From 6ab94e0b318884bbcb95e2ea3835f951502e1d99 Mon Sep 17 00:00:00 2001 From: jaseg Date: Wed, 14 Oct 2020 12:47:28 +0200 Subject: Move firmware into subdirectory --- .../DSP/Source/TransformFunctions/arm_dct4_q15.c | 382 --------------------- 1 file changed, 382 deletions(-) delete mode 100644 midi-dials/Drivers/CMSIS/DSP/Source/TransformFunctions/arm_dct4_q15.c (limited to 'midi-dials/Drivers/CMSIS/DSP/Source/TransformFunctions/arm_dct4_q15.c') diff --git a/midi-dials/Drivers/CMSIS/DSP/Source/TransformFunctions/arm_dct4_q15.c b/midi-dials/Drivers/CMSIS/DSP/Source/TransformFunctions/arm_dct4_q15.c deleted file mode 100644 index 4fd7f6e..0000000 --- a/midi-dials/Drivers/CMSIS/DSP/Source/TransformFunctions/arm_dct4_q15.c +++ /dev/null @@ -1,382 +0,0 @@ -/* ---------------------------------------------------------------------- - * Project: CMSIS DSP Library - * Title: arm_dct4_q15.c - * Description: Processing function of DCT4 & IDCT4 Q15 - * - * $Date: 27. January 2017 - * $Revision: V.1.5.1 - * - * Target Processor: Cortex-M cores - * -------------------------------------------------------------------- */ -/* - * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved. - * - * SPDX-License-Identifier: Apache-2.0 - * - * Licensed under the Apache License, Version 2.0 (the License); you may - * not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an AS IS BASIS, WITHOUT - * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -#include "arm_math.h" - -/** - * @addtogroup DCT4_IDCT4 - * @{ - */ - -/** - * @brief Processing function for the Q15 DCT4/IDCT4. - * @param[in] *S points to an instance of the Q15 DCT4 structure. - * @param[in] *pState points to state buffer. - * @param[in,out] *pInlineBuffer points to the in-place input and output buffer. - * @return none. - * - * \par Input an output formats: - * Internally inputs are downscaled in the RFFT process function to avoid overflows. - * Number of bits downscaled, depends on the size of the transform. - * The input and output formats for different DCT sizes and number of bits to upscale are mentioned in the table below: - * - * \image html dct4FormatsQ15Table.gif - */ - -void arm_dct4_q15( - const arm_dct4_instance_q15 * S, - q15_t * pState, - q15_t * pInlineBuffer) -{ - uint32_t i; /* Loop counter */ - q15_t *weights = S->pTwiddle; /* Pointer to the Weights table */ - q15_t *cosFact = S->pCosFactor; /* Pointer to the cos factors table */ - q15_t *pS1, *pS2, *pbuff; /* Temporary pointers for input buffer and pState buffer */ - q15_t in; /* Temporary variable */ - - - /* DCT4 computation involves DCT2 (which is calculated using RFFT) - * along with some pre-processing and post-processing. - * Computational procedure is explained as follows: - * (a) Pre-processing involves multiplying input with cos factor, - * r(n) = 2 * u(n) * cos(pi*(2*n+1)/(4*n)) - * where, - * r(n) -- output of preprocessing - * u(n) -- input to preprocessing(actual Source buffer) - * (b) Calculation of DCT2 using FFT is divided into three steps: - * Step1: Re-ordering of even and odd elements of input. - * Step2: Calculating FFT of the re-ordered input. - * Step3: Taking the real part of the product of FFT output and weights. - * (c) Post-processing - DCT4 can be obtained from DCT2 output using the following equation: - * Y4(k) = Y2(k) - Y4(k-1) and Y4(-1) = Y4(0) - * where, - * Y4 -- DCT4 output, Y2 -- DCT2 output - * (d) Multiplying the output with the normalizing factor sqrt(2/N). - */ - - /*-------- Pre-processing ------------*/ - /* Multiplying input with cos factor i.e. r(n) = 2 * x(n) * cos(pi*(2*n+1)/(4*n)) */ - arm_mult_q15(pInlineBuffer, cosFact, pInlineBuffer, S->N); - arm_shift_q15(pInlineBuffer, 1, pInlineBuffer, S->N); - - /* ---------------------------------------------------------------- - * Step1: Re-ordering of even and odd elements as - * pState[i] = pInlineBuffer[2*i] and - * pState[N-i-1] = pInlineBuffer[2*i+1] where i = 0 to N/2 - ---------------------------------------------------------------------*/ - - /* pS1 initialized to pState */ - pS1 = pState; - - /* pS2 initialized to pState+N-1, so that it points to the end of the state buffer */ - pS2 = pState + (S->N - 1U); - - /* pbuff initialized to input buffer */ - pbuff = pInlineBuffer; - - -#if defined (ARM_MATH_DSP) - - /* Run the below code for Cortex-M4 and Cortex-M3 */ - - /* Initializing the loop counter to N/2 >> 2 for loop unrolling by 4 */ - i = (uint32_t) S->Nby2 >> 2U; - - /* First part of the processing with loop unrolling. Compute 4 outputs at a time. - ** a second loop below computes the remaining 1 to 3 samples. */ - do - { - /* Re-ordering of even and odd elements */ - /* pState[i] = pInlineBuffer[2*i] */ - *pS1++ = *pbuff++; - /* pState[N-i-1] = pInlineBuffer[2*i+1] */ - *pS2-- = *pbuff++; - - *pS1++ = *pbuff++; - *pS2-- = *pbuff++; - - *pS1++ = *pbuff++; - *pS2-- = *pbuff++; - - *pS1++ = *pbuff++; - *pS2-- = *pbuff++; - - /* Decrement the loop counter */ - i--; - } while (i > 0U); - - /* pbuff initialized to input buffer */ - pbuff = pInlineBuffer; - - /* pS1 initialized to pState */ - pS1 = pState; - - /* Initializing the loop counter to N/4 instead of N for loop unrolling */ - i = (uint32_t) S->N >> 2U; - - /* Processing with loop unrolling 4 times as N is always multiple of 4. - * Compute 4 outputs at a time */ - do - { - /* Writing the re-ordered output back to inplace input buffer */ - *pbuff++ = *pS1++; - *pbuff++ = *pS1++; - *pbuff++ = *pS1++; - *pbuff++ = *pS1++; - - /* Decrement the loop counter */ - i--; - } while (i > 0U); - - - /* --------------------------------------------------------- - * Step2: Calculate RFFT for N-point input - * ---------------------------------------------------------- */ - /* pInlineBuffer is real input of length N , pState is the complex output of length 2N */ - arm_rfft_q15(S->pRfft, pInlineBuffer, pState); - - /*---------------------------------------------------------------------- - * Step3: Multiply the FFT output with the weights. - *----------------------------------------------------------------------*/ - arm_cmplx_mult_cmplx_q15(pState, weights, pState, S->N); - - /* The output of complex multiplication is in 3.13 format. - * Hence changing the format of N (i.e. 2*N elements) complex numbers to 1.15 format by shifting left by 2 bits. */ - arm_shift_q15(pState, 2, pState, S->N * 2); - - /* ----------- Post-processing ---------- */ - /* DCT-IV can be obtained from DCT-II by the equation, - * Y4(k) = Y2(k) - Y4(k-1) and Y4(-1) = Y4(0) - * Hence, Y4(0) = Y2(0)/2 */ - /* Getting only real part from the output and Converting to DCT-IV */ - - /* Initializing the loop counter to N >> 2 for loop unrolling by 4 */ - i = ((uint32_t) S->N - 1U) >> 2U; - - /* pbuff initialized to input buffer. */ - pbuff = pInlineBuffer; - - /* pS1 initialized to pState */ - pS1 = pState; - - /* Calculating Y4(0) from Y2(0) using Y4(0) = Y2(0)/2 */ - in = *pS1++ >> 1U; - /* input buffer acts as inplace, so output values are stored in the input itself. */ - *pbuff++ = in; - - /* pState pointer is incremented twice as the real values are located alternatively in the array */ - pS1++; - - /* First part of the processing with loop unrolling. Compute 4 outputs at a time. - ** a second loop below computes the remaining 1 to 3 samples. */ - do - { - /* Calculating Y4(1) to Y4(N-1) from Y2 using equation Y4(k) = Y2(k) - Y4(k-1) */ - /* pState pointer (pS1) is incremented twice as the real values are located alternatively in the array */ - in = *pS1++ - in; - *pbuff++ = in; - /* points to the next real value */ - pS1++; - - in = *pS1++ - in; - *pbuff++ = in; - pS1++; - - in = *pS1++ - in; - *pbuff++ = in; - pS1++; - - in = *pS1++ - in; - *pbuff++ = in; - pS1++; - - /* Decrement the loop counter */ - i--; - } while (i > 0U); - - /* If the blockSize is not a multiple of 4, compute any remaining output samples here. - ** No loop unrolling is used. */ - i = ((uint32_t) S->N - 1U) % 0x4U; - - while (i > 0U) - { - /* Calculating Y4(1) to Y4(N-1) from Y2 using equation Y4(k) = Y2(k) - Y4(k-1) */ - /* pState pointer (pS1) is incremented twice as the real values are located alternatively in the array */ - in = *pS1++ - in; - *pbuff++ = in; - /* points to the next real value */ - pS1++; - - /* Decrement the loop counter */ - i--; - } - - - /*------------ Normalizing the output by multiplying with the normalizing factor ----------*/ - - /* Initializing the loop counter to N/4 instead of N for loop unrolling */ - i = (uint32_t) S->N >> 2U; - - /* pbuff initialized to the pInlineBuffer(now contains the output values) */ - pbuff = pInlineBuffer; - - /* Processing with loop unrolling 4 times as N is always multiple of 4. Compute 4 outputs at a time */ - do - { - /* Multiplying pInlineBuffer with the normalizing factor sqrt(2/N) */ - in = *pbuff; - *pbuff++ = ((q15_t) (((q31_t) in * S->normalize) >> 15)); - - in = *pbuff; - *pbuff++ = ((q15_t) (((q31_t) in * S->normalize) >> 15)); - - in = *pbuff; - *pbuff++ = ((q15_t) (((q31_t) in * S->normalize) >> 15)); - - in = *pbuff; - *pbuff++ = ((q15_t) (((q31_t) in * S->normalize) >> 15)); - - /* Decrement the loop counter */ - i--; - } while (i > 0U); - - -#else - - /* Run the below code for Cortex-M0 */ - - /* Initializing the loop counter to N/2 */ - i = (uint32_t) S->Nby2; - - do - { - /* Re-ordering of even and odd elements */ - /* pState[i] = pInlineBuffer[2*i] */ - *pS1++ = *pbuff++; - /* pState[N-i-1] = pInlineBuffer[2*i+1] */ - *pS2-- = *pbuff++; - - /* Decrement the loop counter */ - i--; - } while (i > 0U); - - /* pbuff initialized to input buffer */ - pbuff = pInlineBuffer; - - /* pS1 initialized to pState */ - pS1 = pState; - - /* Initializing the loop counter */ - i = (uint32_t) S->N; - - do - { - /* Writing the re-ordered output back to inplace input buffer */ - *pbuff++ = *pS1++; - - /* Decrement the loop counter */ - i--; - } while (i > 0U); - - - /* --------------------------------------------------------- - * Step2: Calculate RFFT for N-point input - * ---------------------------------------------------------- */ - /* pInlineBuffer is real input of length N , pState is the complex output of length 2N */ - arm_rfft_q15(S->pRfft, pInlineBuffer, pState); - - /*---------------------------------------------------------------------- - * Step3: Multiply the FFT output with the weights. - *----------------------------------------------------------------------*/ - arm_cmplx_mult_cmplx_q15(pState, weights, pState, S->N); - - /* The output of complex multiplication is in 3.13 format. - * Hence changing the format of N (i.e. 2*N elements) complex numbers to 1.15 format by shifting left by 2 bits. */ - arm_shift_q15(pState, 2, pState, S->N * 2); - - /* ----------- Post-processing ---------- */ - /* DCT-IV can be obtained from DCT-II by the equation, - * Y4(k) = Y2(k) - Y4(k-1) and Y4(-1) = Y4(0) - * Hence, Y4(0) = Y2(0)/2 */ - /* Getting only real part from the output and Converting to DCT-IV */ - - /* Initializing the loop counter */ - i = ((uint32_t) S->N - 1U); - - /* pbuff initialized to input buffer. */ - pbuff = pInlineBuffer; - - /* pS1 initialized to pState */ - pS1 = pState; - - /* Calculating Y4(0) from Y2(0) using Y4(0) = Y2(0)/2 */ - in = *pS1++ >> 1U; - /* input buffer acts as inplace, so output values are stored in the input itself. */ - *pbuff++ = in; - - /* pState pointer is incremented twice as the real values are located alternatively in the array */ - pS1++; - - do - { - /* Calculating Y4(1) to Y4(N-1) from Y2 using equation Y4(k) = Y2(k) - Y4(k-1) */ - /* pState pointer (pS1) is incremented twice as the real values are located alternatively in the array */ - in = *pS1++ - in; - *pbuff++ = in; - /* points to the next real value */ - pS1++; - - /* Decrement the loop counter */ - i--; - } while (i > 0U); - - /*------------ Normalizing the output by multiplying with the normalizing factor ----------*/ - - /* Initializing the loop counter */ - i = (uint32_t) S->N; - - /* pbuff initialized to the pInlineBuffer(now contains the output values) */ - pbuff = pInlineBuffer; - - do - { - /* Multiplying pInlineBuffer with the normalizing factor sqrt(2/N) */ - in = *pbuff; - *pbuff++ = ((q15_t) (((q31_t) in * S->normalize) >> 15)); - - /* Decrement the loop counter */ - i--; - } while (i > 0U); - -#endif /* #if defined (ARM_MATH_DSP) */ - -} - -/** - * @} end of DCT4_IDCT4 group - */ -- cgit