE__) \ - ( ((__WAVE_AUTO_GENERATION_MODE__) == LL_DAC_WAVE_AUTO_GENERATION_NONE) \ - || ((__WAVE_AUTO_GENERATION_MODE__) == LL_DAC_WAVE_AUTO_GENERATION_NOISE) \ - || ((__WAVE_AUTO_GENERATION_MODE__) == LL_DAC_WAVE_AUTO_GENERATION_TRIANGLE) \ - ) - -#define IS_LL_DAC_WAVE_AUTO_GENER_CONFIG(__WAVE_AUTO_GENERATION_CONFIG__) \ - ( ((__WAVE_AUTO_GENERATION_CONFIG__) == LL_DAC_NOISE_LFSR_UNMASK_BIT0) \ - || ((__WAVE_AUTO_GENERATION_CONFIG__) == LL_DAC_NOISE_LFSR_UNMASK_BITS1_0) \ - || ((__WAVE_AUTO_GENERATION_CONFIG__) == LL_DAC_NOISE_LFSR_UNMASK_BITS2_0) \ - || ((__WAVE_AUTO_GENERATION_CONFIG__) == LL_DAC_NOISE_LFSR_UNMASK_BITS3_0) \ - || ((__WAVE_AUTO_GENERATION_CONFIG__) == LL_DAC_NOISE_LFSR_UNMASK_BITS4_0) \ - || ((__WAVE_AUTO_GENERATION_CONFIG__) == LL_DAC_NOISE_LFSR_UNMASK_BITS5_0) \ - || ((__WAVE_AUTO_GENERATION_CONFIG__) == LL_DAC_NOISE_LFSR_UNMASK_BITS6_0) \ - || ((__WAVE_AUTO_GENERATION_CONFIG__) == LL_DAC_NOISE_LFSR_UNMASK_BITS7_0) \ - || ((__WAVE_AUTO_GENERATION_CONFIG__) == LL_DAC_NOISE_LFSR_UNMASK_BITS8_0) \ - || ((__WAVE_AUTO_GENERATION_CONFIG__) == LL_DAC_NOISE_LFSR_UNMASK_BITS9_0) \ - || ((__WAVE_AUTO_GENERATION_CONFIG__) == LL_DAC_NOISE_LFSR_UNMASK_BITS10_0) \ - || ((__WAVE_AUTO_GENERATION_CONFIG__) == LL_DAC_NOISE_LFSR_UNMASK_BITS11_0) \ - || ((__WAVE_AUTO_GENERATION_CONFIG__) == LL_DAC_TRIANGLE_AMPLITUDE_1) \ - || ((__WAVE_AUTO_GENERATION_CONFIG__) == LL_DAC_TRIANGLE_AMPLITUDE_3) \ - || ((__WAVE_AUTO_GENERATION_CONFIG__) == LL_DAC_TRIANGLE_AMPLITUDE_7) \ - || ((__WAVE_AUTO_GENERATION_CONFIG__) == LL_DAC_TRIANGLE_AMPLITUDE_15) \ - || ((__WAVE_AUTO_GENERATION_CONFIG__) == LL_DAC_TRIANGLE_AMPLITUDE_31) \ - || ((__WAVE_AUTO_GENERATION_CONFIG__) == LL_DAC_TRIANGLE_AMPLITUDE_63) \ - || ((__WAVE_AUTO_GENERATION_CONFIG__) == LL_DAC_TRIANGLE_AMPLITUDE_127) \ - || ((__WAVE_AUTO_GENERATION_CONFIG__) == LL_DAC_TRIANGLE_AMPLITUDE_255) \ - || ((__WAVE_AUTO_GENERATION_CONFIG__) == LL_DAC_TRIANGLE_AMPLITUDE_511) \ - || ((__WAVE_AUTO_GENERATION_CONFIG__) == LL_DAC_TRIANGLE_AMPLITUDE_1023) \ - || ((__WAVE_AUTO_GENERATION_CONFIG__) == LL_DAC_TRIANGLE_AMPLITUDE_2047) \ - || ((__WAVE_AUTO_GENERATION_CONFIG__) == LL_DAC_TRIANGLE_AMPLITUDE_4095) \ - ) -#endif - -#define IS_LL_DAC_OUTPUT_BUFFER(__OUTPUT_BUFFER__) \ - ( ((__OUTPUT_BUFFER__) == LL_DAC_OUTPUT_BUFFER_ENABLE) \ - || ((__OUTPUT_BUFFER__) == LL_DAC_OUTPUT_BUFFER_DISABLE) \ - ) - -/** - * @} - */ - - -/* Private function prototypes -----------------------------------------------*/ - -/* Exported functions --------------------------------------------------------*/ -/** @addtogroup DAC_LL_Exported_Functions - * @{ - */ - -/** @addtogroup DAC_LL_EF_Init - * @{ - */ - -/** - * @brief De-initialize registers of the selected DAC instance - * to their default reset values. - * @param DACx DAC instance - * @retval An ErrorStatus enumeration value: - * - SUCCESS: DAC registers are de-initialized - * - ERROR: not applicable - */ -ErrorStatus LL_DAC_DeInit(DAC_TypeDef *DACx) -{ - /* Check the parameters */ - assert_param(IS_DAC_ALL_INSTANCE(DACx)); - - /* Force reset of DAC clock */ - LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_DAC1); - - /* Release reset of DAC clock */ - LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_DAC1); - - return SUCCESS; -} - -/** - * @brief Initialize some features of DAC instance. - * @note The setting of these parameters by function @ref LL_DAC_Init() - * is conditioned to DAC state: - * DAC instance must be disabled. - * @param DACx DAC instance - * @param DAC_Channel This parameter can be one of the following values: - * @arg @ref LL_DAC_CHANNEL_1 - * @arg @ref LL_DAC_CHANNEL_2 (1) - * - * (1) On this STM32 serie, parameter not available on all devices. - * Refer to device datasheet for channels availability. - * @param DAC_InitStruct Pointer to a @ref LL_DAC_InitTypeDef structure - * @retval An ErrorStatus enumeration value: - * - SUCCESS: DAC registers are initialized - * - ERROR: DAC registers are not initialized - */ -ErrorStatus LL_DAC_Init(DAC_TypeDef *DACx, uint32_t DAC_Channel, LL_DAC_InitTypeDef *DAC_InitStruct) -{ - ErrorStatus status = SUCCESS; - - /* Check the parameters */ - assert_param(IS_DAC_ALL_INSTANCE(DACx)); - assert_param(IS_LL_DAC_CHANNEL(DACx, DAC_Channel)); - assert_param(IS_LL_DAC_TRIGGER_SOURCE(DAC_InitStruct->TriggerSource)); - assert_param(IS_LL_DAC_OUTPUT_BUFFER(DAC_InitStruct->OutputBuffer)); -#if defined(DAC_CR_WAVE1) - assert_param(IS_LL_DAC_WAVE_AUTO_GENER_MODE(DAC_InitStruct->WaveAutoGeneration)); - if (DAC_InitStruct->WaveAutoGeneration != LL_DAC_WAVE_AUTO_GENERATION_NONE) - { - assert_param(IS_LL_DAC_WAVE_AUTO_GENER_CONFIG(DAC_InitStruct->WaveAutoGenerationConfig)); - } -#endif - - /* Note: Hardware constraint (refer to description of this function) */ - /* DAC instance must be disabled. */ - if(LL_DAC_IsEnabled(DACx, DAC_Channel) == 0U) - { - /* Configuration of DAC channel: */ - /* - TriggerSource */ -#if defined(DAC_CR_WAVE1) - /* - WaveAutoGeneration */ -#endif - /* - OutputBuffer */ -#if defined(DAC_CR_WAVE1) - if (DAC_InitStruct->WaveAutoGeneration != LL_DAC_WAVE_AUTO_GENERATION_NONE) - { - MODIFY_REG(DACx->CR, - ( DAC_CR_TSEL1 - | DAC_CR_WAVE1 - | DAC_CR_MAMP1 - | DAC_CR_BOFF1 - ) << (DAC_Channel & DAC_CR_CHX_BITOFFSET_MASK) - , - ( DAC_InitStruct->TriggerSource - | DAC_InitStruct->WaveAutoGeneration - | DAC_InitStruct->WaveAutoGenerationConfig - | DAC_InitStruct->OutputBuffer - ) << (DAC_Channel & DAC_CR_CHX_BITOFFSET_MASK) - ); - } - else - { - MODIFY_REG(DACx->CR, - ( DAC_CR_TSEL1 - | DAC_CR_WAVE1 - | DAC_CR_BOFF1 - ) << (DAC_Channel & DAC_CR_CHX_BITOFFSET_MASK) - , - ( DAC_InitStruct->TriggerSource - | LL_DAC_WAVE_AUTO_GENERATION_NONE - | DAC_InitStruct->OutputBuffer - ) << (DAC_Channel & DAC_CR_CHX_BITOFFSET_MASK) - ); - } -#endif - } - else - { - /* Initialization error: DAC instance is not disabled. */ - status = ERROR; - } - return status; -} - -/** - * @brief Set each @ref LL_DAC_InitTypeDef field to default value. - * @param DAC_InitStruct pointer to a @ref LL_DAC_InitTypeDef structure - * whose fields will be set to default values. - * @retval None - */ -void LL_DAC_StructInit(LL_DAC_InitTypeDef *DAC_InitStruct) -{ - /* Set DAC_InitStruct fields to default values */ - DAC_InitStruct->TriggerSource = LL_DAC_TRIG_SOFTWARE; -#if defined(DAC_CR_WAVE1) - DAC_InitStruct->WaveAutoGeneration = LL_DAC_WAVE_AUTO_GENERATION_NONE; - /* Note: Parameter discarded if wave auto generation is disabled, */ - /* set anyway to its default value. */ - DAC_InitStruct->WaveAutoGenerationConfig = LL_DAC_NOISE_LFSR_UNMASK_BIT0; -#endif - DAC_InitStruct->OutputBuffer = LL_DAC_OUTPUT_BUFFER_ENABLE; -} - -/** - * @} - */ - -/** - * @} - */ - -/** - * @} - */ - -#endif /* DAC1 */ - -/** - * @} - */ - -#endif /* USE_FULL_LL_DRIVER */ - -/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_dma.c b/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_dma.c deleted file mode 100644 index 502d9a0..0000000 --- a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_dma.c +++ /dev/null @@ -1,397 +0,0 @@ -/** - ****************************************************************************** - * @file stm32f0xx_ll_dma.c - * @author MCD Application Team - * @brief DMA LL module driver. - ****************************************************************************** - * @attention - * - *

© Copyright (c) 2016 STMicroelectronics. - * All rights reserved.

- * - * This software component is licensed by ST under BSD 3-Clause license, - * the "License"; You may not use this file except in compliance with the - * License. You may obtain a copy of the License at: - * opensource.org/licenses/BSD-3-Clause - * - ****************************************************************************** - */ - -#if defined(USE_FULL_LL_DRIVER) - -/* Includes ------------------------------------------------------------------*/ -#include "stm32f0xx_ll_dma.h" -#include "stm32f0xx_ll_bus.h" -#ifdef USE_FULL_ASSERT -#include "stm32_assert.h" -#else -#define assert_param(expr) ((void)0U) -#endif - -/** @addtogroup STM32F0xx_LL_Driver - * @{ - */ - -#if defined (DMA1) || defined (DMA2) - -/** @defgroup DMA_LL DMA - * @{ - */ - -/* Private types -------------------------------------------------------------*/ -/* Private variables ---------------------------------------------------------*/ -/* Private constants ---------------------------------------------------------*/ -/* Private macros ------------------------------------------------------------*/ -/** @addtogroup DMA_LL_Private_Macros - * @{ - */ -#define IS_LL_DMA_DIRECTION(__VALUE__) (((__VALUE__) == LL_DMA_DIRECTION_PERIPH_TO_MEMORY) || \ - ((__VALUE__) == LL_DMA_DIRECTION_MEMORY_TO_PERIPH) || \ - ((__VALUE__) == LL_DMA_DIRECTION_MEMORY_TO_MEMORY)) - -#define IS_LL_DMA_MODE(__VALUE__) (((__VALUE__) == LL_DMA_MODE_NORMAL) || \ - ((__VALUE__) == LL_DMA_MODE_CIRCULAR)) - -#define IS_LL_DMA_PERIPHINCMODE(__VALUE__) (((__VALUE__) == LL_DMA_PERIPH_INCREMENT) || \ - ((__VALUE__) == LL_DMA_PERIPH_NOINCREMENT)) - -#define IS_LL_DMA_MEMORYINCMODE(__VALUE__) (((__VALUE__) == LL_DMA_MEMORY_INCREMENT) || \ - ((__VALUE__) == LL_DMA_MEMORY_NOINCREMENT)) - -#define IS_LL_DMA_PERIPHDATASIZE(__VALUE__) (((__VALUE__) == LL_DMA_PDATAALIGN_BYTE) || \ - ((__VALUE__) == LL_DMA_PDATAALIGN_HALFWORD) || \ - ((__VALUE__) == LL_DMA_PDATAALIGN_WORD)) - -#define IS_LL_DMA_MEMORYDATASIZE(__VALUE__) (((__VALUE__) == LL_DMA_MDATAALIGN_BYTE) || \ - ((__VALUE__) == LL_DMA_MDATAALIGN_HALFWORD) || \ - ((__VALUE__) == LL_DMA_MDATAALIGN_WORD)) - -#define IS_LL_DMA_NBDATA(__VALUE__) ((__VALUE__) <= 0x0000FFFFU) - -#if (defined(DMA1_CSELR_DEFAULT)||defined(DMA2_CSELR_DEFAULT)) -#define IS_LL_DMA_PERIPHREQUEST(__VALUE__) (((__VALUE__) == LL_DMA_REQUEST_0) || \ - ((__VALUE__) == LL_DMA_REQUEST_1) || \ - ((__VALUE__) == LL_DMA_REQUEST_2) || \ - ((__VALUE__) == LL_DMA_REQUEST_3) || \ - ((__VALUE__) == LL_DMA_REQUEST_4) || \ - ((__VALUE__) == LL_DMA_REQUEST_5) || \ - ((__VALUE__) == LL_DMA_REQUEST_6) || \ - ((__VALUE__) == LL_DMA_REQUEST_7) || \ - ((__VALUE__) == LL_DMA_REQUEST_8) || \ - ((__VALUE__) == LL_DMA_REQUEST_9) || \ - ((__VALUE__) == LL_DMA_REQUEST_10) || \ - ((__VALUE__) == LL_DMA_REQUEST_11) || \ - ((__VALUE__) == LL_DMA_REQUEST_12) || \ - ((__VALUE__) == LL_DMA_REQUEST_13) || \ - ((__VALUE__) == LL_DMA_REQUEST_14) || \ - ((__VALUE__) == LL_DMA_REQUEST_15)) -#endif - -#define IS_LL_DMA_PRIORITY(__VALUE__) (((__VALUE__) == LL_DMA_PRIORITY_LOW) || \ - ((__VALUE__) == LL_DMA_PRIORITY_MEDIUM) || \ - ((__VALUE__) == LL_DMA_PRIORITY_HIGH) || \ - ((__VALUE__) == LL_DMA_PRIORITY_VERYHIGH)) - -#if defined (DMA2) -#if defined (DMA2_Channel6) && defined (DMA2_Channel7) -#define IS_LL_DMA_ALL_CHANNEL_INSTANCE(INSTANCE, CHANNEL) ((((INSTANCE) == DMA1) && \ - (((CHANNEL) == LL_DMA_CHANNEL_1) || \ - ((CHANNEL) == LL_DMA_CHANNEL_2) || \ - ((CHANNEL) == LL_DMA_CHANNEL_3) || \ - ((CHANNEL) == LL_DMA_CHANNEL_4) || \ - ((CHANNEL) == LL_DMA_CHANNEL_5) || \ - ((CHANNEL) == LL_DMA_CHANNEL_6) || \ - ((CHANNEL) == LL_DMA_CHANNEL_7))) || \ - (((INSTANCE) == DMA2) && \ - (((CHANNEL) == LL_DMA_CHANNEL_1) || \ - ((CHANNEL) == LL_DMA_CHANNEL_2) || \ - ((CHANNEL) == LL_DMA_CHANNEL_3) || \ - ((CHANNEL) == LL_DMA_CHANNEL_4) || \ - ((CHANNEL) == LL_DMA_CHANNEL_5) || \ - ((CHANNEL) == LL_DMA_CHANNEL_6) || \ - ((CHANNEL) == LL_DMA_CHANNEL_7)))) -#else -#define IS_LL_DMA_ALL_CHANNEL_INSTANCE(INSTANCE, CHANNEL) ((((INSTANCE) == DMA1) && \ - (((CHANNEL) == LL_DMA_CHANNEL_1) || \ - ((CHANNEL) == LL_DMA_CHANNEL_2) || \ - ((CHANNEL) == LL_DMA_CHANNEL_3) || \ - ((CHANNEL) == LL_DMA_CHANNEL_4) || \ - ((CHANNEL) == LL_DMA_CHANNEL_5) || \ - ((CHANNEL) == LL_DMA_CHANNEL_6) || \ - ((CHANNEL) == LL_DMA_CHANNEL_7))) || \ - (((INSTANCE) == DMA2) && \ - (((CHANNEL) == LL_DMA_CHANNEL_1) || \ - ((CHANNEL) == LL_DMA_CHANNEL_2) || \ - ((CHANNEL) == LL_DMA_CHANNEL_3) || \ - ((CHANNEL) == LL_DMA_CHANNEL_4) || \ - ((CHANNEL) == LL_DMA_CHANNEL_5)))) -#endif -#else -#if defined(DMA1_Channel6) && defined(DMA1_Channel7) -#define IS_LL_DMA_ALL_CHANNEL_INSTANCE(INSTANCE, CHANNEL) ((((INSTANCE) == DMA1) && \ - (((CHANNEL) == LL_DMA_CHANNEL_1)|| \ - ((CHANNEL) == LL_DMA_CHANNEL_2) || \ - ((CHANNEL) == LL_DMA_CHANNEL_3) || \ - ((CHANNEL) == LL_DMA_CHANNEL_4) || \ - ((CHANNEL) == LL_DMA_CHANNEL_5) || \ - ((CHANNEL) == LL_DMA_CHANNEL_6) || \ - ((CHANNEL) == LL_DMA_CHANNEL_7)))) -#elif defined (DMA1_Channel6) -#define IS_LL_DMA_ALL_CHANNEL_INSTANCE(INSTANCE, CHANNEL) ((((INSTANCE) == DMA1) && \ - (((CHANNEL) == LL_DMA_CHANNEL_1)|| \ - ((CHANNEL) == LL_DMA_CHANNEL_2) || \ - ((CHANNEL) == LL_DMA_CHANNEL_3) || \ - ((CHANNEL) == LL_DMA_CHANNEL_4) || \ - ((CHANNEL) == LL_DMA_CHANNEL_5) || \ - ((CHANNEL) == LL_DMA_CHANNEL_6)))) -#else -#define IS_LL_DMA_ALL_CHANNEL_INSTANCE(INSTANCE, CHANNEL) ((((INSTANCE) == DMA1) && \ - (((CHANNEL) == LL_DMA_CHANNEL_1)|| \ - ((CHANNEL) == LL_DMA_CHANNEL_2) || \ - ((CHANNEL) == LL_DMA_CHANNEL_3) || \ - ((CHANNEL) == LL_DMA_CHANNEL_4) || \ - ((CHANNEL) == LL_DMA_CHANNEL_5)))) -#endif /* DMA1_Channel6 && DMA1_Channel7 */ -#endif -/** - * @} - */ - -/* Private function prototypes -----------------------------------------------*/ - -/* Exported functions --------------------------------------------------------*/ -/** @addtogroup DMA_LL_Exported_Functions - * @{ - */ - -/** @addtogroup DMA_LL_EF_Init - * @{ - */ - -/** - * @brief De-initialize the DMA registers to their default reset values. - * @param DMAx DMAx Instance - * @param Channel This parameter can be one of the following values: - * @arg @ref LL_DMA_CHANNEL_1 - * @arg @ref LL_DMA_CHANNEL_2 - * @arg @ref LL_DMA_CHANNEL_3 - * @arg @ref LL_DMA_CHANNEL_4 - * @arg @ref LL_DMA_CHANNEL_5 - * @arg @ref LL_DMA_CHANNEL_6 (*) - * @arg @ref LL_DMA_CHANNEL_7 (*) - * - * (*) value not defined in all devices - * @retval An ErrorStatus enumeration value: - * - SUCCESS: DMA registers are de-initialized - * - ERROR: DMA registers are not de-initialized - */ -uint32_t LL_DMA_DeInit(DMA_TypeDef *DMAx, uint32_t Channel) -{ - DMA_Channel_TypeDef *tmp = (DMA_Channel_TypeDef *)DMA1_Channel1; - ErrorStatus status = SUCCESS; - - /* Check the DMA Instance DMAx and Channel parameters*/ - assert_param(IS_LL_DMA_ALL_CHANNEL_INSTANCE(DMAx, Channel)); - - tmp = (DMA_Channel_TypeDef *)(__LL_DMA_GET_CHANNEL_INSTANCE(DMAx, Channel)); - - /* Disable the selected DMAx_Channely */ - CLEAR_BIT(tmp->CCR, DMA_CCR_EN); - - /* Reset DMAx_Channely control register */ - LL_DMA_WriteReg(tmp, CCR, 0U); - - /* Reset DMAx_Channely remaining bytes register */ - LL_DMA_WriteReg(tmp, CNDTR, 0U); - - /* Reset DMAx_Channely peripheral address register */ - LL_DMA_WriteReg(tmp, CPAR, 0U); - - /* Reset DMAx_Channely memory address register */ - LL_DMA_WriteReg(tmp, CMAR, 0U); - -#if (defined(DMA1_CSELR_DEFAULT)||defined(DMA2_CSELR_DEFAULT)) - /* Reset Request register field for DMAx Channel */ - LL_DMA_SetPeriphRequest(DMAx, Channel, LL_DMA_REQUEST_0); -#endif - - if (Channel == LL_DMA_CHANNEL_1) - { - /* Reset interrupt pending bits for DMAx Channel1 */ - LL_DMA_ClearFlag_GI1(DMAx); - } - else if (Channel == LL_DMA_CHANNEL_2) - { - /* Reset interrupt pending bits for DMAx Channel2 */ - LL_DMA_ClearFlag_GI2(DMAx); - } - else if (Channel == LL_DMA_CHANNEL_3) - { - /* Reset interrupt pending bits for DMAx Channel3 */ - LL_DMA_ClearFlag_GI3(DMAx); - } - else if (Channel == LL_DMA_CHANNEL_4) - { - /* Reset interrupt pending bits for DMAx Channel4 */ - LL_DMA_ClearFlag_GI4(DMAx); - } - else if (Channel == LL_DMA_CHANNEL_5) - { - /* Reset interrupt pending bits for DMAx Channel5 */ - LL_DMA_ClearFlag_GI5(DMAx); - } - -#if defined(DMA1_Channel6) - else if (Channel == LL_DMA_CHANNEL_6) - { - /* Reset interrupt pending bits for DMAx Channel6 */ - LL_DMA_ClearFlag_GI6(DMAx); - } -#endif -#if defined(DMA1_Channel7) - else if (Channel == LL_DMA_CHANNEL_7) - { - /* Reset interrupt pending bits for DMAx Channel7 */ - LL_DMA_ClearFlag_GI7(DMAx); - } -#endif - else - { - status = ERROR; - } - - return status; -} - -/** - * @brief Initialize the DMA registers according to the specified parameters in DMA_InitStruct. - * @note To convert DMAx_Channely Instance to DMAx Instance and Channely, use helper macros : - * @arg @ref __LL_DMA_GET_INSTANCE - * @arg @ref __LL_DMA_GET_CHANNEL - * @param DMAx DMAx Instance - * @param Channel This parameter can be one of the following values: - * @arg @ref LL_DMA_CHANNEL_1 - * @arg @ref LL_DMA_CHANNEL_2 - * @arg @ref LL_DMA_CHANNEL_3 - * @arg @ref LL_DMA_CHANNEL_4 - * @arg @ref LL_DMA_CHANNEL_5 - * @arg @ref LL_DMA_CHANNEL_6 (*) - * @arg @ref LL_DMA_CHANNEL_7 (*) - * - * (*) value not defined in all devices - * @param DMA_InitStruct pointer to a @ref LL_DMA_InitTypeDef structure. - * @retval An ErrorStatus enumeration value: - * - SUCCESS: DMA registers are initialized - * - ERROR: Not applicable - */ -uint32_t LL_DMA_Init(DMA_TypeDef *DMAx, uint32_t Channel, LL_DMA_InitTypeDef *DMA_InitStruct) -{ - /* Check the DMA Instance DMAx and Channel parameters*/ - assert_param(IS_LL_DMA_ALL_CHANNEL_INSTANCE(DMAx, Channel)); - - /* Check the DMA parameters from DMA_InitStruct */ - assert_param(IS_LL_DMA_DIRECTION(DMA_InitStruct->Direction)); - assert_param(IS_LL_DMA_MODE(DMA_InitStruct->Mode)); - assert_param(IS_LL_DMA_PERIPHINCMODE(DMA_InitStruct->PeriphOrM2MSrcIncMode)); - assert_param(IS_LL_DMA_MEMORYINCMODE(DMA_InitStruct->MemoryOrM2MDstIncMode)); - assert_param(IS_LL_DMA_PERIPHDATASIZE(DMA_InitStruct->PeriphOrM2MSrcDataSize)); - assert_param(IS_LL_DMA_MEMORYDATASIZE(DMA_InitStruct->MemoryOrM2MDstDataSize)); - assert_param(IS_LL_DMA_NBDATA(DMA_InitStruct->NbData)); -#if (defined(DMA1_CSELR_DEFAULT)||defined(DMA2_CSELR_DEFAULT)) - assert_param(IS_LL_DMA_PERIPHREQUEST(DMA_InitStruct->PeriphRequest)); -#endif - assert_param(IS_LL_DMA_PRIORITY(DMA_InitStruct->Priority)); - - /*---------------------------- DMAx CCR Configuration ------------------------ - * Configure DMAx_Channely: data transfer direction, data transfer mode, - * peripheral and memory increment mode, - * data size alignment and priority level with parameters : - * - Direction: DMA_CCR_DIR and DMA_CCR_MEM2MEM bits - * - Mode: DMA_CCR_CIRC bit - * - PeriphOrM2MSrcIncMode: DMA_CCR_PINC bit - * - MemoryOrM2MDstIncMode: DMA_CCR_MINC bit - * - PeriphOrM2MSrcDataSize: DMA_CCR_PSIZE[1:0] bits - * - MemoryOrM2MDstDataSize: DMA_CCR_MSIZE[1:0] bits - * - Priority: DMA_CCR_PL[1:0] bits - */ - LL_DMA_ConfigTransfer(DMAx, Channel, DMA_InitStruct->Direction | \ - DMA_InitStruct->Mode | \ - DMA_InitStruct->PeriphOrM2MSrcIncMode | \ - DMA_InitStruct->MemoryOrM2MDstIncMode | \ - DMA_InitStruct->PeriphOrM2MSrcDataSize | \ - DMA_InitStruct->MemoryOrM2MDstDataSize | \ - DMA_InitStruct->Priority); - - /*-------------------------- DMAx CMAR Configuration ------------------------- - * Configure the memory or destination base address with parameter : - * - MemoryOrM2MDstAddress: DMA_CMAR_MA[31:0] bits - */ - LL_DMA_SetMemoryAddress(DMAx, Channel, DMA_InitStruct->MemoryOrM2MDstAddress); - - /*-------------------------- DMAx CPAR Configuration ------------------------- - * Configure the peripheral or source base address with parameter : - * - PeriphOrM2MSrcAddress: DMA_CPAR_PA[31:0] bits - */ - LL_DMA_SetPeriphAddress(DMAx, Channel, DMA_InitStruct->PeriphOrM2MSrcAddress); - - /*--------------------------- DMAx CNDTR Configuration ----------------------- - * Configure the peripheral base address with parameter : - * - NbData: DMA_CNDTR_NDT[15:0] bits - */ - LL_DMA_SetDataLength(DMAx, Channel, DMA_InitStruct->NbData); - -#if (defined(DMA1_CSELR_DEFAULT)||defined(DMA2_CSELR_DEFAULT)) - /*--------------------------- DMAx CSELR Configuration ----------------------- - * Configure the DMA request for DMA instance on Channel x with parameter : - * - PeriphRequest: DMA_CSELR[31:0] bits - */ - LL_DMA_SetPeriphRequest(DMAx, Channel, DMA_InitStruct->PeriphRequest); -#endif - - return SUCCESS; -} - -/** - * @brief Set each @ref LL_DMA_InitTypeDef field to default value. - * @param DMA_InitStruct Pointer to a @ref LL_DMA_InitTypeDef structure. - * @retval None - */ -void LL_DMA_StructInit(LL_DMA_InitTypeDef *DMA_InitStruct) -{ - /* Set DMA_InitStruct fields to default values */ - DMA_InitStruct->PeriphOrM2MSrcAddress = 0x00000000U; - DMA_InitStruct->MemoryOrM2MDstAddress = 0x00000000U; - DMA_InitStruct->Direction = LL_DMA_DIRECTION_PERIPH_TO_MEMORY; - DMA_InitStruct->Mode = LL_DMA_MODE_NORMAL; - DMA_InitStruct->PeriphOrM2MSrcIncMode = LL_DMA_PERIPH_NOINCREMENT; - DMA_InitStruct->MemoryOrM2MDstIncMode = LL_DMA_MEMORY_NOINCREMENT; - DMA_InitStruct->PeriphOrM2MSrcDataSize = LL_DMA_PDATAALIGN_BYTE; - DMA_InitStruct->MemoryOrM2MDstDataSize = LL_DMA_MDATAALIGN_BYTE; - DMA_InitStruct->NbData = 0x00000000U; -#if (defined(DMA1_CSELR_DEFAULT)||defined(DMA2_CSELR_DEFAULT)) - DMA_InitStruct->PeriphRequest = LL_DMA_REQUEST_0; -#endif - DMA_InitStruct->Priority = LL_DMA_PRIORITY_LOW; -} - -/** - * @} - */ - -/** - * @} - */ - -/** - * @} - */ - -#endif /* DMA1 || DMA2 */ - -/** - * @} - */ - -#endif /* USE_FULL_LL_DRIVER */ - -/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_exti.c b/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_exti.c deleted file mode 100644 index 2832037..0000000 --- a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_exti.c +++ /dev/null @@ -1,223 +0,0 @@ -/** - ****************************************************************************** - * @file stm32f0xx_ll_exti.c - * @author MCD Application Team - * @brief EXTI LL module driver. - ****************************************************************************** - * @attention - * - *

© Copyright (c) 2016 STMicroelectronics. - * All rights reserved.

- * - * This software component is licensed by ST under BSD 3-Clause license, - * the "License"; You may not use this file except in compliance with the - * License. You may obtain a copy of the License at: - * opensource.org/licenses/BSD-3-Clause - * - ****************************************************************************** - */ - -#if defined(USE_FULL_LL_DRIVER) - -/* Includes ------------------------------------------------------------------*/ -#include "stm32f0xx_ll_exti.h" -#ifdef USE_FULL_ASSERT -#include "stm32_assert.h" -#else -#define assert_param(expr) ((void)0U) -#endif - -/** @addtogroup STM32F0xx_LL_Driver - * @{ - */ - -#if defined (EXTI) - -/** @defgroup EXTI_LL EXTI - * @{ - */ - -/* Private types -------------------------------------------------------------*/ -/* Private variables ---------------------------------------------------------*/ -/* Private constants ---------------------------------------------------------*/ -/* Private macros ------------------------------------------------------------*/ -/** @addtogroup EXTI_LL_Private_Macros - * @{ - */ - -#define IS_LL_EXTI_LINE_0_31(__VALUE__) (((__VALUE__) & ~LL_EXTI_LINE_ALL_0_31) == 0x00000000U) - -#define IS_LL_EXTI_MODE(__VALUE__) (((__VALUE__) == LL_EXTI_MODE_IT) \ - || ((__VALUE__) == LL_EXTI_MODE_EVENT) \ - || ((__VALUE__) == LL_EXTI_MODE_IT_EVENT)) - - -#define IS_LL_EXTI_TRIGGER(__VALUE__) (((__VALUE__) == LL_EXTI_TRIGGER_NONE) \ - || ((__VALUE__) == LL_EXTI_TRIGGER_RISING) \ - || ((__VALUE__) == LL_EXTI_TRIGGER_FALLING) \ - || ((__VALUE__) == LL_EXTI_TRIGGER_RISING_FALLING)) - -/** - * @} - */ - -/* Private function prototypes -----------------------------------------------*/ - -/* Exported functions --------------------------------------------------------*/ -/** @addtogroup EXTI_LL_Exported_Functions - * @{ - */ - -/** @addtogroup EXTI_LL_EF_Init - * @{ - */ - -/** - * @brief De-initialize the EXTI registers to their default reset values. - * @retval An ErrorStatus enumeration value: - * - SUCCESS: EXTI registers are de-initialized - * - ERROR: not applicable - */ -uint32_t LL_EXTI_DeInit(void) -{ - /* Interrupt mask register set to default reset values */ -#if defined(STM32F030x6) || defined(STM32F031x6) ||defined(STM32F038xx) - LL_EXTI_WriteReg(IMR, 0x0FF40000U); -#elif defined(STM32F070x6) || defined(STM32F042x6) || defined(STM32F048xx) - LL_EXTI_WriteReg(IMR, 0x7FF40000U); -#elif defined(STM32F030x8) || defined(STM32F051x8) || defined(STM32F058xx) - LL_EXTI_WriteReg(IMR, 0x0F940000U); -#else - LL_EXTI_WriteReg(IMR, 0x7F840000U); -#endif - /* Event mask register set to default reset values */ - LL_EXTI_WriteReg(EMR, 0x00000000U); - /* Rising Trigger selection register set to default reset values */ - LL_EXTI_WriteReg(RTSR, 0x00000000U); - /* Falling Trigger selection register set to default reset values */ - LL_EXTI_WriteReg(FTSR, 0x00000000U); - /* Software interrupt event register set to default reset values */ - LL_EXTI_WriteReg(SWIER, 0x00000000U); - /* Pending register clear */ - LL_EXTI_WriteReg(PR, 0x007BFFFFU); - - return SUCCESS; -} - -/** - * @brief Initialize the EXTI registers according to the specified parameters in EXTI_InitStruct. - * @param EXTI_InitStruct pointer to a @ref LL_EXTI_InitTypeDef structure. - * @retval An ErrorStatus enumeration value: - * - SUCCESS: EXTI registers are initialized - * - ERROR: not applicable - */ -uint32_t LL_EXTI_Init(LL_EXTI_InitTypeDef *EXTI_InitStruct) -{ - ErrorStatus status = SUCCESS; - /* Check the parameters */ - assert_param(IS_LL_EXTI_LINE_0_31(EXTI_InitStruct->Line_0_31)); - assert_param(IS_FUNCTIONAL_STATE(EXTI_InitStruct->LineCommand)); - assert_param(IS_LL_EXTI_MODE(EXTI_InitStruct->Mode)); - - /* ENABLE LineCommand */ - if (EXTI_InitStruct->LineCommand != DISABLE) - { - assert_param(IS_LL_EXTI_TRIGGER(EXTI_InitStruct->Trigger)); - - /* Configure EXTI Lines in range from 0 to 31 */ - if (EXTI_InitStruct->Line_0_31 != LL_EXTI_LINE_NONE) - { - switch (EXTI_InitStruct->Mode) - { - case LL_EXTI_MODE_IT: - /* First Disable Event on provided Lines */ - LL_EXTI_DisableEvent_0_31(EXTI_InitStruct->Line_0_31); - /* Then Enable IT on provided Lines */ - LL_EXTI_EnableIT_0_31(EXTI_InitStruct->Line_0_31); - break; - case LL_EXTI_MODE_EVENT: - /* First Disable IT on provided Lines */ - LL_EXTI_DisableIT_0_31(EXTI_InitStruct->Line_0_31); - /* Then Enable Event on provided Lines */ - LL_EXTI_EnableEvent_0_31(EXTI_InitStruct->Line_0_31); - break; - case LL_EXTI_MODE_IT_EVENT: - /* Directly Enable IT & Event on provided Lines */ - LL_EXTI_EnableIT_0_31(EXTI_InitStruct->Line_0_31); - LL_EXTI_EnableEvent_0_31(EXTI_InitStruct->Line_0_31); - break; - default: - status = ERROR; - break; - } - if (EXTI_InitStruct->Trigger != LL_EXTI_TRIGGER_NONE) - { - switch (EXTI_InitStruct->Trigger) - { - case LL_EXTI_TRIGGER_RISING: - /* First Disable Falling Trigger on provided Lines */ - LL_EXTI_DisableFallingTrig_0_31(EXTI_InitStruct->Line_0_31); - /* Then Enable Rising Trigger on provided Lines */ - LL_EXTI_EnableRisingTrig_0_31(EXTI_InitStruct->Line_0_31); - break; - case LL_EXTI_TRIGGER_FALLING: - /* First Disable Rising Trigger on provided Lines */ - LL_EXTI_DisableRisingTrig_0_31(EXTI_InitStruct->Line_0_31); - /* Then Enable Falling Trigger on provided Lines */ - LL_EXTI_EnableFallingTrig_0_31(EXTI_InitStruct->Line_0_31); - break; - case LL_EXTI_TRIGGER_RISING_FALLING: - LL_EXTI_EnableRisingTrig_0_31(EXTI_InitStruct->Line_0_31); - LL_EXTI_EnableFallingTrig_0_31(EXTI_InitStruct->Line_0_31); - break; - default: - status = ERROR; - break; - } - } - } - } - /* DISABLE LineCommand */ - else - { - /* De-configure EXTI Lines in range from 0 to 31 */ - LL_EXTI_DisableIT_0_31(EXTI_InitStruct->Line_0_31); - LL_EXTI_DisableEvent_0_31(EXTI_InitStruct->Line_0_31); - } - return status; -} - -/** - * @brief Set each @ref LL_EXTI_InitTypeDef field to default value. - * @param EXTI_InitStruct Pointer to a @ref LL_EXTI_InitTypeDef structure. - * @retval None - */ -void LL_EXTI_StructInit(LL_EXTI_InitTypeDef *EXTI_InitStruct) -{ - EXTI_InitStruct->Line_0_31 = LL_EXTI_LINE_NONE; - EXTI_InitStruct->LineCommand = DISABLE; - EXTI_InitStruct->Mode = LL_EXTI_MODE_IT; - EXTI_InitStruct->Trigger = LL_EXTI_TRIGGER_FALLING; -} - -/** - * @} - */ - -/** - * @} - */ - -/** - * @} - */ - -#endif /* defined (EXTI) */ - -/** - * @} - */ - -#endif /* USE_FULL_LL_DRIVER */ - -/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_gpio.c b/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_gpio.c deleted file mode 100644 index d4c0585..0000000 --- a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_gpio.c +++ /dev/null @@ -1,280 +0,0 @@ -/** - ****************************************************************************** - * @file stm32f0xx_ll_gpio.c - * @author MCD Application Team - * @brief GPIO LL module driver. - ****************************************************************************** - * @attention - * - *

© Copyright (c) 2016 STMicroelectronics. - * All rights reserved.

- * - * This software component is licensed by ST under BSD 3-Clause license, - * the "License"; You may not use this file except in compliance with the - * License. You may obtain a copy of the License at: - * opensource.org/licenses/BSD-3-Clause - * - ****************************************************************************** - */ - -#if defined(USE_FULL_LL_DRIVER) - -/* Includes ------------------------------------------------------------------*/ -#include "stm32f0xx_ll_gpio.h" -#include "stm32f0xx_ll_bus.h" -#ifdef USE_FULL_ASSERT -#include "stm32_assert.h" -#else -#define assert_param(expr) ((void)0U) -#endif - -/** @addtogroup STM32F0xx_LL_Driver - * @{ - */ - -#if defined (GPIOA) || defined (GPIOB) || defined (GPIOC) || defined (GPIOD) || defined (GPIOE) || defined (GPIOF) - -/** @addtogroup GPIO_LL - * @{ - */ -/** MISRA C:2012 deviation rule has been granted for following rules: - * Rule-12.2 - Medium: RHS argument is in interval [0,INF] which is out of - * range of the shift operator in following API : - * LL_GPIO_Init - * LL_GPIO_DeInit - * LL_GPIO_SetPinMode - * LL_GPIO_GetPinMode - * LL_GPIO_SetPinSpeed - * LL_GPIO_GetPinSpeed - * LL_GPIO_SetPinPull - * LL_GPIO_GetPinPull - * LL_GPIO_GetAFPin_0_7 - * LL_GPIO_SetAFPin_0_7 - * LL_GPIO_SetAFPin_8_15 - * LL_GPIO_GetAFPin_8_15 - */ - -/* Private types -------------------------------------------------------------*/ -/* Private variables ---------------------------------------------------------*/ -/* Private constants ---------------------------------------------------------*/ -/* Private macros ------------------------------------------------------------*/ -/** @addtogroup GPIO_LL_Private_Macros - * @{ - */ -#define IS_LL_GPIO_PIN(__VALUE__) (((0x00u) < (__VALUE__)) && ((__VALUE__) <= (LL_GPIO_PIN_ALL))) - -#define IS_LL_GPIO_MODE(__VALUE__) (((__VALUE__) == LL_GPIO_MODE_INPUT) ||\ - ((__VALUE__) == LL_GPIO_MODE_OUTPUT) ||\ - ((__VALUE__) == LL_GPIO_MODE_ALTERNATE) ||\ - ((__VALUE__) == LL_GPIO_MODE_ANALOG)) - -#define IS_LL_GPIO_OUTPUT_TYPE(__VALUE__) (((__VALUE__) == LL_GPIO_OUTPUT_PUSHPULL) ||\ - ((__VALUE__) == LL_GPIO_OUTPUT_OPENDRAIN)) - -#define IS_LL_GPIO_SPEED(__VALUE__) (((__VALUE__) == LL_GPIO_SPEED_FREQ_LOW) ||\ - ((__VALUE__) == LL_GPIO_SPEED_FREQ_MEDIUM) ||\ - ((__VALUE__) == LL_GPIO_SPEED_FREQ_HIGH)) - -#define IS_LL_GPIO_PULL(__VALUE__) (((__VALUE__) == LL_GPIO_PULL_NO) ||\ - ((__VALUE__) == LL_GPIO_PULL_UP) ||\ - ((__VALUE__) == LL_GPIO_PULL_DOWN)) - -#define IS_LL_GPIO_ALTERNATE(__VALUE__) (((__VALUE__) == LL_GPIO_AF_0 ) ||\ - ((__VALUE__) == LL_GPIO_AF_1 ) ||\ - ((__VALUE__) == LL_GPIO_AF_2 ) ||\ - ((__VALUE__) == LL_GPIO_AF_3 ) ||\ - ((__VALUE__) == LL_GPIO_AF_4 ) ||\ - ((__VALUE__) == LL_GPIO_AF_5 ) ||\ - ((__VALUE__) == LL_GPIO_AF_6 ) ||\ - ((__VALUE__) == LL_GPIO_AF_7 )) -/** - * @} - */ - -/* Private function prototypes -----------------------------------------------*/ - -/* Exported functions --------------------------------------------------------*/ -/** @addtogroup GPIO_LL_Exported_Functions - * @{ - */ - -/** @addtogroup GPIO_LL_EF_Init - * @{ - */ - -/** - * @brief De-initialize GPIO registers (Registers restored to their default values). - * @param GPIOx GPIO Port - * @retval An ErrorStatus enumeration value: - * - SUCCESS: GPIO registers are de-initialized - * - ERROR: Wrong GPIO Port - */ -ErrorStatus LL_GPIO_DeInit(GPIO_TypeDef *GPIOx) -{ - ErrorStatus status = SUCCESS; - - /* Check the parameters */ - assert_param(IS_GPIO_ALL_INSTANCE(GPIOx)); - - /* Force and Release reset on clock of GPIOx Port */ - if (GPIOx == GPIOA) - { - LL_AHB1_GRP1_ForceReset(LL_AHB1_GRP1_PERIPH_GPIOA); - LL_AHB1_GRP1_ReleaseReset(LL_AHB1_GRP1_PERIPH_GPIOA); - } - else if (GPIOx == GPIOB) - { - LL_AHB1_GRP1_ForceReset(LL_AHB1_GRP1_PERIPH_GPIOB); - LL_AHB1_GRP1_ReleaseReset(LL_AHB1_GRP1_PERIPH_GPIOB); - } - else if (GPIOx == GPIOC) - { - LL_AHB1_GRP1_ForceReset(LL_AHB1_GRP1_PERIPH_GPIOC); - LL_AHB1_GRP1_ReleaseReset(LL_AHB1_GRP1_PERIPH_GPIOC); - } -#if defined(GPIOD) - else if (GPIOx == GPIOD) - { - LL_AHB1_GRP1_ForceReset(LL_AHB1_GRP1_PERIPH_GPIOD); - LL_AHB1_GRP1_ReleaseReset(LL_AHB1_GRP1_PERIPH_GPIOD); - } -#endif /* GPIOD */ -#if defined(GPIOE) - else if (GPIOx == GPIOE) - { - LL_AHB1_GRP1_ForceReset(LL_AHB1_GRP1_PERIPH_GPIOE); - LL_AHB1_GRP1_ReleaseReset(LL_AHB1_GRP1_PERIPH_GPIOE); - } -#endif /* GPIOE */ -#if defined(GPIOF) - else if (GPIOx == GPIOF) - { - LL_AHB1_GRP1_ForceReset(LL_AHB1_GRP1_PERIPH_GPIOF); - LL_AHB1_GRP1_ReleaseReset(LL_AHB1_GRP1_PERIPH_GPIOF); - } -#endif /* GPIOF */ - else - { - status = ERROR; - } - - return (status); -} - -/** - * @brief Initialize GPIO registers according to the specified parameters in GPIO_InitStruct. - * @param GPIOx GPIO Port - * @param GPIO_InitStruct pointer to a @ref LL_GPIO_InitTypeDef structure - * that contains the configuration information for the specified GPIO peripheral. - * @retval An ErrorStatus enumeration value: - * - SUCCESS: GPIO registers are initialized according to GPIO_InitStruct content - * - ERROR: Not applicable - */ -ErrorStatus LL_GPIO_Init(GPIO_TypeDef *GPIOx, LL_GPIO_InitTypeDef *GPIO_InitStruct) -{ - uint32_t pinpos; - uint32_t currentpin; - - /* Check the parameters */ - assert_param(IS_GPIO_ALL_INSTANCE(GPIOx)); - assert_param(IS_LL_GPIO_PIN(GPIO_InitStruct->Pin)); - assert_param(IS_LL_GPIO_MODE(GPIO_InitStruct->Mode)); - assert_param(IS_LL_GPIO_PULL(GPIO_InitStruct->Pull)); - - /* ------------------------- Configure the port pins ---------------- */ - /* Initialize pinpos on first pin set */ - pinpos = 0; - - /* Configure the port pins */ - while (((GPIO_InitStruct->Pin) >> pinpos) != 0x00u) - { - /* Get current io position */ - currentpin = (GPIO_InitStruct->Pin) & (0x00000001uL << pinpos); - - if (currentpin != 0x00u) - { - /* Pin Mode configuration */ - LL_GPIO_SetPinMode(GPIOx, currentpin, GPIO_InitStruct->Mode); - - if ((GPIO_InitStruct->Mode == LL_GPIO_MODE_OUTPUT) || (GPIO_InitStruct->Mode == LL_GPIO_MODE_ALTERNATE)) - { - /* Check Speed mode parameters */ - assert_param(IS_LL_GPIO_SPEED(GPIO_InitStruct->Speed)); - - /* Speed mode configuration */ - LL_GPIO_SetPinSpeed(GPIOx, currentpin, GPIO_InitStruct->Speed); - } - - /* Pull-up Pull down resistor configuration*/ - LL_GPIO_SetPinPull(GPIOx, currentpin, GPIO_InitStruct->Pull); - - if (GPIO_InitStruct->Mode == LL_GPIO_MODE_ALTERNATE) - { - /* Check Alternate parameter */ - assert_param(IS_LL_GPIO_ALTERNATE(GPIO_InitStruct->Alternate)); - - /* Speed mode configuration */ - if (currentpin < LL_GPIO_PIN_8) - { - LL_GPIO_SetAFPin_0_7(GPIOx, currentpin, GPIO_InitStruct->Alternate); - } - else - { - LL_GPIO_SetAFPin_8_15(GPIOx, currentpin, GPIO_InitStruct->Alternate); - } - } - } - pinpos++; - } - - if ((GPIO_InitStruct->Mode == LL_GPIO_MODE_OUTPUT) || (GPIO_InitStruct->Mode == LL_GPIO_MODE_ALTERNATE)) - { - /* Check Output mode parameters */ - assert_param(IS_LL_GPIO_OUTPUT_TYPE(GPIO_InitStruct->OutputType)); - - /* Output mode configuration*/ - LL_GPIO_SetPinOutputType(GPIOx, GPIO_InitStruct->Pin, GPIO_InitStruct->OutputType); - - } - return (SUCCESS); -} - -/** - * @brief Set each @ref LL_GPIO_InitTypeDef field to default value. - * @param GPIO_InitStruct pointer to a @ref LL_GPIO_InitTypeDef structure - * whose fields will be set to default values. - * @retval None - */ - -void LL_GPIO_StructInit(LL_GPIO_InitTypeDef *GPIO_InitStruct) -{ - /* Reset GPIO init structure parameters values */ - GPIO_InitStruct->Pin = LL_GPIO_PIN_ALL; - GPIO_InitStruct->Mode = LL_GPIO_MODE_ANALOG; - GPIO_InitStruct->Speed = LL_GPIO_SPEED_FREQ_LOW; - GPIO_InitStruct->OutputType = LL_GPIO_OUTPUT_PUSHPULL; - GPIO_InitStruct->Pull = LL_GPIO_PULL_NO; - GPIO_InitStruct->Alternate = LL_GPIO_AF_0; -} - -/** - * @} - */ - -/** - * @} - */ - -/** - * @} - */ - -#endif /* defined (GPIOA) || defined (GPIOB) || defined (GPIOC) || defined (GPIOD) || defined (GPIOE) || defined (GPIOF) */ - -/** - * @} - */ - -#endif /* USE_FULL_LL_DRIVER */ - -/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_i2c.c b/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_i2c.c deleted file mode 100644 index 00b20ac..0000000 --- a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_i2c.c +++ /dev/null @@ -1,229 +0,0 @@ -/** - ****************************************************************************** - * @file stm32f0xx_ll_i2c.c - * @author MCD Application Team - * @brief I2C LL module driver. - ****************************************************************************** - * @attention - * - *

© Copyright (c) 2016 STMicroelectronics. - * All rights reserved.

- * - * This software component is licensed by ST under BSD 3-Clause license, - * the "License"; You may not use this file except in compliance with the - * License. You may obtain a copy of the License at: - * opensource.org/licenses/BSD-3-Clause - * - ****************************************************************************** - */ -#if defined(USE_FULL_LL_DRIVER) - -/* Includes ------------------------------------------------------------------*/ -#include "stm32f0xx_ll_i2c.h" -#include "stm32f0xx_ll_bus.h" -#ifdef USE_FULL_ASSERT -#include "stm32_assert.h" -#else -#define assert_param(expr) ((void)0U) -#endif - -/** @addtogroup STM32F0xx_LL_Driver - * @{ - */ - -#if defined (I2C1) || defined (I2C2) - -/** @defgroup I2C_LL I2C - * @{ - */ - -/* Private types -------------------------------------------------------------*/ -/* Private variables ---------------------------------------------------------*/ -/* Private constants ---------------------------------------------------------*/ -/* Private macros ------------------------------------------------------------*/ -/** @addtogroup I2C_LL_Private_Macros - * @{ - */ - -#define IS_LL_I2C_PERIPHERAL_MODE(__VALUE__) (((__VALUE__) == LL_I2C_MODE_I2C) || \ - ((__VALUE__) == LL_I2C_MODE_SMBUS_HOST) || \ - ((__VALUE__) == LL_I2C_MODE_SMBUS_DEVICE) || \ - ((__VALUE__) == LL_I2C_MODE_SMBUS_DEVICE_ARP)) - -#define IS_LL_I2C_ANALOG_FILTER(__VALUE__) (((__VALUE__) == LL_I2C_ANALOGFILTER_ENABLE) || \ - ((__VALUE__) == LL_I2C_ANALOGFILTER_DISABLE)) - -#define IS_LL_I2C_DIGITAL_FILTER(__VALUE__) ((__VALUE__) <= 0x0000000FU) - -#define IS_LL_I2C_OWN_ADDRESS1(__VALUE__) ((__VALUE__) <= 0x000003FFU) - -#define IS_LL_I2C_TYPE_ACKNOWLEDGE(__VALUE__) (((__VALUE__) == LL_I2C_ACK) || \ - ((__VALUE__) == LL_I2C_NACK)) - -#define IS_LL_I2C_OWN_ADDRSIZE(__VALUE__) (((__VALUE__) == LL_I2C_OWNADDRESS1_7BIT) || \ - ((__VALUE__) == LL_I2C_OWNADDRESS1_10BIT)) -/** - * @} - */ - -/* Private function prototypes -----------------------------------------------*/ - -/* Exported functions --------------------------------------------------------*/ -/** @addtogroup I2C_LL_Exported_Functions - * @{ - */ - -/** @addtogroup I2C_LL_EF_Init - * @{ - */ - -/** - * @brief De-initialize the I2C registers to their default reset values. - * @param I2Cx I2C Instance. - * @retval An ErrorStatus enumeration value: - * - SUCCESS: I2C registers are de-initialized - * - ERROR: I2C registers are not de-initialized - */ -ErrorStatus LL_I2C_DeInit(I2C_TypeDef *I2Cx) -{ - ErrorStatus status = SUCCESS; - - /* Check the I2C Instance I2Cx */ - assert_param(IS_I2C_ALL_INSTANCE(I2Cx)); - - if (I2Cx == I2C1) - { - /* Force reset of I2C clock */ - LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_I2C1); - - /* Release reset of I2C clock */ - LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_I2C1); - } -#if defined(I2C2) - else if (I2Cx == I2C2) - { - /* Force reset of I2C clock */ - LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_I2C2); - - /* Release reset of I2C clock */ - LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_I2C2); - - } -#endif - else - { - status = ERROR; - } - - return status; -} - -/** - * @brief Initialize the I2C registers according to the specified parameters in I2C_InitStruct. - * @param I2Cx I2C Instance. - * @param I2C_InitStruct pointer to a @ref LL_I2C_InitTypeDef structure. - * @retval An ErrorStatus enumeration value: - * - SUCCESS: I2C registers are initialized - * - ERROR: Not applicable - */ -ErrorStatus LL_I2C_Init(I2C_TypeDef *I2Cx, LL_I2C_InitTypeDef *I2C_InitStruct) -{ - /* Check the I2C Instance I2Cx */ - assert_param(IS_I2C_ALL_INSTANCE(I2Cx)); - - /* Check the I2C parameters from I2C_InitStruct */ - assert_param(IS_LL_I2C_PERIPHERAL_MODE(I2C_InitStruct->PeripheralMode)); - assert_param(IS_LL_I2C_ANALOG_FILTER(I2C_InitStruct->AnalogFilter)); - assert_param(IS_LL_I2C_DIGITAL_FILTER(I2C_InitStruct->DigitalFilter)); - assert_param(IS_LL_I2C_OWN_ADDRESS1(I2C_InitStruct->OwnAddress1)); - assert_param(IS_LL_I2C_TYPE_ACKNOWLEDGE(I2C_InitStruct->TypeAcknowledge)); - assert_param(IS_LL_I2C_OWN_ADDRSIZE(I2C_InitStruct->OwnAddrSize)); - - /* Disable the selected I2Cx Peripheral */ - LL_I2C_Disable(I2Cx); - - /*---------------------------- I2Cx CR1 Configuration ------------------------ - * Configure the analog and digital noise filters with parameters : - * - AnalogFilter: I2C_CR1_ANFOFF bit - * - DigitalFilter: I2C_CR1_DNF[3:0] bits - */ - LL_I2C_ConfigFilters(I2Cx, I2C_InitStruct->AnalogFilter, I2C_InitStruct->DigitalFilter); - - /*---------------------------- I2Cx TIMINGR Configuration -------------------- - * Configure the SDA setup, hold time and the SCL high, low period with parameter : - * - Timing: I2C_TIMINGR_PRESC[3:0], I2C_TIMINGR_SCLDEL[3:0], I2C_TIMINGR_SDADEL[3:0], - * I2C_TIMINGR_SCLH[7:0] and I2C_TIMINGR_SCLL[7:0] bits - */ - LL_I2C_SetTiming(I2Cx, I2C_InitStruct->Timing); - - /* Enable the selected I2Cx Peripheral */ - LL_I2C_Enable(I2Cx); - - /*---------------------------- I2Cx OAR1 Configuration ----------------------- - * Disable, Configure and Enable I2Cx device own address 1 with parameters : - * - OwnAddress1: I2C_OAR1_OA1[9:0] bits - * - OwnAddrSize: I2C_OAR1_OA1MODE bit - */ - LL_I2C_DisableOwnAddress1(I2Cx); - LL_I2C_SetOwnAddress1(I2Cx, I2C_InitStruct->OwnAddress1, I2C_InitStruct->OwnAddrSize); - - /* OwnAdress1 == 0 is reserved for General Call address */ - if (I2C_InitStruct->OwnAddress1 != 0U) - { - LL_I2C_EnableOwnAddress1(I2Cx); - } - - /*---------------------------- I2Cx MODE Configuration ----------------------- - * Configure I2Cx peripheral mode with parameter : - * - PeripheralMode: I2C_CR1_SMBDEN and I2C_CR1_SMBHEN bits - */ - LL_I2C_SetMode(I2Cx, I2C_InitStruct->PeripheralMode); - - /*---------------------------- I2Cx CR2 Configuration ------------------------ - * Configure the ACKnowledge or Non ACKnowledge condition - * after the address receive match code or next received byte with parameter : - * - TypeAcknowledge: I2C_CR2_NACK bit - */ - LL_I2C_AcknowledgeNextData(I2Cx, I2C_InitStruct->TypeAcknowledge); - - return SUCCESS; -} - -/** - * @brief Set each @ref LL_I2C_InitTypeDef field to default value. - * @param I2C_InitStruct Pointer to a @ref LL_I2C_InitTypeDef structure. - * @retval None - */ -void LL_I2C_StructInit(LL_I2C_InitTypeDef *I2C_InitStruct) -{ - /* Set I2C_InitStruct fields to default values */ - I2C_InitStruct->PeripheralMode = LL_I2C_MODE_I2C; - I2C_InitStruct->Timing = 0U; - I2C_InitStruct->AnalogFilter = LL_I2C_ANALOGFILTER_ENABLE; - I2C_InitStruct->DigitalFilter = 0U; - I2C_InitStruct->OwnAddress1 = 0U; - I2C_InitStruct->TypeAcknowledge = LL_I2C_NACK; - I2C_InitStruct->OwnAddrSize = LL_I2C_OWNADDRESS1_7BIT; -} - -/** - * @} - */ - -/** - * @} - */ - -/** - * @} - */ - -#endif /* I2C1 || I2C2 */ - -/** - * @} - */ - -#endif /* USE_FULL_LL_DRIVER */ - -/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_pwr.c b/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_pwr.c deleted file mode 100644 index 2ffb50d..0000000 --- a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_pwr.c +++ /dev/null @@ -1,86 +0,0 @@ -/** - ****************************************************************************** - * @file stm32f0xx_ll_pwr.c - * @author MCD Application Team - * @brief PWR LL module driver. - ****************************************************************************** - * @attention - * - *

© Copyright (c) 2016 STMicroelectronics. - * All rights reserved.

- * - * This software component is licensed by ST under BSD 3-Clause license, - * the "License"; You may not use this file except in compliance with the - * License. You may obtain a copy of the License at: - * opensource.org/licenses/BSD-3-Clause - * - ****************************************************************************** - */ - -#if defined(USE_FULL_LL_DRIVER) - -/* Includes ------------------------------------------------------------------*/ -#include "stm32f0xx_ll_pwr.h" -#include "stm32f0xx_ll_bus.h" - -/** @addtogroup STM32F0xx_LL_Driver - * @{ - */ - -#if defined(PWR) - -/** @defgroup PWR_LL PWR - * @{ - */ - -/* Private types -------------------------------------------------------------*/ -/* Private variables ---------------------------------------------------------*/ -/* Private constants ---------------------------------------------------------*/ -/* Private macros ------------------------------------------------------------*/ -/* Private function prototypes -----------------------------------------------*/ - -/* Exported functions --------------------------------------------------------*/ -/** @addtogroup PWR_LL_Exported_Functions - * @{ - */ - -/** @addtogroup PWR_LL_EF_Init - * @{ - */ - -/** - * @brief De-initialize the PWR registers to their default reset values. - * @retval An ErrorStatus enumeration value: - * - SUCCESS: PWR registers are de-initialized - * - ERROR: not applicable - */ -ErrorStatus LL_PWR_DeInit(void) -{ - /* Force reset of PWR clock */ - LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_PWR); - - /* Release reset of PWR clock */ - LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_PWR); - - return SUCCESS; -} - -/** - * @} - */ - -/** - * @} - */ - -/** - * @} - */ -#endif /* defined(PWR) */ -/** - * @} - */ - -#endif /* USE_FULL_LL_DRIVER */ - -/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_rcc.c b/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_rcc.c deleted file mode 100644 index 83fe3e5..0000000 --- a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_rcc.c +++ /dev/null @@ -1,609 +0,0 @@ -/** - ****************************************************************************** - * @file stm32f0xx_ll_rcc.c - * @author MCD Application Team - * @brief RCC LL module driver. - ****************************************************************************** - * @attention - * - *

© Copyright (c) 2016 STMicroelectronics. - * All rights reserved.

- * - * This software component is licensed by ST under BSD 3-Clause license, - * the "License"; You may not use this file except in compliance with the - * License. You may obtain a copy of the License at: - * opensource.org/licenses/BSD-3-Clause - * - ****************************************************************************** - */ - -#if defined(USE_FULL_LL_DRIVER) - -/* Includes ------------------------------------------------------------------*/ -#include "stm32f0xx_ll_rcc.h" -#ifdef USE_FULL_ASSERT - #include "stm32_assert.h" -#else - #define assert_param(expr) ((void)0U) -#endif /* USE_FULL_ASSERT */ -/** @addtogroup STM32F0xx_LL_Driver - * @{ - */ - -#if defined(RCC) - -/** @defgroup RCC_LL RCC - * @{ - */ - -/* Private types -------------------------------------------------------------*/ -/* Private variables ---------------------------------------------------------*/ - -/* Private constants ---------------------------------------------------------*/ -/* Private macros ------------------------------------------------------------*/ -/** @addtogroup RCC_LL_Private_Macros - * @{ - */ -#if defined(RCC_CFGR3_USART2SW) && defined(RCC_CFGR3_USART3SW) -#define IS_LL_RCC_USART_CLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_USART1_CLKSOURCE) \ - || ((__VALUE__) == LL_RCC_USART2_CLKSOURCE) \ - || ((__VALUE__) == LL_RCC_USART3_CLKSOURCE)) -#elif defined(RCC_CFGR3_USART2SW) && !defined(RCC_CFGR3_USART3SW) -#define IS_LL_RCC_USART_CLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_USART1_CLKSOURCE) \ - || ((__VALUE__) == LL_RCC_USART2_CLKSOURCE)) -#elif defined(RCC_CFGR3_USART3SW) && !defined(RCC_CFGR3_USART2SW) -#define IS_LL_RCC_USART_CLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_USART1_CLKSOURCE) \ - || ((__VALUE__) == LL_RCC_USART3_CLKSOURCE)) -#else -#define IS_LL_RCC_USART_CLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_USART1_CLKSOURCE)) -#endif /* RCC_CFGR3_USART2SW && RCC_CFGR3_USART3SW */ - -#define IS_LL_RCC_I2C_CLKSOURCE(__VALUE__) ((__VALUE__) == LL_RCC_I2C1_CLKSOURCE) - -#if defined(USB) -#define IS_LL_RCC_USB_CLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_USB_CLKSOURCE)) -#endif /* USB */ - -#if defined(CEC) -#define IS_LL_RCC_CEC_CLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_CEC_CLKSOURCE)) -#endif /* CEC */ - -/** - * @} - */ - -/* Private function prototypes -----------------------------------------------*/ -/** @defgroup RCC_LL_Private_Functions RCC Private functions - * @{ - */ -uint32_t RCC_GetSystemClockFreq(void); -uint32_t RCC_GetHCLKClockFreq(uint32_t SYSCLK_Frequency); -uint32_t RCC_GetPCLK1ClockFreq(uint32_t HCLK_Frequency); -uint32_t RCC_PLL_GetFreqDomain_SYS(void); -/** - * @} - */ - - -/* Exported functions --------------------------------------------------------*/ -/** @addtogroup RCC_LL_Exported_Functions - * @{ - */ - -/** @addtogroup RCC_LL_EF_Init - * @{ - */ - -/** - * @brief Reset the RCC clock configuration to the default reset state. - * @note The default reset state of the clock configuration is given below: - * - HSI ON and used as system clock source - * - HSE and PLL OFF - * - AHB and APB1 prescaler set to 1. - * - CSS, MCO OFF - * - All interrupts disabled - * @note This function doesn't modify the configuration of the - * - Peripheral clocks - * - LSI, LSE and RTC clocks - * @retval An ErrorStatus enumeration value: - * - SUCCESS: RCC registers are de-initialized - * - ERROR: not applicable - */ -ErrorStatus LL_RCC_DeInit(void) -{ - __IO uint32_t vl_mask; - - /* Set HSION bit */ - LL_RCC_HSI_Enable(); - - /* Wait for HSI READY bit */ - while(LL_RCC_HSI_IsReady() != 1U) - {} - - /* Set HSITRIM bits to the reset value*/ - LL_RCC_HSI_SetCalibTrimming(0x10U); - - /* Reset SW, HPRE, PPRE and MCOSEL bits */ - vl_mask = 0xFFFFFFFFU; - CLEAR_BIT(vl_mask, (RCC_CFGR_SW | RCC_CFGR_HPRE | RCC_CFGR_PPRE | RCC_CFGR_MCOSEL)); - - /* Write new value in CFGR register */ - LL_RCC_WriteReg(CFGR, vl_mask); - - /* Wait till system clock source is ready */ - while(LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_HSI) - {} - - /* Read CR register */ - vl_mask = LL_RCC_ReadReg(CR); - - /* Reset HSEON, CSSON, PLLON bits */ - CLEAR_BIT(vl_mask, (RCC_CR_PLLON | RCC_CR_CSSON | RCC_CR_HSEON)); - - /* Write new value in CR register */ - LL_RCC_WriteReg(CR, vl_mask); - - /* Wait for PLL READY bit to be reset */ - while(LL_RCC_PLL_IsReady() != 0U) - {} - - /* Reset HSEBYP bit */ - LL_RCC_HSE_DisableBypass(); - - /* Reset CFGR register */ - LL_RCC_WriteReg(CFGR, 0x00000000U); - -#if defined(RCC_HSI48_SUPPORT) - /* Reset CR2 register */ - LL_RCC_WriteReg(CR2, 0x00000000U); - - /* Disable HSI48 */ - LL_RCC_HSI48_Disable(); - -#endif /*RCC_HSI48_SUPPORT*/ - /* Set HSI14TRIM/HSI14ON/HSI14DIS bits to the reset value*/ - LL_RCC_HSI14_SetCalibTrimming(0x10U); - LL_RCC_HSI14_Disable(); - LL_RCC_HSI14_EnableADCControl(); - - /* Reset CFGR2 register */ - LL_RCC_WriteReg(CFGR2, 0x00000000U); - - /* Reset CFGR3 register */ - LL_RCC_WriteReg(CFGR3, 0x00000000U); - - /* Clear pending flags */ -#if defined(RCC_HSI48_SUPPORT) - vl_mask = (LL_RCC_CIR_LSIRDYC | LL_RCC_CIR_LSERDYC | LL_RCC_CIR_HSIRDYC | LL_RCC_CIR_HSERDYC |\ - LL_RCC_CIR_PLLRDYC | LL_RCC_CIR_HSI14RDYC | LL_RCC_CIR_HSI48RDYC | LL_RCC_CIR_CSSC); -#else - vl_mask = (LL_RCC_CIR_LSIRDYC | LL_RCC_CIR_LSERDYC | LL_RCC_CIR_HSIRDYC | LL_RCC_CIR_HSERDYC |\ - LL_RCC_CIR_PLLRDYC | LL_RCC_CIR_HSI14RDYC | LL_RCC_CIR_CSSC); -#endif /* RCC_HSI48_SUPPORT */ - - /* Write new value in CIR register */ - LL_RCC_WriteReg(CIR, vl_mask); - - /* Disable all interrupts */ - LL_RCC_WriteReg(CIR, 0x00000000U); - - /* Clear reset flags */ - LL_RCC_ClearResetFlags(); - - return SUCCESS; -} - -/** - * @} - */ - -/** @addtogroup RCC_LL_EF_Get_Freq - * @brief Return the frequencies of different on chip clocks; System, AHB and APB1 buses clocks - * and different peripheral clocks available on the device. - * @note If SYSCLK source is HSI, function returns values based on HSI_VALUE(**) - * @note If SYSCLK source is HSE, function returns values based on HSE_VALUE(***) - * @note If SYSCLK source is PLL, function returns values based on - * HSI_VALUE(**) or HSE_VALUE(***) multiplied/divided by the PLL factors. - * @note (**) HSI_VALUE is a defined constant but the real value may vary - * depending on the variations in voltage and temperature. - * @note (***) HSE_VALUE is a defined constant, user has to ensure that - * HSE_VALUE is same as the real frequency of the crystal used. - * Otherwise, this function may have wrong result. - * @note The result of this function could be incorrect when using fractional - * value for HSE crystal. - * @note This function can be used by the user application to compute the - * baud-rate for the communication peripherals or configure other parameters. - * @{ - */ - -/** - * @brief Return the frequencies of different on chip clocks; System, AHB and APB1 buses clocks - * @note Each time SYSCLK, HCLK and/or PCLK1 clock changes, this function - * must be called to update structure fields. Otherwise, any - * configuration based on this function will be incorrect. - * @param RCC_Clocks pointer to a @ref LL_RCC_ClocksTypeDef structure which will hold the clocks frequencies - * @retval None - */ -void LL_RCC_GetSystemClocksFreq(LL_RCC_ClocksTypeDef *RCC_Clocks) -{ - /* Get SYSCLK frequency */ - RCC_Clocks->SYSCLK_Frequency = RCC_GetSystemClockFreq(); - - /* HCLK clock frequency */ - RCC_Clocks->HCLK_Frequency = RCC_GetHCLKClockFreq(RCC_Clocks->SYSCLK_Frequency); - - /* PCLK1 clock frequency */ - RCC_Clocks->PCLK1_Frequency = RCC_GetPCLK1ClockFreq(RCC_Clocks->HCLK_Frequency); -} - -/** - * @brief Return USARTx clock frequency - * @param USARTxSource This parameter can be one of the following values: - * @arg @ref LL_RCC_USART1_CLKSOURCE - * @arg @ref LL_RCC_USART2_CLKSOURCE (*) - * @arg @ref LL_RCC_USART3_CLKSOURCE (*) - * - * (*) value not defined in all devices. - * @retval USART clock frequency (in Hz) - * @arg @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator (HSI or LSE) is not ready - */ -uint32_t LL_RCC_GetUSARTClockFreq(uint32_t USARTxSource) -{ - uint32_t usart_frequency = LL_RCC_PERIPH_FREQUENCY_NO; - - /* Check parameter */ - assert_param(IS_LL_RCC_USART_CLKSOURCE(USARTxSource)); -#if defined(RCC_CFGR3_USART1SW) - if (USARTxSource == LL_RCC_USART1_CLKSOURCE) - { - /* USART1CLK clock frequency */ - switch (LL_RCC_GetUSARTClockSource(USARTxSource)) - { - case LL_RCC_USART1_CLKSOURCE_SYSCLK: /* USART1 Clock is System Clock */ - usart_frequency = RCC_GetSystemClockFreq(); - break; - - case LL_RCC_USART1_CLKSOURCE_HSI: /* USART1 Clock is HSI Osc. */ - if (LL_RCC_HSI_IsReady()) - { - usart_frequency = HSI_VALUE; - } - break; - - case LL_RCC_USART1_CLKSOURCE_LSE: /* USART1 Clock is LSE Osc. */ - if (LL_RCC_LSE_IsReady()) - { - usart_frequency = LSE_VALUE; - } - break; - - case LL_RCC_USART1_CLKSOURCE_PCLK1: /* USART1 Clock is PCLK1 */ - default: - usart_frequency = RCC_GetPCLK1ClockFreq(RCC_GetHCLKClockFreq(RCC_GetSystemClockFreq())); - break; - } - } -#endif /* RCC_CFGR3_USART1SW */ - -#if defined(RCC_CFGR3_USART2SW) - if (USARTxSource == LL_RCC_USART2_CLKSOURCE) - { - /* USART2CLK clock frequency */ - switch (LL_RCC_GetUSARTClockSource(USARTxSource)) - { - case LL_RCC_USART2_CLKSOURCE_SYSCLK: /* USART2 Clock is System Clock */ - usart_frequency = RCC_GetSystemClockFreq(); - break; - - case LL_RCC_USART2_CLKSOURCE_HSI: /* USART2 Clock is HSI Osc. */ - if (LL_RCC_HSI_IsReady()) - { - usart_frequency = HSI_VALUE; - } - break; - - case LL_RCC_USART2_CLKSOURCE_LSE: /* USART2 Clock is LSE Osc. */ - if (LL_RCC_LSE_IsReady()) - { - usart_frequency = LSE_VALUE; - } - break; - - case LL_RCC_USART2_CLKSOURCE_PCLK1: /* USART2 Clock is PCLK1 */ - default: - usart_frequency = RCC_GetPCLK1ClockFreq(RCC_GetHCLKClockFreq(RCC_GetSystemClockFreq())); - break; - } - } -#endif /* RCC_CFGR3_USART2SW */ - -#if defined(RCC_CFGR3_USART3SW) - if (USARTxSource == LL_RCC_USART3_CLKSOURCE) - { - /* USART3CLK clock frequency */ - switch (LL_RCC_GetUSARTClockSource(USARTxSource)) - { - case LL_RCC_USART3_CLKSOURCE_SYSCLK: /* USART3 Clock is System Clock */ - usart_frequency = RCC_GetSystemClockFreq(); - break; - - case LL_RCC_USART3_CLKSOURCE_HSI: /* USART3 Clock is HSI Osc. */ - if (LL_RCC_HSI_IsReady()) - { - usart_frequency = HSI_VALUE; - } - break; - - case LL_RCC_USART3_CLKSOURCE_LSE: /* USART3 Clock is LSE Osc. */ - if (LL_RCC_LSE_IsReady()) - { - usart_frequency = LSE_VALUE; - } - break; - - case LL_RCC_USART3_CLKSOURCE_PCLK1: /* USART3 Clock is PCLK1 */ - default: - usart_frequency = RCC_GetPCLK1ClockFreq(RCC_GetHCLKClockFreq(RCC_GetSystemClockFreq())); - break; - } - } - -#endif /* RCC_CFGR3_USART3SW */ - return usart_frequency; -} - -/** - * @brief Return I2Cx clock frequency - * @param I2CxSource This parameter can be one of the following values: - * @arg @ref LL_RCC_I2C1_CLKSOURCE - * @retval I2C clock frequency (in Hz) - * @arg @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that HSI oscillator is not ready - */ -uint32_t LL_RCC_GetI2CClockFreq(uint32_t I2CxSource) -{ - uint32_t i2c_frequency = LL_RCC_PERIPH_FREQUENCY_NO; - - /* Check parameter */ - assert_param(IS_LL_RCC_I2C_CLKSOURCE(I2CxSource)); - - /* I2C1 CLK clock frequency */ - if (I2CxSource == LL_RCC_I2C1_CLKSOURCE) - { - switch (LL_RCC_GetI2CClockSource(I2CxSource)) - { - case LL_RCC_I2C1_CLKSOURCE_SYSCLK: /* I2C1 Clock is System Clock */ - i2c_frequency = RCC_GetSystemClockFreq(); - break; - - case LL_RCC_I2C1_CLKSOURCE_HSI: /* I2C1 Clock is HSI Osc. */ - default: - if (LL_RCC_HSI_IsReady()) - { - i2c_frequency = HSI_VALUE; - } - break; - } - } - - return i2c_frequency; -} - -#if defined(USB) -/** - * @brief Return USBx clock frequency - * @param USBxSource This parameter can be one of the following values: - * @arg @ref LL_RCC_USB_CLKSOURCE - * @retval USB clock frequency (in Hz) - * @arg @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator (HSI48) or PLL is not ready - * @arg @ref LL_RCC_PERIPH_FREQUENCY_NA indicates that no clock source selected - */ -uint32_t LL_RCC_GetUSBClockFreq(uint32_t USBxSource) -{ - uint32_t usb_frequency = LL_RCC_PERIPH_FREQUENCY_NO; - - /* Check parameter */ - assert_param(IS_LL_RCC_USB_CLKSOURCE(USBxSource)); - - /* USBCLK clock frequency */ - switch (LL_RCC_GetUSBClockSource(USBxSource)) - { - case LL_RCC_USB_CLKSOURCE_PLL: /* PLL clock used as USB clock source */ - if (LL_RCC_PLL_IsReady()) - { - usb_frequency = RCC_PLL_GetFreqDomain_SYS(); - } - break; - -#if defined(RCC_CFGR3_USBSW_HSI48) - case LL_RCC_USB_CLKSOURCE_HSI48: /* HSI48 clock used as USB clock source */ - default: - if (LL_RCC_HSI48_IsReady()) - { - usb_frequency = HSI48_VALUE; - } - break; -#else - case LL_RCC_USB_CLKSOURCE_NONE: /* No clock used as USB clock source */ - default: - usb_frequency = LL_RCC_PERIPH_FREQUENCY_NA; - break; -#endif /* RCC_CFGR3_USBSW_HSI48 */ - } - - return usb_frequency; -} -#endif /* USB */ - -#if defined(CEC) -/** - * @brief Return CECx clock frequency - * @param CECxSource This parameter can be one of the following values: - * @arg @ref LL_RCC_CEC_CLKSOURCE - * @retval CEC clock frequency (in Hz) - * @arg @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillators (HSI or LSE) are not ready - */ -uint32_t LL_RCC_GetCECClockFreq(uint32_t CECxSource) -{ - uint32_t cec_frequency = LL_RCC_PERIPH_FREQUENCY_NO; - - /* Check parameter */ - assert_param(IS_LL_RCC_CEC_CLKSOURCE(CECxSource)); - - /* CECCLK clock frequency */ - switch (LL_RCC_GetCECClockSource(CECxSource)) - { - case LL_RCC_CEC_CLKSOURCE_HSI_DIV244: /* HSI / 244 clock used as CEC clock source */ - if (LL_RCC_HSI_IsReady()) - { - cec_frequency = HSI_VALUE / 244U; - } - break; - - case LL_RCC_CEC_CLKSOURCE_LSE: /* LSE clock used as CEC clock source */ - default: - if (LL_RCC_LSE_IsReady()) - { - cec_frequency = LSE_VALUE; - } - break; - } - - return cec_frequency; -} -#endif /* CEC */ - -/** - * @} - */ - -/** - * @} - */ - -/** @addtogroup RCC_LL_Private_Functions - * @{ - */ - -/** - * @brief Return SYSTEM clock frequency - * @retval SYSTEM clock frequency (in Hz) - */ -uint32_t RCC_GetSystemClockFreq(void) -{ - uint32_t frequency = 0U; - - /* Get SYSCLK source -------------------------------------------------------*/ - switch (LL_RCC_GetSysClkSource()) - { - case LL_RCC_SYS_CLKSOURCE_STATUS_HSI: /* HSI used as system clock source */ - frequency = HSI_VALUE; - break; - - case LL_RCC_SYS_CLKSOURCE_STATUS_HSE: /* HSE used as system clock source */ - frequency = HSE_VALUE; - break; - - case LL_RCC_SYS_CLKSOURCE_STATUS_PLL: /* PLL used as system clock source */ - frequency = RCC_PLL_GetFreqDomain_SYS(); - break; - -#if defined(RCC_HSI48_SUPPORT) - case LL_RCC_SYS_CLKSOURCE_STATUS_HSI48:/* HSI48 used as system clock source */ - frequency = HSI48_VALUE; - break; -#endif /* RCC_HSI48_SUPPORT */ - - default: - frequency = HSI_VALUE; - break; - } - - return frequency; -} - -/** - * @brief Return HCLK clock frequency - * @param SYSCLK_Frequency SYSCLK clock frequency - * @retval HCLK clock frequency (in Hz) - */ -uint32_t RCC_GetHCLKClockFreq(uint32_t SYSCLK_Frequency) -{ - /* HCLK clock frequency */ - return __LL_RCC_CALC_HCLK_FREQ(SYSCLK_Frequency, LL_RCC_GetAHBPrescaler()); -} - -/** - * @brief Return PCLK1 clock frequency - * @param HCLK_Frequency HCLK clock frequency - * @retval PCLK1 clock frequency (in Hz) - */ -uint32_t RCC_GetPCLK1ClockFreq(uint32_t HCLK_Frequency) -{ - /* PCLK1 clock frequency */ - return __LL_RCC_CALC_PCLK1_FREQ(HCLK_Frequency, LL_RCC_GetAPB1Prescaler()); -} -/** - * @brief Return PLL clock frequency used for system domain - * @retval PLL clock frequency (in Hz) - */ -uint32_t RCC_PLL_GetFreqDomain_SYS(void) -{ - uint32_t pllinputfreq = 0U, pllsource = 0U; - - /* PLL_VCO = (HSE_VALUE or HSI_VALUE / PLL divider) * PLL Multiplicator */ - - /* Get PLL source */ - pllsource = LL_RCC_PLL_GetMainSource(); - - switch (pllsource) - { -#if defined(RCC_PLLSRC_PREDIV1_SUPPORT) - case LL_RCC_PLLSOURCE_HSI: /* HSI used as PLL clock source */ - pllinputfreq = HSI_VALUE; -#else - case LL_RCC_PLLSOURCE_HSI_DIV_2: /* HSI used as PLL clock source */ - pllinputfreq = HSI_VALUE / 2U; -#endif /* RCC_PLLSRC_PREDIV1_SUPPORT */ - break; - -#if defined(RCC_HSI48_SUPPORT) - case LL_RCC_PLLSOURCE_HSI48: /* HSI48 used as PLL clock source */ - pllinputfreq = HSI48_VALUE; - break; -#endif /* RCC_HSI48_SUPPORT */ - - case LL_RCC_PLLSOURCE_HSE: /* HSE used as PLL clock source */ - pllinputfreq = HSE_VALUE; - break; - - default: -#if defined(RCC_PLLSRC_PREDIV1_SUPPORT) - pllinputfreq = HSI_VALUE; -#else - pllinputfreq = HSI_VALUE / 2U; -#endif /* RCC_PLLSRC_PREDIV1_SUPPORT */ - break; - } -#if defined(RCC_PLLSRC_PREDIV1_SUPPORT) - return __LL_RCC_CALC_PLLCLK_FREQ(pllinputfreq, LL_RCC_PLL_GetMultiplicator(), LL_RCC_PLL_GetPrediv()); -#else - return __LL_RCC_CALC_PLLCLK_FREQ((pllinputfreq / (LL_RCC_PLL_GetPrediv() + 1U)), LL_RCC_PLL_GetMultiplicator()); -#endif /* RCC_PLLSRC_PREDIV1_SUPPORT */ -} -/** - * @} - */ - -/** - * @} - */ - -#endif /* defined(RCC) */ - -/** - * @} - */ - -#endif /* USE_FULL_LL_DRIVER */ - -/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_rtc.c b/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_rtc.c deleted file mode 100644 index b9eb1ef..0000000 --- a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_rtc.c +++ /dev/null @@ -1,725 +0,0 @@ -/** - ****************************************************************************** - * @file stm32f0xx_ll_rtc.c - * @author MCD Application Team - * @brief RTC LL module driver. - ****************************************************************************** - * @attention - * - *

© Copyright (c) 2016 STMicroelectronics. - * All rights reserved.

- * - * This software component is licensed by ST under BSD 3-Clause license, - * the "License"; You may not use this file except in compliance with the - * License. You may obtain a copy of the License at: - * opensource.org/licenses/BSD-3-Clause - * - ****************************************************************************** - */ - -#if defined(USE_FULL_LL_DRIVER) - -/* Includes ------------------------------------------------------------------*/ -#include "stm32f0xx_ll_rtc.h" -#include "stm32f0xx_ll_cortex.h" -#ifdef USE_FULL_ASSERT -#include "stm32_assert.h" -#else -#define assert_param(expr) ((void)0U) -#endif - -/** @addtogroup STM32F0xx_LL_Driver - * @{ - */ - -#if defined(RTC) - -/** @addtogroup RTC_LL - * @{ - */ - -/* Private types -------------------------------------------------------------*/ -/* Private variables ---------------------------------------------------------*/ -/* Private constants ---------------------------------------------------------*/ -/** @addtogroup RTC_LL_Private_Constants - * @{ - */ -/* Default values used for prescaler */ -#define RTC_ASYNCH_PRESC_DEFAULT 0x0000007FU -#define RTC_SYNCH_PRESC_DEFAULT 0x000000FFU - -/* Values used for timeout */ -#define RTC_INITMODE_TIMEOUT 1000U /* 1s when tick set to 1ms */ -#define RTC_SYNCHRO_TIMEOUT 1000U /* 1s when tick set to 1ms */ -/** - * @} - */ - -/* Private macros ------------------------------------------------------------*/ -/** @addtogroup RTC_LL_Private_Macros - * @{ - */ - -#define IS_LL_RTC_HOURFORMAT(__VALUE__) (((__VALUE__) == LL_RTC_HOURFORMAT_24HOUR) \ - || ((__VALUE__) == LL_RTC_HOURFORMAT_AMPM)) - -#define IS_LL_RTC_ASYNCH_PREDIV(__VALUE__) ((__VALUE__) <= 0x7FU) - -#define IS_LL_RTC_SYNCH_PREDIV(__VALUE__) ((__VALUE__) <= 0x7FFFU) - -#define IS_LL_RTC_FORMAT(__VALUE__) (((__VALUE__) == LL_RTC_FORMAT_BIN) \ - || ((__VALUE__) == LL_RTC_FORMAT_BCD)) - -#define IS_LL_RTC_TIME_FORMAT(__VALUE__) (((__VALUE__) == LL_RTC_TIME_FORMAT_AM_OR_24) \ - || ((__VALUE__) == LL_RTC_TIME_FORMAT_PM)) - -#define IS_LL_RTC_HOUR12(__HOUR__) (((__HOUR__) > 0U) && ((__HOUR__) <= 12U)) -#define IS_LL_RTC_HOUR24(__HOUR__) ((__HOUR__) <= 23U) -#define IS_LL_RTC_MINUTES(__MINUTES__) ((__MINUTES__) <= 59U) -#define IS_LL_RTC_SECONDS(__SECONDS__) ((__SECONDS__) <= 59U) - -#define IS_LL_RTC_WEEKDAY(__VALUE__) (((__VALUE__) == LL_RTC_WEEKDAY_MONDAY) \ - || ((__VALUE__) == LL_RTC_WEEKDAY_TUESDAY) \ - || ((__VALUE__) == LL_RTC_WEEKDAY_WEDNESDAY) \ - || ((__VALUE__) == LL_RTC_WEEKDAY_THURSDAY) \ - || ((__VALUE__) == LL_RTC_WEEKDAY_FRIDAY) \ - || ((__VALUE__) == LL_RTC_WEEKDAY_SATURDAY) \ - || ((__VALUE__) == LL_RTC_WEEKDAY_SUNDAY)) - -#define IS_LL_RTC_DAY(__DAY__) (((__DAY__) >= 1U) && ((__DAY__) <= 31U)) - -#define IS_LL_RTC_MONTH(__VALUE__) (((__VALUE__) == LL_RTC_MONTH_JANUARY) \ - || ((__VALUE__) == LL_RTC_MONTH_FEBRUARY) \ - || ((__VALUE__) == LL_RTC_MONTH_MARCH) \ - || ((__VALUE__) == LL_RTC_MONTH_APRIL) \ - || ((__VALUE__) == LL_RTC_MONTH_MAY) \ - || ((__VALUE__) == LL_RTC_MONTH_JUNE) \ - || ((__VALUE__) == LL_RTC_MONTH_JULY) \ - || ((__VALUE__) == LL_RTC_MONTH_AUGUST) \ - || ((__VALUE__) == LL_RTC_MONTH_SEPTEMBER) \ - || ((__VALUE__) == LL_RTC_MONTH_OCTOBER) \ - || ((__VALUE__) == LL_RTC_MONTH_NOVEMBER) \ - || ((__VALUE__) == LL_RTC_MONTH_DECEMBER)) - -#define IS_LL_RTC_YEAR(__YEAR__) ((__YEAR__) <= 99U) - -#define IS_LL_RTC_ALMA_MASK(__VALUE__) (((__VALUE__) == LL_RTC_ALMA_MASK_NONE) \ - || ((__VALUE__) == LL_RTC_ALMA_MASK_DATEWEEKDAY) \ - || ((__VALUE__) == LL_RTC_ALMA_MASK_HOURS) \ - || ((__VALUE__) == LL_RTC_ALMA_MASK_MINUTES) \ - || ((__VALUE__) == LL_RTC_ALMA_MASK_SECONDS) \ - || ((__VALUE__) == LL_RTC_ALMA_MASK_ALL)) - - -#define IS_LL_RTC_ALMA_DATE_WEEKDAY_SEL(__SEL__) (((__SEL__) == LL_RTC_ALMA_DATEWEEKDAYSEL_DATE) || \ - ((__SEL__) == LL_RTC_ALMA_DATEWEEKDAYSEL_WEEKDAY)) - - -/** - * @} - */ -/* Private function prototypes -----------------------------------------------*/ -/* Exported functions --------------------------------------------------------*/ -/** @addtogroup RTC_LL_Exported_Functions - * @{ - */ - -/** @addtogroup RTC_LL_EF_Init - * @{ - */ - -/** - * @brief De-Initializes the RTC registers to their default reset values. - * @note This function doesn't reset the RTC Clock source and RTC Backup Data - * registers. - * @param RTCx RTC Instance - * @retval An ErrorStatus enumeration value: - * - SUCCESS: RTC registers are de-initialized - * - ERROR: RTC registers are not de-initialized - */ -ErrorStatus LL_RTC_DeInit(RTC_TypeDef *RTCx) -{ - ErrorStatus status = ERROR; - - /* Check the parameter */ - assert_param(IS_RTC_ALL_INSTANCE(RTCx)); - - /* Disable the write protection for RTC registers */ - LL_RTC_DisableWriteProtection(RTCx); - - /* Set Initialization mode */ - if (LL_RTC_EnterInitMode(RTCx) != ERROR) - { - /* Reset TR, DR and CR registers */ - LL_RTC_WriteReg(RTCx, TR, 0x00000000U); -#if defined(RTC_WAKEUP_SUPPORT) - LL_RTC_WriteReg(RTCx, WUTR, RTC_WUTR_WUT); -#endif /* RTC_WAKEUP_SUPPORT */ - LL_RTC_WriteReg(RTCx, DR, (RTC_DR_WDU_0 | RTC_DR_MU_0 | RTC_DR_DU_0)); - /* Reset All CR bits except CR[2:0] */ -#if defined(RTC_WAKEUP_SUPPORT) - LL_RTC_WriteReg(RTCx, CR, (LL_RTC_ReadReg(RTCx, CR) & RTC_CR_WUCKSEL)); -#else - LL_RTC_WriteReg(RTCx, CR, 0x00000000U); -#endif /* RTC_WAKEUP_SUPPORT */ - LL_RTC_WriteReg(RTCx, PRER, (RTC_PRER_PREDIV_A | RTC_SYNCH_PRESC_DEFAULT)); - LL_RTC_WriteReg(RTCx, ALRMAR, 0x00000000U); - LL_RTC_WriteReg(RTCx, SHIFTR, 0x00000000U); - LL_RTC_WriteReg(RTCx, CALR, 0x00000000U); - LL_RTC_WriteReg(RTCx, ALRMASSR, 0x00000000U); - - /* Reset ISR register and exit initialization mode */ - LL_RTC_WriteReg(RTCx, ISR, 0x00000000U); - - /* Reset Tamper and alternate functions configuration register */ - LL_RTC_WriteReg(RTCx, TAFCR, 0x00000000U); - - /* Wait till the RTC RSF flag is set */ - status = LL_RTC_WaitForSynchro(RTCx); - } - - /* Enable the write protection for RTC registers */ - LL_RTC_EnableWriteProtection(RTCx); - - return status; -} - -/** - * @brief Initializes the RTC registers according to the specified parameters - * in RTC_InitStruct. - * @param RTCx RTC Instance - * @param RTC_InitStruct pointer to a @ref LL_RTC_InitTypeDef structure that contains - * the configuration information for the RTC peripheral. - * @note The RTC Prescaler register is write protected and can be written in - * initialization mode only. - * @retval An ErrorStatus enumeration value: - * - SUCCESS: RTC registers are initialized - * - ERROR: RTC registers are not initialized - */ -ErrorStatus LL_RTC_Init(RTC_TypeDef *RTCx, LL_RTC_InitTypeDef *RTC_InitStruct) -{ - ErrorStatus status = ERROR; - - /* Check the parameters */ - assert_param(IS_RTC_ALL_INSTANCE(RTCx)); - assert_param(IS_LL_RTC_HOURFORMAT(RTC_InitStruct->HourFormat)); - assert_param(IS_LL_RTC_ASYNCH_PREDIV(RTC_InitStruct->AsynchPrescaler)); - assert_param(IS_LL_RTC_SYNCH_PREDIV(RTC_InitStruct->SynchPrescaler)); - - /* Disable the write protection for RTC registers */ - LL_RTC_DisableWriteProtection(RTCx); - - /* Set Initialization mode */ - if (LL_RTC_EnterInitMode(RTCx) != ERROR) - { - /* Set Hour Format */ - LL_RTC_SetHourFormat(RTCx, RTC_InitStruct->HourFormat); - - /* Configure Synchronous and Asynchronous prescaler factor */ - LL_RTC_SetSynchPrescaler(RTCx, RTC_InitStruct->SynchPrescaler); - LL_RTC_SetAsynchPrescaler(RTCx, RTC_InitStruct->AsynchPrescaler); - - /* Exit Initialization mode */ - LL_RTC_DisableInitMode(RTCx); - - status = SUCCESS; - } - /* Enable the write protection for RTC registers */ - LL_RTC_EnableWriteProtection(RTCx); - - return status; -} - -/** - * @brief Set each @ref LL_RTC_InitTypeDef field to default value. - * @param RTC_InitStruct pointer to a @ref LL_RTC_InitTypeDef structure which will be initialized. - * @retval None - */ -void LL_RTC_StructInit(LL_RTC_InitTypeDef *RTC_InitStruct) -{ - /* Set RTC_InitStruct fields to default values */ - RTC_InitStruct->HourFormat = LL_RTC_HOURFORMAT_24HOUR; - RTC_InitStruct->AsynchPrescaler = RTC_ASYNCH_PRESC_DEFAULT; - RTC_InitStruct->SynchPrescaler = RTC_SYNCH_PRESC_DEFAULT; -} - -/** - * @brief Set the RTC current time. - * @param RTCx RTC Instance - * @param RTC_Format This parameter can be one of the following values: - * @arg @ref LL_RTC_FORMAT_BIN - * @arg @ref LL_RTC_FORMAT_BCD - * @param RTC_TimeStruct pointer to a RTC_TimeTypeDef structure that contains - * the time configuration information for the RTC. - * @retval An ErrorStatus enumeration value: - * - SUCCESS: RTC Time register is configured - * - ERROR: RTC Time register is not configured - */ -ErrorStatus LL_RTC_TIME_Init(RTC_TypeDef *RTCx, uint32_t RTC_Format, LL_RTC_TimeTypeDef *RTC_TimeStruct) -{ - ErrorStatus status = ERROR; - - /* Check the parameters */ - assert_param(IS_RTC_ALL_INSTANCE(RTCx)); - assert_param(IS_LL_RTC_FORMAT(RTC_Format)); - - if (RTC_Format == LL_RTC_FORMAT_BIN) - { - if (LL_RTC_GetHourFormat(RTCx) != LL_RTC_HOURFORMAT_24HOUR) - { - assert_param(IS_LL_RTC_HOUR12(RTC_TimeStruct->Hours)); - assert_param(IS_LL_RTC_TIME_FORMAT(RTC_TimeStruct->TimeFormat)); - } - else - { - RTC_TimeStruct->TimeFormat = 0x00U; - assert_param(IS_LL_RTC_HOUR24(RTC_TimeStruct->Hours)); - } - assert_param(IS_LL_RTC_MINUTES(RTC_TimeStruct->Minutes)); - assert_param(IS_LL_RTC_SECONDS(RTC_TimeStruct->Seconds)); - } - else - { - if (LL_RTC_GetHourFormat(RTCx) != LL_RTC_HOURFORMAT_24HOUR) - { - assert_param(IS_LL_RTC_HOUR12(__LL_RTC_CONVERT_BCD2BIN(RTC_TimeStruct->Hours))); - assert_param(IS_LL_RTC_TIME_FORMAT(RTC_TimeStruct->TimeFormat)); - } - else - { - RTC_TimeStruct->TimeFormat = 0x00U; - assert_param(IS_LL_RTC_HOUR24(__LL_RTC_CONVERT_BCD2BIN(RTC_TimeStruct->Hours))); - } - assert_param(IS_LL_RTC_MINUTES(__LL_RTC_CONVERT_BCD2BIN(RTC_TimeStruct->Minutes))); - assert_param(IS_LL_RTC_SECONDS(__LL_RTC_CONVERT_BCD2BIN(RTC_TimeStruct->Seconds))); - } - - /* Disable the write protection for RTC registers */ - LL_RTC_DisableWriteProtection(RTCx); - - /* Set Initialization mode */ - if (LL_RTC_EnterInitMode(RTCx) != ERROR) - { - /* Check the input parameters format */ - if (RTC_Format != LL_RTC_FORMAT_BIN) - { - LL_RTC_TIME_Config(RTCx, RTC_TimeStruct->TimeFormat, RTC_TimeStruct->Hours, - RTC_TimeStruct->Minutes, RTC_TimeStruct->Seconds); - } - else - { - LL_RTC_TIME_Config(RTCx, RTC_TimeStruct->TimeFormat, __LL_RTC_CONVERT_BIN2BCD(RTC_TimeStruct->Hours), - __LL_RTC_CONVERT_BIN2BCD(RTC_TimeStruct->Minutes), - __LL_RTC_CONVERT_BIN2BCD(RTC_TimeStruct->Seconds)); - } - - /* Exit Initialization mode */ - LL_RTC_DisableInitMode(RTC); - - /* If RTC_CR_BYPSHAD bit = 0, wait for synchro else this check is not needed */ - if (LL_RTC_IsShadowRegBypassEnabled(RTCx) == 0U) - { - status = LL_RTC_WaitForSynchro(RTCx); - } - else - { - status = SUCCESS; - } - } - /* Enable the write protection for RTC registers */ - LL_RTC_EnableWriteProtection(RTCx); - - return status; -} - -/** - * @brief Set each @ref LL_RTC_TimeTypeDef field to default value (Time = 00h:00min:00sec). - * @param RTC_TimeStruct pointer to a @ref LL_RTC_TimeTypeDef structure which will be initialized. - * @retval None - */ -void LL_RTC_TIME_StructInit(LL_RTC_TimeTypeDef *RTC_TimeStruct) -{ - /* Time = 00h:00min:00sec */ - RTC_TimeStruct->TimeFormat = LL_RTC_TIME_FORMAT_AM_OR_24; - RTC_TimeStruct->Hours = 0U; - RTC_TimeStruct->Minutes = 0U; - RTC_TimeStruct->Seconds = 0U; -} - -/** - * @brief Set the RTC current date. - * @param RTCx RTC Instance - * @param RTC_Format This parameter can be one of the following values: - * @arg @ref LL_RTC_FORMAT_BIN - * @arg @ref LL_RTC_FORMAT_BCD - * @param RTC_DateStruct pointer to a RTC_DateTypeDef structure that contains - * the date configuration information for the RTC. - * @retval An ErrorStatus enumeration value: - * - SUCCESS: RTC Day register is configured - * - ERROR: RTC Day register is not configured - */ -ErrorStatus LL_RTC_DATE_Init(RTC_TypeDef *RTCx, uint32_t RTC_Format, LL_RTC_DateTypeDef *RTC_DateStruct) -{ - ErrorStatus status = ERROR; - - /* Check the parameters */ - assert_param(IS_RTC_ALL_INSTANCE(RTCx)); - assert_param(IS_LL_RTC_FORMAT(RTC_Format)); - - if ((RTC_Format == LL_RTC_FORMAT_BIN) && ((RTC_DateStruct->Month & 0x10U) == 0x10U)) - { - RTC_DateStruct->Month = (RTC_DateStruct->Month & (uint32_t)~(0x10U)) + 0x0AU; - } - if (RTC_Format == LL_RTC_FORMAT_BIN) - { - assert_param(IS_LL_RTC_YEAR(RTC_DateStruct->Year)); - assert_param(IS_LL_RTC_MONTH(RTC_DateStruct->Month)); - assert_param(IS_LL_RTC_DAY(RTC_DateStruct->Day)); - } - else - { - assert_param(IS_LL_RTC_YEAR(__LL_RTC_CONVERT_BCD2BIN(RTC_DateStruct->Year))); - assert_param(IS_LL_RTC_MONTH(__LL_RTC_CONVERT_BCD2BIN(RTC_DateStruct->Month))); - assert_param(IS_LL_RTC_DAY(__LL_RTC_CONVERT_BCD2BIN(RTC_DateStruct->Day))); - } - assert_param(IS_LL_RTC_WEEKDAY(RTC_DateStruct->WeekDay)); - - /* Disable the write protection for RTC registers */ - LL_RTC_DisableWriteProtection(RTCx); - - /* Set Initialization mode */ - if (LL_RTC_EnterInitMode(RTCx) != ERROR) - { - /* Check the input parameters format */ - if (RTC_Format != LL_RTC_FORMAT_BIN) - { - LL_RTC_DATE_Config(RTCx, RTC_DateStruct->WeekDay, RTC_DateStruct->Day, RTC_DateStruct->Month, RTC_DateStruct->Year); - } - else - { - LL_RTC_DATE_Config(RTCx, RTC_DateStruct->WeekDay, __LL_RTC_CONVERT_BIN2BCD(RTC_DateStruct->Day), - __LL_RTC_CONVERT_BIN2BCD(RTC_DateStruct->Month), __LL_RTC_CONVERT_BIN2BCD(RTC_DateStruct->Year)); - } - - /* Exit Initialization mode */ - LL_RTC_DisableInitMode(RTC); - - /* If RTC_CR_BYPSHAD bit = 0, wait for synchro else this check is not needed */ - if (LL_RTC_IsShadowRegBypassEnabled(RTCx) == 0U) - { - status = LL_RTC_WaitForSynchro(RTCx); - } - else - { - status = SUCCESS; - } - } - /* Enable the write protection for RTC registers */ - LL_RTC_EnableWriteProtection(RTCx); - - return status; -} - -/** - * @brief Set each @ref LL_RTC_DateTypeDef field to default value (date = Monday, January 01 xx00) - * @param RTC_DateStruct pointer to a @ref LL_RTC_DateTypeDef structure which will be initialized. - * @retval None - */ -void LL_RTC_DATE_StructInit(LL_RTC_DateTypeDef *RTC_DateStruct) -{ - /* Monday, January 01 xx00 */ - RTC_DateStruct->WeekDay = LL_RTC_WEEKDAY_MONDAY; - RTC_DateStruct->Day = 1U; - RTC_DateStruct->Month = LL_RTC_MONTH_JANUARY; - RTC_DateStruct->Year = 0U; -} - -/** - * @brief Set the RTC Alarm A. - * @note The Alarm register can only be written when the corresponding Alarm - * is disabled (Use @ref LL_RTC_ALMA_Disable function). - * @param RTCx RTC Instance - * @param RTC_Format This parameter can be one of the following values: - * @arg @ref LL_RTC_FORMAT_BIN - * @arg @ref LL_RTC_FORMAT_BCD - * @param RTC_AlarmStruct pointer to a @ref LL_RTC_AlarmTypeDef structure that - * contains the alarm configuration parameters. - * @retval An ErrorStatus enumeration value: - * - SUCCESS: ALARMA registers are configured - * - ERROR: ALARMA registers are not configured - */ -ErrorStatus LL_RTC_ALMA_Init(RTC_TypeDef *RTCx, uint32_t RTC_Format, LL_RTC_AlarmTypeDef *RTC_AlarmStruct) -{ - /* Check the parameters */ - assert_param(IS_RTC_ALL_INSTANCE(RTCx)); - assert_param(IS_LL_RTC_FORMAT(RTC_Format)); - assert_param(IS_LL_RTC_ALMA_MASK(RTC_AlarmStruct->AlarmMask)); - assert_param(IS_LL_RTC_ALMA_DATE_WEEKDAY_SEL(RTC_AlarmStruct->AlarmDateWeekDaySel)); - - if (RTC_Format == LL_RTC_FORMAT_BIN) - { - if (LL_RTC_GetHourFormat(RTCx) != LL_RTC_HOURFORMAT_24HOUR) - { - assert_param(IS_LL_RTC_HOUR12(RTC_AlarmStruct->AlarmTime.Hours)); - assert_param(IS_LL_RTC_TIME_FORMAT(RTC_AlarmStruct->AlarmTime.TimeFormat)); - } - else - { - RTC_AlarmStruct->AlarmTime.TimeFormat = 0x00U; - assert_param(IS_LL_RTC_HOUR24(RTC_AlarmStruct->AlarmTime.Hours)); - } - assert_param(IS_LL_RTC_MINUTES(RTC_AlarmStruct->AlarmTime.Minutes)); - assert_param(IS_LL_RTC_SECONDS(RTC_AlarmStruct->AlarmTime.Seconds)); - - if (RTC_AlarmStruct->AlarmDateWeekDaySel == LL_RTC_ALMA_DATEWEEKDAYSEL_DATE) - { - assert_param(IS_LL_RTC_DAY(RTC_AlarmStruct->AlarmDateWeekDay)); - } - else - { - assert_param(IS_LL_RTC_WEEKDAY(RTC_AlarmStruct->AlarmDateWeekDay)); - } - } - else - { - if (LL_RTC_GetHourFormat(RTCx) != LL_RTC_HOURFORMAT_24HOUR) - { - assert_param(IS_LL_RTC_HOUR12(__LL_RTC_CONVERT_BCD2BIN(RTC_AlarmStruct->AlarmTime.Hours))); - assert_param(IS_LL_RTC_TIME_FORMAT(RTC_AlarmStruct->AlarmTime.TimeFormat)); - } - else - { - RTC_AlarmStruct->AlarmTime.TimeFormat = 0x00U; - assert_param(IS_LL_RTC_HOUR24(__LL_RTC_CONVERT_BCD2BIN(RTC_AlarmStruct->AlarmTime.Hours))); - } - - assert_param(IS_LL_RTC_MINUTES(__LL_RTC_CONVERT_BCD2BIN(RTC_AlarmStruct->AlarmTime.Minutes))); - assert_param(IS_LL_RTC_SECONDS(__LL_RTC_CONVERT_BCD2BIN(RTC_AlarmStruct->AlarmTime.Seconds))); - - if (RTC_AlarmStruct->AlarmDateWeekDaySel == LL_RTC_ALMA_DATEWEEKDAYSEL_DATE) - { - assert_param(IS_LL_RTC_DAY(__LL_RTC_CONVERT_BCD2BIN(RTC_AlarmStruct->AlarmDateWeekDay))); - } - else - { - assert_param(IS_LL_RTC_WEEKDAY(__LL_RTC_CONVERT_BCD2BIN(RTC_AlarmStruct->AlarmDateWeekDay))); - } - } - - /* Disable the write protection for RTC registers */ - LL_RTC_DisableWriteProtection(RTCx); - - /* Select weekday selection */ - if (RTC_AlarmStruct->AlarmDateWeekDaySel == LL_RTC_ALMA_DATEWEEKDAYSEL_DATE) - { - /* Set the date for ALARM */ - LL_RTC_ALMA_DisableWeekday(RTCx); - if (RTC_Format != LL_RTC_FORMAT_BIN) - { - LL_RTC_ALMA_SetDay(RTCx, RTC_AlarmStruct->AlarmDateWeekDay); - } - else - { - LL_RTC_ALMA_SetDay(RTCx, __LL_RTC_CONVERT_BIN2BCD(RTC_AlarmStruct->AlarmDateWeekDay)); - } - } - else - { - /* Set the week day for ALARM */ - LL_RTC_ALMA_EnableWeekday(RTCx); - LL_RTC_ALMA_SetWeekDay(RTCx, RTC_AlarmStruct->AlarmDateWeekDay); - } - - /* Configure the Alarm register */ - if (RTC_Format != LL_RTC_FORMAT_BIN) - { - LL_RTC_ALMA_ConfigTime(RTCx, RTC_AlarmStruct->AlarmTime.TimeFormat, RTC_AlarmStruct->AlarmTime.Hours, - RTC_AlarmStruct->AlarmTime.Minutes, RTC_AlarmStruct->AlarmTime.Seconds); - } - else - { - LL_RTC_ALMA_ConfigTime(RTCx, RTC_AlarmStruct->AlarmTime.TimeFormat, - __LL_RTC_CONVERT_BIN2BCD(RTC_AlarmStruct->AlarmTime.Hours), - __LL_RTC_CONVERT_BIN2BCD(RTC_AlarmStruct->AlarmTime.Minutes), - __LL_RTC_CONVERT_BIN2BCD(RTC_AlarmStruct->AlarmTime.Seconds)); - } - /* Set ALARM mask */ - LL_RTC_ALMA_SetMask(RTCx, RTC_AlarmStruct->AlarmMask); - - /* Enable the write protection for RTC registers */ - LL_RTC_EnableWriteProtection(RTCx); - - return SUCCESS; -} - -/** - * @brief Set each @ref LL_RTC_AlarmTypeDef of ALARMA field to default value (Time = 00h:00mn:00sec / - * Day = 1st day of the month/Mask = all fields are masked). - * @param RTC_AlarmStruct pointer to a @ref LL_RTC_AlarmTypeDef structure which will be initialized. - * @retval None - */ -void LL_RTC_ALMA_StructInit(LL_RTC_AlarmTypeDef *RTC_AlarmStruct) -{ - /* Alarm Time Settings : Time = 00h:00mn:00sec */ - RTC_AlarmStruct->AlarmTime.TimeFormat = LL_RTC_ALMA_TIME_FORMAT_AM; - RTC_AlarmStruct->AlarmTime.Hours = 0U; - RTC_AlarmStruct->AlarmTime.Minutes = 0U; - RTC_AlarmStruct->AlarmTime.Seconds = 0U; - - /* Alarm Day Settings : Day = 1st day of the month */ - RTC_AlarmStruct->AlarmDateWeekDaySel = LL_RTC_ALMA_DATEWEEKDAYSEL_DATE; - RTC_AlarmStruct->AlarmDateWeekDay = 1U; - - /* Alarm Masks Settings : Mask = all fields are not masked */ - RTC_AlarmStruct->AlarmMask = LL_RTC_ALMA_MASK_NONE; -} - -/** - * @brief Enters the RTC Initialization mode. - * @note The RTC Initialization mode is write protected, use the - * @ref LL_RTC_DisableWriteProtection before calling this function. - * @param RTCx RTC Instance - * @retval An ErrorStatus enumeration value: - * - SUCCESS: RTC is in Init mode - * - ERROR: RTC is not in Init mode - */ -ErrorStatus LL_RTC_EnterInitMode(RTC_TypeDef *RTCx) -{ - __IO uint32_t timeout = RTC_INITMODE_TIMEOUT; - ErrorStatus status = SUCCESS; - uint32_t tmp = 0U; - - /* Check the parameter */ - assert_param(IS_RTC_ALL_INSTANCE(RTCx)); - - /* Check if the Initialization mode is set */ - if (LL_RTC_IsActiveFlag_INIT(RTCx) == 0U) - { - /* Set the Initialization mode */ - LL_RTC_EnableInitMode(RTCx); - - /* Wait till RTC is in INIT state and if Time out is reached exit */ - tmp = LL_RTC_IsActiveFlag_INIT(RTCx); - while ((timeout != 0U) && (tmp != 1U)) - { - if (LL_SYSTICK_IsActiveCounterFlag() == 1U) - { - timeout --; - } - tmp = LL_RTC_IsActiveFlag_INIT(RTCx); - if (timeout == 0U) - { - status = ERROR; - } - } - } - return status; -} - -/** - * @brief Exit the RTC Initialization mode. - * @note When the initialization sequence is complete, the calendar restarts - * counting after 4 RTCCLK cycles. - * @note The RTC Initialization mode is write protected, use the - * @ref LL_RTC_DisableWriteProtection before calling this function. - * @param RTCx RTC Instance - * @retval An ErrorStatus enumeration value: - * - SUCCESS: RTC exited from in Init mode - * - ERROR: Not applicable - */ -ErrorStatus LL_RTC_ExitInitMode(RTC_TypeDef *RTCx) -{ - /* Check the parameter */ - assert_param(IS_RTC_ALL_INSTANCE(RTCx)); - - /* Disable initialization mode */ - LL_RTC_DisableInitMode(RTCx); - - return SUCCESS; -} - -/** - * @brief Waits until the RTC Time and Day registers (RTC_TR and RTC_DR) are - * synchronized with RTC APB clock. - * @note The RTC Resynchronization mode is write protected, use the - * @ref LL_RTC_DisableWriteProtection before calling this function. - * @note To read the calendar through the shadow registers after Calendar - * initialization, calendar update or after wakeup from low power modes - * the software must first clear the RSF flag. - * The software must then wait until it is set again before reading - * the calendar, which means that the calendar registers have been - * correctly copied into the RTC_TR and RTC_DR shadow registers. - * @param RTCx RTC Instance - * @retval An ErrorStatus enumeration value: - * - SUCCESS: RTC registers are synchronised - * - ERROR: RTC registers are not synchronised - */ -ErrorStatus LL_RTC_WaitForSynchro(RTC_TypeDef *RTCx) -{ - __IO uint32_t timeout = RTC_SYNCHRO_TIMEOUT; - ErrorStatus status = SUCCESS; - uint32_t tmp = 0U; - - /* Check the parameter */ - assert_param(IS_RTC_ALL_INSTANCE(RTCx)); - - /* Clear RSF flag */ - LL_RTC_ClearFlag_RS(RTCx); - - /* Wait the registers to be synchronised */ - tmp = LL_RTC_IsActiveFlag_RS(RTCx); - while ((timeout != 0U) && (tmp != 0U)) - { - if (LL_SYSTICK_IsActiveCounterFlag() == 1U) - { - timeout--; - } - tmp = LL_RTC_IsActiveFlag_RS(RTCx); - if (timeout == 0U) - { - status = ERROR; - } - } - - if (status != ERROR) - { - timeout = RTC_SYNCHRO_TIMEOUT; - tmp = LL_RTC_IsActiveFlag_RS(RTCx); - while ((timeout != 0U) && (tmp != 1U)) - { - if (LL_SYSTICK_IsActiveCounterFlag() == 1U) - { - timeout--; - } - tmp = LL_RTC_IsActiveFlag_RS(RTCx); - if (timeout == 0U) - { - status = ERROR; - } - } - } - - return (status); -} - -/** - * @} - */ - -/** - * @} - */ - -/** - * @} - */ - -#endif /* defined(RTC) */ - -/** - * @} - */ - -#endif /* USE_FULL_LL_DRIVER */ - -/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_spi.c b/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_spi.c deleted file mode 100644 index 2fdbd86..0000000 --- a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_spi.c +++ /dev/null @@ -1,531 +0,0 @@ -/** - ****************************************************************************** - * @file stm32f0xx_ll_spi.c - * @author MCD Application Team - * @brief SPI LL module driver. - ****************************************************************************** - * @attention - * - *

© Copyright (c) 2016 STMicroelectronics. - * All rights reserved.

- * - * This software component is licensed by ST under BSD 3-Clause license, - * the "License"; You may not use this file except in compliance with the - * License. You may obtain a copy of the License at: - * opensource.org/licenses/BSD-3-Clause - * - ****************************************************************************** - */ -#if defined(USE_FULL_LL_DRIVER) - -/* Includes ------------------------------------------------------------------*/ -#include "stm32f0xx_ll_spi.h" -#include "stm32f0xx_ll_bus.h" -#include "stm32f0xx_ll_rcc.h" - -#ifdef USE_FULL_ASSERT -#include "stm32_assert.h" -#else -#define assert_param(expr) ((void)0U) -#endif - -/** @addtogroup STM32F0xx_LL_Driver - * @{ - */ - -#if defined (SPI1) || defined (SPI2) - -/** @addtogroup SPI_LL - * @{ - */ - -/* Private types -------------------------------------------------------------*/ -/* Private variables ---------------------------------------------------------*/ - -/* Private constants ---------------------------------------------------------*/ -/** @defgroup SPI_LL_Private_Constants SPI Private Constants - * @{ - */ -/* SPI registers Masks */ -#define SPI_CR1_CLEAR_MASK (SPI_CR1_CPHA | SPI_CR1_CPOL | SPI_CR1_MSTR | \ - SPI_CR1_BR | SPI_CR1_LSBFIRST | SPI_CR1_SSI | \ - SPI_CR1_SSM | SPI_CR1_RXONLY | SPI_CR1_CRCL | \ - SPI_CR1_CRCNEXT | SPI_CR1_CRCEN | SPI_CR1_BIDIOE | \ - SPI_CR1_BIDIMODE) -/** - * @} - */ - -/* Private macros ------------------------------------------------------------*/ -/** @defgroup SPI_LL_Private_Macros SPI Private Macros - * @{ - */ -#define IS_LL_SPI_TRANSFER_DIRECTION(__VALUE__) (((__VALUE__) == LL_SPI_FULL_DUPLEX) \ - || ((__VALUE__) == LL_SPI_SIMPLEX_RX) \ - || ((__VALUE__) == LL_SPI_HALF_DUPLEX_RX) \ - || ((__VALUE__) == LL_SPI_HALF_DUPLEX_TX)) - -#define IS_LL_SPI_MODE(__VALUE__) (((__VALUE__) == LL_SPI_MODE_MASTER) \ - || ((__VALUE__) == LL_SPI_MODE_SLAVE)) - -#define IS_LL_SPI_DATAWIDTH(__VALUE__) (((__VALUE__) == LL_SPI_DATAWIDTH_4BIT) \ - || ((__VALUE__) == LL_SPI_DATAWIDTH_5BIT) \ - || ((__VALUE__) == LL_SPI_DATAWIDTH_6BIT) \ - || ((__VALUE__) == LL_SPI_DATAWIDTH_7BIT) \ - || ((__VALUE__) == LL_SPI_DATAWIDTH_8BIT) \ - || ((__VALUE__) == LL_SPI_DATAWIDTH_9BIT) \ - || ((__VALUE__) == LL_SPI_DATAWIDTH_10BIT) \ - || ((__VALUE__) == LL_SPI_DATAWIDTH_11BIT) \ - || ((__VALUE__) == LL_SPI_DATAWIDTH_12BIT) \ - || ((__VALUE__) == LL_SPI_DATAWIDTH_13BIT) \ - || ((__VALUE__) == LL_SPI_DATAWIDTH_14BIT) \ - || ((__VALUE__) == LL_SPI_DATAWIDTH_15BIT) \ - || ((__VALUE__) == LL_SPI_DATAWIDTH_16BIT)) - -#define IS_LL_SPI_POLARITY(__VALUE__) (((__VALUE__) == LL_SPI_POLARITY_LOW) \ - || ((__VALUE__) == LL_SPI_POLARITY_HIGH)) - -#define IS_LL_SPI_PHASE(__VALUE__) (((__VALUE__) == LL_SPI_PHASE_1EDGE) \ - || ((__VALUE__) == LL_SPI_PHASE_2EDGE)) - -#define IS_LL_SPI_NSS(__VALUE__) (((__VALUE__) == LL_SPI_NSS_SOFT) \ - || ((__VALUE__) == LL_SPI_NSS_HARD_INPUT) \ - || ((__VALUE__) == LL_SPI_NSS_HARD_OUTPUT)) - -#define IS_LL_SPI_BAUDRATE(__VALUE__) (((__VALUE__) == LL_SPI_BAUDRATEPRESCALER_DIV2) \ - || ((__VALUE__) == LL_SPI_BAUDRATEPRESCALER_DIV4) \ - || ((__VALUE__) == LL_SPI_BAUDRATEPRESCALER_DIV8) \ - || ((__VALUE__) == LL_SPI_BAUDRATEPRESCALER_DIV16) \ - || ((__VALUE__) == LL_SPI_BAUDRATEPRESCALER_DIV32) \ - || ((__VALUE__) == LL_SPI_BAUDRATEPRESCALER_DIV64) \ - || ((__VALUE__) == LL_SPI_BAUDRATEPRESCALER_DIV128) \ - || ((__VALUE__) == LL_SPI_BAUDRATEPRESCALER_DIV256)) - -#define IS_LL_SPI_BITORDER(__VALUE__) (((__VALUE__) == LL_SPI_LSB_FIRST) \ - || ((__VALUE__) == LL_SPI_MSB_FIRST)) - -#define IS_LL_SPI_CRCCALCULATION(__VALUE__) (((__VALUE__) == LL_SPI_CRCCALCULATION_ENABLE) \ - || ((__VALUE__) == LL_SPI_CRCCALCULATION_DISABLE)) - -#define IS_LL_SPI_CRC_POLYNOMIAL(__VALUE__) ((__VALUE__) >= 0x1U) - -/** - * @} - */ - -/* Private function prototypes -----------------------------------------------*/ - -/* Exported functions --------------------------------------------------------*/ -/** @addtogroup SPI_LL_Exported_Functions - * @{ - */ - -/** @addtogroup SPI_LL_EF_Init - * @{ - */ - -/** - * @brief De-initialize the SPI registers to their default reset values. - * @param SPIx SPI Instance - * @retval An ErrorStatus enumeration value: - * - SUCCESS: SPI registers are de-initialized - * - ERROR: SPI registers are not de-initialized - */ -ErrorStatus LL_SPI_DeInit(SPI_TypeDef *SPIx) -{ - ErrorStatus status = ERROR; - - /* Check the parameters */ - assert_param(IS_SPI_ALL_INSTANCE(SPIx)); - -#if defined(SPI1) - if (SPIx == SPI1) - { - /* Force reset of SPI clock */ - LL_APB1_GRP2_ForceReset(LL_APB1_GRP2_PERIPH_SPI1); - - /* Release reset of SPI clock */ - LL_APB1_GRP2_ReleaseReset(LL_APB1_GRP2_PERIPH_SPI1); - - status = SUCCESS; - } -#endif /* SPI1 */ -#if defined(SPI2) - if (SPIx == SPI2) - { - /* Force reset of SPI clock */ - LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_SPI2); - - /* Release reset of SPI clock */ - LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_SPI2); - - status = SUCCESS; - } -#endif /* SPI2 */ - - return status; -} - -/** - * @brief Initialize the SPI registers according to the specified parameters in SPI_InitStruct. - * @note As some bits in SPI configuration registers can only be written when the SPI is disabled (SPI_CR1_SPE bit =0), - * SPI peripheral should be in disabled state prior calling this function. Otherwise, ERROR result will be returned. - * @param SPIx SPI Instance - * @param SPI_InitStruct pointer to a @ref LL_SPI_InitTypeDef structure - * @retval An ErrorStatus enumeration value. (Return always SUCCESS) - */ -ErrorStatus LL_SPI_Init(SPI_TypeDef *SPIx, LL_SPI_InitTypeDef *SPI_InitStruct) -{ - ErrorStatus status = ERROR; - - /* Check the SPI Instance SPIx*/ - assert_param(IS_SPI_ALL_INSTANCE(SPIx)); - - /* Check the SPI parameters from SPI_InitStruct*/ - assert_param(IS_LL_SPI_TRANSFER_DIRECTION(SPI_InitStruct->TransferDirection)); - assert_param(IS_LL_SPI_MODE(SPI_InitStruct->Mode)); - assert_param(IS_LL_SPI_DATAWIDTH(SPI_InitStruct->DataWidth)); - assert_param(IS_LL_SPI_POLARITY(SPI_InitStruct->ClockPolarity)); - assert_param(IS_LL_SPI_PHASE(SPI_InitStruct->ClockPhase)); - assert_param(IS_LL_SPI_NSS(SPI_InitStruct->NSS)); - assert_param(IS_LL_SPI_BAUDRATE(SPI_InitStruct->BaudRate)); - assert_param(IS_LL_SPI_BITORDER(SPI_InitStruct->BitOrder)); - assert_param(IS_LL_SPI_CRCCALCULATION(SPI_InitStruct->CRCCalculation)); - - if (LL_SPI_IsEnabled(SPIx) == 0x00000000U) - { - /*---------------------------- SPIx CR1 Configuration ------------------------ - * Configure SPIx CR1 with parameters: - * - TransferDirection: SPI_CR1_BIDIMODE, SPI_CR1_BIDIOE and SPI_CR1_RXONLY bits - * - Master/Slave Mode: SPI_CR1_MSTR bit - * - ClockPolarity: SPI_CR1_CPOL bit - * - ClockPhase: SPI_CR1_CPHA bit - * - NSS management: SPI_CR1_SSM bit - * - BaudRate prescaler: SPI_CR1_BR[2:0] bits - * - BitOrder: SPI_CR1_LSBFIRST bit - * - CRCCalculation: SPI_CR1_CRCEN bit - */ - MODIFY_REG(SPIx->CR1, - SPI_CR1_CLEAR_MASK, - SPI_InitStruct->TransferDirection | SPI_InitStruct->Mode | - SPI_InitStruct->ClockPolarity | SPI_InitStruct->ClockPhase | - SPI_InitStruct->NSS | SPI_InitStruct->BaudRate | - SPI_InitStruct->BitOrder | SPI_InitStruct->CRCCalculation); - - /*---------------------------- SPIx CR2 Configuration ------------------------ - * Configure SPIx CR2 with parameters: - * - DataWidth: DS[3:0] bits - * - NSS management: SSOE bit - */ - MODIFY_REG(SPIx->CR2, - SPI_CR2_DS | SPI_CR2_SSOE, - SPI_InitStruct->DataWidth | (SPI_InitStruct->NSS >> 16U)); - - /*---------------------------- SPIx CRCPR Configuration ---------------------- - * Configure SPIx CRCPR with parameters: - * - CRCPoly: CRCPOLY[15:0] bits - */ - if (SPI_InitStruct->CRCCalculation == LL_SPI_CRCCALCULATION_ENABLE) - { - assert_param(IS_LL_SPI_CRC_POLYNOMIAL(SPI_InitStruct->CRCPoly)); - LL_SPI_SetCRCPolynomial(SPIx, SPI_InitStruct->CRCPoly); - } - status = SUCCESS; - } - -#if defined (SPI_I2S_SUPPORT) - /* Activate the SPI mode (Reset I2SMOD bit in I2SCFGR register) */ - CLEAR_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_I2SMOD); -#endif /* SPI_I2S_SUPPORT */ - return status; -} - -/** - * @brief Set each @ref LL_SPI_InitTypeDef field to default value. - * @param SPI_InitStruct pointer to a @ref LL_SPI_InitTypeDef structure - * whose fields will be set to default values. - * @retval None - */ -void LL_SPI_StructInit(LL_SPI_InitTypeDef *SPI_InitStruct) -{ - /* Set SPI_InitStruct fields to default values */ - SPI_InitStruct->TransferDirection = LL_SPI_FULL_DUPLEX; - SPI_InitStruct->Mode = LL_SPI_MODE_SLAVE; - SPI_InitStruct->DataWidth = LL_SPI_DATAWIDTH_8BIT; - SPI_InitStruct->ClockPolarity = LL_SPI_POLARITY_LOW; - SPI_InitStruct->ClockPhase = LL_SPI_PHASE_1EDGE; - SPI_InitStruct->NSS = LL_SPI_NSS_HARD_INPUT; - SPI_InitStruct->BaudRate = LL_SPI_BAUDRATEPRESCALER_DIV2; - SPI_InitStruct->BitOrder = LL_SPI_MSB_FIRST; - SPI_InitStruct->CRCCalculation = LL_SPI_CRCCALCULATION_DISABLE; - SPI_InitStruct->CRCPoly = 7U; -} - -/** - * @} - */ - -/** - * @} - */ - -/** - * @} - */ - -#if defined(SPI_I2S_SUPPORT) -/** @addtogroup I2S_LL - * @{ - */ - -/* Private types -------------------------------------------------------------*/ -/* Private variables ---------------------------------------------------------*/ -/* Private constants ---------------------------------------------------------*/ -/** @defgroup I2S_LL_Private_Constants I2S Private Constants - * @{ - */ -/* I2S registers Masks */ -#define I2S_I2SCFGR_CLEAR_MASK (SPI_I2SCFGR_CHLEN | SPI_I2SCFGR_DATLEN | \ - SPI_I2SCFGR_CKPOL | SPI_I2SCFGR_I2SSTD | \ - SPI_I2SCFGR_I2SCFG | SPI_I2SCFGR_I2SMOD ) - -#define I2S_I2SPR_CLEAR_MASK 0x0002U -/** - * @} - */ -/* Private macros ------------------------------------------------------------*/ -/** @defgroup I2S_LL_Private_Macros I2S Private Macros - * @{ - */ - -#define IS_LL_I2S_DATAFORMAT(__VALUE__) (((__VALUE__) == LL_I2S_DATAFORMAT_16B) \ - || ((__VALUE__) == LL_I2S_DATAFORMAT_16B_EXTENDED) \ - || ((__VALUE__) == LL_I2S_DATAFORMAT_24B) \ - || ((__VALUE__) == LL_I2S_DATAFORMAT_32B)) - -#define IS_LL_I2S_CPOL(__VALUE__) (((__VALUE__) == LL_I2S_POLARITY_LOW) \ - || ((__VALUE__) == LL_I2S_POLARITY_HIGH)) - -#define IS_LL_I2S_STANDARD(__VALUE__) (((__VALUE__) == LL_I2S_STANDARD_PHILIPS) \ - || ((__VALUE__) == LL_I2S_STANDARD_MSB) \ - || ((__VALUE__) == LL_I2S_STANDARD_LSB) \ - || ((__VALUE__) == LL_I2S_STANDARD_PCM_SHORT) \ - || ((__VALUE__) == LL_I2S_STANDARD_PCM_LONG)) - -#define IS_LL_I2S_MODE(__VALUE__) (((__VALUE__) == LL_I2S_MODE_SLAVE_TX) \ - || ((__VALUE__) == LL_I2S_MODE_SLAVE_RX) \ - || ((__VALUE__) == LL_I2S_MODE_MASTER_TX) \ - || ((__VALUE__) == LL_I2S_MODE_MASTER_RX)) - -#define IS_LL_I2S_MCLK_OUTPUT(__VALUE__) (((__VALUE__) == LL_I2S_MCLK_OUTPUT_ENABLE) \ - || ((__VALUE__) == LL_I2S_MCLK_OUTPUT_DISABLE)) - -#define IS_LL_I2S_AUDIO_FREQ(__VALUE__) ((((__VALUE__) >= LL_I2S_AUDIOFREQ_8K) \ - && ((__VALUE__) <= LL_I2S_AUDIOFREQ_192K)) \ - || ((__VALUE__) == LL_I2S_AUDIOFREQ_DEFAULT)) - -#define IS_LL_I2S_PRESCALER_LINEAR(__VALUE__) ((__VALUE__) >= 0x2U) - -#define IS_LL_I2S_PRESCALER_PARITY(__VALUE__) (((__VALUE__) == LL_I2S_PRESCALER_PARITY_EVEN) \ - || ((__VALUE__) == LL_I2S_PRESCALER_PARITY_ODD)) -/** - * @} - */ - -/* Private function prototypes -----------------------------------------------*/ - -/* Exported functions --------------------------------------------------------*/ -/** @addtogroup I2S_LL_Exported_Functions - * @{ - */ - -/** @addtogroup I2S_LL_EF_Init - * @{ - */ - -/** - * @brief De-initialize the SPI/I2S registers to their default reset values. - * @param SPIx SPI Instance - * @retval An ErrorStatus enumeration value: - * - SUCCESS: SPI registers are de-initialized - * - ERROR: SPI registers are not de-initialized - */ -ErrorStatus LL_I2S_DeInit(SPI_TypeDef *SPIx) -{ - return LL_SPI_DeInit(SPIx); -} - -/** - * @brief Initializes the SPI/I2S registers according to the specified parameters in I2S_InitStruct. - * @note As some bits in SPI configuration registers can only be written when the SPI is disabled (SPI_CR1_SPE bit =0), - * SPI peripheral should be in disabled state prior calling this function. Otherwise, ERROR result will be returned. - * @param SPIx SPI Instance - * @param I2S_InitStruct pointer to a @ref LL_I2S_InitTypeDef structure - * @retval An ErrorStatus enumeration value: - * - SUCCESS: SPI registers are Initialized - * - ERROR: SPI registers are not Initialized - */ -ErrorStatus LL_I2S_Init(SPI_TypeDef *SPIx, LL_I2S_InitTypeDef *I2S_InitStruct) -{ - uint32_t i2sdiv = 2U; - uint32_t i2sodd = 0U; - uint32_t packetlength = 1U; - uint32_t tmp; - LL_RCC_ClocksTypeDef rcc_clocks; - uint32_t sourceclock; - ErrorStatus status = ERROR; - - /* Check the I2S parameters */ - assert_param(IS_I2S_ALL_INSTANCE(SPIx)); - assert_param(IS_LL_I2S_MODE(I2S_InitStruct->Mode)); - assert_param(IS_LL_I2S_STANDARD(I2S_InitStruct->Standard)); - assert_param(IS_LL_I2S_DATAFORMAT(I2S_InitStruct->DataFormat)); - assert_param(IS_LL_I2S_MCLK_OUTPUT(I2S_InitStruct->MCLKOutput)); - assert_param(IS_LL_I2S_AUDIO_FREQ(I2S_InitStruct->AudioFreq)); - assert_param(IS_LL_I2S_CPOL(I2S_InitStruct->ClockPolarity)); - - if (LL_I2S_IsEnabled(SPIx) == 0x00000000U) - { - /*---------------------------- SPIx I2SCFGR Configuration -------------------- - * Configure SPIx I2SCFGR with parameters: - * - Mode: SPI_I2SCFGR_I2SCFG[1:0] bit - * - Standard: SPI_I2SCFGR_I2SSTD[1:0] and SPI_I2SCFGR_PCMSYNC bits - * - DataFormat: SPI_I2SCFGR_CHLEN and SPI_I2SCFGR_DATLEN bits - * - ClockPolarity: SPI_I2SCFGR_CKPOL bit - */ - - /* Write to SPIx I2SCFGR */ - MODIFY_REG(SPIx->I2SCFGR, - I2S_I2SCFGR_CLEAR_MASK, - I2S_InitStruct->Mode | I2S_InitStruct->Standard | - I2S_InitStruct->DataFormat | I2S_InitStruct->ClockPolarity | - SPI_I2SCFGR_I2SMOD); - - /*---------------------------- SPIx I2SPR Configuration ---------------------- - * Configure SPIx I2SPR with parameters: - * - MCLKOutput: SPI_I2SPR_MCKOE bit - * - AudioFreq: SPI_I2SPR_I2SDIV[7:0] and SPI_I2SPR_ODD bits - */ - - /* If the requested audio frequency is not the default, compute the prescaler (i2sodd, i2sdiv) - * else, default values are used: i2sodd = 0U, i2sdiv = 2U. - */ - if (I2S_InitStruct->AudioFreq != LL_I2S_AUDIOFREQ_DEFAULT) - { - /* Check the frame length (For the Prescaler computing) - * Default value: LL_I2S_DATAFORMAT_16B (packetlength = 1U). - */ - if (I2S_InitStruct->DataFormat != LL_I2S_DATAFORMAT_16B) - { - /* Packet length is 32 bits */ - packetlength = 2U; - } - - /* I2S Clock source is System clock: Get System Clock frequency */ - LL_RCC_GetSystemClocksFreq(&rcc_clocks); - - /* Get the source clock value: based on System Clock value */ - sourceclock = rcc_clocks.SYSCLK_Frequency; - - /* Compute the Real divider depending on the MCLK output state with a floating point */ - if (I2S_InitStruct->MCLKOutput == LL_I2S_MCLK_OUTPUT_ENABLE) - { - /* MCLK output is enabled */ - tmp = (((((sourceclock / 256U) * 10U) / I2S_InitStruct->AudioFreq)) + 5U); - } - else - { - /* MCLK output is disabled */ - tmp = (((((sourceclock / (32U * packetlength)) * 10U) / I2S_InitStruct->AudioFreq)) + 5U); - } - - /* Remove the floating point */ - tmp = tmp / 10U; - - /* Check the parity of the divider */ - i2sodd = (tmp & (uint16_t)0x0001U); - - /* Compute the i2sdiv prescaler */ - i2sdiv = ((tmp - i2sodd) / 2U); - - /* Get the Mask for the Odd bit (SPI_I2SPR[8]) register */ - i2sodd = (i2sodd << 8U); - } - - /* Test if the divider is 1 or 0 or greater than 0xFF */ - if ((i2sdiv < 2U) || (i2sdiv > 0xFFU)) - { - /* Set the default values */ - i2sdiv = 2U; - i2sodd = 0U; - } - - /* Write to SPIx I2SPR register the computed value */ - WRITE_REG(SPIx->I2SPR, i2sdiv | i2sodd | I2S_InitStruct->MCLKOutput); - - status = SUCCESS; - } - return status; -} - -/** - * @brief Set each @ref LL_I2S_InitTypeDef field to default value. - * @param I2S_InitStruct pointer to a @ref LL_I2S_InitTypeDef structure - * whose fields will be set to default values. - * @retval None - */ -void LL_I2S_StructInit(LL_I2S_InitTypeDef *I2S_InitStruct) -{ - /*--------------- Reset I2S init structure parameters values -----------------*/ - I2S_InitStruct->Mode = LL_I2S_MODE_SLAVE_TX; - I2S_InitStruct->Standard = LL_I2S_STANDARD_PHILIPS; - I2S_InitStruct->DataFormat = LL_I2S_DATAFORMAT_16B; - I2S_InitStruct->MCLKOutput = LL_I2S_MCLK_OUTPUT_DISABLE; - I2S_InitStruct->AudioFreq = LL_I2S_AUDIOFREQ_DEFAULT; - I2S_InitStruct->ClockPolarity = LL_I2S_POLARITY_LOW; -} - -/** - * @brief Set linear and parity prescaler. - * @note To calculate value of PrescalerLinear(I2SDIV[7:0] bits) and PrescalerParity(ODD bit)\n - * Check Audio frequency table and formulas inside Reference Manual (SPI/I2S). - * @param SPIx SPI Instance - * @param PrescalerLinear value Min_Data=0x02 and Max_Data=0xFF. - * @param PrescalerParity This parameter can be one of the following values: - * @arg @ref LL_I2S_PRESCALER_PARITY_EVEN - * @arg @ref LL_I2S_PRESCALER_PARITY_ODD - * @retval None - */ -void LL_I2S_ConfigPrescaler(SPI_TypeDef *SPIx, uint32_t PrescalerLinear, uint32_t PrescalerParity) -{ - /* Check the I2S parameters */ - assert_param(IS_I2S_ALL_INSTANCE(SPIx)); - assert_param(IS_LL_I2S_PRESCALER_LINEAR(PrescalerLinear)); - assert_param(IS_LL_I2S_PRESCALER_PARITY(PrescalerParity)); - - /* Write to SPIx I2SPR */ - MODIFY_REG(SPIx->I2SPR, SPI_I2SPR_I2SDIV | SPI_I2SPR_ODD, PrescalerLinear | (PrescalerParity << 8U)); -} - -/** - * @} - */ - -/** - * @} - */ - -/** - * @} - */ -#endif /* SPI_I2S_SUPPORT */ - -#endif /* defined (SPI1) || defined (SPI2) */ - -/** - * @} - */ - -#endif /* USE_FULL_LL_DRIVER */ - -/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_tim.c b/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_tim.c deleted file mode 100644 index 8de63e8..0000000 --- a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_tim.c +++ /dev/null @@ -1,1159 +0,0 @@ -/** - ****************************************************************************** - * @file stm32f0xx_ll_tim.c - * @author MCD Application Team - * @brief TIM LL module driver. - ****************************************************************************** - * @attention - * - *

© Copyright (c) 2016 STMicroelectronics. - * All rights reserved.

- * - * This software component is licensed by ST under BSD 3-Clause license, - * the "License"; You may not use this file except in compliance with the - * License. You may obtain a copy of the License at: - * opensource.org/licenses/BSD-3-Clause - * - ****************************************************************************** - */ -#if defined(USE_FULL_LL_DRIVER) - -/* Includes ------------------------------------------------------------------*/ -#include "stm32f0xx_ll_tim.h" -#include "stm32f0xx_ll_bus.h" - -#ifdef USE_FULL_ASSERT -#include "stm32_assert.h" -#else -#define assert_param(expr) ((void)0U) -#endif /* USE_FULL_ASSERT */ - -/** @addtogroup STM32F0xx_LL_Driver - * @{ - */ - -#if defined (TIM1) || defined (TIM2) || defined (TIM3) || defined (TIM14) || defined (TIM15) || defined (TIM16) || defined (TIM17) || defined (TIM6) || defined (TIM7) - -/** @addtogroup TIM_LL - * @{ - */ - -/* Private types -------------------------------------------------------------*/ -/* Private variables ---------------------------------------------------------*/ -/* Private constants ---------------------------------------------------------*/ -/* Private macros ------------------------------------------------------------*/ -/** @addtogroup TIM_LL_Private_Macros - * @{ - */ -#define IS_LL_TIM_COUNTERMODE(__VALUE__) (((__VALUE__) == LL_TIM_COUNTERMODE_UP) \ - || ((__VALUE__) == LL_TIM_COUNTERMODE_DOWN) \ - || ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_UP) \ - || ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_DOWN) \ - || ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_UP_DOWN)) - -#define IS_LL_TIM_CLOCKDIVISION(__VALUE__) (((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV1) \ - || ((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV2) \ - || ((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV4)) - -#define IS_LL_TIM_OCMODE(__VALUE__) (((__VALUE__) == LL_TIM_OCMODE_FROZEN) \ - || ((__VALUE__) == LL_TIM_OCMODE_ACTIVE) \ - || ((__VALUE__) == LL_TIM_OCMODE_INACTIVE) \ - || ((__VALUE__) == LL_TIM_OCMODE_TOGGLE) \ - || ((__VALUE__) == LL_TIM_OCMODE_FORCED_INACTIVE) \ - || ((__VALUE__) == LL_TIM_OCMODE_FORCED_ACTIVE) \ - || ((__VALUE__) == LL_TIM_OCMODE_PWM1) \ - || ((__VALUE__) == LL_TIM_OCMODE_PWM2)) - -#define IS_LL_TIM_OCSTATE(__VALUE__) (((__VALUE__) == LL_TIM_OCSTATE_DISABLE) \ - || ((__VALUE__) == LL_TIM_OCSTATE_ENABLE)) - -#define IS_LL_TIM_OCPOLARITY(__VALUE__) (((__VALUE__) == LL_TIM_OCPOLARITY_HIGH) \ - || ((__VALUE__) == LL_TIM_OCPOLARITY_LOW)) - -#define IS_LL_TIM_OCIDLESTATE(__VALUE__) (((__VALUE__) == LL_TIM_OCIDLESTATE_LOW) \ - || ((__VALUE__) == LL_TIM_OCIDLESTATE_HIGH)) - -#define IS_LL_TIM_ACTIVEINPUT(__VALUE__) (((__VALUE__) == LL_TIM_ACTIVEINPUT_DIRECTTI) \ - || ((__VALUE__) == LL_TIM_ACTIVEINPUT_INDIRECTTI) \ - || ((__VALUE__) == LL_TIM_ACTIVEINPUT_TRC)) - -#define IS_LL_TIM_ICPSC(__VALUE__) (((__VALUE__) == LL_TIM_ICPSC_DIV1) \ - || ((__VALUE__) == LL_TIM_ICPSC_DIV2) \ - || ((__VALUE__) == LL_TIM_ICPSC_DIV4) \ - || ((__VALUE__) == LL_TIM_ICPSC_DIV8)) - -#define IS_LL_TIM_IC_FILTER(__VALUE__) (((__VALUE__) == LL_TIM_IC_FILTER_FDIV1) \ - || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N2) \ - || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N4) \ - || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N8) \ - || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV2_N6) \ - || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV2_N8) \ - || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV4_N6) \ - || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV4_N8) \ - || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV8_N6) \ - || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV8_N8) \ - || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N5) \ - || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N6) \ - || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N8) \ - || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N5) \ - || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N6) \ - || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N8)) - -#define IS_LL_TIM_IC_POLARITY(__VALUE__) (((__VALUE__) == LL_TIM_IC_POLARITY_RISING) \ - || ((__VALUE__) == LL_TIM_IC_POLARITY_FALLING) \ - || ((__VALUE__) == LL_TIM_IC_POLARITY_BOTHEDGE)) - -#define IS_LL_TIM_ENCODERMODE(__VALUE__) (((__VALUE__) == LL_TIM_ENCODERMODE_X2_TI1) \ - || ((__VALUE__) == LL_TIM_ENCODERMODE_X2_TI2) \ - || ((__VALUE__) == LL_TIM_ENCODERMODE_X4_TI12)) - -#define IS_LL_TIM_IC_POLARITY_ENCODER(__VALUE__) (((__VALUE__) == LL_TIM_IC_POLARITY_RISING) \ - || ((__VALUE__) == LL_TIM_IC_POLARITY_FALLING)) - -#define IS_LL_TIM_OSSR_STATE(__VALUE__) (((__VALUE__) == LL_TIM_OSSR_DISABLE) \ - || ((__VALUE__) == LL_TIM_OSSR_ENABLE)) - -#define IS_LL_TIM_OSSI_STATE(__VALUE__) (((__VALUE__) == LL_TIM_OSSI_DISABLE) \ - || ((__VALUE__) == LL_TIM_OSSI_ENABLE)) - -#define IS_LL_TIM_LOCK_LEVEL(__VALUE__) (((__VALUE__) == LL_TIM_LOCKLEVEL_OFF) \ - || ((__VALUE__) == LL_TIM_LOCKLEVEL_1) \ - || ((__VALUE__) == LL_TIM_LOCKLEVEL_2) \ - || ((__VALUE__) == LL_TIM_LOCKLEVEL_3)) - -#define IS_LL_TIM_BREAK_STATE(__VALUE__) (((__VALUE__) == LL_TIM_BREAK_DISABLE) \ - || ((__VALUE__) == LL_TIM_BREAK_ENABLE)) - -#define IS_LL_TIM_BREAK_POLARITY(__VALUE__) (((__VALUE__) == LL_TIM_BREAK_POLARITY_LOW) \ - || ((__VALUE__) == LL_TIM_BREAK_POLARITY_HIGH)) - -#define IS_LL_TIM_AUTOMATIC_OUTPUT_STATE(__VALUE__) (((__VALUE__) == LL_TIM_AUTOMATICOUTPUT_DISABLE) \ - || ((__VALUE__) == LL_TIM_AUTOMATICOUTPUT_ENABLE)) -/** - * @} - */ - - -/* Private function prototypes -----------------------------------------------*/ -/** @defgroup TIM_LL_Private_Functions TIM Private Functions - * @{ - */ -static ErrorStatus OC1Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct); -static ErrorStatus OC2Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct); -static ErrorStatus OC3Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct); -static ErrorStatus OC4Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct); -static ErrorStatus IC1Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct); -static ErrorStatus IC2Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct); -static ErrorStatus IC3Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct); -static ErrorStatus IC4Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct); -/** - * @} - */ - -/* Exported functions --------------------------------------------------------*/ -/** @addtogroup TIM_LL_Exported_Functions - * @{ - */ - -/** @addtogroup TIM_LL_EF_Init - * @{ - */ - -/** - * @brief Set TIMx registers to their reset values. - * @param TIMx Timer instance - * @retval An ErrorStatus enumeration value: - * - SUCCESS: TIMx registers are de-initialized - * - ERROR: invalid TIMx instance - */ -ErrorStatus LL_TIM_DeInit(TIM_TypeDef *TIMx) -{ - ErrorStatus result = SUCCESS; - - /* Check the parameters */ - assert_param(IS_TIM_INSTANCE(TIMx)); - - if (TIMx == TIM1) - { - LL_APB1_GRP2_ForceReset(LL_APB1_GRP2_PERIPH_TIM1); - LL_APB1_GRP2_ReleaseReset(LL_APB1_GRP2_PERIPH_TIM1); - } -#if defined (TIM2) - else if (TIMx == TIM2) - { - LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM2); - LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM2); - } -#endif -#if defined(TIM3) - else if (TIMx == TIM3) - { - LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM3); - LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM3); - } -#endif -#if defined(TIM5) - else if (TIMx == TIM5) - { - LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM5); - LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM5); - } -#endif -#if defined (TIM6) - else if (TIMx == TIM6) - { - LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM6); - LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM6); - } -#endif -#if defined (TIM7) - else if (TIMx == TIM7) - { - LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM7); - LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM7); - } -#endif -#if defined(TIM8) - else if (TIMx == TIM8) - { - LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM8); - LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM8); - } -#endif -#if defined (TIM14) - else if (TIMx == TIM14) - { - LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM14); - LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM14); - } -#endif -#if defined (TIM15) - else if (TIMx == TIM15) - { - LL_APB1_GRP2_ForceReset(LL_APB1_GRP2_PERIPH_TIM15); - LL_APB1_GRP2_ReleaseReset(LL_APB1_GRP2_PERIPH_TIM15); - } -#endif -#if defined (TIM16) - else if (TIMx == TIM16) - { - LL_APB1_GRP2_ForceReset(LL_APB1_GRP2_PERIPH_TIM16); - LL_APB1_GRP2_ReleaseReset(LL_APB1_GRP2_PERIPH_TIM16); - } -#endif -#if defined(TIM17) - else if (TIMx == TIM17) - { - LL_APB1_GRP2_ForceReset(LL_APB1_GRP2_PERIPH_TIM17); - LL_APB1_GRP2_ReleaseReset(LL_APB1_GRP2_PERIPH_TIM17); - } -#endif - else - { - result = ERROR; - } - - return result; -} - -/** - * @brief Set the fields of the time base unit configuration data structure - * to their default values. - * @param TIM_InitStruct pointer to a @ref LL_TIM_InitTypeDef structure (time base unit configuration data structure) - * @retval None - */ -void LL_TIM_StructInit(LL_TIM_InitTypeDef *TIM_InitStruct) -{ - /* Set the default configuration */ - TIM_InitStruct->Prescaler = (uint16_t)0x0000; - TIM_InitStruct->CounterMode = LL_TIM_COUNTERMODE_UP; - TIM_InitStruct->Autoreload = 0xFFFFFFFFU; - TIM_InitStruct->ClockDivision = LL_TIM_CLOCKDIVISION_DIV1; - TIM_InitStruct->RepetitionCounter = (uint8_t)0x00; -} - -/** - * @brief Configure the TIMx time base unit. - * @param TIMx Timer Instance - * @param TIM_InitStruct pointer to a @ref LL_TIM_InitTypeDef structure (TIMx time base unit configuration data structure) - * @retval An ErrorStatus enumeration value: - * - SUCCESS: TIMx registers are de-initialized - * - ERROR: not applicable - */ -ErrorStatus LL_TIM_Init(TIM_TypeDef *TIMx, LL_TIM_InitTypeDef *TIM_InitStruct) -{ - uint32_t tmpcr1; - - /* Check the parameters */ - assert_param(IS_TIM_INSTANCE(TIMx)); - assert_param(IS_LL_TIM_COUNTERMODE(TIM_InitStruct->CounterMode)); - assert_param(IS_LL_TIM_CLOCKDIVISION(TIM_InitStruct->ClockDivision)); - - tmpcr1 = LL_TIM_ReadReg(TIMx, CR1); - - if (IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx)) - { - /* Select the Counter Mode */ - MODIFY_REG(tmpcr1, (TIM_CR1_DIR | TIM_CR1_CMS), TIM_InitStruct->CounterMode); - } - - if (IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx)) - { - /* Set the clock division */ - MODIFY_REG(tmpcr1, TIM_CR1_CKD, TIM_InitStruct->ClockDivision); - } - - /* Write to TIMx CR1 */ - LL_TIM_WriteReg(TIMx, CR1, tmpcr1); - - /* Set the Autoreload value */ - LL_TIM_SetAutoReload(TIMx, TIM_InitStruct->Autoreload); - - /* Set the Prescaler value */ - LL_TIM_SetPrescaler(TIMx, TIM_InitStruct->Prescaler); - - if (IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx)) - { - /* Set the Repetition Counter value */ - LL_TIM_SetRepetitionCounter(TIMx, TIM_InitStruct->RepetitionCounter); - } - - /* Generate an update event to reload the Prescaler - and the repetition counter value (if applicable) immediately */ - LL_TIM_GenerateEvent_UPDATE(TIMx); - - return SUCCESS; -} - -/** - * @brief Set the fields of the TIMx output channel configuration data - * structure to their default values. - * @param TIM_OC_InitStruct pointer to a @ref LL_TIM_OC_InitTypeDef structure (the output channel configuration data structure) - * @retval None - */ -void LL_TIM_OC_StructInit(LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct) -{ - /* Set the default configuration */ - TIM_OC_InitStruct->OCMode = LL_TIM_OCMODE_FROZEN; - TIM_OC_InitStruct->OCState = LL_TIM_OCSTATE_DISABLE; - TIM_OC_InitStruct->OCNState = LL_TIM_OCSTATE_DISABLE; - TIM_OC_InitStruct->CompareValue = 0x00000000U; - TIM_OC_InitStruct->OCPolarity = LL_TIM_OCPOLARITY_HIGH; - TIM_OC_InitStruct->OCNPolarity = LL_TIM_OCPOLARITY_HIGH; - TIM_OC_InitStruct->OCIdleState = LL_TIM_OCIDLESTATE_LOW; - TIM_OC_InitStruct->OCNIdleState = LL_TIM_OCIDLESTATE_LOW; -} - -/** - * @brief Configure the TIMx output channel. - * @param TIMx Timer Instance - * @param Channel This parameter can be one of the following values: - * @arg @ref LL_TIM_CHANNEL_CH1 - * @arg @ref LL_TIM_CHANNEL_CH2 - * @arg @ref LL_TIM_CHANNEL_CH3 - * @arg @ref LL_TIM_CHANNEL_CH4 - * @param TIM_OC_InitStruct pointer to a @ref LL_TIM_OC_InitTypeDef structure (TIMx output channel configuration data structure) - * @retval An ErrorStatus enumeration value: - * - SUCCESS: TIMx output channel is initialized - * - ERROR: TIMx output channel is not initialized - */ -ErrorStatus LL_TIM_OC_Init(TIM_TypeDef *TIMx, uint32_t Channel, LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct) -{ - ErrorStatus result = ERROR; - - switch (Channel) - { - case LL_TIM_CHANNEL_CH1: - result = OC1Config(TIMx, TIM_OC_InitStruct); - break; - case LL_TIM_CHANNEL_CH2: - result = OC2Config(TIMx, TIM_OC_InitStruct); - break; - case LL_TIM_CHANNEL_CH3: - result = OC3Config(TIMx, TIM_OC_InitStruct); - break; - case LL_TIM_CHANNEL_CH4: - result = OC4Config(TIMx, TIM_OC_InitStruct); - break; - default: - break; - } - - return result; -} - -/** - * @brief Set the fields of the TIMx input channel configuration data - * structure to their default values. - * @param TIM_ICInitStruct pointer to a @ref LL_TIM_IC_InitTypeDef structure (the input channel configuration data structure) - * @retval None - */ -void LL_TIM_IC_StructInit(LL_TIM_IC_InitTypeDef *TIM_ICInitStruct) -{ - /* Set the default configuration */ - TIM_ICInitStruct->ICPolarity = LL_TIM_IC_POLARITY_RISING; - TIM_ICInitStruct->ICActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI; - TIM_ICInitStruct->ICPrescaler = LL_TIM_ICPSC_DIV1; - TIM_ICInitStruct->ICFilter = LL_TIM_IC_FILTER_FDIV1; -} - -/** - * @brief Configure the TIMx input channel. - * @param TIMx Timer Instance - * @param Channel This parameter can be one of the following values: - * @arg @ref LL_TIM_CHANNEL_CH1 - * @arg @ref LL_TIM_CHANNEL_CH2 - * @arg @ref LL_TIM_CHANNEL_CH3 - * @arg @ref LL_TIM_CHANNEL_CH4 - * @param TIM_IC_InitStruct pointer to a @ref LL_TIM_IC_InitTypeDef structure (TIMx input channel configuration data structure) - * @retval An ErrorStatus enumeration value: - * - SUCCESS: TIMx output channel is initialized - * - ERROR: TIMx output channel is not initialized - */ -ErrorStatus LL_TIM_IC_Init(TIM_TypeDef *TIMx, uint32_t Channel, LL_TIM_IC_InitTypeDef *TIM_IC_InitStruct) -{ - ErrorStatus result = ERROR; - - switch (Channel) - { - case LL_TIM_CHANNEL_CH1: - result = IC1Config(TIMx, TIM_IC_InitStruct); - break; - case LL_TIM_CHANNEL_CH2: - result = IC2Config(TIMx, TIM_IC_InitStruct); - break; - case LL_TIM_CHANNEL_CH3: - result = IC3Config(TIMx, TIM_IC_InitStruct); - break; - case LL_TIM_CHANNEL_CH4: - result = IC4Config(TIMx, TIM_IC_InitStruct); - break; - default: - break; - } - - return result; -} - -/** - * @brief Fills each TIM_EncoderInitStruct field with its default value - * @param TIM_EncoderInitStruct pointer to a @ref LL_TIM_ENCODER_InitTypeDef structure (encoder interface configuration data structure) - * @retval None - */ -void LL_TIM_ENCODER_StructInit(LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct) -{ - /* Set the default configuration */ - TIM_EncoderInitStruct->EncoderMode = LL_TIM_ENCODERMODE_X2_TI1; - TIM_EncoderInitStruct->IC1Polarity = LL_TIM_IC_POLARITY_RISING; - TIM_EncoderInitStruct->IC1ActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI; - TIM_EncoderInitStruct->IC1Prescaler = LL_TIM_ICPSC_DIV1; - TIM_EncoderInitStruct->IC1Filter = LL_TIM_IC_FILTER_FDIV1; - TIM_EncoderInitStruct->IC2Polarity = LL_TIM_IC_POLARITY_RISING; - TIM_EncoderInitStruct->IC2ActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI; - TIM_EncoderInitStruct->IC2Prescaler = LL_TIM_ICPSC_DIV1; - TIM_EncoderInitStruct->IC2Filter = LL_TIM_IC_FILTER_FDIV1; -} - -/** - * @brief Configure the encoder interface of the timer instance. - * @param TIMx Timer Instance - * @param TIM_EncoderInitStruct pointer to a @ref LL_TIM_ENCODER_InitTypeDef structure (TIMx encoder interface configuration data structure) - * @retval An ErrorStatus enumeration value: - * - SUCCESS: TIMx registers are de-initialized - * - ERROR: not applicable - */ -ErrorStatus LL_TIM_ENCODER_Init(TIM_TypeDef *TIMx, LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct) -{ - uint32_t tmpccmr1; - uint32_t tmpccer; - - /* Check the parameters */ - assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(TIMx)); - assert_param(IS_LL_TIM_ENCODERMODE(TIM_EncoderInitStruct->EncoderMode)); - assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_EncoderInitStruct->IC1Polarity)); - assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_EncoderInitStruct->IC1ActiveInput)); - assert_param(IS_LL_TIM_ICPSC(TIM_EncoderInitStruct->IC1Prescaler)); - assert_param(IS_LL_TIM_IC_FILTER(TIM_EncoderInitStruct->IC1Filter)); - assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_EncoderInitStruct->IC2Polarity)); - assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_EncoderInitStruct->IC2ActiveInput)); - assert_param(IS_LL_TIM_ICPSC(TIM_EncoderInitStruct->IC2Prescaler)); - assert_param(IS_LL_TIM_IC_FILTER(TIM_EncoderInitStruct->IC2Filter)); - - /* Disable the CC1 and CC2: Reset the CC1E and CC2E Bits */ - TIMx->CCER &= (uint32_t)~(TIM_CCER_CC1E | TIM_CCER_CC2E); - - /* Get the TIMx CCMR1 register value */ - tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1); - - /* Get the TIMx CCER register value */ - tmpccer = LL_TIM_ReadReg(TIMx, CCER); - - /* Configure TI1 */ - tmpccmr1 &= (uint32_t)~(TIM_CCMR1_CC1S | TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC); - tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC1ActiveInput >> 16U); - tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC1Filter >> 16U); - tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC1Prescaler >> 16U); - - /* Configure TI2 */ - tmpccmr1 &= (uint32_t)~(TIM_CCMR1_CC2S | TIM_CCMR1_IC2F | TIM_CCMR1_IC2PSC); - tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC2ActiveInput >> 8U); - tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC2Filter >> 8U); - tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC2Prescaler >> 8U); - - /* Set TI1 and TI2 polarity and enable TI1 and TI2 */ - tmpccer &= (uint32_t)~(TIM_CCER_CC1P | TIM_CCER_CC1NP | TIM_CCER_CC2P | TIM_CCER_CC2NP); - tmpccer |= (uint32_t)(TIM_EncoderInitStruct->IC1Polarity); - tmpccer |= (uint32_t)(TIM_EncoderInitStruct->IC2Polarity << 4U); - tmpccer |= (uint32_t)(TIM_CCER_CC1E | TIM_CCER_CC2E); - - /* Set encoder mode */ - LL_TIM_SetEncoderMode(TIMx, TIM_EncoderInitStruct->EncoderMode); - - /* Write to TIMx CCMR1 */ - LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1); - - /* Write to TIMx CCER */ - LL_TIM_WriteReg(TIMx, CCER, tmpccer); - - return SUCCESS; -} - -/** - * @brief Set the fields of the TIMx Hall sensor interface configuration data - * structure to their default values. - * @param TIM_HallSensorInitStruct pointer to a @ref LL_TIM_HALLSENSOR_InitTypeDef structure (HALL sensor interface configuration data structure) - * @retval None - */ -void LL_TIM_HALLSENSOR_StructInit(LL_TIM_HALLSENSOR_InitTypeDef *TIM_HallSensorInitStruct) -{ - /* Set the default configuration */ - TIM_HallSensorInitStruct->IC1Polarity = LL_TIM_IC_POLARITY_RISING; - TIM_HallSensorInitStruct->IC1Prescaler = LL_TIM_ICPSC_DIV1; - TIM_HallSensorInitStruct->IC1Filter = LL_TIM_IC_FILTER_FDIV1; - TIM_HallSensorInitStruct->CommutationDelay = 0U; -} - -/** - * @brief Configure the Hall sensor interface of the timer instance. - * @note TIMx CH1, CH2 and CH3 inputs connected through a XOR - * to the TI1 input channel - * @note TIMx slave mode controller is configured in reset mode. - Selected internal trigger is TI1F_ED. - * @note Channel 1 is configured as input, IC1 is mapped on TRC. - * @note Captured value stored in TIMx_CCR1 correspond to the time elapsed - * between 2 changes on the inputs. It gives information about motor speed. - * @note Channel 2 is configured in output PWM 2 mode. - * @note Compare value stored in TIMx_CCR2 corresponds to the commutation delay. - * @note OC2REF is selected as trigger output on TRGO. - * @note LL_TIM_IC_POLARITY_BOTHEDGE must not be used for TI1 when it is used - * when TIMx operates in Hall sensor interface mode. - * @param TIMx Timer Instance - * @param TIM_HallSensorInitStruct pointer to a @ref LL_TIM_HALLSENSOR_InitTypeDef structure (TIMx HALL sensor interface configuration data structure) - * @retval An ErrorStatus enumeration value: - * - SUCCESS: TIMx registers are de-initialized - * - ERROR: not applicable - */ -ErrorStatus LL_TIM_HALLSENSOR_Init(TIM_TypeDef *TIMx, LL_TIM_HALLSENSOR_InitTypeDef *TIM_HallSensorInitStruct) -{ - uint32_t tmpcr2; - uint32_t tmpccmr1; - uint32_t tmpccer; - uint32_t tmpsmcr; - - /* Check the parameters */ - assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(TIMx)); - assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_HallSensorInitStruct->IC1Polarity)); - assert_param(IS_LL_TIM_ICPSC(TIM_HallSensorInitStruct->IC1Prescaler)); - assert_param(IS_LL_TIM_IC_FILTER(TIM_HallSensorInitStruct->IC1Filter)); - - /* Disable the CC1 and CC2: Reset the CC1E and CC2E Bits */ - TIMx->CCER &= (uint32_t)~(TIM_CCER_CC1E | TIM_CCER_CC2E); - - /* Get the TIMx CR2 register value */ - tmpcr2 = LL_TIM_ReadReg(TIMx, CR2); - - /* Get the TIMx CCMR1 register value */ - tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1); - - /* Get the TIMx CCER register value */ - tmpccer = LL_TIM_ReadReg(TIMx, CCER); - - /* Get the TIMx SMCR register value */ - tmpsmcr = LL_TIM_ReadReg(TIMx, SMCR); - - /* Connect TIMx_CH1, CH2 and CH3 pins to the TI1 input */ - tmpcr2 |= TIM_CR2_TI1S; - - /* OC2REF signal is used as trigger output (TRGO) */ - tmpcr2 |= LL_TIM_TRGO_OC2REF; - - /* Configure the slave mode controller */ - tmpsmcr &= (uint32_t)~(TIM_SMCR_TS | TIM_SMCR_SMS); - tmpsmcr |= LL_TIM_TS_TI1F_ED; - tmpsmcr |= LL_TIM_SLAVEMODE_RESET; - - /* Configure input channel 1 */ - tmpccmr1 &= (uint32_t)~(TIM_CCMR1_CC1S | TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC); - tmpccmr1 |= (uint32_t)(LL_TIM_ACTIVEINPUT_TRC >> 16U); - tmpccmr1 |= (uint32_t)(TIM_HallSensorInitStruct->IC1Filter >> 16U); - tmpccmr1 |= (uint32_t)(TIM_HallSensorInitStruct->IC1Prescaler >> 16U); - - /* Configure input channel 2 */ - tmpccmr1 &= (uint32_t)~(TIM_CCMR1_OC2M | TIM_CCMR1_OC2FE | TIM_CCMR1_OC2PE | TIM_CCMR1_OC2CE); - tmpccmr1 |= (uint32_t)(LL_TIM_OCMODE_PWM2 << 8U); - - /* Set Channel 1 polarity and enable Channel 1 and Channel2 */ - tmpccer &= (uint32_t)~(TIM_CCER_CC1P | TIM_CCER_CC1NP | TIM_CCER_CC2P | TIM_CCER_CC2NP); - tmpccer |= (uint32_t)(TIM_HallSensorInitStruct->IC1Polarity); - tmpccer |= (uint32_t)(TIM_CCER_CC1E | TIM_CCER_CC2E); - - /* Write to TIMx CR2 */ - LL_TIM_WriteReg(TIMx, CR2, tmpcr2); - - /* Write to TIMx SMCR */ - LL_TIM_WriteReg(TIMx, SMCR, tmpsmcr); - - /* Write to TIMx CCMR1 */ - LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1); - - /* Write to TIMx CCER */ - LL_TIM_WriteReg(TIMx, CCER, tmpccer); - - /* Write to TIMx CCR2 */ - LL_TIM_OC_SetCompareCH2(TIMx, TIM_HallSensorInitStruct->CommutationDelay); - - return SUCCESS; -} - -/** - * @brief Set the fields of the Break and Dead Time configuration data structure - * to their default values. - * @param TIM_BDTRInitStruct pointer to a @ref LL_TIM_BDTR_InitTypeDef structure (Break and Dead Time configuration data structure) - * @retval None - */ -void LL_TIM_BDTR_StructInit(LL_TIM_BDTR_InitTypeDef *TIM_BDTRInitStruct) -{ - /* Set the default configuration */ - TIM_BDTRInitStruct->OSSRState = LL_TIM_OSSR_DISABLE; - TIM_BDTRInitStruct->OSSIState = LL_TIM_OSSI_DISABLE; - TIM_BDTRInitStruct->LockLevel = LL_TIM_LOCKLEVEL_OFF; - TIM_BDTRInitStruct->DeadTime = (uint8_t)0x00; - TIM_BDTRInitStruct->BreakState = LL_TIM_BREAK_DISABLE; - TIM_BDTRInitStruct->BreakPolarity = LL_TIM_BREAK_POLARITY_LOW; - TIM_BDTRInitStruct->AutomaticOutput = LL_TIM_AUTOMATICOUTPUT_DISABLE; -} - -/** - * @brief Configure the Break and Dead Time feature of the timer instance. - * @note As the bits AOE, BKP, BKE, OSSR, OSSI and DTG[7:0] can be write-locked - * depending on the LOCK configuration, it can be necessary to configure all of - * them during the first write access to the TIMx_BDTR register. - * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not - * a timer instance provides a break input. - * @param TIMx Timer Instance - * @param TIM_BDTRInitStruct pointer to a @ref LL_TIM_BDTR_InitTypeDef structure (Break and Dead Time configuration data structure) - * @retval An ErrorStatus enumeration value: - * - SUCCESS: Break and Dead Time is initialized - * - ERROR: not applicable - */ -ErrorStatus LL_TIM_BDTR_Init(TIM_TypeDef *TIMx, LL_TIM_BDTR_InitTypeDef *TIM_BDTRInitStruct) -{ - uint32_t tmpbdtr = 0; - - /* Check the parameters */ - assert_param(IS_TIM_BREAK_INSTANCE(TIMx)); - assert_param(IS_LL_TIM_OSSR_STATE(TIM_BDTRInitStruct->OSSRState)); - assert_param(IS_LL_TIM_OSSI_STATE(TIM_BDTRInitStruct->OSSIState)); - assert_param(IS_LL_TIM_LOCK_LEVEL(TIM_BDTRInitStruct->LockLevel)); - assert_param(IS_LL_TIM_BREAK_STATE(TIM_BDTRInitStruct->BreakState)); - assert_param(IS_LL_TIM_BREAK_POLARITY(TIM_BDTRInitStruct->BreakPolarity)); - assert_param(IS_LL_TIM_AUTOMATIC_OUTPUT_STATE(TIM_BDTRInitStruct->AutomaticOutput)); - - /* Set the Lock level, the Break enable Bit and the Polarity, the OSSR State, - the OSSI State, the dead time value and the Automatic Output Enable Bit */ - - /* Set the BDTR bits */ - MODIFY_REG(tmpbdtr, TIM_BDTR_DTG, TIM_BDTRInitStruct->DeadTime); - MODIFY_REG(tmpbdtr, TIM_BDTR_LOCK, TIM_BDTRInitStruct->LockLevel); - MODIFY_REG(tmpbdtr, TIM_BDTR_OSSI, TIM_BDTRInitStruct->OSSIState); - MODIFY_REG(tmpbdtr, TIM_BDTR_OSSR, TIM_BDTRInitStruct->OSSRState); - MODIFY_REG(tmpbdtr, TIM_BDTR_BKE, TIM_BDTRInitStruct->BreakState); - MODIFY_REG(tmpbdtr, TIM_BDTR_BKP, TIM_BDTRInitStruct->BreakPolarity); - MODIFY_REG(tmpbdtr, TIM_BDTR_AOE, TIM_BDTRInitStruct->AutomaticOutput); - MODIFY_REG(tmpbdtr, TIM_BDTR_MOE, TIM_BDTRInitStruct->AutomaticOutput); - - /* Set TIMx_BDTR */ - LL_TIM_WriteReg(TIMx, BDTR, tmpbdtr); - - return SUCCESS; -} -/** - * @} - */ - -/** - * @} - */ - -/** @addtogroup TIM_LL_Private_Functions TIM Private Functions - * @brief Private functions - * @{ - */ -/** - * @brief Configure the TIMx output channel 1. - * @param TIMx Timer Instance - * @param TIM_OCInitStruct pointer to the the TIMx output channel 1 configuration data structure - * @retval An ErrorStatus enumeration value: - * - SUCCESS: TIMx registers are de-initialized - * - ERROR: not applicable - */ -static ErrorStatus OC1Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct) -{ - uint32_t tmpccmr1; - uint32_t tmpccer; - uint32_t tmpcr2; - - /* Check the parameters */ - assert_param(IS_TIM_CC1_INSTANCE(TIMx)); - assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode)); - assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState)); - assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity)); - assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState)); - assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity)); - - /* Disable the Channel 1: Reset the CC1E Bit */ - CLEAR_BIT(TIMx->CCER, TIM_CCER_CC1E); - - /* Get the TIMx CCER register value */ - tmpccer = LL_TIM_ReadReg(TIMx, CCER); - - /* Get the TIMx CR2 register value */ - tmpcr2 = LL_TIM_ReadReg(TIMx, CR2); - - /* Get the TIMx CCMR1 register value */ - tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1); - - /* Reset Capture/Compare selection Bits */ - CLEAR_BIT(tmpccmr1, TIM_CCMR1_CC1S); - - /* Set the Output Compare Mode */ - MODIFY_REG(tmpccmr1, TIM_CCMR1_OC1M, TIM_OCInitStruct->OCMode); - - /* Set the Output Compare Polarity */ - MODIFY_REG(tmpccer, TIM_CCER_CC1P, TIM_OCInitStruct->OCPolarity); - - /* Set the Output State */ - MODIFY_REG(tmpccer, TIM_CCER_CC1E, TIM_OCInitStruct->OCState); - - if (IS_TIM_BREAK_INSTANCE(TIMx)) - { - assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState)); - assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState)); - - /* Set the complementary output Polarity */ - MODIFY_REG(tmpccer, TIM_CCER_CC1NP, TIM_OCInitStruct->OCNPolarity << 2U); - - /* Set the complementary output State */ - MODIFY_REG(tmpccer, TIM_CCER_CC1NE, TIM_OCInitStruct->OCNState << 2U); - - /* Set the Output Idle state */ - MODIFY_REG(tmpcr2, TIM_CR2_OIS1, TIM_OCInitStruct->OCIdleState); - - /* Set the complementary output Idle state */ - MODIFY_REG(tmpcr2, TIM_CR2_OIS1N, TIM_OCInitStruct->OCNIdleState << 1U); - } - - /* Write to TIMx CR2 */ - LL_TIM_WriteReg(TIMx, CR2, tmpcr2); - - /* Write to TIMx CCMR1 */ - LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1); - - /* Set the Capture Compare Register value */ - LL_TIM_OC_SetCompareCH1(TIMx, TIM_OCInitStruct->CompareValue); - - /* Write to TIMx CCER */ - LL_TIM_WriteReg(TIMx, CCER, tmpccer); - - return SUCCESS; -} - -/** - * @brief Configure the TIMx output channel 2. - * @param TIMx Timer Instance - * @param TIM_OCInitStruct pointer to the the TIMx output channel 2 configuration data structure - * @retval An ErrorStatus enumeration value: - * - SUCCESS: TIMx registers are de-initialized - * - ERROR: not applicable - */ -static ErrorStatus OC2Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct) -{ - uint32_t tmpccmr1; - uint32_t tmpccer; - uint32_t tmpcr2; - - /* Check the parameters */ - assert_param(IS_TIM_CC2_INSTANCE(TIMx)); - assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode)); - assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState)); - assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity)); - assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState)); - assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity)); - - /* Disable the Channel 2: Reset the CC2E Bit */ - CLEAR_BIT(TIMx->CCER, TIM_CCER_CC2E); - - /* Get the TIMx CCER register value */ - tmpccer = LL_TIM_ReadReg(TIMx, CCER); - - /* Get the TIMx CR2 register value */ - tmpcr2 = LL_TIM_ReadReg(TIMx, CR2); - - /* Get the TIMx CCMR1 register value */ - tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1); - - /* Reset Capture/Compare selection Bits */ - CLEAR_BIT(tmpccmr1, TIM_CCMR1_CC2S); - - /* Select the Output Compare Mode */ - MODIFY_REG(tmpccmr1, TIM_CCMR1_OC2M, TIM_OCInitStruct->OCMode << 8U); - - /* Set the Output Compare Polarity */ - MODIFY_REG(tmpccer, TIM_CCER_CC2P, TIM_OCInitStruct->OCPolarity << 4U); - - /* Set the Output State */ - MODIFY_REG(tmpccer, TIM_CCER_CC2E, TIM_OCInitStruct->OCState << 4U); - - if (IS_TIM_BREAK_INSTANCE(TIMx)) - { - assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState)); - assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState)); - - /* Set the complementary output Polarity */ - MODIFY_REG(tmpccer, TIM_CCER_CC2NP, TIM_OCInitStruct->OCNPolarity << 6U); - - /* Set the complementary output State */ - MODIFY_REG(tmpccer, TIM_CCER_CC2NE, TIM_OCInitStruct->OCNState << 6U); - - /* Set the Output Idle state */ - MODIFY_REG(tmpcr2, TIM_CR2_OIS2, TIM_OCInitStruct->OCIdleState << 2U); - - /* Set the complementary output Idle state */ - MODIFY_REG(tmpcr2, TIM_CR2_OIS2N, TIM_OCInitStruct->OCNIdleState << 3U); - } - - /* Write to TIMx CR2 */ - LL_TIM_WriteReg(TIMx, CR2, tmpcr2); - - /* Write to TIMx CCMR1 */ - LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1); - - /* Set the Capture Compare Register value */ - LL_TIM_OC_SetCompareCH2(TIMx, TIM_OCInitStruct->CompareValue); - - /* Write to TIMx CCER */ - LL_TIM_WriteReg(TIMx, CCER, tmpccer); - - return SUCCESS; -} - -/** - * @brief Configure the TIMx output channel 3. - * @param TIMx Timer Instance - * @param TIM_OCInitStruct pointer to the the TIMx output channel 3 configuration data structure - * @retval An ErrorStatus enumeration value: - * - SUCCESS: TIMx registers are de-initialized - * - ERROR: not applicable - */ -static ErrorStatus OC3Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct) -{ - uint32_t tmpccmr2; - uint32_t tmpccer; - uint32_t tmpcr2; - - /* Check the parameters */ - assert_param(IS_TIM_CC3_INSTANCE(TIMx)); - assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode)); - assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState)); - assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity)); - assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState)); - assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity)); - - /* Disable the Channel 3: Reset the CC3E Bit */ - CLEAR_BIT(TIMx->CCER, TIM_CCER_CC3E); - - /* Get the TIMx CCER register value */ - tmpccer = LL_TIM_ReadReg(TIMx, CCER); - - /* Get the TIMx CR2 register value */ - tmpcr2 = LL_TIM_ReadReg(TIMx, CR2); - - /* Get the TIMx CCMR2 register value */ - tmpccmr2 = LL_TIM_ReadReg(TIMx, CCMR2); - - /* Reset Capture/Compare selection Bits */ - CLEAR_BIT(tmpccmr2, TIM_CCMR2_CC3S); - - /* Select the Output Compare Mode */ - MODIFY_REG(tmpccmr2, TIM_CCMR2_OC3M, TIM_OCInitStruct->OCMode); - - /* Set the Output Compare Polarity */ - MODIFY_REG(tmpccer, TIM_CCER_CC3P, TIM_OCInitStruct->OCPolarity << 8U); - - /* Set the Output State */ - MODIFY_REG(tmpccer, TIM_CCER_CC3E, TIM_OCInitStruct->OCState << 8U); - - if (IS_TIM_BREAK_INSTANCE(TIMx)) - { - assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState)); - assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState)); - - /* Set the complementary output Polarity */ - MODIFY_REG(tmpccer, TIM_CCER_CC3NP, TIM_OCInitStruct->OCNPolarity << 10U); - - /* Set the complementary output State */ - MODIFY_REG(tmpccer, TIM_CCER_CC3NE, TIM_OCInitStruct->OCNState << 10U); - - /* Set the Output Idle state */ - MODIFY_REG(tmpcr2, TIM_CR2_OIS3, TIM_OCInitStruct->OCIdleState << 4U); - - /* Set the complementary output Idle state */ - MODIFY_REG(tmpcr2, TIM_CR2_OIS3N, TIM_OCInitStruct->OCNIdleState << 5U); - } - - /* Write to TIMx CR2 */ - LL_TIM_WriteReg(TIMx, CR2, tmpcr2); - - /* Write to TIMx CCMR2 */ - LL_TIM_WriteReg(TIMx, CCMR2, tmpccmr2); - - /* Set the Capture Compare Register value */ - LL_TIM_OC_SetCompareCH3(TIMx, TIM_OCInitStruct->CompareValue); - - /* Write to TIMx CCER */ - LL_TIM_WriteReg(TIMx, CCER, tmpccer); - - return SUCCESS; -} - -/** - * @brief Configure the TIMx output channel 4. - * @param TIMx Timer Instance - * @param TIM_OCInitStruct pointer to the the TIMx output channel 4 configuration data structure - * @retval An ErrorStatus enumeration value: - * - SUCCESS: TIMx registers are de-initialized - * - ERROR: not applicable - */ -static ErrorStatus OC4Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct) -{ - uint32_t tmpccmr2; - uint32_t tmpccer; - uint32_t tmpcr2; - - /* Check the parameters */ - assert_param(IS_TIM_CC4_INSTANCE(TIMx)); - assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode)); - assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState)); - assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity)); - assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity)); - assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState)); - - /* Disable the Channel 4: Reset the CC4E Bit */ - CLEAR_BIT(TIMx->CCER, TIM_CCER_CC4E); - - /* Get the TIMx CCER register value */ - tmpccer = LL_TIM_ReadReg(TIMx, CCER); - - /* Get the TIMx CR2 register value */ - tmpcr2 = LL_TIM_ReadReg(TIMx, CR2); - - /* Get the TIMx CCMR2 register value */ - tmpccmr2 = LL_TIM_ReadReg(TIMx, CCMR2); - - /* Reset Capture/Compare selection Bits */ - CLEAR_BIT(tmpccmr2, TIM_CCMR2_CC4S); - - /* Select the Output Compare Mode */ - MODIFY_REG(tmpccmr2, TIM_CCMR2_OC4M, TIM_OCInitStruct->OCMode << 8U); - - /* Set the Output Compare Polarity */ - MODIFY_REG(tmpccer, TIM_CCER_CC4P, TIM_OCInitStruct->OCPolarity << 12U); - - /* Set the Output State */ - MODIFY_REG(tmpccer, TIM_CCER_CC4E, TIM_OCInitStruct->OCState << 12U); - - if (IS_TIM_BREAK_INSTANCE(TIMx)) - { - assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState)); - assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState)); - - /* Set the Output Idle state */ - MODIFY_REG(tmpcr2, TIM_CR2_OIS4, TIM_OCInitStruct->OCIdleState << 6U); - } - - /* Write to TIMx CR2 */ - LL_TIM_WriteReg(TIMx, CR2, tmpcr2); - - /* Write to TIMx CCMR2 */ - LL_TIM_WriteReg(TIMx, CCMR2, tmpccmr2); - - /* Set the Capture Compare Register value */ - LL_TIM_OC_SetCompareCH4(TIMx, TIM_OCInitStruct->CompareValue); - - /* Write to TIMx CCER */ - LL_TIM_WriteReg(TIMx, CCER, tmpccer); - - return SUCCESS; -} - - -/** - * @brief Configure the TIMx input channel 1. - * @param TIMx Timer Instance - * @param TIM_ICInitStruct pointer to the the TIMx input channel 1 configuration data structure - * @retval An ErrorStatus enumeration value: - * - SUCCESS: TIMx registers are de-initialized - * - ERROR: not applicable - */ -static ErrorStatus IC1Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct) -{ - /* Check the parameters */ - assert_param(IS_TIM_CC1_INSTANCE(TIMx)); - assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity)); - assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput)); - assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler)); - assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter)); - - /* Disable the Channel 1: Reset the CC1E Bit */ - TIMx->CCER &= (uint32_t)~TIM_CCER_CC1E; - - /* Select the Input and set the filter and the prescaler value */ - MODIFY_REG(TIMx->CCMR1, - (TIM_CCMR1_CC1S | TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC), - (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 16U); - - /* Select the Polarity and set the CC1E Bit */ - MODIFY_REG(TIMx->CCER, - (TIM_CCER_CC1P | TIM_CCER_CC1NP), - (TIM_ICInitStruct->ICPolarity | TIM_CCER_CC1E)); - - return SUCCESS; -} - -/** - * @brief Configure the TIMx input channel 2. - * @param TIMx Timer Instance - * @param TIM_ICInitStruct pointer to the the TIMx input channel 2 configuration data structure - * @retval An ErrorStatus enumeration value: - * - SUCCESS: TIMx registers are de-initialized - * - ERROR: not applicable - */ -static ErrorStatus IC2Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct) -{ - /* Check the parameters */ - assert_param(IS_TIM_CC2_INSTANCE(TIMx)); - assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity)); - assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput)); - assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler)); - assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter)); - - /* Disable the Channel 2: Reset the CC2E Bit */ - TIMx->CCER &= (uint32_t)~TIM_CCER_CC2E; - - /* Select the Input and set the filter and the prescaler value */ - MODIFY_REG(TIMx->CCMR1, - (TIM_CCMR1_CC2S | TIM_CCMR1_IC2F | TIM_CCMR1_IC2PSC), - (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 8U); - - /* Select the Polarity and set the CC2E Bit */ - MODIFY_REG(TIMx->CCER, - (TIM_CCER_CC2P | TIM_CCER_CC2NP), - ((TIM_ICInitStruct->ICPolarity << 4U) | TIM_CCER_CC2E)); - - return SUCCESS; -} - -/** - * @brief Configure the TIMx input channel 3. - * @param TIMx Timer Instance - * @param TIM_ICInitStruct pointer to the the TIMx input channel 3 configuration data structure - * @retval An ErrorStatus enumeration value: - * - SUCCESS: TIMx registers are de-initialized - * - ERROR: not applicable - */ -static ErrorStatus IC3Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct) -{ - /* Check the parameters */ - assert_param(IS_TIM_CC3_INSTANCE(TIMx)); - assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity)); - assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput)); - assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler)); - assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter)); - - /* Disable the Channel 3: Reset the CC3E Bit */ - TIMx->CCER &= (uint32_t)~TIM_CCER_CC3E; - - /* Select the Input and set the filter and the prescaler value */ - MODIFY_REG(TIMx->CCMR2, - (TIM_CCMR2_CC3S | TIM_CCMR2_IC3F | TIM_CCMR2_IC3PSC), - (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 16U); - - /* Select the Polarity and set the CC3E Bit */ - MODIFY_REG(TIMx->CCER, - (TIM_CCER_CC3P | TIM_CCER_CC3NP), - ((TIM_ICInitStruct->ICPolarity << 8U) | TIM_CCER_CC3E)); - - return SUCCESS; -} - -/** - * @brief Configure the TIMx input channel 4. - * @param TIMx Timer Instance - * @param TIM_ICInitStruct pointer to the the TIMx input channel 4 configuration data structure - * @retval An ErrorStatus enumeration value: - * - SUCCESS: TIMx registers are de-initialized - * - ERROR: not applicable - */ -static ErrorStatus IC4Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct) -{ - /* Check the parameters */ - assert_param(IS_TIM_CC4_INSTANCE(TIMx)); - assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity)); - assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput)); - assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler)); - assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter)); - - /* Disable the Channel 4: Reset the CC4E Bit */ - TIMx->CCER &= (uint32_t)~TIM_CCER_CC4E; - - /* Select the Input and set the filter and the prescaler value */ - MODIFY_REG(TIMx->CCMR2, - (TIM_CCMR2_CC4S | TIM_CCMR2_IC4F | TIM_CCMR2_IC4PSC), - (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 8U); - - /* Select the Polarity and set the CC2E Bit */ - MODIFY_REG(TIMx->CCER, - (TIM_CCER_CC4P | TIM_CCER_CC4NP), - ((TIM_ICInitStruct->ICPolarity << 12U) | TIM_CCER_CC4E)); - - return SUCCESS; -} - - -/** - * @} - */ - -/** - * @} - */ - -#endif /* TIM1 || TIM2 || TIM3 || TIM14 || TIM15 || TIM16 || TIM17 || TIM6 || TIM7 */ - -/** - * @} - */ - -#endif /* USE_FULL_LL_DRIVER */ - -/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_usart.c b/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_usart.c deleted file mode 100644 index 4599b6d..0000000 --- a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_usart.c +++ /dev/null @@ -1,504 +0,0 @@ -/** - ****************************************************************************** - * @file stm32f0xx_ll_usart.c - * @author MCD Application Team - * @brief USART LL module driver. - ****************************************************************************** - * @attention - * - *

© Copyright (c) 2016 STMicroelectronics. - * All rights reserved.

- * - * This software component is licensed by ST under BSD 3-Clause license, - * the "License"; You may not use this file except in compliance with the - * License. You may obtain a copy of the License at: - * opensource.org/licenses/BSD-3-Clause - * - ****************************************************************************** - */ -#if defined(USE_FULL_LL_DRIVER) - -/* Includes ------------------------------------------------------------------*/ -#include "stm32f0xx_ll_usart.h" -#include "stm32f0xx_ll_rcc.h" -#include "stm32f0xx_ll_bus.h" -#ifdef USE_FULL_ASSERT -#include "stm32_assert.h" -#else -#define assert_param(expr) ((void)0U) -#endif /* USE_FULL_ASSERT */ - -/** @addtogroup STM32F0xx_LL_Driver - * @{ - */ - -#if defined (USART1) || defined (USART2) || defined (USART3) || defined (UART4) || defined (UART5) || defined (USART6) || defined (USART7) || defined (USART8) - -/** @addtogroup USART_LL - * @{ - */ - -/* Private types -------------------------------------------------------------*/ -/* Private variables ---------------------------------------------------------*/ -/* Private constants ---------------------------------------------------------*/ -/* Private macros ------------------------------------------------------------*/ -/** @addtogroup USART_LL_Private_Macros - * @{ - */ - -/* __BAUDRATE__ The maximum Baud Rate is derived from the maximum clock available - * divided by the smallest oversampling used on the USART (i.e. 8) */ -#define IS_LL_USART_BAUDRATE(__BAUDRATE__) ((__BAUDRATE__) <= 6000000U) - -/* __VALUE__ In case of oversampling by 16 and 8, BRR content must be greater than or equal to 16d. */ -#define IS_LL_USART_BRR_MIN(__VALUE__) ((__VALUE__) >= 16U) - -/* __VALUE__ BRR content must be lower than or equal to 0xFFFF. */ -#define IS_LL_USART_BRR_MAX(__VALUE__) ((__VALUE__) <= 0x0000FFFFU) - -#define IS_LL_USART_DIRECTION(__VALUE__) (((__VALUE__) == LL_USART_DIRECTION_NONE) \ - || ((__VALUE__) == LL_USART_DIRECTION_RX) \ - || ((__VALUE__) == LL_USART_DIRECTION_TX) \ - || ((__VALUE__) == LL_USART_DIRECTION_TX_RX)) - -#define IS_LL_USART_PARITY(__VALUE__) (((__VALUE__) == LL_USART_PARITY_NONE) \ - || ((__VALUE__) == LL_USART_PARITY_EVEN) \ - || ((__VALUE__) == LL_USART_PARITY_ODD)) - -#if defined(USART_7BITS_SUPPORT) -#define IS_LL_USART_DATAWIDTH(__VALUE__) (((__VALUE__) == LL_USART_DATAWIDTH_7B) \ - || ((__VALUE__) == LL_USART_DATAWIDTH_8B) \ - || ((__VALUE__) == LL_USART_DATAWIDTH_9B)) -#else -#define IS_LL_USART_DATAWIDTH(__VALUE__) (((__VALUE__) == LL_USART_DATAWIDTH_8B) \ - || ((__VALUE__) == LL_USART_DATAWIDTH_9B)) -#endif /* USART_7BITS_SUPPORT */ - -#define IS_LL_USART_OVERSAMPLING(__VALUE__) (((__VALUE__) == LL_USART_OVERSAMPLING_16) \ - || ((__VALUE__) == LL_USART_OVERSAMPLING_8)) - -#define IS_LL_USART_LASTBITCLKOUTPUT(__VALUE__) (((__VALUE__) == LL_USART_LASTCLKPULSE_NO_OUTPUT) \ - || ((__VALUE__) == LL_USART_LASTCLKPULSE_OUTPUT)) - -#define IS_LL_USART_CLOCKPHASE(__VALUE__) (((__VALUE__) == LL_USART_PHASE_1EDGE) \ - || ((__VALUE__) == LL_USART_PHASE_2EDGE)) - -#define IS_LL_USART_CLOCKPOLARITY(__VALUE__) (((__VALUE__) == LL_USART_POLARITY_LOW) \ - || ((__VALUE__) == LL_USART_POLARITY_HIGH)) - -#define IS_LL_USART_CLOCKOUTPUT(__VALUE__) (((__VALUE__) == LL_USART_CLOCK_DISABLE) \ - || ((__VALUE__) == LL_USART_CLOCK_ENABLE)) - -#if defined(USART_SMARTCARD_SUPPORT) -#define IS_LL_USART_STOPBITS(__VALUE__) (((__VALUE__) == LL_USART_STOPBITS_0_5) \ - || ((__VALUE__) == LL_USART_STOPBITS_1) \ - || ((__VALUE__) == LL_USART_STOPBITS_1_5) \ - || ((__VALUE__) == LL_USART_STOPBITS_2)) -#else -#define IS_LL_USART_STOPBITS(__VALUE__) (((__VALUE__) == LL_USART_STOPBITS_1) \ - || ((__VALUE__) == LL_USART_STOPBITS_2)) -#endif - -#define IS_LL_USART_HWCONTROL(__VALUE__) (((__VALUE__) == LL_USART_HWCONTROL_NONE) \ - || ((__VALUE__) == LL_USART_HWCONTROL_RTS) \ - || ((__VALUE__) == LL_USART_HWCONTROL_CTS) \ - || ((__VALUE__) == LL_USART_HWCONTROL_RTS_CTS)) - -/** - * @} - */ - -/* Private function prototypes -----------------------------------------------*/ - -/* Exported functions --------------------------------------------------------*/ -/** @addtogroup USART_LL_Exported_Functions - * @{ - */ - -/** @addtogroup USART_LL_EF_Init - * @{ - */ - -/** - * @brief De-initialize USART registers (Registers restored to their default values). - * @param USARTx USART Instance - * @retval An ErrorStatus enumeration value: - * - SUCCESS: USART registers are de-initialized - * - ERROR: USART registers are not de-initialized - */ -ErrorStatus LL_USART_DeInit(USART_TypeDef *USARTx) -{ - ErrorStatus status = SUCCESS; - - /* Check the parameters */ - assert_param(IS_UART_INSTANCE(USARTx)); - - if (USARTx == USART1) - { - /* Force reset of USART clock */ - LL_APB1_GRP2_ForceReset(LL_APB1_GRP2_PERIPH_USART1); - - /* Release reset of USART clock */ - LL_APB1_GRP2_ReleaseReset(LL_APB1_GRP2_PERIPH_USART1); - } -#if defined(USART2) - else if (USARTx == USART2) - { - /* Force reset of USART clock */ - LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_USART2); - - /* Release reset of USART clock */ - LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_USART2); - } -#endif /* USART2 */ -#if defined(USART3) - else if (USARTx == USART3) - { - /* Force reset of USART clock */ - LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_USART3); - - /* Release reset of USART clock */ - LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_USART3); - } -#endif /* USART3 */ -#if defined(USART4) - else if (USARTx == USART4) - { - /* Force reset of USART clock */ - LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_USART4); - - /* Release reset of USART clock */ - LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_USART4); - } -#endif /* USART4 */ -#if defined(USART5) - else if (USARTx == USART5) - { - /* Force reset of USART clock */ - LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_USART5); - - /* Release reset of USART clock */ - LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_USART5); - } -#endif /* USART5 */ -#if defined(USART6) - else if (USARTx == USART6) - { - /* Force reset of USART clock */ - LL_APB1_GRP2_ForceReset(LL_APB1_GRP2_PERIPH_USART6); - - /* Release reset of USART clock */ - LL_APB1_GRP2_ReleaseReset(LL_APB1_GRP2_PERIPH_USART6); - } -#endif /* USART6 */ -#if defined(USART7) - else if (USARTx == USART7) - { - /* Force reset of USART clock */ - LL_APB1_GRP2_ForceReset(LL_APB1_GRP2_PERIPH_USART7); - - /* Release reset of USART clock */ - LL_APB1_GRP2_ReleaseReset(LL_APB1_GRP2_PERIPH_USART7); - } -#endif /* USART7 */ -#if defined(USART8) - else if (USARTx == USART8) - { - /* Force reset of USART clock */ - LL_APB1_GRP2_ForceReset(LL_APB1_GRP2_PERIPH_USART8); - - /* Release reset of USART clock */ - LL_APB1_GRP2_ReleaseReset(LL_APB1_GRP2_PERIPH_USART8); - } -#endif /* USART8 */ - else - { - status = ERROR; - } - - return (status); -} - -/** - * @brief Initialize USART registers according to the specified - * parameters in USART_InitStruct. - * @note As some bits in USART configuration registers can only be written when the USART is disabled (USART_CR1_UE bit =0), - * USART Peripheral should be in disabled state prior calling this function. Otherwise, ERROR result will be returned. - * @note Baud rate value stored in USART_InitStruct BaudRate field, should be valid (different from 0). - * @param USARTx USART Instance - * @param USART_InitStruct pointer to a LL_USART_InitTypeDef structure - * that contains the configuration information for the specified USART peripheral. - * @retval An ErrorStatus enumeration value: - * - SUCCESS: USART registers are initialized according to USART_InitStruct content - * - ERROR: Problem occurred during USART Registers initialization - */ -ErrorStatus LL_USART_Init(USART_TypeDef *USARTx, LL_USART_InitTypeDef *USART_InitStruct) -{ - ErrorStatus status = ERROR; - uint32_t periphclk = LL_RCC_PERIPH_FREQUENCY_NO; -#if defined(USART2)||defined(USART3)||defined(USART4) - LL_RCC_ClocksTypeDef RCC_Clocks; -#endif /* USART2 ||USART3 || USART4 */ - - /* Check the parameters */ - assert_param(IS_UART_INSTANCE(USARTx)); - assert_param(IS_LL_USART_BAUDRATE(USART_InitStruct->BaudRate)); - assert_param(IS_LL_USART_DATAWIDTH(USART_InitStruct->DataWidth)); - assert_param(IS_LL_USART_STOPBITS(USART_InitStruct->StopBits)); - assert_param(IS_LL_USART_PARITY(USART_InitStruct->Parity)); - assert_param(IS_LL_USART_DIRECTION(USART_InitStruct->TransferDirection)); - assert_param(IS_LL_USART_HWCONTROL(USART_InitStruct->HardwareFlowControl)); - assert_param(IS_LL_USART_OVERSAMPLING(USART_InitStruct->OverSampling)); - - /* USART needs to be in disabled state, in order to be able to configure some bits in - CRx registers */ - if (LL_USART_IsEnabled(USARTx) == 0U) - { - /*---------------------------- USART CR1 Configuration --------------------- - * Configure USARTx CR1 (USART Word Length, Parity, Mode and Oversampling bits) with parameters: - * - DataWidth: USART_CR1_M bits according to USART_InitStruct->DataWidth value - * - Parity: USART_CR1_PCE, USART_CR1_PS bits according to USART_InitStruct->Parity value - * - TransferDirection: USART_CR1_TE, USART_CR1_RE bits according to USART_InitStruct->TransferDirection value - * - Oversampling: USART_CR1_OVER8 bit according to USART_InitStruct->OverSampling value. - */ - MODIFY_REG(USARTx->CR1, - (USART_CR1_M | USART_CR1_PCE | USART_CR1_PS | - USART_CR1_TE | USART_CR1_RE | USART_CR1_OVER8), - (USART_InitStruct->DataWidth | USART_InitStruct->Parity | - USART_InitStruct->TransferDirection | USART_InitStruct->OverSampling)); - - /*---------------------------- USART CR2 Configuration --------------------- - * Configure USARTx CR2 (Stop bits) with parameters: - * - Stop Bits: USART_CR2_STOP bits according to USART_InitStruct->StopBits value. - * - CLKEN, CPOL, CPHA and LBCL bits are to be configured using LL_USART_ClockInit(). - */ - LL_USART_SetStopBitsLength(USARTx, USART_InitStruct->StopBits); - - /*---------------------------- USART CR3 Configuration --------------------- - * Configure USARTx CR3 (Hardware Flow Control) with parameters: - * - HardwareFlowControl: USART_CR3_RTSE, USART_CR3_CTSE bits according to USART_InitStruct->HardwareFlowControl value. - */ - LL_USART_SetHWFlowCtrl(USARTx, USART_InitStruct->HardwareFlowControl); - - /*---------------------------- USART BRR Configuration --------------------- - * Retrieve Clock frequency used for USART Peripheral - */ - if (USARTx == USART1) - { - periphclk = LL_RCC_GetUSARTClockFreq(LL_RCC_USART1_CLKSOURCE); - } -#if defined(USART2) - else if (USARTx == USART2) - { -#if defined(RCC_CFGR3_USART2SW) - periphclk = LL_RCC_GetUSARTClockFreq(LL_RCC_USART2_CLKSOURCE); -#else - /* USART2 clock is PCLK */ - LL_RCC_GetSystemClocksFreq(&RCC_Clocks); - periphclk = RCC_Clocks.PCLK1_Frequency; -#endif - } -#endif /* USART2 */ -#if defined(USART3) - else if (USARTx == USART3) - { -#if defined(RCC_CFGR3_USART3SW) - periphclk = LL_RCC_GetUSARTClockFreq(LL_RCC_USART3_CLKSOURCE); -#else - /* USART3 clock is PCLK */ - LL_RCC_GetSystemClocksFreq(&RCC_Clocks); - periphclk = RCC_Clocks.PCLK1_Frequency; -#endif - } -#endif /* USART3 */ -#if defined(USART4) - else if (USARTx == USART4) - { - /* USART4 clock is PCLK1 */ - LL_RCC_GetSystemClocksFreq(&RCC_Clocks); - periphclk = RCC_Clocks.PCLK1_Frequency; - } -#endif /* USART4 */ -#if defined(USART5) - else if (USARTx == USART5) - { - /* USART5 clock is PCLK1 */ - LL_RCC_GetSystemClocksFreq(&RCC_Clocks); - periphclk = RCC_Clocks.PCLK1_Frequency; - } -#endif /* USART5 */ -#if defined(USART6) - else if (USARTx == USART6) - { - /* USART6 clock is PCLK */ - LL_RCC_GetSystemClocksFreq(&RCC_Clocks); - periphclk = RCC_Clocks.PCLK1_Frequency; - } -#endif /* USART6 */ -#if defined(USART7) - else if (USARTx == USART7) - { - /* USART7 clock is PCLK */ - LL_RCC_GetSystemClocksFreq(&RCC_Clocks); - periphclk = RCC_Clocks.PCLK1_Frequency; - } -#endif /* USART7 */ -#if defined(USART8) - else if (USARTx == USART8) - { - /* USART8 clock is PCLK */ - LL_RCC_GetSystemClocksFreq(&RCC_Clocks); - periphclk = RCC_Clocks.PCLK1_Frequency; - } -#endif /* USART8 */ - else - { - /* Nothing to do, as error code is already assigned to ERROR value */ - } - - /* Configure the USART Baud Rate : - - valid baud rate value (different from 0) is required - - Peripheral clock as returned by RCC service, should be valid (different from 0). - */ - if ((periphclk != LL_RCC_PERIPH_FREQUENCY_NO) - && (USART_InitStruct->BaudRate != 0U)) - { - status = SUCCESS; - LL_USART_SetBaudRate(USARTx, - periphclk, - USART_InitStruct->OverSampling, - USART_InitStruct->BaudRate); - - /* Check BRR is greater than or equal to 16d */ - assert_param(IS_LL_USART_BRR_MIN(USARTx->BRR)); - - /* Check BRR is lower than or equal to 0xFFFF */ - assert_param(IS_LL_USART_BRR_MAX(USARTx->BRR)); - } - } - /* Endif (=> USART not in Disabled state => return ERROR) */ - - return (status); -} - -/** - * @brief Set each @ref LL_USART_InitTypeDef field to default value. - * @param USART_InitStruct pointer to a @ref LL_USART_InitTypeDef structure - * whose fields will be set to default values. - * @retval None - */ - -void LL_USART_StructInit(LL_USART_InitTypeDef *USART_InitStruct) -{ - /* Set USART_InitStruct fields to default values */ - USART_InitStruct->BaudRate = 9600U; - USART_InitStruct->DataWidth = LL_USART_DATAWIDTH_8B; - USART_InitStruct->StopBits = LL_USART_STOPBITS_1; - USART_InitStruct->Parity = LL_USART_PARITY_NONE ; - USART_InitStruct->TransferDirection = LL_USART_DIRECTION_TX_RX; - USART_InitStruct->HardwareFlowControl = LL_USART_HWCONTROL_NONE; - USART_InitStruct->OverSampling = LL_USART_OVERSAMPLING_16; -} - -/** - * @brief Initialize USART Clock related settings according to the - * specified parameters in the USART_ClockInitStruct. - * @note As some bits in USART configuration registers can only be written when the USART is disabled (USART_CR1_UE bit =0), - * USART Peripheral should be in disabled state prior calling this function. Otherwise, ERROR result will be returned. - * @param USARTx USART Instance - * @param USART_ClockInitStruct pointer to a @ref LL_USART_ClockInitTypeDef structure - * that contains the Clock configuration information for the specified USART peripheral. - * @retval An ErrorStatus enumeration value: - * - SUCCESS: USART registers related to Clock settings are initialized according to USART_ClockInitStruct content - * - ERROR: Problem occurred during USART Registers initialization - */ -ErrorStatus LL_USART_ClockInit(USART_TypeDef *USARTx, LL_USART_ClockInitTypeDef *USART_ClockInitStruct) -{ - ErrorStatus status = SUCCESS; - - /* Check USART Instance and Clock signal output parameters */ - assert_param(IS_UART_INSTANCE(USARTx)); - assert_param(IS_LL_USART_CLOCKOUTPUT(USART_ClockInitStruct->ClockOutput)); - - /* USART needs to be in disabled state, in order to be able to configure some bits in - CRx registers */ - if (LL_USART_IsEnabled(USARTx) == 0U) - { - /*---------------------------- USART CR2 Configuration -----------------------*/ - /* If Clock signal has to be output */ - if (USART_ClockInitStruct->ClockOutput == LL_USART_CLOCK_DISABLE) - { - /* Deactivate Clock signal delivery : - * - Disable Clock Output: USART_CR2_CLKEN cleared - */ - LL_USART_DisableSCLKOutput(USARTx); - } - else - { - /* Ensure USART instance is USART capable */ - assert_param(IS_USART_INSTANCE(USARTx)); - - /* Check clock related parameters */ - assert_param(IS_LL_USART_CLOCKPOLARITY(USART_ClockInitStruct->ClockPolarity)); - assert_param(IS_LL_USART_CLOCKPHASE(USART_ClockInitStruct->ClockPhase)); - assert_param(IS_LL_USART_LASTBITCLKOUTPUT(USART_ClockInitStruct->LastBitClockPulse)); - - /*---------------------------- USART CR2 Configuration ----------------------- - * Configure USARTx CR2 (Clock signal related bits) with parameters: - * - Enable Clock Output: USART_CR2_CLKEN set - * - Clock Polarity: USART_CR2_CPOL bit according to USART_ClockInitStruct->ClockPolarity value - * - Clock Phase: USART_CR2_CPHA bit according to USART_ClockInitStruct->ClockPhase value - * - Last Bit Clock Pulse Output: USART_CR2_LBCL bit according to USART_ClockInitStruct->LastBitClockPulse value. - */ - MODIFY_REG(USARTx->CR2, - USART_CR2_CLKEN | USART_CR2_CPHA | USART_CR2_CPOL | USART_CR2_LBCL, - USART_CR2_CLKEN | USART_ClockInitStruct->ClockPolarity | - USART_ClockInitStruct->ClockPhase | USART_ClockInitStruct->LastBitClockPulse); - } - } - /* Else (USART not in Disabled state => return ERROR */ - else - { - status = ERROR; - } - - return (status); -} - -/** - * @brief Set each field of a @ref LL_USART_ClockInitTypeDef type structure to default value. - * @param USART_ClockInitStruct pointer to a @ref LL_USART_ClockInitTypeDef structure - * whose fields will be set to default values. - * @retval None - */ -void LL_USART_ClockStructInit(LL_USART_ClockInitTypeDef *USART_ClockInitStruct) -{ - /* Set LL_USART_ClockInitStruct fields with default values */ - USART_ClockInitStruct->ClockOutput = LL_USART_CLOCK_DISABLE; - USART_ClockInitStruct->ClockPolarity = LL_USART_POLARITY_LOW; /* Not relevant when ClockOutput = LL_USART_CLOCK_DISABLE */ - USART_ClockInitStruct->ClockPhase = LL_USART_PHASE_1EDGE; /* Not relevant when ClockOutput = LL_USART_CLOCK_DISABLE */ - USART_ClockInitStruct->LastBitClockPulse = LL_USART_LASTCLKPULSE_NO_OUTPUT; /* Not relevant when ClockOutput = LL_USART_CLOCK_DISABLE */ -} - -/** - * @} - */ - -/** - * @} - */ - -/** - * @} - */ - -#endif /* USART1 || USART2 || USART3 || UART4 || UART5 || USART6 || USART7 || USART8 */ - -/** - * @} - */ - -#endif /* USE_FULL_LL_DRIVER */ - -/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ - diff --git a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_usb.c b/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_usb.c deleted file mode 100644 index 071ebdc..0000000 --- a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_usb.c +++ /dev/null @@ -1,878 +0,0 @@ -/** - ****************************************************************************** - * @file stm32f0xx_ll_usb.c - * @author MCD Application Team - * @brief USB Low Layer HAL module driver. - * - * This file provides firmware functions to manage the following - * functionalities of the USB Peripheral Controller: - * + Initialization/de-initialization functions - * + I/O operation functions - * + Peripheral Control functions - * + Peripheral State functions - * - @verbatim - ============================================================================== - ##### How to use this driver ##### - ============================================================================== - [..] - (#) Fill parameters of Init structure in USB_OTG_CfgTypeDef structure. - - (#) Call USB_CoreInit() API to initialize the USB Core peripheral. - - (#) The upper HAL HCD/PCD driver will call the right routines for its internal processes. - - @endverbatim - ****************************************************************************** - * @attention - * - *

© Copyright (c) 2016 STMicroelectronics. - * All rights reserved.

- * - * This software component is licensed by ST under BSD 3-Clause license, - * the "License"; You may not use this file except in compliance with the - * License. You may obtain a copy of the License at: - * opensource.org/licenses/BSD-3-Clause - * - ****************************************************************************** - */ - -/* Includes ------------------------------------------------------------------*/ -#include "stm32f0xx_hal.h" - -/** @addtogroup STM32F0xx_LL_USB_DRIVER - * @{ - */ - -#if defined (HAL_PCD_MODULE_ENABLED) || defined (HAL_HCD_MODULE_ENABLED) -#if defined (USB) -/* Private typedef -----------------------------------------------------------*/ -/* Private define ------------------------------------------------------------*/ -/* Private macro -------------------------------------------------------------*/ -/* Private variables ---------------------------------------------------------*/ -/* Private function prototypes -----------------------------------------------*/ -/* Private functions ---------------------------------------------------------*/ - - -/** - * @brief Initializes the USB Core - * @param USBx: USB Instance - * @param cfg : pointer to a USB_CfgTypeDef structure that contains - * the configuration information for the specified USBx peripheral. - * @retval HAL status - */ -HAL_StatusTypeDef USB_CoreInit(USB_TypeDef *USBx, USB_CfgTypeDef cfg) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(USBx); - UNUSED(cfg); - - /* NOTE : - This function is not required by USB Device FS peripheral, it is used - only by USB OTG FS peripheral. - - This function is added to ensure compatibility across platforms. - */ - - return HAL_OK; -} - -/** - * @brief USB_EnableGlobalInt - * Enables the controller's Global Int in the AHB Config reg - * @param USBx : Selected device - * @retval HAL status - */ -HAL_StatusTypeDef USB_EnableGlobalInt(USB_TypeDef *USBx) -{ - uint16_t winterruptmask; - - /* Set winterruptmask variable */ - winterruptmask = USB_CNTR_CTRM | USB_CNTR_WKUPM | - USB_CNTR_SUSPM | USB_CNTR_ERRM | - USB_CNTR_SOFM | USB_CNTR_ESOFM | - USB_CNTR_RESETM | USB_CNTR_L1REQM; - - /* Set interrupt mask */ - USBx->CNTR |= winterruptmask; - - return HAL_OK; -} - -/** - * @brief USB_DisableGlobalInt - * Disable the controller's Global Int in the AHB Config reg - * @param USBx : Selected device - * @retval HAL status -*/ -HAL_StatusTypeDef USB_DisableGlobalInt(USB_TypeDef *USBx) -{ - uint16_t winterruptmask; - - /* Set winterruptmask variable */ - winterruptmask = USB_CNTR_CTRM | USB_CNTR_WKUPM | - USB_CNTR_SUSPM | USB_CNTR_ERRM | - USB_CNTR_SOFM | USB_CNTR_ESOFM | - USB_CNTR_RESETM | USB_CNTR_L1REQM; - - /* Clear interrupt mask */ - USBx->CNTR &= ~winterruptmask; - - return HAL_OK; -} - -/** - * @brief USB_SetCurrentMode : Set functional mode - * @param USBx : Selected device - * @param mode : current core mode - * This parameter can be one of the these values: - * @arg USB_DEVICE_MODE: Peripheral mode mode - * @retval HAL status - */ -HAL_StatusTypeDef USB_SetCurrentMode(USB_TypeDef *USBx, USB_ModeTypeDef mode) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(USBx); - UNUSED(mode); - - /* NOTE : - This function is not required by USB Device FS peripheral, it is used - only by USB OTG FS peripheral. - - This function is added to ensure compatibility across platforms. - */ - return HAL_OK; -} - -/** - * @brief USB_DevInit : Initializes the USB controller registers - * for device mode - * @param USBx : Selected device - * @param cfg : pointer to a USB_CfgTypeDef structure that contains - * the configuration information for the specified USBx peripheral. - * @retval HAL status - */ -HAL_StatusTypeDef USB_DevInit(USB_TypeDef *USBx, USB_CfgTypeDef cfg) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(cfg); - - /* Init Device */ - /*CNTR_FRES = 1*/ - USBx->CNTR = USB_CNTR_FRES; - - /*CNTR_FRES = 0*/ - USBx->CNTR = 0; - - /*Clear pending interrupts*/ - USBx->ISTR = 0; - - /*Set Btable Address*/ - USBx->BTABLE = BTABLE_ADDRESS; - - /* Enable USB Device Interrupt mask */ - (void)USB_EnableGlobalInt(USBx); - - return HAL_OK; -} - -/** - * @brief USB_SetDevSpeed :Initializes the device speed - * depending on the PHY type and the enumeration speed of the device. - * @param USBx Selected device - * @param speed device speed - * @retval Hal status - */ -HAL_StatusTypeDef USB_SetDevSpeed(USB_TypeDef *USBx, uint8_t speed) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(USBx); - UNUSED(speed); - - /* NOTE : - This function is not required by USB Device FS peripheral, it is used - only by USB OTG FS peripheral. - - This function is added to ensure compatibility across platforms. - */ - - return HAL_OK; -} - -/** - * @brief USB_FlushTxFifo : Flush a Tx FIFO - * @param USBx : Selected device - * @param num : FIFO number - * This parameter can be a value from 1 to 15 - 15 means Flush all Tx FIFOs - * @retval HAL status - */ -HAL_StatusTypeDef USB_FlushTxFifo(USB_TypeDef *USBx, uint32_t num) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(USBx); - UNUSED(num); - - /* NOTE : - This function is not required by USB Device FS peripheral, it is used - only by USB OTG FS peripheral. - - This function is added to ensure compatibility across platforms. - */ - - return HAL_OK; -} - -/** - * @brief USB_FlushRxFifo : Flush Rx FIFO - * @param USBx : Selected device - * @retval HAL status - */ -HAL_StatusTypeDef USB_FlushRxFifo(USB_TypeDef *USBx) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(USBx); - - /* NOTE : - This function is not required by USB Device FS peripheral, it is used - only by USB OTG FS peripheral. - - This function is added to ensure compatibility across platforms. - */ - - return HAL_OK; -} - -/** - * @brief Activate and configure an endpoint - * @param USBx : Selected device - * @param ep: pointer to endpoint structure - * @retval HAL status - */ -HAL_StatusTypeDef USB_ActivateEndpoint(USB_TypeDef *USBx, USB_EPTypeDef *ep) -{ - HAL_StatusTypeDef ret = HAL_OK; - uint16_t wEpRegVal; - - wEpRegVal = PCD_GET_ENDPOINT(USBx, ep->num) & USB_EP_T_MASK; - - /* initialize Endpoint */ - switch (ep->type) - { - case EP_TYPE_CTRL: - wEpRegVal |= USB_EP_CONTROL; - break; - - case EP_TYPE_BULK: - wEpRegVal |= USB_EP_BULK; - break; - - case EP_TYPE_INTR: - wEpRegVal |= USB_EP_INTERRUPT; - break; - - case EP_TYPE_ISOC: - wEpRegVal |= USB_EP_ISOCHRONOUS; - break; - - default: - ret = HAL_ERROR; - break; - } - - PCD_SET_ENDPOINT(USBx, ep->num, wEpRegVal | USB_EP_CTR_RX | USB_EP_CTR_TX); - - PCD_SET_EP_ADDRESS(USBx, ep->num, ep->num); - - if (ep->doublebuffer == 0U) - { - if (ep->is_in != 0U) - { - /*Set the endpoint Transmit buffer address */ - PCD_SET_EP_TX_ADDRESS(USBx, ep->num, ep->pmaadress); - PCD_CLEAR_TX_DTOG(USBx, ep->num); - - if (ep->type != EP_TYPE_ISOC) - { - /* Configure NAK status for the Endpoint */ - PCD_SET_EP_TX_STATUS(USBx, ep->num, USB_EP_TX_NAK); - } - else - { - /* Configure TX Endpoint to disabled state */ - PCD_SET_EP_TX_STATUS(USBx, ep->num, USB_EP_TX_DIS); - } - } - else - { - /*Set the endpoint Receive buffer address */ - PCD_SET_EP_RX_ADDRESS(USBx, ep->num, ep->pmaadress); - /*Set the endpoint Receive buffer counter*/ - PCD_SET_EP_RX_CNT(USBx, ep->num, ep->maxpacket); - PCD_CLEAR_RX_DTOG(USBx, ep->num); - /* Configure VALID status for the Endpoint*/ - PCD_SET_EP_RX_STATUS(USBx, ep->num, USB_EP_RX_VALID); - } - } - /*Double Buffer*/ - else - { - /* Set the endpoint as double buffered */ - PCD_SET_EP_DBUF(USBx, ep->num); - /* Set buffer address for double buffered mode */ - PCD_SET_EP_DBUF_ADDR(USBx, ep->num, ep->pmaaddr0, ep->pmaaddr1); - - if (ep->is_in == 0U) - { - /* Clear the data toggle bits for the endpoint IN/OUT */ - PCD_CLEAR_RX_DTOG(USBx, ep->num); - PCD_CLEAR_TX_DTOG(USBx, ep->num); - - /* Reset value of the data toggle bits for the endpoint out */ - PCD_TX_DTOG(USBx, ep->num); - - PCD_SET_EP_RX_STATUS(USBx, ep->num, USB_EP_RX_VALID); - PCD_SET_EP_TX_STATUS(USBx, ep->num, USB_EP_TX_DIS); - } - else - { - /* Clear the data toggle bits for the endpoint IN/OUT */ - PCD_CLEAR_RX_DTOG(USBx, ep->num); - PCD_CLEAR_TX_DTOG(USBx, ep->num); - PCD_RX_DTOG(USBx, ep->num); - - if (ep->type != EP_TYPE_ISOC) - { - /* Configure NAK status for the Endpoint */ - PCD_SET_EP_TX_STATUS(USBx, ep->num, USB_EP_TX_NAK); - } - else - { - /* Configure TX Endpoint to disabled state */ - PCD_SET_EP_TX_STATUS(USBx, ep->num, USB_EP_TX_DIS); - } - - PCD_SET_EP_RX_STATUS(USBx, ep->num, USB_EP_RX_DIS); - } - } - - return ret; -} - -/** - * @brief De-activate and de-initialize an endpoint - * @param USBx : Selected device - * @param ep: pointer to endpoint structure - * @retval HAL status - */ -HAL_StatusTypeDef USB_DeactivateEndpoint(USB_TypeDef *USBx, USB_EPTypeDef *ep) -{ - if (ep->doublebuffer == 0U) - { - if (ep->is_in != 0U) - { - PCD_CLEAR_TX_DTOG(USBx, ep->num); - /* Configure DISABLE status for the Endpoint*/ - PCD_SET_EP_TX_STATUS(USBx, ep->num, USB_EP_TX_DIS); - } - else - { - PCD_CLEAR_RX_DTOG(USBx, ep->num); - /* Configure DISABLE status for the Endpoint*/ - PCD_SET_EP_RX_STATUS(USBx, ep->num, USB_EP_RX_DIS); - } - } - /*Double Buffer*/ - else - { - if (ep->is_in == 0U) - { - /* Clear the data toggle bits for the endpoint IN/OUT*/ - PCD_CLEAR_RX_DTOG(USBx, ep->num); - PCD_CLEAR_TX_DTOG(USBx, ep->num); - - /* Reset value of the data toggle bits for the endpoint out*/ - PCD_TX_DTOG(USBx, ep->num); - - PCD_SET_EP_RX_STATUS(USBx, ep->num, USB_EP_RX_DIS); - PCD_SET_EP_TX_STATUS(USBx, ep->num, USB_EP_TX_DIS); - } - else - { - /* Clear the data toggle bits for the endpoint IN/OUT*/ - PCD_CLEAR_RX_DTOG(USBx, ep->num); - PCD_CLEAR_TX_DTOG(USBx, ep->num); - PCD_RX_DTOG(USBx, ep->num); - /* Configure DISABLE status for the Endpoint*/ - PCD_SET_EP_TX_STATUS(USBx, ep->num, USB_EP_TX_DIS); - PCD_SET_EP_RX_STATUS(USBx, ep->num, USB_EP_RX_DIS); - } - } - - return HAL_OK; -} - -/** - * @brief USB_EPStartXfer : setup and starts a transfer over an EP - * @param USBx : Selected device - * @param ep: pointer to endpoint structure - * @retval HAL status - */ -HAL_StatusTypeDef USB_EPStartXfer(USB_TypeDef *USBx, USB_EPTypeDef *ep) -{ - uint16_t pmabuffer; - uint32_t len; - - /* IN endpoint */ - if (ep->is_in == 1U) - { - /*Multi packet transfer*/ - if (ep->xfer_len > ep->maxpacket) - { - len = ep->maxpacket; - ep->xfer_len -= len; - } - else - { - len = ep->xfer_len; - ep->xfer_len = 0U; - } - - /* configure and validate Tx endpoint */ - if (ep->doublebuffer == 0U) - { - USB_WritePMA(USBx, ep->xfer_buff, ep->pmaadress, (uint16_t)len); - PCD_SET_EP_TX_CNT(USBx, ep->num, len); - } - else - { - /* Write the data to the USB endpoint */ - if ((PCD_GET_ENDPOINT(USBx, ep->num) & USB_EP_DTOG_TX) != 0U) - { - /* Set the Double buffer counter for pmabuffer1 */ - PCD_SET_EP_DBUF1_CNT(USBx, ep->num, ep->is_in, len); - pmabuffer = ep->pmaaddr1; - } - else - { - /* Set the Double buffer counter for pmabuffer0 */ - PCD_SET_EP_DBUF0_CNT(USBx, ep->num, ep->is_in, len); - pmabuffer = ep->pmaaddr0; - } - USB_WritePMA(USBx, ep->xfer_buff, pmabuffer, (uint16_t)len); - PCD_FreeUserBuffer(USBx, ep->num, ep->is_in); - } - - PCD_SET_EP_TX_STATUS(USBx, ep->num, USB_EP_TX_VALID); - } - else /* OUT endpoint */ - { - /* Multi packet transfer*/ - if (ep->xfer_len > ep->maxpacket) - { - len = ep->maxpacket; - ep->xfer_len -= len; - } - else - { - len = ep->xfer_len; - ep->xfer_len = 0U; - } - - /* configure and validate Rx endpoint */ - if (ep->doublebuffer == 0U) - { - /*Set RX buffer count*/ - PCD_SET_EP_RX_CNT(USBx, ep->num, len); - } - else - { - /*Set the Double buffer counter*/ - PCD_SET_EP_DBUF_CNT(USBx, ep->num, ep->is_in, len); - } - - PCD_SET_EP_RX_STATUS(USBx, ep->num, USB_EP_RX_VALID); - } - - return HAL_OK; -} - -/** - * @brief USB_WritePacket : Writes a packet into the Tx FIFO associated - * with the EP/channel - * @param USBx : Selected device - * @param src : pointer to source buffer - * @param ch_ep_num : endpoint or host channel number - * @param len : Number of bytes to write - * @retval HAL status - */ -HAL_StatusTypeDef USB_WritePacket(USB_TypeDef *USBx, uint8_t *src, uint8_t ch_ep_num, uint16_t len) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(USBx); - UNUSED(src); - UNUSED(ch_ep_num); - UNUSED(len); - /* NOTE : - This function is not required by USB Device FS peripheral, it is used - only by USB OTG FS peripheral. - - This function is added to ensure compatibility across platforms. - */ - return HAL_OK; -} - -/** - * @brief USB_ReadPacket : read a packet from the Tx FIFO associated - * with the EP/channel - * @param USBx : Selected device - * @param dest : destination pointer - * @param len : Number of bytes to read - * @retval pointer to destination buffer - */ -void *USB_ReadPacket(USB_TypeDef *USBx, uint8_t *dest, uint16_t len) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(USBx); - UNUSED(dest); - UNUSED(len); - /* NOTE : - This function is not required by USB Device FS peripheral, it is used - only by USB OTG FS peripheral. - - This function is added to ensure compatibility across platforms. - */ - return ((void *)NULL); -} - -/** - * @brief USB_EPSetStall : set a stall condition over an EP - * @param USBx : Selected device - * @param ep: pointer to endpoint structure - * @retval HAL status - */ -HAL_StatusTypeDef USB_EPSetStall(USB_TypeDef *USBx, USB_EPTypeDef *ep) -{ - if (ep->is_in != 0U) - { - PCD_SET_EP_TX_STATUS(USBx, ep->num, USB_EP_TX_STALL); - } - else - { - PCD_SET_EP_RX_STATUS(USBx, ep->num, USB_EP_RX_STALL); - } - - return HAL_OK; -} - -/** - * @brief USB_EPClearStall : Clear a stall condition over an EP - * @param USBx : Selected device - * @param ep: pointer to endpoint structure - * @retval HAL status - */ -HAL_StatusTypeDef USB_EPClearStall(USB_TypeDef *USBx, USB_EPTypeDef *ep) -{ - if (ep->doublebuffer == 0U) - { - if (ep->is_in != 0U) - { - PCD_CLEAR_TX_DTOG(USBx, ep->num); - - if (ep->type != EP_TYPE_ISOC) - { - /* Configure NAK status for the Endpoint */ - PCD_SET_EP_TX_STATUS(USBx, ep->num, USB_EP_TX_NAK); - } - } - else - { - PCD_CLEAR_RX_DTOG(USBx, ep->num); - - /* Configure VALID status for the Endpoint*/ - PCD_SET_EP_RX_STATUS(USBx, ep->num, USB_EP_RX_VALID); - } - } - - return HAL_OK; -} - -/** - * @brief USB_StopDevice : Stop the usb device mode - * @param USBx : Selected device - * @retval HAL status - */ -HAL_StatusTypeDef USB_StopDevice(USB_TypeDef *USBx) -{ - /* disable all interrupts and force USB reset */ - USBx->CNTR = USB_CNTR_FRES; - - /* clear interrupt status register */ - USBx->ISTR = 0; - - /* switch-off device */ - USBx->CNTR = (USB_CNTR_FRES | USB_CNTR_PDWN); - - return HAL_OK; -} - -/** - * @brief USB_SetDevAddress : Stop the usb device mode - * @param USBx : Selected device - * @param address : new device address to be assigned - * This parameter can be a value from 0 to 255 - * @retval HAL status - */ -HAL_StatusTypeDef USB_SetDevAddress(USB_TypeDef *USBx, uint8_t address) -{ - if (address == 0U) - { - /* set device address and enable function */ - USBx->DADDR = USB_DADDR_EF; - } - - return HAL_OK; -} - -/** - * @brief USB_DevConnect : Connect the USB device by enabling the pull-up/pull-down - * @param USBx : Selected device - * @retval HAL status - */ -HAL_StatusTypeDef USB_DevConnect(USB_TypeDef *USBx) -{ - /* Enabling DP Pull-UP bit to Connect internal PU resistor on USB DP line */ - USBx->BCDR |= USB_BCDR_DPPU; - - return HAL_OK; -} - -/** - * @brief USB_DevDisconnect : Disconnect the USB device by disabling the pull-up/pull-down - * @param USBx : Selected device - * @retval HAL status - */ -HAL_StatusTypeDef USB_DevDisconnect(USB_TypeDef *USBx) -{ - /* Disable DP Pull-Up bit to disconnect the Internal PU resistor on USB DP line */ - USBx->BCDR &= (uint16_t)(~(USB_BCDR_DPPU)); - - return HAL_OK; -} - -/** - * @brief USB_ReadInterrupts: return the global USB interrupt status - * @param USBx : Selected device - * @retval HAL status - */ -uint32_t USB_ReadInterrupts(USB_TypeDef *USBx) -{ - uint32_t tmpreg; - - tmpreg = USBx->ISTR; - return tmpreg; -} - -/** - * @brief USB_ReadDevAllOutEpInterrupt: return the USB device OUT endpoints interrupt status - * @param USBx : Selected device - * @retval HAL status - */ -uint32_t USB_ReadDevAllOutEpInterrupt(USB_TypeDef *USBx) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(USBx); - /* NOTE : - This function is not required by USB Device FS peripheral, it is used - only by USB OTG FS peripheral. - - This function is added to ensure compatibility across platforms. - */ - return (0); -} - -/** - * @brief USB_ReadDevAllInEpInterrupt: return the USB device IN endpoints interrupt status - * @param USBx : Selected device - * @retval HAL status - */ -uint32_t USB_ReadDevAllInEpInterrupt(USB_TypeDef *USBx) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(USBx); - /* NOTE : - This function is not required by USB Device FS peripheral, it is used - only by USB OTG FS peripheral. - - This function is added to ensure compatibility across platforms. - */ - return (0); -} - -/** - * @brief Returns Device OUT EP Interrupt register - * @param USBx : Selected device - * @param epnum : endpoint number - * This parameter can be a value from 0 to 15 - * @retval Device OUT EP Interrupt register - */ -uint32_t USB_ReadDevOutEPInterrupt(USB_TypeDef *USBx, uint8_t epnum) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(USBx); - UNUSED(epnum); - /* NOTE : - This function is not required by USB Device FS peripheral, it is used - only by USB OTG FS peripheral. - - This function is added to ensure compatibility across platforms. - */ - return (0); -} - -/** - * @brief Returns Device IN EP Interrupt register - * @param USBx : Selected device - * @param epnum : endpoint number - * This parameter can be a value from 0 to 15 - * @retval Device IN EP Interrupt register - */ -uint32_t USB_ReadDevInEPInterrupt(USB_TypeDef *USBx, uint8_t epnum) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(USBx); - UNUSED(epnum); - /* NOTE : - This function is not required by USB Device FS peripheral, it is used - only by USB OTG FS peripheral. - - This function is added to ensure compatibility across platforms. - */ - return (0); -} - -/** - * @brief USB_ClearInterrupts: clear a USB interrupt - * @param USBx Selected device - * @param interrupt interrupt flag - * @retval None - */ -void USB_ClearInterrupts(USB_TypeDef *USBx, uint32_t interrupt) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(USBx); - UNUSED(interrupt); - /* NOTE : - This function is not required by USB Device FS peripheral, it is used - only by USB OTG FS peripheral. - - This function is added to ensure compatibility across platforms. - */ -} - -/** - * @brief Prepare the EP0 to start the first control setup - * @param USBx Selected device - * @param psetup pointer to setup packet - * @retval HAL status - */ -HAL_StatusTypeDef USB_EP0_OutStart(USB_TypeDef *USBx, uint8_t *psetup) -{ - /* Prevent unused argument(s) compilation warning */ - UNUSED(USBx); - UNUSED(psetup); - /* NOTE : - This function is not required by USB Device FS peripheral, it is used - only by USB OTG FS peripheral. - - This function is added to ensure compatibility across platforms. - */ - return HAL_OK; -} - -/** - * @brief USB_ActivateRemoteWakeup : active remote wakeup signalling - * @param USBx Selected device - * @retval HAL status - */ -HAL_StatusTypeDef USB_ActivateRemoteWakeup(USB_TypeDef *USBx) -{ - USBx->CNTR |= USB_CNTR_RESUME; - - return HAL_OK; -} - -/** - * @brief USB_DeActivateRemoteWakeup : de-active remote wakeup signalling - * @param USBx Selected device - * @retval HAL status - */ -HAL_StatusTypeDef USB_DeActivateRemoteWakeup(USB_TypeDef *USBx) -{ - USBx->CNTR &= ~(USB_CNTR_RESUME); - return HAL_OK; -} - -/** - * @brief Copy a buffer from user memory area to packet memory area (PMA) - * @param USBx USB peripheral instance register address. - * @param pbUsrBuf pointer to user memory area. - * @param wPMABufAddr address into PMA. - * @param wNBytes: no. of bytes to be copied. - * @retval None - */ -void USB_WritePMA(USB_TypeDef *USBx, uint8_t *pbUsrBuf, uint16_t wPMABufAddr, uint16_t wNBytes) -{ - uint32_t n = ((uint32_t)wNBytes + 1U) >> 1; - uint32_t BaseAddr = (uint32_t)USBx; - uint32_t i, temp1, temp2; - __IO uint16_t *pdwVal; - uint8_t *pBuf = pbUsrBuf; - - pdwVal = (__IO uint16_t *)(BaseAddr + 0x400U + ((uint32_t)wPMABufAddr * PMA_ACCESS)); - - for (i = n; i != 0U; i--) - { - temp1 = *pBuf; - pBuf++; - temp2 = temp1 | ((uint16_t)((uint16_t) *pBuf << 8)); - *pdwVal = (uint16_t)temp2; - pdwVal++; - -#if PMA_ACCESS > 1U - pdwVal++; -#endif - - pBuf++; - } -} - -/** - * @brief Copy a buffer from user memory area to packet memory area (PMA) - * @param USBx: USB peripheral instance register address. - * @param pbUsrBuf pointer to user memory area. - * @param wPMABufAddr address into PMA. - * @param wNBytes: no. of bytes to be copied. - * @retval None - */ -void USB_ReadPMA(USB_TypeDef *USBx, uint8_t *pbUsrBuf, uint16_t wPMABufAddr, uint16_t wNBytes) -{ - uint32_t n = (uint32_t)wNBytes >> 1; - uint32_t BaseAddr = (uint32_t)USBx; - uint32_t i, temp; - __IO uint16_t *pdwVal; - uint8_t *pBuf = pbUsrBuf; - - pdwVal = (__IO uint16_t *)(BaseAddr + 0x400U + ((uint32_t)wPMABufAddr * PMA_ACCESS)); - - for (i = n; i != 0U; i--) - { - temp = *(__IO uint16_t *)pdwVal; - pdwVal++; - *pBuf = (uint8_t)((temp >> 0) & 0xFFU); - pBuf++; - *pBuf = (uint8_t)((temp >> 8) & 0xFFU); - pBuf++; - -#if PMA_ACCESS > 1U - pdwVal++; -#endif - } - - if ((wNBytes % 2U) != 0U) - { - temp = *pdwVal; - *pBuf = (uint8_t)((temp >> 0) & 0xFFU); - } -} - - -/** - * @} - */ - -/** - * @} - */ -#endif /* defined (USB) */ -#endif /* defined (HAL_PCD_MODULE_ENABLED) || defined (HAL_HCD_MODULE_ENABLED) */ - -/** - * @} - */ - -/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_utils.c b/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_utils.c deleted file mode 100644 index b6b084a..0000000 --- a/midi-dials/Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_ll_utils.c +++ /dev/null @@ -1,605 +0,0 @@ -/** - ****************************************************************************** - * @file stm32f0xx_ll_utils.c - * @author MCD Application Team - * @brief UTILS LL module driver. - ****************************************************************************** - * @attention - * - *

© Copyright (c) 2016 STMicroelectronics. - * All rights reserved.

- * - * This software component is licensed by ST under BSD 3-Clause license, - * the "License"; You may not use this file except in compliance with the - * License. You may obtain a copy of the License at: - * opensource.org/licenses/BSD-3-Clause - * - ****************************************************************************** - */ - -/* Includes ------------------------------------------------------------------*/ -#include "stm32f0xx_ll_rcc.h" -#include "stm32f0xx_ll_utils.h" -#include "stm32f0xx_ll_system.h" -#ifdef USE_FULL_ASSERT -#include "stm32_assert.h" -#else -#define assert_param(expr) ((void)0U) -#endif - -/** @addtogroup STM32F0xx_LL_Driver - * @{ - */ - -/** @addtogroup UTILS_LL - * @{ - */ - -/* Private types -------------------------------------------------------------*/ -/* Private variables ---------------------------------------------------------*/ -/* Private constants ---------------------------------------------------------*/ -/** @addtogroup UTILS_LL_Private_Constants - * @{ - */ - -/* Defines used for PLL range */ -#define UTILS_PLL_OUTPUT_MIN 16000000U /*!< Frequency min for PLL output, in Hz */ -#define UTILS_PLL_OUTPUT_MAX 48000000U /*!< Frequency max for PLL output, in Hz */ - -/* Defines used for HSE range */ -#define UTILS_HSE_FREQUENCY_MIN 4000000U /*!< Frequency min for HSE frequency, in Hz */ -#define UTILS_HSE_FREQUENCY_MAX 32000000U /*!< Frequency max for HSE frequency, in Hz */ - -/* Defines used for FLASH latency according to SYSCLK Frequency */ -#define UTILS_LATENCY1_FREQ 24000000U /*!< SYSCLK frequency to set FLASH latency 1 */ -/** - * @} - */ -/* Private macros ------------------------------------------------------------*/ -/** @addtogroup UTILS_LL_Private_Macros - * @{ - */ -#define IS_LL_UTILS_SYSCLK_DIV(__VALUE__) (((__VALUE__) == LL_RCC_SYSCLK_DIV_1) \ - || ((__VALUE__) == LL_RCC_SYSCLK_DIV_2) \ - || ((__VALUE__) == LL_RCC_SYSCLK_DIV_4) \ - || ((__VALUE__) == LL_RCC_SYSCLK_DIV_8) \ - || ((__VALUE__) == LL_RCC_SYSCLK_DIV_16) \ - || ((__VALUE__) == LL_RCC_SYSCLK_DIV_64) \ - || ((__VALUE__) == LL_RCC_SYSCLK_DIV_128) \ - || ((__VALUE__) == LL_RCC_SYSCLK_DIV_256) \ - || ((__VALUE__) == LL_RCC_SYSCLK_DIV_512)) - -#define IS_LL_UTILS_APB1_DIV(__VALUE__) (((__VALUE__) == LL_RCC_APB1_DIV_1) \ - || ((__VALUE__) == LL_RCC_APB1_DIV_2) \ - || ((__VALUE__) == LL_RCC_APB1_DIV_4) \ - || ((__VALUE__) == LL_RCC_APB1_DIV_8) \ - || ((__VALUE__) == LL_RCC_APB1_DIV_16)) - -#define IS_LL_UTILS_PLLMUL_VALUE(__VALUE__) (((__VALUE__) == LL_RCC_PLL_MUL_2) \ - || ((__VALUE__) == LL_RCC_PLL_MUL_3) \ - || ((__VALUE__) == LL_RCC_PLL_MUL_4) \ - || ((__VALUE__) == LL_RCC_PLL_MUL_5) \ - || ((__VALUE__) == LL_RCC_PLL_MUL_6) \ - || ((__VALUE__) == LL_RCC_PLL_MUL_7) \ - || ((__VALUE__) == LL_RCC_PLL_MUL_8) \ - || ((__VALUE__) == LL_RCC_PLL_MUL_9) \ - || ((__VALUE__) == LL_RCC_PLL_MUL_10) \ - || ((__VALUE__) == LL_RCC_PLL_MUL_11) \ - || ((__VALUE__) == LL_RCC_PLL_MUL_12) \ - || ((__VALUE__) == LL_RCC_PLL_MUL_13) \ - || ((__VALUE__) == LL_RCC_PLL_MUL_14) \ - || ((__VALUE__) == LL_RCC_PLL_MUL_15) \ - || ((__VALUE__) == LL_RCC_PLL_MUL_16)) - -#define IS_LL_UTILS_PREDIV_VALUE(__VALUE__) (((__VALUE__) == LL_RCC_PREDIV_DIV_1) || ((__VALUE__) == LL_RCC_PREDIV_DIV_2) || \ - ((__VALUE__) == LL_RCC_PREDIV_DIV_3) || ((__VALUE__) == LL_RCC_PREDIV_DIV_4) || \ - ((__VALUE__) == LL_RCC_PREDIV_DIV_5) || ((__VALUE__) == LL_RCC_PREDIV_DIV_6) || \ - ((__VALUE__) == LL_RCC_PREDIV_DIV_7) || ((__VALUE__) == LL_RCC_PREDIV_DIV_8) || \ - ((__VALUE__) == LL_RCC_PREDIV_DIV_9) || ((__VALUE__) == LL_RCC_PREDIV_DIV_10) || \ - ((__VALUE__) == LL_RCC_PREDIV_DIV_11) || ((__VALUE__) == LL_RCC_PREDIV_DIV_12) || \ - ((__VALUE__) == LL_RCC_PREDIV_DIV_13) || ((__VALUE__) == LL_RCC_PREDIV_DIV_14) || \ - ((__VALUE__) == LL_RCC_PREDIV_DIV_15) || ((__VALUE__) == LL_RCC_PREDIV_DIV_16)) - -#define IS_LL_UTILS_PLL_FREQUENCY(__VALUE__) ((UTILS_PLL_OUTPUT_MIN <= (__VALUE__)) && ((__VALUE__) <= UTILS_PLL_OUTPUT_MAX)) - - -#define IS_LL_UTILS_HSE_BYPASS(__STATE__) (((__STATE__) == LL_UTILS_HSEBYPASS_ON) \ - || ((__STATE__) == LL_UTILS_HSEBYPASS_OFF)) - -#define IS_LL_UTILS_HSE_FREQUENCY(__FREQUENCY__) (((__FREQUENCY__) >= UTILS_HSE_FREQUENCY_MIN) && ((__FREQUENCY__) <= UTILS_HSE_FREQUENCY_MAX)) -/** - * @} - */ -/* Private function prototypes -----------------------------------------------*/ -/** @defgroup UTILS_LL_Private_Functions UTILS Private functions - * @{ - */ -static uint32_t UTILS_GetPLLOutputFrequency(uint32_t PLL_InputFrequency, - LL_UTILS_PLLInitTypeDef *UTILS_PLLInitStruct); -#if defined(FLASH_ACR_LATENCY) -static ErrorStatus UTILS_SetFlashLatency(uint32_t Frequency); -#endif /* FLASH_ACR_LATENCY */ -static ErrorStatus UTILS_EnablePLLAndSwitchSystem(uint32_t SYSCLK_Frequency, LL_UTILS_ClkInitTypeDef *UTILS_ClkInitStruct); -static ErrorStatus UTILS_PLL_IsBusy(void); -/** - * @} - */ - -/* Exported functions --------------------------------------------------------*/ -/** @addtogroup UTILS_LL_Exported_Functions - * @{ - */ - -/** @addtogroup UTILS_LL_EF_DELAY - * @{ - */ - -/** - * @brief This function configures the Cortex-M SysTick source to have 1ms time base. - * @note When a RTOS is used, it is recommended to avoid changing the Systick - * configuration by calling this function, for a delay use rather osDelay RTOS service. - * @param HCLKFrequency HCLK frequency in Hz - * @note HCLK frequency can be calculated thanks to RCC helper macro or function @ref LL_RCC_GetSystemClocksFreq - * @retval None - */ -void LL_Init1msTick(uint32_t HCLKFrequency) -{ - /* Use frequency provided in argument */ - LL_InitTick(HCLKFrequency, 1000U); -} - -/** - * @brief This function provides accurate delay (in milliseconds) based - * on SysTick counter flag - * @note When a RTOS is used, it is recommended to avoid using blocking delay - * and use rather osDelay service. - * @note To respect 1ms timebase, user should call @ref LL_Init1msTick function which - * will configure Systick to 1ms - * @param Delay specifies the delay time length, in milliseconds. - * @retval None - */ -void LL_mDelay(uint32_t Delay) -{ - __IO uint32_t tmp = SysTick->CTRL; /* Clear the COUNTFLAG first */ - /* Add this code to indicate that local variable is not used */ - ((void)tmp); - - /* Add a period to guaranty minimum wait */ - if (Delay < LL_MAX_DELAY) - { - Delay++; - } - - while (Delay) - { - if ((SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) != 0U) - { - Delay--; - } - } -} - -/** - * @} - */ - -/** @addtogroup UTILS_EF_SYSTEM - * @brief System Configuration functions - * - @verbatim - =============================================================================== - ##### System Configuration functions ##### - =============================================================================== - [..] - System, AHB and APB buses clocks configuration - - (+) The maximum frequency of the SYSCLK, HCLK, PCLK1 and PCLK2 is 48000000 Hz. - @endverbatim - @internal - Depending on the SYSCLK frequency, the flash latency should be adapted accordingly: - (++) +-----------------------------------------------+ - (++) | Latency | SYSCLK clock frequency (MHz) | - (++) |---------------|-------------------------------| - (++) |0WS(1CPU cycle)| 0 < SYSCLK <= 24 | - (++) |---------------|-------------------------------| - (++) |1WS(2CPU cycle)| 24 < SYSCLK <= 48 | - (++) +-----------------------------------------------+ - @endinternal - * @{ - */ - -/** - * @brief This function sets directly SystemCoreClock CMSIS variable. - * @note Variable can be calculated also through SystemCoreClockUpdate function. - * @param HCLKFrequency HCLK frequency in Hz (can be calculated thanks to RCC helper macro) - * @retval None - */ -void LL_SetSystemCoreClock(uint32_t HCLKFrequency) -{ - /* HCLK clock frequency */ - SystemCoreClock = HCLKFrequency; -} - -/** - * @brief This function configures system clock with HSI as clock source of the PLL - * @note The application need to ensure that PLL is disabled. - * @note Function is based on the following formula: - * - PLL output frequency = ((HSI frequency / PREDIV) * PLLMUL) - * - PREDIV: Set to 2 for few devices - * - PLLMUL: The application software must set correctly the PLL multiplication factor to - * be in the range 16-48MHz - * @note FLASH latency can be modified through this function. - * @param UTILS_PLLInitStruct pointer to a @ref LL_UTILS_PLLInitTypeDef structure that contains - * the configuration information for the PLL. - * @param UTILS_ClkInitStruct pointer to a @ref LL_UTILS_ClkInitTypeDef structure that contains - * the configuration information for the BUS prescalers. - * @retval An ErrorStatus enumeration value: - * - SUCCESS: Max frequency configuration done - * - ERROR: Max frequency configuration not done - */ -ErrorStatus LL_PLL_ConfigSystemClock_HSI(LL_UTILS_PLLInitTypeDef *UTILS_PLLInitStruct, - LL_UTILS_ClkInitTypeDef *UTILS_ClkInitStruct) -{ - ErrorStatus status = SUCCESS; - uint32_t pllfreq = 0U; - - /* Check if one of the PLL is enabled */ - if (UTILS_PLL_IsBusy() == SUCCESS) - { -#if defined(RCC_PLLSRC_PREDIV1_SUPPORT) - /* Check PREDIV value */ - assert_param(IS_LL_UTILS_PREDIV_VALUE(UTILS_PLLInitStruct->PLLDiv)); -#else - /* Force PREDIV value to 2 */ - UTILS_PLLInitStruct->Prediv = LL_RCC_PREDIV_DIV_2; -#endif /*RCC_PLLSRC_PREDIV1_SUPPORT*/ - /* Calculate the new PLL output frequency */ - pllfreq = UTILS_GetPLLOutputFrequency(HSI_VALUE, UTILS_PLLInitStruct); - - /* Enable HSI if not enabled */ - if (LL_RCC_HSI_IsReady() != 1U) - { - LL_RCC_HSI_Enable(); - while (LL_RCC_HSI_IsReady() != 1U) - { - /* Wait for HSI ready */ - } - } - - /* Configure PLL */ -#if defined(RCC_PLLSRC_PREDIV1_SUPPORT) - LL_RCC_PLL_ConfigDomain_SYS(LL_RCC_PLLSOURCE_HSI, UTILS_PLLInitStruct->PLLMul, UTILS_PLLInitStruct->PLLDiv); -#else - LL_RCC_PLL_ConfigDomain_SYS(LL_RCC_PLLSOURCE_HSI_DIV_2, UTILS_PLLInitStruct->PLLMul); -#endif /*RCC_PLLSRC_PREDIV1_SUPPORT*/ - - /* Enable PLL and switch system clock to PLL */ - status = UTILS_EnablePLLAndSwitchSystem(pllfreq, UTILS_ClkInitStruct); - } - else - { - /* Current PLL configuration cannot be modified */ - status = ERROR; - } - - return status; -} - -#if defined(RCC_CFGR_SW_HSI48) -/** - * @brief This function configures system clock with HSI48 as clock source of the PLL - * @note The application need to ensure that PLL is disabled. - * @note Function is based on the following formula: - * - PLL output frequency = ((HSI48 frequency / PREDIV) * PLLMUL) - * - PLLMUL: The application software must set correctly the PLL multiplication factor to - * be in the range 16-48MHz - * @param UTILS_PLLInitStruct pointer to a @ref LL_UTILS_PLLInitTypeDef structure that contains - * the configuration information for the PLL. - * @param UTILS_ClkInitStruct pointer to a @ref LL_UTILS_ClkInitTypeDef structure that contains - * the configuration information for the BUS prescalers. - * @retval An ErrorStatus enumeration value: - * - SUCCESS: Max frequency configuration done - * - ERROR: Max frequency configuration not done - */ -ErrorStatus LL_PLL_ConfigSystemClock_HSI48(LL_UTILS_PLLInitTypeDef *UTILS_PLLInitStruct, - LL_UTILS_ClkInitTypeDef *UTILS_ClkInitStruct) -{ - ErrorStatus status = SUCCESS; - uint32_t pllfreq = 0U; - - /* Check if one of the PLL is enabled */ - if (UTILS_PLL_IsBusy() == SUCCESS) - { - /* Check PREDIV value */ - assert_param(IS_LL_UTILS_PREDIV_VALUE(UTILS_PLLInitStruct->PLLDiv)); - - /* Calculate the new PLL output frequency */ - pllfreq = UTILS_GetPLLOutputFrequency(HSI48_VALUE, UTILS_PLLInitStruct); - - /* Enable HSI48 if not enabled */ - if (LL_RCC_HSI48_IsReady() != 1U) - { - LL_RCC_HSI48_Enable(); - while (LL_RCC_HSI48_IsReady() != 1U) - { - /* Wait for HSI48 ready */ - } - } - - /* Configure PLL */ - LL_RCC_PLL_ConfigDomain_SYS(LL_RCC_PLLSOURCE_HSI48, UTILS_PLLInitStruct->PLLMul, UTILS_PLLInitStruct->PLLDiv); - - /* Enable PLL and switch system clock to PLL */ - status = UTILS_EnablePLLAndSwitchSystem(pllfreq, UTILS_ClkInitStruct); - } - else - { - /* Current PLL configuration cannot be modified */ - status = ERROR; - } - - return status; -} - -#endif /*RCC_CFGR_SW_HSI48*/ -/** - * @brief This function configures system clock with HSE as clock source of the PLL - * @note The application need to ensure that PLL is disabled. - * @note Function is based on the following formula: - * - PLL output frequency = ((HSE frequency / PREDIV) * PLLMUL) - * - PLLMUL: The application software must set correctly the PLL multiplication factor to - * be in the range 16-48MHz - * @note FLASH latency can be modified through this function. - * @param HSEFrequency Value between Min_Data = 4000000 and Max_Data = 32000000 - * @param HSEBypass This parameter can be one of the following values: - * @arg @ref LL_UTILS_HSEBYPASS_ON - * @arg @ref LL_UTILS_HSEBYPASS_OFF - * @param UTILS_PLLInitStruct pointer to a @ref LL_UTILS_PLLInitTypeDef structure that contains - * the configuration information for the PLL. - * @param UTILS_ClkInitStruct pointer to a @ref LL_UTILS_ClkInitTypeDef structure that contains - * the configuration information for the BUS prescalers. - * @retval An ErrorStatus enumeration value: - * - SUCCESS: Max frequency configuration done - * - ERROR: Max frequency configuration not done - */ -ErrorStatus LL_PLL_ConfigSystemClock_HSE(uint32_t HSEFrequency, uint32_t HSEBypass, - LL_UTILS_PLLInitTypeDef *UTILS_PLLInitStruct, LL_UTILS_ClkInitTypeDef *UTILS_ClkInitStruct) -{ - ErrorStatus status = SUCCESS; - uint32_t pllfreq = 0U; - - /* Check the parameters */ - assert_param(IS_LL_UTILS_HSE_FREQUENCY(HSEFrequency)); - assert_param(IS_LL_UTILS_HSE_BYPASS(HSEBypass)); - - /* Check if one of the PLL is enabled */ - if (UTILS_PLL_IsBusy() == SUCCESS) - { - /* Check PREDIV value */ -#if defined(RCC_PLLSRC_PREDIV1_SUPPORT) - assert_param(IS_LL_UTILS_PREDIV_VALUE(UTILS_PLLInitStruct->PLLDiv)); -#else - assert_param(IS_LL_UTILS_PREDIV_VALUE(UTILS_PLLInitStruct->Prediv)); -#endif /*RCC_PLLSRC_PREDIV1_SUPPORT*/ - - /* Calculate the new PLL output frequency */ - pllfreq = UTILS_GetPLLOutputFrequency(HSEFrequency, UTILS_PLLInitStruct); - - /* Enable HSE if not enabled */ - if (LL_RCC_HSE_IsReady() != 1U) - { - /* Check if need to enable HSE bypass feature or not */ - if (HSEBypass == LL_UTILS_HSEBYPASS_ON) - { - LL_RCC_HSE_EnableBypass(); - } - else - { - LL_RCC_HSE_DisableBypass(); - } - - /* Enable HSE */ - LL_RCC_HSE_Enable(); - while (LL_RCC_HSE_IsReady() != 1U) - { - /* Wait for HSE ready */ - } - } - - /* Configure PLL */ -#if defined(RCC_PLLSRC_PREDIV1_SUPPORT) - LL_RCC_PLL_ConfigDomain_SYS(LL_RCC_PLLSOURCE_HSE, UTILS_PLLInitStruct->PLLMul, UTILS_PLLInitStruct->PLLDiv); -#else - LL_RCC_PLL_ConfigDomain_SYS((RCC_CFGR_PLLSRC_HSE_PREDIV | UTILS_PLLInitStruct->Prediv), UTILS_PLLInitStruct->PLLMul); -#endif /*RCC_PLLSRC_PREDIV1_SUPPORT*/ - - /* Enable PLL and switch system clock to PLL */ - status = UTILS_EnablePLLAndSwitchSystem(pllfreq, UTILS_ClkInitStruct); - } - else - { - /* Current PLL configuration cannot be modified */ - status = ERROR; - } - - return status; -} - -/** - * @} - */ - -/** - * @} - */ - -/** @addtogroup UTILS_LL_Private_Functions - * @{ - */ -/** - * @brief Update number of Flash wait states in line with new frequency and current - voltage range. - * @param Frequency SYSCLK frequency - * @retval An ErrorStatus enumeration value: - * - SUCCESS: Latency has been modified - * - ERROR: Latency cannot be modified - */ -#if defined(FLASH_ACR_LATENCY) -static ErrorStatus UTILS_SetFlashLatency(uint32_t Frequency) -{ - ErrorStatus status = SUCCESS; - - uint32_t latency = LL_FLASH_LATENCY_0; /* default value 0WS */ - - /* Frequency cannot be equal to 0 */ - if (Frequency == 0U) - { - status = ERROR; - } - else - { - if (Frequency > UTILS_LATENCY1_FREQ) - { - /* 24 < SYSCLK <= 48 => 1WS (2 CPU cycles) */ - latency = LL_FLASH_LATENCY_1; - } - /* else SYSCLK < 24MHz default LL_FLASH_LATENCY_0 0WS */ - - LL_FLASH_SetLatency(latency); - - /* Check that the new number of wait states is taken into account to access the Flash - memory by reading the FLASH_ACR register */ - if (LL_FLASH_GetLatency() != latency) - { - status = ERROR; - } - } - return status; -} -#endif /* FLASH_ACR_LATENCY */ - -/** - * @brief Function to check that PLL can be modified - * @param PLL_InputFrequency PLL input frequency (in Hz) - * @param UTILS_PLLInitStruct pointer to a @ref LL_UTILS_PLLInitTypeDef structure that contains - * the configuration information for the PLL. - * @retval PLL output frequency (in Hz) - */ -static uint32_t UTILS_GetPLLOutputFrequency(uint32_t PLL_InputFrequency, LL_UTILS_PLLInitTypeDef *UTILS_PLLInitStruct) -{ - uint32_t pllfreq = 0U; - - /* Check the parameters */ - assert_param(IS_LL_UTILS_PLLMUL_VALUE(UTILS_PLLInitStruct->PLLMul)); - - /* Check different PLL parameters according to RM */ - /* The application software must set correctly the PLL multiplication factor to - be in the range 16-48MHz */ -#if defined(RCC_PLLSRC_PREDIV1_SUPPORT) - pllfreq = __LL_RCC_CALC_PLLCLK_FREQ(PLL_InputFrequency, UTILS_PLLInitStruct->PLLMul, UTILS_PLLInitStruct->PLLDiv); -#else - pllfreq = __LL_RCC_CALC_PLLCLK_FREQ(PLL_InputFrequency / (UTILS_PLLInitStruct->Prediv + 1U), UTILS_PLLInitStruct->PLLMul); -#endif /*RCC_PLLSRC_PREDIV1_SUPPORT*/ - assert_param(IS_LL_UTILS_PLL_FREQUENCY(pllfreq)); - - return pllfreq; -} - -/** - * @brief Function to check that PLL can be modified - * @retval An ErrorStatus enumeration value: - * - SUCCESS: PLL modification can be done - * - ERROR: PLL is busy - */ -static ErrorStatus UTILS_PLL_IsBusy(void) -{ - ErrorStatus status = SUCCESS; - - /* Check if PLL is busy*/ - if (LL_RCC_PLL_IsReady() != 0U) - { - /* PLL configuration cannot be modified */ - status = ERROR; - } - - return status; -} - -/** - * @brief Function to enable PLL and switch system clock to PLL - * @param SYSCLK_Frequency SYSCLK frequency - * @param UTILS_ClkInitStruct pointer to a @ref LL_UTILS_ClkInitTypeDef structure that contains - * the configuration information for the BUS prescalers. - * @retval An ErrorStatus enumeration value: - * - SUCCESS: No problem to switch system to PLL - * - ERROR: Problem to switch system to PLL - */ -static ErrorStatus UTILS_EnablePLLAndSwitchSystem(uint32_t SYSCLK_Frequency, LL_UTILS_ClkInitTypeDef *UTILS_ClkInitStruct) -{ - ErrorStatus status = SUCCESS; - uint32_t sysclk_frequency_current = 0U; - - assert_param(IS_LL_UTILS_SYSCLK_DIV(UTILS_ClkInitStruct->AHBCLKDivider)); - assert_param(IS_LL_UTILS_APB1_DIV(UTILS_ClkInitStruct->APB1CLKDivider)); - - /* Calculate current SYSCLK frequency */ - sysclk_frequency_current = (SystemCoreClock << AHBPrescTable[LL_RCC_GetAHBPrescaler() >> RCC_POSITION_HPRE]); - - /* Increasing the number of wait states because of higher CPU frequency */ - if (sysclk_frequency_current < SYSCLK_Frequency) - { - /* Set FLASH latency to highest latency */ - status = UTILS_SetFlashLatency(SYSCLK_Frequency); - } - - /* Update system clock configuration */ - if (status == SUCCESS) - { - /* Enable PLL */ - LL_RCC_PLL_Enable(); - while (LL_RCC_PLL_IsReady() != 1U) - { - /* Wait for PLL ready */ - } - - /* Sysclk activation on the main PLL */ - LL_RCC_SetAHBPrescaler(UTILS_ClkInitStruct->AHBCLKDivider); - LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_PLL); - while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_PLL) - { - /* Wait for system clock switch to PLL */ - } - - /* Set APB1 & APB2 prescaler*/ - LL_RCC_SetAPB1Prescaler(UTILS_ClkInitStruct->APB1CLKDivider); - } - - /* Decreasing the number of wait states because of lower CPU frequency */ - if (sysclk_frequency_current > SYSCLK_Frequency) - { - /* Set FLASH latency to lowest latency */ - status = UTILS_SetFlashLatency(SYSCLK_Frequency); - } - - /* Update SystemCoreClock variable */ - if (status == SUCCESS) - { - LL_SetSystemCoreClock(__LL_RCC_CALC_HCLK_FREQ(SYSCLK_Frequency, UTILS_ClkInitStruct->AHBCLKDivider)); - } - - return status; -} - -/** - * @} - */ - -/** - * @} - */ - -/** - * @} - */ - -/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ -- cgit