From 6ab94e0b318884bbcb95e2ea3835f951502e1d99 Mon Sep 17 00:00:00 2001 From: jaseg Date: Wed, 14 Oct 2020 12:47:28 +0200 Subject: Move firmware into subdirectory --- .../DSP/Source/TransformFunctions/arm_cfft_f32.c | 620 --------------------- 1 file changed, 620 deletions(-) delete mode 100644 midi-dials/Drivers/CMSIS/DSP/Source/TransformFunctions/arm_cfft_f32.c (limited to 'midi-dials/Drivers/CMSIS/DSP/Source/TransformFunctions/arm_cfft_f32.c') diff --git a/midi-dials/Drivers/CMSIS/DSP/Source/TransformFunctions/arm_cfft_f32.c b/midi-dials/Drivers/CMSIS/DSP/Source/TransformFunctions/arm_cfft_f32.c deleted file mode 100644 index 2593202..0000000 --- a/midi-dials/Drivers/CMSIS/DSP/Source/TransformFunctions/arm_cfft_f32.c +++ /dev/null @@ -1,620 +0,0 @@ -/* ---------------------------------------------------------------------- - * Project: CMSIS DSP Library - * Title: arm_cfft_f32.c - * Description: Combined Radix Decimation in Frequency CFFT Floating point processing function - * - * $Date: 27. January 2017 - * $Revision: V.1.5.1 - * - * Target Processor: Cortex-M cores - * -------------------------------------------------------------------- */ -/* - * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved. - * - * SPDX-License-Identifier: Apache-2.0 - * - * Licensed under the Apache License, Version 2.0 (the License); you may - * not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an AS IS BASIS, WITHOUT - * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -#include "arm_math.h" -#include "arm_common_tables.h" - -extern void arm_radix8_butterfly_f32( - float32_t * pSrc, - uint16_t fftLen, - const float32_t * pCoef, - uint16_t twidCoefModifier); - -extern void arm_bitreversal_32( - uint32_t * pSrc, - const uint16_t bitRevLen, - const uint16_t * pBitRevTable); - -/** -* @ingroup groupTransforms -*/ - -/** -* @defgroup ComplexFFT Complex FFT Functions -* -* \par -* The Fast Fourier Transform (FFT) is an efficient algorithm for computing the -* Discrete Fourier Transform (DFT). The FFT can be orders of magnitude faster -* than the DFT, especially for long lengths. -* The algorithms described in this section -* operate on complex data. A separate set of functions is devoted to handling -* of real sequences. -* \par -* There are separate algorithms for handling floating-point, Q15, and Q31 data -* types. The algorithms available for each data type are described next. -* \par -* The FFT functions operate in-place. That is, the array holding the input data -* will also be used to hold the corresponding result. The input data is complex -* and contains 2*fftLen interleaved values as shown below. -*
 {real[0], imag[0], real[1], imag[1],..} 
-* The FFT result will be contained in the same array and the frequency domain -* values will have the same interleaving. -* -* \par Floating-point -* The floating-point complex FFT uses a mixed-radix algorithm. Multiple radix-8 -* stages are performed along with a single radix-2 or radix-4 stage, as needed. -* The algorithm supports lengths of [16, 32, 64, ..., 4096] and each length uses -* a different twiddle factor table. -* \par -* The function uses the standard FFT definition and output values may grow by a -* factor of fftLen when computing the forward transform. The -* inverse transform includes a scale of 1/fftLen as part of the -* calculation and this matches the textbook definition of the inverse FFT. -* \par -* Pre-initialized data structures containing twiddle factors and bit reversal -* tables are provided and defined in arm_const_structs.h. Include -* this header in your function and then pass one of the constant structures as -* an argument to arm_cfft_f32. For example: -* \par -* arm_cfft_f32(arm_cfft_sR_f32_len64, pSrc, 1, 1) -* \par -* computes a 64-point inverse complex FFT including bit reversal. -* The data structures are treated as constant data and not modified during the -* calculation. The same data structure can be reused for multiple transforms -* including mixing forward and inverse transforms. -* \par -* Earlier releases of the library provided separate radix-2 and radix-4 -* algorithms that operated on floating-point data. These functions are still -* provided but are deprecated. The older functions are slower and less general -* than the new functions. -* \par -* An example of initialization of the constants for the arm_cfft_f32 function follows: -* \code -* const static arm_cfft_instance_f32 *S; -* ... -* switch (length) { -* case 16: -* S = &arm_cfft_sR_f32_len16; -* break; -* case 32: -* S = &arm_cfft_sR_f32_len32; -* break; -* case 64: -* S = &arm_cfft_sR_f32_len64; -* break; -* case 128: -* S = &arm_cfft_sR_f32_len128; -* break; -* case 256: -* S = &arm_cfft_sR_f32_len256; -* break; -* case 512: -* S = &arm_cfft_sR_f32_len512; -* break; -* case 1024: -* S = &arm_cfft_sR_f32_len1024; -* break; -* case 2048: -* S = &arm_cfft_sR_f32_len2048; -* break; -* case 4096: -* S = &arm_cfft_sR_f32_len4096; -* break; -* } -* \endcode -* \par Q15 and Q31 -* The floating-point complex FFT uses a mixed-radix algorithm. Multiple radix-4 -* stages are performed along with a single radix-2 stage, as needed. -* The algorithm supports lengths of [16, 32, 64, ..., 4096] and each length uses -* a different twiddle factor table. -* \par -* The function uses the standard FFT definition and output values may grow by a -* factor of fftLen when computing the forward transform. The -* inverse transform includes a scale of 1/fftLen as part of the -* calculation and this matches the textbook definition of the inverse FFT. -* \par -* Pre-initialized data structures containing twiddle factors and bit reversal -* tables are provided and defined in arm_const_structs.h. Include -* this header in your function and then pass one of the constant structures as -* an argument to arm_cfft_q31. For example: -* \par -* arm_cfft_q31(arm_cfft_sR_q31_len64, pSrc, 1, 1) -* \par -* computes a 64-point inverse complex FFT including bit reversal. -* The data structures are treated as constant data and not modified during the -* calculation. The same data structure can be reused for multiple transforms -* including mixing forward and inverse transforms. -* \par -* Earlier releases of the library provided separate radix-2 and radix-4 -* algorithms that operated on floating-point data. These functions are still -* provided but are deprecated. The older functions are slower and less general -* than the new functions. -* \par -* An example of initialization of the constants for the arm_cfft_q31 function follows: -* \code -* const static arm_cfft_instance_q31 *S; -* ... -* switch (length) { -* case 16: -* S = &arm_cfft_sR_q31_len16; -* break; -* case 32: -* S = &arm_cfft_sR_q31_len32; -* break; -* case 64: -* S = &arm_cfft_sR_q31_len64; -* break; -* case 128: -* S = &arm_cfft_sR_q31_len128; -* break; -* case 256: -* S = &arm_cfft_sR_q31_len256; -* break; -* case 512: -* S = &arm_cfft_sR_q31_len512; -* break; -* case 1024: -* S = &arm_cfft_sR_q31_len1024; -* break; -* case 2048: -* S = &arm_cfft_sR_q31_len2048; -* break; -* case 4096: -* S = &arm_cfft_sR_q31_len4096; -* break; -* } -* \endcode -* -*/ - -void arm_cfft_radix8by2_f32( arm_cfft_instance_f32 * S, float32_t * p1) -{ - uint32_t L = S->fftLen; - float32_t * pCol1, * pCol2, * pMid1, * pMid2; - float32_t * p2 = p1 + L; - const float32_t * tw = (float32_t *) S->pTwiddle; - float32_t t1[4], t2[4], t3[4], t4[4], twR, twI; - float32_t m0, m1, m2, m3; - uint32_t l; - - pCol1 = p1; - pCol2 = p2; - - // Define new length - L >>= 1; - // Initialize mid pointers - pMid1 = p1 + L; - pMid2 = p2 + L; - - // do two dot Fourier transform - for ( l = L >> 2; l > 0; l-- ) - { - t1[0] = p1[0]; - t1[1] = p1[1]; - t1[2] = p1[2]; - t1[3] = p1[3]; - - t2[0] = p2[0]; - t2[1] = p2[1]; - t2[2] = p2[2]; - t2[3] = p2[3]; - - t3[0] = pMid1[0]; - t3[1] = pMid1[1]; - t3[2] = pMid1[2]; - t3[3] = pMid1[3]; - - t4[0] = pMid2[0]; - t4[1] = pMid2[1]; - t4[2] = pMid2[2]; - t4[3] = pMid2[3]; - - *p1++ = t1[0] + t2[0]; - *p1++ = t1[1] + t2[1]; - *p1++ = t1[2] + t2[2]; - *p1++ = t1[3] + t2[3]; // col 1 - - t2[0] = t1[0] - t2[0]; - t2[1] = t1[1] - t2[1]; - t2[2] = t1[2] - t2[2]; - t2[3] = t1[3] - t2[3]; // for col 2 - - *pMid1++ = t3[0] + t4[0]; - *pMid1++ = t3[1] + t4[1]; - *pMid1++ = t3[2] + t4[2]; - *pMid1++ = t3[3] + t4[3]; // col 1 - - t4[0] = t4[0] - t3[0]; - t4[1] = t4[1] - t3[1]; - t4[2] = t4[2] - t3[2]; - t4[3] = t4[3] - t3[3]; // for col 2 - - twR = *tw++; - twI = *tw++; - - // multiply by twiddle factors - m0 = t2[0] * twR; - m1 = t2[1] * twI; - m2 = t2[1] * twR; - m3 = t2[0] * twI; - - // R = R * Tr - I * Ti - *p2++ = m0 + m1; - // I = I * Tr + R * Ti - *p2++ = m2 - m3; - - // use vertical symmetry - // 0.9988 - 0.0491i <==> -0.0491 - 0.9988i - m0 = t4[0] * twI; - m1 = t4[1] * twR; - m2 = t4[1] * twI; - m3 = t4[0] * twR; - - *pMid2++ = m0 - m1; - *pMid2++ = m2 + m3; - - twR = *tw++; - twI = *tw++; - - m0 = t2[2] * twR; - m1 = t2[3] * twI; - m2 = t2[3] * twR; - m3 = t2[2] * twI; - - *p2++ = m0 + m1; - *p2++ = m2 - m3; - - m0 = t4[2] * twI; - m1 = t4[3] * twR; - m2 = t4[3] * twI; - m3 = t4[2] * twR; - - *pMid2++ = m0 - m1; - *pMid2++ = m2 + m3; - } - - // first col - arm_radix8_butterfly_f32( pCol1, L, (float32_t *) S->pTwiddle, 2U); - // second col - arm_radix8_butterfly_f32( pCol2, L, (float32_t *) S->pTwiddle, 2U); -} - -void arm_cfft_radix8by4_f32( arm_cfft_instance_f32 * S, float32_t * p1) -{ - uint32_t L = S->fftLen >> 1; - float32_t * pCol1, *pCol2, *pCol3, *pCol4, *pEnd1, *pEnd2, *pEnd3, *pEnd4; - const float32_t *tw2, *tw3, *tw4; - float32_t * p2 = p1 + L; - float32_t * p3 = p2 + L; - float32_t * p4 = p3 + L; - float32_t t2[4], t3[4], t4[4], twR, twI; - float32_t p1ap3_0, p1sp3_0, p1ap3_1, p1sp3_1; - float32_t m0, m1, m2, m3; - uint32_t l, twMod2, twMod3, twMod4; - - pCol1 = p1; // points to real values by default - pCol2 = p2; - pCol3 = p3; - pCol4 = p4; - pEnd1 = p2 - 1; // points to imaginary values by default - pEnd2 = p3 - 1; - pEnd3 = p4 - 1; - pEnd4 = pEnd3 + L; - - tw2 = tw3 = tw4 = (float32_t *) S->pTwiddle; - - L >>= 1; - - // do four dot Fourier transform - - twMod2 = 2; - twMod3 = 4; - twMod4 = 6; - - // TOP - p1ap3_0 = p1[0] + p3[0]; - p1sp3_0 = p1[0] - p3[0]; - p1ap3_1 = p1[1] + p3[1]; - p1sp3_1 = p1[1] - p3[1]; - - // col 2 - t2[0] = p1sp3_0 + p2[1] - p4[1]; - t2[1] = p1sp3_1 - p2[0] + p4[0]; - // col 3 - t3[0] = p1ap3_0 - p2[0] - p4[0]; - t3[1] = p1ap3_1 - p2[1] - p4[1]; - // col 4 - t4[0] = p1sp3_0 - p2[1] + p4[1]; - t4[1] = p1sp3_1 + p2[0] - p4[0]; - // col 1 - *p1++ = p1ap3_0 + p2[0] + p4[0]; - *p1++ = p1ap3_1 + p2[1] + p4[1]; - - // Twiddle factors are ones - *p2++ = t2[0]; - *p2++ = t2[1]; - *p3++ = t3[0]; - *p3++ = t3[1]; - *p4++ = t4[0]; - *p4++ = t4[1]; - - tw2 += twMod2; - tw3 += twMod3; - tw4 += twMod4; - - for (l = (L - 2) >> 1; l > 0; l-- ) - { - // TOP - p1ap3_0 = p1[0] + p3[0]; - p1sp3_0 = p1[0] - p3[0]; - p1ap3_1 = p1[1] + p3[1]; - p1sp3_1 = p1[1] - p3[1]; - // col 2 - t2[0] = p1sp3_0 + p2[1] - p4[1]; - t2[1] = p1sp3_1 - p2[0] + p4[0]; - // col 3 - t3[0] = p1ap3_0 - p2[0] - p4[0]; - t3[1] = p1ap3_1 - p2[1] - p4[1]; - // col 4 - t4[0] = p1sp3_0 - p2[1] + p4[1]; - t4[1] = p1sp3_1 + p2[0] - p4[0]; - // col 1 - top - *p1++ = p1ap3_0 + p2[0] + p4[0]; - *p1++ = p1ap3_1 + p2[1] + p4[1]; - - // BOTTOM - p1ap3_1 = pEnd1[-1] + pEnd3[-1]; - p1sp3_1 = pEnd1[-1] - pEnd3[-1]; - p1ap3_0 = pEnd1[0] + pEnd3[0]; - p1sp3_0 = pEnd1[0] - pEnd3[0]; - // col 2 - t2[2] = pEnd2[0] - pEnd4[0] + p1sp3_1; - t2[3] = pEnd1[0] - pEnd3[0] - pEnd2[-1] + pEnd4[-1]; - // col 3 - t3[2] = p1ap3_1 - pEnd2[-1] - pEnd4[-1]; - t3[3] = p1ap3_0 - pEnd2[0] - pEnd4[0]; - // col 4 - t4[2] = pEnd2[0] - pEnd4[0] - p1sp3_1; - t4[3] = pEnd4[-1] - pEnd2[-1] - p1sp3_0; - // col 1 - Bottom - *pEnd1-- = p1ap3_0 + pEnd2[0] + pEnd4[0]; - *pEnd1-- = p1ap3_1 + pEnd2[-1] + pEnd4[-1]; - - // COL 2 - // read twiddle factors - twR = *tw2++; - twI = *tw2++; - // multiply by twiddle factors - // let Z1 = a + i(b), Z2 = c + i(d) - // => Z1 * Z2 = (a*c - b*d) + i(b*c + a*d) - - // Top - m0 = t2[0] * twR; - m1 = t2[1] * twI; - m2 = t2[1] * twR; - m3 = t2[0] * twI; - - *p2++ = m0 + m1; - *p2++ = m2 - m3; - // use vertical symmetry col 2 - // 0.9997 - 0.0245i <==> 0.0245 - 0.9997i - // Bottom - m0 = t2[3] * twI; - m1 = t2[2] * twR; - m2 = t2[2] * twI; - m3 = t2[3] * twR; - - *pEnd2-- = m0 - m1; - *pEnd2-- = m2 + m3; - - // COL 3 - twR = tw3[0]; - twI = tw3[1]; - tw3 += twMod3; - // Top - m0 = t3[0] * twR; - m1 = t3[1] * twI; - m2 = t3[1] * twR; - m3 = t3[0] * twI; - - *p3++ = m0 + m1; - *p3++ = m2 - m3; - // use vertical symmetry col 3 - // 0.9988 - 0.0491i <==> -0.9988 - 0.0491i - // Bottom - m0 = -t3[3] * twR; - m1 = t3[2] * twI; - m2 = t3[2] * twR; - m3 = t3[3] * twI; - - *pEnd3-- = m0 - m1; - *pEnd3-- = m3 - m2; - - // COL 4 - twR = tw4[0]; - twI = tw4[1]; - tw4 += twMod4; - // Top - m0 = t4[0] * twR; - m1 = t4[1] * twI; - m2 = t4[1] * twR; - m3 = t4[0] * twI; - - *p4++ = m0 + m1; - *p4++ = m2 - m3; - // use vertical symmetry col 4 - // 0.9973 - 0.0736i <==> -0.0736 + 0.9973i - // Bottom - m0 = t4[3] * twI; - m1 = t4[2] * twR; - m2 = t4[2] * twI; - m3 = t4[3] * twR; - - *pEnd4-- = m0 - m1; - *pEnd4-- = m2 + m3; - } - - //MIDDLE - // Twiddle factors are - // 1.0000 0.7071-0.7071i -1.0000i -0.7071-0.7071i - p1ap3_0 = p1[0] + p3[0]; - p1sp3_0 = p1[0] - p3[0]; - p1ap3_1 = p1[1] + p3[1]; - p1sp3_1 = p1[1] - p3[1]; - - // col 2 - t2[0] = p1sp3_0 + p2[1] - p4[1]; - t2[1] = p1sp3_1 - p2[0] + p4[0]; - // col 3 - t3[0] = p1ap3_0 - p2[0] - p4[0]; - t3[1] = p1ap3_1 - p2[1] - p4[1]; - // col 4 - t4[0] = p1sp3_0 - p2[1] + p4[1]; - t4[1] = p1sp3_1 + p2[0] - p4[0]; - // col 1 - Top - *p1++ = p1ap3_0 + p2[0] + p4[0]; - *p1++ = p1ap3_1 + p2[1] + p4[1]; - - // COL 2 - twR = tw2[0]; - twI = tw2[1]; - - m0 = t2[0] * twR; - m1 = t2[1] * twI; - m2 = t2[1] * twR; - m3 = t2[0] * twI; - - *p2++ = m0 + m1; - *p2++ = m2 - m3; - // COL 3 - twR = tw3[0]; - twI = tw3[1]; - - m0 = t3[0] * twR; - m1 = t3[1] * twI; - m2 = t3[1] * twR; - m3 = t3[0] * twI; - - *p3++ = m0 + m1; - *p3++ = m2 - m3; - // COL 4 - twR = tw4[0]; - twI = tw4[1]; - - m0 = t4[0] * twR; - m1 = t4[1] * twI; - m2 = t4[1] * twR; - m3 = t4[0] * twI; - - *p4++ = m0 + m1; - *p4++ = m2 - m3; - - // first col - arm_radix8_butterfly_f32( pCol1, L, (float32_t *) S->pTwiddle, 4U); - // second col - arm_radix8_butterfly_f32( pCol2, L, (float32_t *) S->pTwiddle, 4U); - // third col - arm_radix8_butterfly_f32( pCol3, L, (float32_t *) S->pTwiddle, 4U); - // fourth col - arm_radix8_butterfly_f32( pCol4, L, (float32_t *) S->pTwiddle, 4U); -} - -/** -* @addtogroup ComplexFFT -* @{ -*/ - -/** -* @details -* @brief Processing function for the floating-point complex FFT. -* @param[in] *S points to an instance of the floating-point CFFT structure. -* @param[in, out] *p1 points to the complex data buffer of size 2*fftLen. Processing occurs in-place. -* @param[in] ifftFlag flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. -* @param[in] bitReverseFlag flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. -* @return none. -*/ - -void arm_cfft_f32( - const arm_cfft_instance_f32 * S, - float32_t * p1, - uint8_t ifftFlag, - uint8_t bitReverseFlag) -{ - uint32_t L = S->fftLen, l; - float32_t invL, * pSrc; - - if (ifftFlag == 1U) - { - /* Conjugate input data */ - pSrc = p1 + 1; - for(l=0; lpTwiddle, 1); - break; - } - - if ( bitReverseFlag ) - arm_bitreversal_32((uint32_t*)p1,S->bitRevLength,S->pBitRevTable); - - if (ifftFlag == 1U) - { - invL = 1.0f/(float32_t)L; - /* Conjugate and scale output data */ - pSrc = p1; - for(l=0; l