From 6ab94e0b318884bbcb95e2ea3835f951502e1d99 Mon Sep 17 00:00:00 2001 From: jaseg Date: Wed, 14 Oct 2020 12:47:28 +0200 Subject: Move firmware into subdirectory --- .../arm_convolve_1x1_HWC_q7_fast_nonsquare.c | 235 ++++++++++++ .../arm_convolve_HWC_q15_basic.c | 207 ++++++++++ .../arm_convolve_HWC_q15_fast.c | 255 +++++++++++++ .../arm_convolve_HWC_q15_fast_nonsquare.c | 265 +++++++++++++ .../ConvolutionFunctions/arm_convolve_HWC_q7_RGB.c | 279 ++++++++++++++ .../arm_convolve_HWC_q7_basic.c | 230 ++++++++++++ .../arm_convolve_HWC_q7_basic_nonsquare.c | 228 +++++++++++ .../arm_convolve_HWC_q7_fast.c | 408 ++++++++++++++++++++ .../arm_convolve_HWC_q7_fast_nonsquare.c | 379 +++++++++++++++++++ .../arm_depthwise_separable_conv_HWC_q7.c | 418 +++++++++++++++++++++ ...arm_depthwise_separable_conv_HWC_q7_nonsquare.c | 411 ++++++++++++++++++++ .../arm_nn_mat_mult_kernel_q7_q15.c | 187 +++++++++ .../arm_nn_mat_mult_kernel_q7_q15_reordered.c | 138 +++++++ 13 files changed, 3640 insertions(+) create mode 100644 fw/midi-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_1x1_HWC_q7_fast_nonsquare.c create mode 100644 fw/midi-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q15_basic.c create mode 100644 fw/midi-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q15_fast.c create mode 100644 fw/midi-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q15_fast_nonsquare.c create mode 100644 fw/midi-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_RGB.c create mode 100644 fw/midi-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_basic.c create mode 100644 fw/midi-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_basic_nonsquare.c create mode 100644 fw/midi-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_fast.c create mode 100644 fw/midi-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_fast_nonsquare.c create mode 100644 fw/midi-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_depthwise_separable_conv_HWC_q7.c create mode 100644 fw/midi-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_depthwise_separable_conv_HWC_q7_nonsquare.c create mode 100644 fw/midi-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_nn_mat_mult_kernel_q7_q15.c create mode 100644 fw/midi-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_nn_mat_mult_kernel_q7_q15_reordered.c (limited to 'fw/midi-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions') diff --git a/fw/midi-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_1x1_HWC_q7_fast_nonsquare.c b/fw/midi-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_1x1_HWC_q7_fast_nonsquare.c new file mode 100644 index 0000000..4c69e7c --- /dev/null +++ b/fw/midi-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_1x1_HWC_q7_fast_nonsquare.c @@ -0,0 +1,235 @@ +/* + * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_convolve_1x1_HWC_q7_fast_nonsquare.c + * Description: Fast Q7 version of 1x1 convolution (non-square shape) + * + * $Date: 17. January 2018 + * $Revision: V.1.0.0 + * + * Target Processor: Cortex-M cores + * + * -------------------------------------------------------------------- */ + +#include "arm_math.h" +#include "arm_nnfunctions.h" + +/** + * @ingroup groupNN + */ + +/** + * @addtogroup NNConv + * @{ + */ + +/** + * @brief Fast Q7 version of 1x1 convolution (non-sqaure shape) + * @param[in] Im_in pointer to input tensor + * @param[in] dim_im_in_x input tensor dimention x + * @param[in] dim_im_in_y input tensor dimention y + * @param[in] ch_im_in number of input tensor channels + * @param[in] wt pointer to kernel weights + * @param[in] ch_im_out number of filters, i.e., output tensor channels + * @param[in] dim_kernel_x filter kernel size x + * @param[in] dim_kernel_y filter kernel size y + * @param[in] padding_x padding size x + * @param[in] padding_y padding size y + * @param[in] stride_x convolution stride x + * @param[in] stride_y convolution stride y + * @param[in] bias pointer to bias + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in,out] Im_out pointer to output tensor + * @param[in] dim_im_out_x output tensor dimension x + * @param[in] dim_im_out_y output tensor dimension y + * @param[in,out] bufferA pointer to buffer space for input + * @param[in,out] bufferB pointer to buffer space for output + * @return The function returns either + * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking. + * + * This function is optimized for convolution with 1x1 kernel size (i.e., dim_kernel_x=1 + * and dim_kernel_y=1). It can be used for the second half of MobileNets [1] after depthwise + * separable convolution. + * + * This function is the version with full list of optimization tricks, but with + * some contraints: + * ch_im_in is multiple of 4 + * ch_im_out is multiple of 2 + * + * [1] MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications + * https://arxiv.org/abs/1704.04861 + */ + +arm_status arm_convolve_1x1_HWC_q7_fast_nonsquare(const q7_t * Im_in, + const uint16_t dim_im_in_x, + const uint16_t dim_im_in_y, + const uint16_t ch_im_in, + const q7_t * wt, + const uint16_t ch_im_out, + const uint16_t dim_kernel_x, + const uint16_t dim_kernel_y, + const uint16_t padding_x, + const uint16_t padding_y, + const uint16_t stride_x, + const uint16_t stride_y, + const q7_t * bias, + const uint16_t bias_shift, + const uint16_t out_shift, + q7_t * Im_out, + const uint16_t dim_im_out_x, + const uint16_t dim_im_out_y, + q15_t * bufferA, + q7_t * bufferB) +{ + +#if defined (ARM_MATH_DSP) + /* Run the following code for Cortex-M4 and Cortex-M7 */ + + int16_t i_out_y, i_out_x; + int16_t i_ch_out; + + /* ----------------------- + * Here we use bufferA as q15_t internally as computation are done with q15_t level + * im2col are done to output in q15_t format from q7_t input + */ + + q15_t *pBuffer = bufferA; + q7_t *pOut = Im_out; + + if (ch_im_in % 4 != 0 || ch_im_out % 2 != 0 || dim_kernel_x != 1 || dim_kernel_y != 1 + || padding_x != 0 || padding_y != 0 || stride_x != 1 || stride_y != 1) + { + /* check if the input dimension meets the constraints */ + return ARM_MATH_SIZE_MISMATCH; + } + + for (i_out_y = 0; i_out_y < dim_im_out_y; i_out_y++) + { + for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++) + { + /* This part implements the im2col function */ + arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in + (i_out_y * dim_im_in_x + i_out_x) * ch_im_in, pBuffer, + ch_im_in); + pBuffer += ch_im_in; + + if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_x * dim_kernel_y) + { + pOut = + arm_nn_mat_mult_kernel_q7_q15_reordered(wt, bufferA, ch_im_out, ch_im_in, bias_shift, out_shift, bias, pOut); + /* counter reset */ + pBuffer = bufferA; + } + } + } + + /* check if there is left-over for compute */ + if (pBuffer != bufferA) + { + const q7_t *pA = wt; + for (i_ch_out = 0; i_ch_out < ch_im_out; i_ch_out++) + { + q31_t sum = ((q31_t)(bias[i_ch_out]) << bias_shift) + NN_ROUND(out_shift); + q15_t *pB = bufferA; + /* basically each time it process 4 entries */ + uint16_t colCnt = ch_im_in * dim_kernel_x * dim_kernel_y >> 2; + + while (colCnt) + { + + q31_t inA1, inA2; + q31_t inB1, inB2; + + pA = (const q7_t *)read_and_pad_reordered((void *)pA, &inA1, &inA2); + + inB1 = *__SIMD32(pB)++; + sum = __SMLAD(inA1, inB1, sum); + inB2 = *__SIMD32(pB)++; + sum = __SMLAD(inA2, inB2, sum); + + colCnt--; + } + colCnt = ch_im_in * dim_kernel_y * dim_kernel_x & 0x3; + while (colCnt) + { + q7_t inA1 = *pA++; + q15_t inB1 = *pB++; + sum += inA1 * inB1; + colCnt--; + } + *pOut = (q7_t) __SSAT((sum >> out_shift), 8); + pOut++; + + } + + } + +#else + /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ + + int i, j, k, l, m, n; + int conv_out; + int in_row, in_col; + + if (ch_im_in % 4 != 0 || ch_im_out % 2 != 0 || dim_kernel_x != 1 || dim_kernel_y != 1 + || padding_x != 0 || padding_y != 0 || stride_x != 1 || stride_y != 1) + { + /* check if the input dimension meets the constraints */ + return ARM_MATH_SIZE_MISMATCH; + } + + for (i = 0; i < ch_im_out; i++) + { + for (j = 0; j < dim_im_out_y; j++) + { + for (k = 0; k < dim_im_out_x; k++) + { + conv_out = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift); + for (m = 0; m < dim_kernel_y; m++) + { + for (n = 0; n < dim_kernel_x; n++) + { + // if-for implementation + in_row = stride_y * j + m - padding_y; + in_col = stride_x * k + n - padding_x; + if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in_y && in_col < dim_im_in_x) + { + for (l = 0; l < ch_im_in; l++) + { + conv_out += Im_in[(in_row * dim_im_in_x + in_col) * ch_im_in + l] * + wt[i * ch_im_in * dim_kernel_y * dim_kernel_x + (m * dim_kernel_y + n) * ch_im_in + l]; + } + } + } + } + Im_out[i + (j * dim_im_out_x + k) * ch_im_out] = (q7_t) __SSAT((conv_out >> out_shift), 8); + } + } + } + +#endif /* ARM_MATH_DSP */ + + /* Return to application */ + return ARM_MATH_SUCCESS; +} + +/** + * @} end of NNConv group + */ diff --git a/fw/midi-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q15_basic.c b/fw/midi-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q15_basic.c new file mode 100644 index 0000000..ee08d74 --- /dev/null +++ b/fw/midi-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q15_basic.c @@ -0,0 +1,207 @@ +/* + * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_convolve_HWC_q15_basic.c + * Description: Q15 version of convolution + * + * $Date: 17. January 2018 + * $Revision: V.1.0.0 + * + * Target Processor: Cortex-M cores + * + * -------------------------------------------------------------------- */ + +#include "arm_math.h" +#include "arm_nnfunctions.h" + +/** + * @ingroup groupNN + */ + +/** + * @addtogroup NNConv + * @{ + */ + + /** + * @brief Basic Q15 convolution function + * @param[in] Im_in pointer to input tensor + * @param[in] dim_im_in input tensor dimention + * @param[in] ch_im_in number of input tensor channels + * @param[in] wt pointer to kernel weights + * @param[in] ch_im_out number of filters, i.e., output tensor channels + * @param[in] dim_kernel filter kernel size + * @param[in] padding padding sizes + * @param[in] stride convolution stride + * @param[in] bias pointer to bias + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in,out] Im_out pointer to output tensor + * @param[in] dim_im_out output tensor dimension + * @param[in,out] bufferA pointer to buffer space for input + * @param[in,out] bufferB pointer to buffer space for output + * @return The function returns ARM_MATH_SUCCESS + * + * @details + * + * Buffer size: + * + * bufferA size: ch_im_in*dim_kernel*dim_kernel + * + * bufferB size: 0 + * + * This basic version is designed to work for any input tensor and weight + * dimension. + */ + +arm_status +arm_convolve_HWC_q15_basic(const q15_t * Im_in, + const uint16_t dim_im_in, + const uint16_t ch_im_in, + const q15_t * wt, + const uint16_t ch_im_out, + const uint16_t dim_kernel, + const uint16_t padding, + const uint16_t stride, + const q15_t * bias, + const uint16_t bias_shift, + const uint16_t out_shift, + q15_t * Im_out, + const uint16_t dim_im_out, + q15_t * bufferA, + q7_t * bufferB) +{ + +#if defined (ARM_MATH_DSP) + /* Run the following code for Cortex-M4 and Cortex-M7 */ + + int16_t i_out_y, i_out_x, i_ker_y, i_ker_x; + + uint16_t im2col_out_pixel_index = 0; + q15_t *pBuffer = bufferA; + q15_t *pOut = Im_out; + q15_t *im_buffer = bufferA; + const q15_t *pA; + int i; + + /* This part implements the im2col function */ + for (i_out_y = 0; i_out_y < dim_im_out; i_out_y++) + { + for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++) + { + for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++) + { + for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++) + { + if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in) + { + /* Filling 0 for out-of-bound paddings */ + /* arm_fill_q15(0, pBuffer, ch_im_in); */ + memset(pBuffer, 0, sizeof(q15_t)*ch_im_in); + } else + { + /* arm_copy_q15((q15_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in); */ + memcpy(pBuffer, (q15_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, sizeof(q15_t)*ch_im_in); + } + pBuffer += ch_im_in; + } + } + + pA = wt; + for (i = 0; i < ch_im_out; i++) + { + q31_t sum = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift); + q15_t *pB = im_buffer; + uint16_t colCnt = ch_im_in * dim_kernel * dim_kernel >> 2; + while (colCnt) + { + q31_t inA1 = *__SIMD32(pA)++; + q31_t inB1 = *__SIMD32(pB)++; + q31_t inA2 = *__SIMD32(pA)++; + q31_t inB2 = *__SIMD32(pB)++; + + sum = __SMLAD(inA1, inB1, sum); + sum = __SMLAD(inA2, inB2, sum); + + colCnt--; + } + colCnt = ch_im_in * dim_kernel * dim_kernel & 0x3; + while (colCnt) + { + q15_t inA1 = *pA++; + q15_t inB1 = *pB++; + sum += inA1 * inB1; + colCnt--; + } + *pOut = (q15_t) __SSAT((sum >> out_shift), 16); + pOut++; + } + + /* counter reset */ + pBuffer = im_buffer; + im2col_out_pixel_index++; + } + } + +#else + /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ + uint16_t i, j, k, l, m, n; + int conv_out; + signed char in_row, in_col; + + for (i = 0; i < ch_im_out; i++) + { + for (j = 0; j < dim_im_out; j++) + { + for (k = 0; k < dim_im_out; k++) + { + conv_out = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift); + for (m = 0; m < dim_kernel; m++) + { + for (n = 0; n < dim_kernel; n++) + { + in_row = stride * j + m - padding; + in_col = stride * k + n - padding; + if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in && in_col < dim_im_in) + { + for (l = 0; l < ch_im_in; l++) + { + conv_out += + Im_in[(in_row * dim_im_in + in_col) * ch_im_in + + l] * wt[i * ch_im_in * dim_kernel * dim_kernel + (m * dim_kernel + + n) * ch_im_in + l]; + } + } + } + } + Im_out[i + (j * dim_im_out + k) * ch_im_out] = (q15_t) __SSAT((conv_out >> out_shift), 16); + } + } + } + +#endif /* ARM_MATH_DSP */ + + /* Return to application */ + return ARM_MATH_SUCCESS; +} + +/** + * @} end of NNConv group + */ diff --git a/fw/midi-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q15_fast.c b/fw/midi-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q15_fast.c new file mode 100644 index 0000000..a02aaa0 --- /dev/null +++ b/fw/midi-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q15_fast.c @@ -0,0 +1,255 @@ +/* + * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_convolve_HWC_q15_fast.c + * Description: Fast Q15 version of convolution + * + * $Date: 17. January 2018 + * $Revision: V.1.0.0 + * + * Target Processor: Cortex-M cores + * + * -------------------------------------------------------------------- */ + +#include "arm_math.h" +#include "arm_nnfunctions.h" + +/** + * @ingroup groupNN + */ + +/** + * @addtogroup NNConv + * @{ + */ + + /** + * @brief Fast Q15 convolution function + * @param[in] Im_in pointer to input tensor + * @param[in] dim_im_in input tensor dimention + * @param[in] ch_im_in number of input tensor channels + * @param[in] wt pointer to kernel weights + * @param[in] ch_im_out number of filters, i.e., output tensor channels + * @param[in] dim_kernel filter kernel size + * @param[in] padding padding sizes + * @param[in] stride convolution stride + * @param[in] bias pointer to bias + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in,out] Im_out pointer to output tensor + * @param[in] dim_im_out output tensor dimension + * @param[in,out] bufferA pointer to buffer space for input + * @param[in,out] bufferB pointer to buffer space for output + * @return The function returns either + * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking. + * + * @details + * + * Buffer size: + * + * bufferA size: 2*ch_im_in*dim_kernel*dim_kernel + * + * bufferB size: 0 + * + * Input dimension constraints: + * + * ch_im_in is multiple of 2 + * + * ch_im_out is multipe of 2 + * + */ + +arm_status +arm_convolve_HWC_q15_fast(const q15_t * Im_in, + const uint16_t dim_im_in, + const uint16_t ch_im_in, + const q15_t * wt, + const uint16_t ch_im_out, + const uint16_t dim_kernel, + const uint16_t padding, + const uint16_t stride, + const q15_t * bias, + const uint16_t bias_shift, + const uint16_t out_shift, + q15_t * Im_out, + const uint16_t dim_im_out, + q15_t * bufferA, + q7_t * bufferB) +{ + +#if defined (ARM_MATH_DSP) + int16_t i_out_y, i_out_x, i_ker_y, i_ker_x; + + q15_t *pBuffer = bufferA; + q15_t *im_buffer = bufferA; + q15_t *pOut = Im_out; + + if (ch_im_in % 2 != 0 || ch_im_out % 2 != 0) + { + /* check if the input dimension meets the constraints */ + return ARM_MATH_SIZE_MISMATCH; + } + + /* Run the following code for Cortex-M4 and Cortex-M7 */ + + /* This part implements the im2col function */ + for (i_out_y = 0; i_out_y < dim_im_out; i_out_y++) + { + for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++) + { + for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++) + { + for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++) + { + if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in) + { + /* arm_fill_q15(0, pBuffer, ch_im_in); */ + memset(pBuffer, 0, sizeof(q15_t)*ch_im_in); + } else + { + /* arm_copy_q15((q15_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in); */ + memcpy(pBuffer, (q15_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, sizeof(q15_t)*ch_im_in); + } + pBuffer += ch_im_in; + } + } + + if (i_out_x & 0x1) + { + int i; + /* initialize the matrix pointers for A */ + const q15_t *pA = wt; + + /* set up the second output pointers */ + q15_t *pOut2 = pOut + ch_im_out; + + /* this loop over rows in A */ + for (i = 0; i < ch_im_out; i += 2) + { + /* setup pointers for B */ + q15_t *pB = im_buffer; + const q15_t *pB2 = pB + ch_im_in * dim_kernel * dim_kernel; + + /* aling the second pointer for A */ + const q15_t *pA2 = pA + ch_im_in * dim_kernel * dim_kernel; + + /* init the sum with bias */ + q31_t sum = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift); + q31_t sum2 = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift); + q31_t sum3 = ((q31_t)bias[i + 1] << bias_shift) + NN_ROUND(out_shift); + q31_t sum4 = ((q31_t)bias[i + 1] << bias_shift) + NN_ROUND(out_shift); + + uint16_t colCnt = ch_im_in * dim_kernel * dim_kernel >> 1; + /* accumulate over the vector */ + while (colCnt) + { + q31_t inA1 = *__SIMD32(pA)++; + q31_t inB1 = *__SIMD32(pB)++; + q31_t inA2 = *__SIMD32(pA2)++; + q31_t inB2 = *__SIMD32(pB2)++; + + sum = __SMLAD(inA1, inB1, sum); + sum2 = __SMLAD(inA1, inB2, sum2); + sum3 = __SMLAD(inA2, inB1, sum3); + sum4 = __SMLAD(inA2, inB2, sum4); + + colCnt--; + } /* while over colCnt */ + colCnt = ch_im_in * dim_kernel * dim_kernel & 0x1; + while (colCnt) + { + q15_t inA1 = *pA++; + q15_t inB1 = *pB++; + q15_t inA2 = *pA2++; + q15_t inB2 = *pB2++; + + sum += inA1 * inB1; + sum2 += inA1 * inB2; + sum3 += inA2 * inB1; + sum4 += inA2 * inB2; + colCnt--; + } /* while over colCnt */ + *pOut++ = (q15_t) __SSAT(sum >> out_shift, 16); + *pOut++ = (q15_t) __SSAT(sum3 >> out_shift, 16); + *pOut2++ = (q15_t) __SSAT(sum2 >> out_shift, 16); + *pOut2++ = (q15_t) __SSAT(sum4 >> out_shift, 16); + + /* skip the row computed with A2 */ + pA += ch_im_in * dim_kernel * dim_kernel; + } /* for over ch_im_out */ + + pOut += ch_im_out; + /* counter reset */ + pBuffer = im_buffer; + } + } + } + +#else + /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ + uint16_t i, j, k, l, m, n; + int conv_out; + signed char in_row, in_col; + + if (ch_im_in % 2 != 0 || ch_im_out % 2 != 0) + { + /* check if the input dimension meets the constraints */ + return ARM_MATH_SIZE_MISMATCH; + } + + for (i = 0; i < ch_im_out; i++) + { + for (j = 0; j < dim_im_out; j++) + { + for (k = 0; k < dim_im_out; k++) + { + conv_out = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift); + for (m = 0; m < dim_kernel; m++) + { + for (n = 0; n < dim_kernel; n++) + { + in_row = stride * j + m - padding; + in_col = stride * k + n - padding; + if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in && in_col < dim_im_in) + { + for (l = 0; l < ch_im_in; l++) + { + conv_out += + Im_in[(in_row * dim_im_in + in_col) * ch_im_in + + l] * wt[i * ch_im_in * dim_kernel * dim_kernel + (m * dim_kernel + + n) * ch_im_in + l]; + } + } + } + } + Im_out[i + (j * dim_im_out + k) * ch_im_out] = (q15_t) __SSAT((conv_out >> out_shift), 16); + } + } + } + +#endif /* ARM_MATH_DSP */ + + /* Return to application */ + return ARM_MATH_SUCCESS; +} + +/** + * @} end of NNConv group + */ diff --git a/fw/midi-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q15_fast_nonsquare.c b/fw/midi-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q15_fast_nonsquare.c new file mode 100644 index 0000000..14d9130 --- /dev/null +++ b/fw/midi-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q15_fast_nonsquare.c @@ -0,0 +1,265 @@ +/* + * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_convolve_HWC_q15_fast.c + * Description: Fast Q15 version of convolution + * + * $Date: 24. May 2018 + * $Revision: V.1.0.0 + * + * Target Processor: Cortex-M cores + * + * -------------------------------------------------------------------- */ + +#include "arm_math.h" +#include "arm_nnfunctions.h" + +/** + * @ingroup groupNN + */ + +/** + * @addtogroup NNConv + * @{ + */ + + /** + * @brief Fast Q15 convolution function (non-sqaure shape) + * @param[in] Im_in pointer to input tensor + * @param[in] dim_im_in_x input tensor dimention x + * @param[in] dim_im_in_y input tensor dimention y + * @param[in] ch_im_in number of input tensor channels + * @param[in] wt pointer to kernel weights + * @param[in] ch_im_out number of filters, i.e., output tensor channels + * @param[in] dim_kernel_x filter kernel size x + * @param[in] dim_kernel_y filter kernel size y + * @param[in] padding_x padding size x + * @param[in] padding_y padding size y + * @param[in] stride_x convolution stride x + * @param[in] stride_y convolution stride y + * @param[in] bias pointer to bias + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in,out] Im_out pointer to output tensor + * @param[in] dim_im_out_x output tensor dimension x + * @param[in] dim_im_out_y output tensor dimension y + * @param[in,out] bufferA pointer to buffer space for input + * @param[in,out] bufferB pointer to buffer space for output + * @return The function returns either + * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking. + * + * @details + * + * Buffer size: + * + * bufferA size: 2*ch_im_in*dim_kernel*dim_kernel + * + * bufferB size: 0 + * + * Input dimension constraints: + * + * ch_im_in is multiple of 2 + * + * ch_im_out is multipe of 2 + * + */ + +arm_status +arm_convolve_HWC_q15_fast_nonsquare(const q15_t * Im_in, + const uint16_t dim_im_in_x, + const uint16_t dim_im_in_y, + const uint16_t ch_im_in, + const q15_t * wt, + const uint16_t ch_im_out, + const uint16_t dim_kernel_x, + const uint16_t dim_kernel_y, + const uint16_t padding_x, + const uint16_t padding_y, + const uint16_t stride_x, + const uint16_t stride_y, + const q15_t * bias, + const uint16_t bias_shift, + const uint16_t out_shift, + q15_t * Im_out, + const uint16_t dim_im_out_x, + const uint16_t dim_im_out_y, + q15_t * bufferA, + q7_t * bufferB) +{ + +#if defined (ARM_MATH_DSP) + int16_t i_out_y, i_out_x, i_ker_y, i_ker_x; + + q15_t *pBuffer = bufferA; + q15_t *im_buffer = bufferA; + q15_t *pOut = Im_out; + + if (ch_im_in % 2 != 0 || ch_im_out % 2 != 0) + { + /* check if the input dimension meets the constraints */ + return ARM_MATH_SIZE_MISMATCH; + } + + /* Run the following code for Cortex-M4 and Cortex-M7 */ + + /* This part implements the im2col function */ + for (i_out_y = 0; i_out_y < dim_im_out_y; i_out_y++) + { + for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++) + { + for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y; i_ker_y++) + { + for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x; i_ker_x++) + { + if (i_ker_y < 0 || i_ker_y >= dim_im_in_y || i_ker_x < 0 || i_ker_x >= dim_im_in_x) + { + /* arm_fill_q15(0, pBuffer, ch_im_in); */ + memset(pBuffer, 0, sizeof(q15_t)*ch_im_in); + } else + { + /* arm_copy_q15((q15_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, pBuffer, ch_im_in); */ + memcpy(pBuffer, (q15_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, sizeof(q15_t)*ch_im_in); + } + pBuffer += ch_im_in; + } + } + + if (i_out_x & 0x1) + { + int i; + /* initialize the matrix pointers for A */ + const q15_t *pA = wt; + + /* set up the second output pointers */ + q15_t *pOut2 = pOut + ch_im_out; + + /* this loop over rows in A */ + for (i = 0; i < ch_im_out; i += 2) + { + /* setup pointers for B */ + q15_t *pB = im_buffer; + const q15_t *pB2 = pB + ch_im_in * dim_kernel_y * dim_kernel_x; + + /* aling the second pointer for A */ + const q15_t *pA2 = pA + ch_im_in * dim_kernel_y * dim_kernel_x; + + /* init the sum with bias */ + q31_t sum = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift); + q31_t sum2 = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift); + q31_t sum3 = ((q31_t)bias[i + 1] << bias_shift) + NN_ROUND(out_shift); + q31_t sum4 = ((q31_t)bias[i + 1] << bias_shift) + NN_ROUND(out_shift); + + uint16_t colCnt = ch_im_in * dim_kernel_y * dim_kernel_x >> 1; + /* accumulate over the vector */ + while (colCnt) + { + q31_t inA1 = *__SIMD32(pA)++; + q31_t inB1 = *__SIMD32(pB)++; + q31_t inA2 = *__SIMD32(pA2)++; + q31_t inB2 = *__SIMD32(pB2)++; + + sum = __SMLAD(inA1, inB1, sum); + sum2 = __SMLAD(inA1, inB2, sum2); + sum3 = __SMLAD(inA2, inB1, sum3); + sum4 = __SMLAD(inA2, inB2, sum4); + + colCnt--; + } /* while over colCnt */ + colCnt = ch_im_in * dim_kernel_y * dim_kernel_x & 0x1; + while (colCnt) + { + q15_t inA1 = *pA++; + q15_t inB1 = *pB++; + q15_t inA2 = *pA2++; + q15_t inB2 = *pB2++; + + sum += inA1 * inB1; + sum2 += inA1 * inB2; + sum3 += inA2 * inB1; + sum4 += inA2 * inB2; + colCnt--; + } /* while over colCnt */ + *pOut++ = (q15_t) __SSAT(sum >> out_shift, 16); + *pOut++ = (q15_t) __SSAT(sum3 >> out_shift, 16); + *pOut2++ = (q15_t) __SSAT(sum2 >> out_shift, 16); + *pOut2++ = (q15_t) __SSAT(sum4 >> out_shift, 16); + + /* skip the row computed with A2 */ + pA += ch_im_in * dim_kernel_y * dim_kernel_x; + } /* for over ch_im_out */ + + pOut += ch_im_out; + /* counter reset */ + pBuffer = im_buffer; + } + } + } + +#else + /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ + uint16_t i, j, k, l, m, n; + int conv_out; + signed char in_row, in_col; + + if (ch_im_in % 2 != 0 || ch_im_out % 2 != 0) + { + /* check if the input dimension meets the constraints */ + return ARM_MATH_SIZE_MISMATCH; + } + + for (i = 0; i < ch_im_out; i++) + { + for (j = 0; j < dim_im_out_y; j++) + { + for (k = 0; k < dim_im_out_x; k++) + { + conv_out = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift); + for (m = 0; m < dim_kernel_y; m++) + { + for (n = 0; n < dim_kernel_x; n++) + { + in_row = stride_y * j + m - padding_y; + in_col = stride_x * k + n - padding_x; + if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in_y && in_col < dim_im_in_x) + { + for (l = 0; l < ch_im_in; l++) + { + conv_out += + Im_in[(in_row * dim_im_in_x + in_col) * ch_im_in + + l] * wt[i * ch_im_in * dim_kernel_x * dim_kernel_y + (m * dim_kernel_x + + n) * ch_im_in + l]; + } + } + } + } + Im_out[i + (j * dim_im_out_x + k) * ch_im_out] = (q15_t) __SSAT((conv_out >> out_shift), 16); + } + } + } + +#endif /* ARM_MATH_DSP */ + + /* Return to application */ + return ARM_MATH_SUCCESS; +} + +/** + * @} end of NNConv group + */ diff --git a/fw/midi-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_RGB.c b/fw/midi-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_RGB.c new file mode 100644 index 0000000..e53c6f9 --- /dev/null +++ b/fw/midi-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_RGB.c @@ -0,0 +1,279 @@ +/* + * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_convolve_HWC_q7_RGB.c + * Description: Q7 version of convolution for RGB image + * + * $Date: 17. January 2018 + * $Revision: V.1.0.0 + * + * Target Processor: Cortex-M cores + * + * -------------------------------------------------------------------- */ +#include "arm_math.h" +#include "arm_nnfunctions.h" + +/** + * @ingroup groupNN + */ + +/** + * @addtogroup NNConv + * @{ + */ + + /** + * @brief Q7 convolution function for RGB image + * @param[in] Im_in pointer to input tensor + * @param[in] dim_im_in input tensor dimention + * @param[in] ch_im_in number of input tensor channels + * @param[in] wt pointer to kernel weights + * @param[in] ch_im_out number of filters, i.e., output tensor channels + * @param[in] dim_kernel filter kernel size + * @param[in] padding padding sizes + * @param[in] stride convolution stride + * @param[in] bias pointer to bias + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in,out] Im_out pointer to output tensor + * @param[in] dim_im_out output tensor dimension + * @param[in,out] bufferA pointer to buffer space for input + * @param[in,out] bufferB pointer to buffer space for output + * @return The function returns either + * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking. + * + * @details + * + * Buffer size: + * + * bufferA size: 2*ch_im_in*dim_kernel*dim_kernel + * + * bufferB size: 0 + * + * Input dimension constraints: + * + * ch_im_in equals 3 + * + * This kernel is written exclusively for convolution with ch_im_in + * equals 3. This applies on the first layer of CNNs which has input + * image with RGB format. + */ + +arm_status +arm_convolve_HWC_q7_RGB(const q7_t * Im_in, + const uint16_t dim_im_in, + const uint16_t ch_im_in, + const q7_t * wt, + const uint16_t ch_im_out, + const uint16_t dim_kernel, + const uint16_t padding, + const uint16_t stride, + const q7_t * bias, + const uint16_t bias_shift, + const uint16_t out_shift, + q7_t * Im_out, const uint16_t dim_im_out, q15_t * bufferA, q7_t * bufferB) +{ + +#if defined (ARM_MATH_DSP) + /* Run the following code for Cortex-M4 and Cortex-M7 */ + int16_t i_out_y, i_out_x, i_ker_y, i_ker_x; + + /* + * Here we use bufferA as q15_t internally as computation are done with q15_t level + * im2col are done to output in q15_t format from q7_t input + */ + q15_t *pBuffer = bufferA; + q7_t *pOut = Im_out; + + // check if number of input channels is 3 + if (ch_im_in != 3) + { + return ARM_MATH_SIZE_MISMATCH; + } + // This part implements the im2col function + for (i_out_y = 0; i_out_y < dim_im_out; i_out_y++) + { + for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++) + { + for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++) + { + for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++) + { + if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in) + { + /* Equivalent to arm_fill_q15(0, pBuffer, ch_im_in) with assumption: ch_im_in = 3 */ + *__SIMD32(pBuffer) = 0x0; + *(pBuffer + 2) = 0; + pBuffer += 3; + } else + { + /* + * Equivalent to: + * arm_q7_to_q15_no_shift( (q7_t*)Im_in+(i_ker_y*dim_im_in+i_ker_x)*3, pBuffer, 3); + */ + + const q7_t *pPixel = Im_in + (i_ker_y * dim_im_in + i_ker_x) * 3; + q31_t buf = *__SIMD32(pPixel); + + union arm_nnword top; + union arm_nnword bottom; + + top.word = __SXTB16(buf); + bottom.word = __SXTB16(__ROR(buf, 8)); + +#ifndef ARM_MATH_BIG_ENDIAN + /* + * little-endian, | omit | 3rd | 2nd | 1st | + * MSB LSB + * top | 3rd | 1st |; bottom | omit | 2nd | + * + * version 1, need to swap 2nd and 3rd weight + * *__SIMD32(pBuffer) = top.word; + * *(pBuffer+2) = bottom.half_words[0]; + * + * version 2, no weight shuffling required + */ + *pBuffer++ = top.half_words[0]; + *__SIMD32(pBuffer) = __PKHBT(bottom.word, top.word, 0); +#else + /* + * big-endian, | 1st | 2nd | 3rd | omit | + * MSB LSB + * top | 2nd | omit |; bottom | 1st | 3rd | + * + * version 1, need to swap 2nd and 3rd weight + * *__SIMD32(pBuffer) = bottom.word; + * *(pBuffer+2) = top.half_words[1]; + * + * version 2, no weight shuffling required + */ + *pBuffer++ = bottom.half_words[0]; + *__SIMD32(pBuffer) = __PKHTB(top.word, bottom.word, 0); +#endif + pBuffer += 2; + } + } + } + + if (pBuffer == bufferA + 2 * 3 * dim_kernel * dim_kernel) + { + pOut = + arm_nn_mat_mult_kernel_q7_q15(wt, bufferA, + ch_im_out, + 3 * dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut); + + /* counter reset */ + pBuffer = bufferA; + } + } + } + + /* left-over because odd number of output pixels */ + if (pBuffer != bufferA) + { + const q7_t *pA = wt; + int i; + + for (i = 0; i < ch_im_out; i++) + { + q31_t sum = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift); + q15_t *pB = bufferA; + /* basically each time it process 4 entries */ + uint16_t colCnt = 3 * dim_kernel * dim_kernel >> 2; + + while (colCnt) + { + + q31_t inA1, inA2; + q31_t inB1, inB2; + + pA = (q7_t *) read_and_pad((void *)pA, &inA1, &inA2); + + inB1 = *__SIMD32(pB)++; + sum = __SMLAD(inA1, inB1, sum); + inB2 = *__SIMD32(pB)++; + sum = __SMLAD(inA2, inB2, sum); + + colCnt--; + } + colCnt = 3 * dim_kernel * dim_kernel & 0x3; + while (colCnt) + { + q7_t inA1 = *pA++; + q15_t inB1 = *pB++; + sum += inA1 * inB1; + colCnt--; + } + *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8); + } + } +#else + /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ + + uint16_t i, j, k, l, m, n; + int conv_out; + signed char in_row, in_col; + + // check if number of input channels is 3 + if (ch_im_in != 3) + { + return ARM_MATH_SIZE_MISMATCH; + } + + for (i = 0; i < ch_im_out; i++) + { + for (j = 0; j < dim_im_out; j++) + { + for (k = 0; k < dim_im_out; k++) + { + conv_out = (bias[i] << bias_shift) + NN_ROUND(out_shift); + for (m = 0; m < dim_kernel; m++) + { + for (n = 0; n < dim_kernel; n++) + { + /* if-for implementation */ + in_row = stride * j + m - padding; + in_col = stride * k + n - padding; + if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in && in_col < dim_im_in) + { + for (l = 0; l < ch_im_in; l++) + { + conv_out += + Im_in[(in_row * dim_im_in + in_col) * ch_im_in + + l] * wt[i * ch_im_in * dim_kernel * dim_kernel + (m * dim_kernel + + n) * ch_im_in + l]; + } + } + } + } + Im_out[i + (j * dim_im_out + k) * ch_im_out] = (q7_t) __SSAT((conv_out >> out_shift), 8); + } + } + } + +#endif /* ARM_MATH_DSP */ + + /* Return to application */ + return (ARM_MATH_SUCCESS); +} + +/** + * @} end of NNConv group + */ diff --git a/fw/midi-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_basic.c b/fw/midi-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_basic.c new file mode 100644 index 0000000..7c9ec65 --- /dev/null +++ b/fw/midi-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_basic.c @@ -0,0 +1,230 @@ +/* + * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_convolve_HWC_q7_basic.c + * Description: Q7 version of convolution + * + * $Date: 17. January 2018 + * $Revision: V.1.0.0 + * + * Target Processor: Cortex-M cores + * + * -------------------------------------------------------------------- */ +#include "arm_math.h" +#include "arm_nnfunctions.h" + +/** + * @ingroup groupNN + */ + +/** + * @addtogroup NNConv + * @{ + */ + + /** + * @brief Basic Q7 convolution function + * @param[in] Im_in pointer to input tensor + * @param[in] dim_im_in input tensor dimention + * @param[in] ch_im_in number of input tensor channels + * @param[in] wt pointer to kernel weights + * @param[in] ch_im_out number of filters, i.e., output tensor channels + * @param[in] dim_kernel filter kernel size + * @param[in] padding padding sizes + * @param[in] stride convolution stride + * @param[in] bias pointer to bias + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in,out] Im_out pointer to output tensor + * @param[in] dim_im_out output tensor dimension + * @param[in,out] bufferA pointer to buffer space for input + * @param[in,out] bufferB pointer to buffer space for output + * @return The function returns ARM_MATH_SUCCESS + * + * @details + * + * Buffer size: + * + * bufferA size: 2*ch_im_in*dim_kernel*dim_kernel + * + * bufferB size: 0 + * + * This basic version is designed to work for any input tensor and weight + * dimension. + */ + +arm_status +arm_convolve_HWC_q7_basic(const q7_t * Im_in, + const uint16_t dim_im_in, + const uint16_t ch_im_in, + const q7_t * wt, + const uint16_t ch_im_out, + const uint16_t dim_kernel, + const uint16_t padding, + const uint16_t stride, + const q7_t * bias, + const uint16_t bias_shift, + const uint16_t out_shift, + q7_t * Im_out, + const uint16_t dim_im_out, + q15_t * bufferA, + q7_t * bufferB) +{ + +#if defined (ARM_MATH_DSP) + /* Run the following code for Cortex-M4 and Cortex-M7 */ + + int16_t i_out_y, i_out_x, i_ker_y, i_ker_x; + + /* + * Here we use bufferA as q15_t internally as computation are done with q15_t level + * im2col are done to output in q15_t format from q7_t input + */ + q15_t *pBuffer = bufferA; + q7_t *pOut = Im_out; + + /* This part implements the im2col function */ + for (i_out_y = 0; i_out_y < dim_im_out; i_out_y++) + { + for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++) + { + for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++) + { + for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++) + { + if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in) + { + /* Filling 0 for out-of-bound paddings */ + /* arm_fill_q15(0, pBuffer, ch_im_in); */ + memset(pBuffer, 0, sizeof(q15_t)*ch_im_in); + } else + { + /* Copying the pixel data to column */ + arm_q7_to_q15_no_shift((q7_t *) + Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in); + } + pBuffer += ch_im_in; + } + } + + /* Computation is filed for every 2 columns */ + if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel) + { + pOut = + arm_nn_mat_mult_kernel_q7_q15(wt, bufferA, + ch_im_out, + ch_im_in * + dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut); + + /* counter reset */ + pBuffer = bufferA; + } + } + } + + /* left-over because odd number of output pixels */ + if (pBuffer != bufferA) + { + const q7_t *pA = wt; + int i; + + for (i = 0; i < ch_im_out; i++) + { + /* Load the accumulator with bias first */ + q31_t sum = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift); + + /* Point to the beging of the im2col buffer */ + q15_t *pB = bufferA; + + /* Each time it process 4 entries */ + uint16_t colCnt = ch_im_in * dim_kernel * dim_kernel >> 2; + + while (colCnt) + { + q31_t inA1, inA2; + q31_t inB1, inB2; + + pA = (q7_t *) read_and_pad((void *)pA, &inA1, &inA2); + + inB1 = *__SIMD32(pB)++; + sum = __SMLAD(inA1, inB1, sum); + inB2 = *__SIMD32(pB)++; + sum = __SMLAD(inA2, inB2, sum); + + colCnt--; + } + colCnt = ch_im_in * dim_kernel * dim_kernel & 0x3; + while (colCnt) + { + q7_t inA1 = *pA++; + q15_t inB1 = *pB++; + sum += inA1 * inB1; + colCnt--; + } + *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8); + } + } +#else + /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ + + uint16_t i, j, k, l, m, n; + int conv_out; + signed char in_row, in_col; + + for (i = 0; i < ch_im_out; i++) + { + for (j = 0; j < dim_im_out; j++) + { + for (k = 0; k < dim_im_out; k++) + { + conv_out = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift); + for (m = 0; m < dim_kernel; m++) + { + for (n = 0; n < dim_kernel; n++) + { + // if-for implementation + in_row = stride * j + m - padding; + in_col = stride * k + n - padding; + if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in && in_col < dim_im_in) + { + for (l = 0; l < ch_im_in; l++) + { + conv_out += + Im_in[(in_row * dim_im_in + in_col) * ch_im_in + + l] * wt[i * ch_im_in * dim_kernel * dim_kernel + (m * dim_kernel + + n) * ch_im_in + l]; + } + } + } + } + Im_out[i + (j * dim_im_out + k) * ch_im_out] = (q7_t) __SSAT((conv_out >> out_shift), 8); + } + } + } + +#endif /* ARM_MATH_DSP */ + + /* Return to application */ + return ARM_MATH_SUCCESS; +} + +/** + * @} end of NNConv group + */ diff --git a/fw/midi-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_basic_nonsquare.c b/fw/midi-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_basic_nonsquare.c new file mode 100644 index 0000000..24356d9 --- /dev/null +++ b/fw/midi-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_basic_nonsquare.c @@ -0,0 +1,228 @@ +/* + * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_convolve_HWC_q7_basic.c + * Description: Q7 version of convolution + * + * $Date: 13. July 2018 + * $Revision: V.1.0.0 + * + * Target Processor: Cortex-M cores + * + * -------------------------------------------------------------------- */ +#include "arm_math.h" +#include "arm_nnfunctions.h" + +/** + * @ingroup groupNN + */ + +/** + * @addtogroup NNConv + * @{ + */ + + /** + * @brief Basic Q7 convolution function (non-sqaure shape) + * @param[in] Im_in pointer to input tensor + * @param[in] dim_im_in_x input tensor dimention x + * @param[in] dim_im_in_y input tensor dimention y + * @param[in] ch_im_in number of input tensor channels + * @param[in] wt pointer to kernel weights + * @param[in] ch_im_out number of filters, i.e., output tensor channels + * @param[in] dim_kernel_x filter kernel size x + * @param[in] dim_kernel_y filter kernel size y + * @param[in] padding_x padding size x + * @param[in] padding_y padding size y + * @param[in] stride_x convolution stride x + * @param[in] stride_y convolution stride y + * @param[in] bias pointer to bias + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in,out] Im_out pointer to output tensor + * @param[in] dim_im_out_x output tensor dimension x + * @param[in] dim_im_out_y output tensor dimension y + * @param[in,out] bufferA pointer to buffer space for input + * @param[in,out] bufferB pointer to buffer space for output + * @return The function returns ARM_MATH_SUCCESS + */ + +arm_status arm_convolve_HWC_q7_basic_nonsquare(const q7_t * Im_in, + const uint16_t dim_im_in_x, + const uint16_t dim_im_in_y, + const uint16_t ch_im_in, + const q7_t * wt, + const uint16_t ch_im_out, + const uint16_t dim_kernel_x, + const uint16_t dim_kernel_y, + const uint16_t padding_x, + const uint16_t padding_y, + const uint16_t stride_x, + const uint16_t stride_y, + const q7_t * bias, + const uint16_t bias_shift, + const uint16_t out_shift, + q7_t * Im_out, + const uint16_t dim_im_out_x, + const uint16_t dim_im_out_y, + q15_t * bufferA, + q7_t * bufferB) +{ + +#if defined (ARM_MATH_DSP) + /* Run the following code for Cortex-M4 and Cortex-M7 */ + + int16_t i_out_y, i_out_x, i_ker_y, i_ker_x; + + /* + * Here we use bufferA as q15_t internally as computation are done with q15_t level + * im2col are done to output in q15_t format from q7_t input + */ + q15_t *pBuffer = bufferA; + q7_t *pOut = Im_out; + + /* This part implements the im2col function */ + for (i_out_y = 0; i_out_y < dim_im_out_y; i_out_y++) + { + for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++) + { + for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y; i_ker_y++) + { + for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x; i_ker_x++) + { + if (i_ker_y < 0 || i_ker_y >= dim_im_in_y || i_ker_x < 0 || i_ker_x >= dim_im_in_x) + { + /* Filling 0 for out-of-bound paddings */ + /* arm_fill_q15(0, pBuffer, ch_im_in); */ + memset(pBuffer, 0, sizeof(q15_t)*ch_im_in); + } else + { + /* Copying the pixel data to column */ + arm_q7_to_q15_no_shift((q7_t *) + Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, pBuffer, ch_im_in); + } + pBuffer += ch_im_in; + } + } + + /* Computation is filed for every 2 columns */ + if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_y * dim_kernel_x) + { + pOut = + arm_nn_mat_mult_kernel_q7_q15(wt, bufferA, + ch_im_out, + ch_im_in * + dim_kernel_y * dim_kernel_x, bias_shift, out_shift, bias, pOut); + + /* counter reset */ + pBuffer = bufferA; + } + } + } + + /* left-over because odd number of output pixels */ + if (pBuffer != bufferA) + { + const q7_t *pA = wt; + int i; + + for (i = 0; i < ch_im_out; i++) + { + /* Load the accumulator with bias first */ + q31_t sum = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift); + + /* Point to the beging of the im2col buffer */ + q15_t *pB = bufferA; + + /* Each time it process 4 entries */ + uint16_t colCnt = ch_im_in * dim_kernel_y * dim_kernel_x >> 2; + + while (colCnt) + { + q31_t inA1, inA2; + q31_t inB1, inB2; + + pA = (q7_t *) read_and_pad((void *)pA, &inA1, &inA2); + + inB1 = *__SIMD32(pB)++; + sum = __SMLAD(inA1, inB1, sum); + inB2 = *__SIMD32(pB)++; + sum = __SMLAD(inA2, inB2, sum); + + colCnt--; + } + colCnt = ch_im_in * dim_kernel_y * dim_kernel_x & 0x3; + while (colCnt) + { + q7_t inA1 = *pA++; + q15_t inB1 = *pB++; + sum += inA1 * inB1; + colCnt--; + } + *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8); + } + } +#else + /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ + + uint16_t i, j, k, l, m, n; + int conv_out; + signed char in_row, in_col; + + for (i = 0; i < ch_im_out; i++) + { + for (j = 0; j < dim_im_out_y; j++) + { + for (k = 0; k < dim_im_out_x; k++) + { + conv_out = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift); + for (m = 0; m < dim_kernel_y; m++) + { + for (n = 0; n < dim_kernel_x; n++) + { + // if-for implementation + in_row = stride_y * j + m - padding_y; + in_col = stride_x * k + n - padding_x; + if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in_y && in_col < dim_im_in_x) + { + for (l = 0; l < ch_im_in; l++) + { + conv_out += + Im_in[(in_row * dim_im_in_x + in_col) * ch_im_in + l] * + wt[i * ch_im_in * dim_kernel_y * dim_kernel_x + + (m * dim_kernel_x + n) * ch_im_in + l]; + } + } + } + } + Im_out[i + (j * dim_im_out_x + k) * ch_im_out] = (q7_t) __SSAT((conv_out >> out_shift), 8); + } + } + } + +#endif /* ARM_MATH_DSP */ + + /* Return to application */ + return ARM_MATH_SUCCESS; +} + +/** + * @} end of NNConv group + */ diff --git a/fw/midi-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_fast.c b/fw/midi-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_fast.c new file mode 100644 index 0000000..e2d469f --- /dev/null +++ b/fw/midi-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_fast.c @@ -0,0 +1,408 @@ +/* + * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_convolve_HWC_q7_fast.c + * Description: Fast Q7 version of convolution + * + * $Date: 17. January 2018 + * $Revision: V.1.0.0 + * + * Target Processor: Cortex-M cores + * + * -------------------------------------------------------------------- */ + +#include "arm_math.h" +#include "arm_nnfunctions.h" + +/** + * @ingroup groupNN + */ + +/** + * @addtogroup NNConv + * @{ + */ + + /** + * @brief Fast Q7 convolution function + * @param[in] Im_in pointer to input tensor + * @param[in] dim_im_in input tensor dimention + * @param[in] ch_im_in number of input tensor channels + * @param[in] wt pointer to kernel weights + * @param[in] ch_im_out number of filters, i.e., output tensor channels + * @param[in] dim_kernel filter kernel size + * @param[in] padding padding sizes + * @param[in] stride convolution stride + * @param[in] bias pointer to bias + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in,out] Im_out pointer to output tensor + * @param[in] dim_im_out output tensor dimension + * @param[in,out] bufferA pointer to buffer space for input + * @param[in,out] bufferB pointer to buffer space for output + * @return The function returns either + * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking. + * + * @details + * + * Buffer size: + * + * bufferA size: 2*ch_im_in*dim_kernel*dim_kernel + * + * bufferB size: 0 + * + * Input dimension constraints: + * + * ch_im_in is multiple of 4 ( because of the SIMD32 read and swap ) + * + * ch_im_out is multipe of 2 ( bacause 2x2 mat_mult kernel ) + * + * The im2col converts the Q7 tensor input into Q15 column, which is stored in + * bufferA. There is reordering happenning during this im2col process with + * arm_q7_to_q15_reordered_no_shift. For every four elements, the second and + * third elements are swapped. + * + * The computation kernel arm_nn_mat_mult_kernel_q7_q15_reordered does the + * GEMM computation with the reordered columns. + * + * To speed-up the determination of the padding condition, we split the + * computation into 3x3 parts, i.e., {top, mid, bottom} X {left, mid, right}. + * This reduces the total number of boundary condition checks and improves + * the data copying performance. + */ + +arm_status +arm_convolve_HWC_q7_fast(const q7_t * Im_in, + const uint16_t dim_im_in, + const uint16_t ch_im_in, + const q7_t * wt, + const uint16_t ch_im_out, + const uint16_t dim_kernel, + const uint16_t padding, + const uint16_t stride, + const q7_t * bias, + const uint16_t bias_shift, + const uint16_t out_shift, + q7_t * Im_out, + const uint16_t dim_im_out, + q15_t * bufferA, + q7_t * bufferB) +{ + +#if defined (ARM_MATH_DSP) + /* Run the following code for Cortex-M4 and Cortex-M7 */ + + int16_t i_out_y, i_out_x, i_ker_y, i_ker_x; + + /* + * Here we use bufferA as q15_t internally as computation are done with q15_t level + * im2col are done to output in q15_t format from q7_t input + */ + + q15_t *pBuffer = bufferA; + q7_t *pOut = Im_out; + + if (ch_im_in % 4 != 0 || ch_im_out % 2 != 0) + { + /* check if the input dimension meets the constraints */ + return ARM_MATH_SIZE_MISMATCH; + } + + /* + * Here we split the entire matrix into three regions depending on the padding situation + * Top: i_out_y from 0 to padding - 1 + * Middle: i_out_y from padding to dim_im_out-padding-1 + * Bottom: i_out_y from dim_im_out-padding to dim_im_out-1 + */ + + /* top part */ + for (i_out_y = 0; i_out_y < padding; i_out_y++) + { + for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++) + { + /* This part implements the im2col function */ + for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++) + { + for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++) + { + if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in) + { + /* arm_fill_q15(0, pBuffer, ch_im_in); */ + memset(pBuffer, 0, sizeof(q15_t)*ch_im_in); + } else + { + arm_q7_to_q15_reordered_no_shift + ((q7_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in); + } + pBuffer += ch_im_in; + } + } + + if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel) + { + pOut = + arm_nn_mat_mult_kernel_q7_q15_reordered(wt, + bufferA, + ch_im_out, + ch_im_in + * + dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut); + /* counter reset */ + pBuffer = bufferA; + } + } + } + + /* middle part, here we also divide the x into left, mid and right */ + for (; i_out_y < dim_im_out - padding; i_out_y++) + { + + /* left part */ + for (i_out_x = 0; i_out_x < padding; i_out_x++) + { + /* This part implements the im2col function */ + for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++) + { + for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++) + { + if (i_ker_x < 0 || i_ker_x >= dim_im_in) + { + /* arm_fill_q15(0, pBuffer, ch_im_in); */ + memset(pBuffer, 0, sizeof(q15_t)*ch_im_in); + } else + { + arm_q7_to_q15_reordered_no_shift + ((q7_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in); + } + pBuffer += ch_im_in; + } + } + + if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel) + { + pOut = + arm_nn_mat_mult_kernel_q7_q15_reordered(wt, + bufferA, + ch_im_out, + ch_im_in + * + dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut); + /* counter reset */ + pBuffer = bufferA; + } + } + + /* mid part */ + for (; i_out_x < dim_im_out - padding; i_out_x++) + { + /* This part implements the im2col function */ + for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++) + { + arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in + + + (i_ker_y * + dim_im_in + + i_out_x * + stride - padding) * ch_im_in, pBuffer, ch_im_in * dim_kernel); + pBuffer += ch_im_in * dim_kernel; + } + + if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel) + { + pOut = + arm_nn_mat_mult_kernel_q7_q15_reordered(wt, + bufferA, + ch_im_out, + ch_im_in + * + dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut); + /* counter reset */ + pBuffer = bufferA; + } + } + + /* right part */ + for (; i_out_x < dim_im_out; i_out_x++) + { + /* This part implements the im2col function */ + for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++) + { + for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++) + { + if (i_ker_x < 0 || i_ker_x >= dim_im_in) + { + /* arm_fill_q15(0, pBuffer, ch_im_in); */ + memset(pBuffer, 0, sizeof(q15_t)*ch_im_in); + } else + { + arm_q7_to_q15_reordered_no_shift + ((q7_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in); + } + pBuffer += ch_im_in; + } + } + + if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel) + { + pOut = + arm_nn_mat_mult_kernel_q7_q15_reordered(wt, + bufferA, + ch_im_out, + ch_im_in + * + dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut); + /* counter reset */ + pBuffer = bufferA; + } + } + } + + for (; i_out_y < dim_im_out; i_out_y++) + { + for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++) + { + /* This part implements the im2col function */ + for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++) + { + for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++) + { + if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in) + { + /* arm_fill_q15(0, pBuffer, ch_im_in); */ + memset(pBuffer, 0, sizeof(q15_t)*ch_im_in); + } else + { + arm_q7_to_q15_reordered_no_shift + ((q7_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in); + } + pBuffer += ch_im_in; + } + } + + if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel) + { + pOut = + arm_nn_mat_mult_kernel_q7_q15_reordered(wt, + bufferA, + ch_im_out, + ch_im_in + * + dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut); + /* counter reset */ + pBuffer = bufferA; + } + } + } + + /* check if there is left-over for compute */ + if (pBuffer != bufferA) + { + const q7_t *pA = wt; + int i; + + for (i = 0; i < ch_im_out; i++) + { + q31_t sum = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift); + q15_t *pB = bufferA; + /* each time it process 4 entries */ + uint16_t colCnt = ch_im_in * dim_kernel * dim_kernel >> 2; + + while (colCnt) + { + + q31_t inA1, inA2; + q31_t inB1, inB2; + + pA = (q7_t *) read_and_pad_reordered((void *)pA, &inA1, &inA2); + + inB1 = *__SIMD32(pB)++; + sum = __SMLAD(inA1, inB1, sum); + inB2 = *__SIMD32(pB)++; + sum = __SMLAD(inA2, inB2, sum); + + colCnt--; + } + colCnt = ch_im_in * dim_kernel * dim_kernel & 0x3; + while (colCnt) + { + q7_t inA1 = *pA++; + q15_t inB1 = *pB++; + sum += inA1 * inB1; + colCnt--; + } + *pOut = (q7_t) __SSAT((sum >> out_shift), 8); + pOut++; + + } + + } +#else + /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ + + uint16_t i, j, k, l, m, n; + int conv_out; + signed char in_row, in_col; + + if (ch_im_in % 4 != 0 || ch_im_out % 2 != 0) + { + /* check if the input dimension meets the constraints */ + return ARM_MATH_SIZE_MISMATCH; + } + + for (i = 0; i < ch_im_out; i++) + { + for (j = 0; j < dim_im_out; j++) + { + for (k = 0; k < dim_im_out; k++) + { + conv_out = (bias[i] << bias_shift) + NN_ROUND(out_shift); + for (m = 0; m < dim_kernel; m++) + { + for (n = 0; n < dim_kernel; n++) + { + // if-for implementation + in_row = stride * j + m - padding; + in_col = stride * k + n - padding; + if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in && in_col < dim_im_in) + { + for (l = 0; l < ch_im_in; l++) + { + conv_out += + Im_in[(in_row * dim_im_in + in_col) * ch_im_in + + l] * wt[i * ch_im_in * dim_kernel * dim_kernel + (m * dim_kernel + + n) * ch_im_in + l]; + } + } + } + } + Im_out[i + (j * dim_im_out + k) * ch_im_out] = (q7_t) __SSAT((conv_out >> out_shift), 8); + } + } + } + +#endif /* ARM_MATH_DSP */ + + /* Return to application */ + return ARM_MATH_SUCCESS; +} + +/** + * @} end of NNConv group + */ diff --git a/fw/midi-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_fast_nonsquare.c b/fw/midi-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_fast_nonsquare.c new file mode 100644 index 0000000..6dc6f0b --- /dev/null +++ b/fw/midi-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_fast_nonsquare.c @@ -0,0 +1,379 @@ +/* + * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_convolve_HWC_q7_fast_nonsquare.c + * Description: Fast Q7 version of convolution (non-sqaure shape) + * + * $Date: 17. January 2018 + * $Revision: V.1.0.0 + * + * Target Processor: Cortex-M cores + * + * -------------------------------------------------------------------- */ + +#include "arm_math.h" +#include "arm_nnfunctions.h" + +/** + * @ingroup groupNN + */ + +/** + * @addtogroup NNConv + * @{ + */ + +/** + * @brief Fast Q7 convolution function (non-sqaure shape) + * @param[in] Im_in pointer to input tensor + * @param[in] dim_im_in_x input tensor dimention x + * @param[in] dim_im_in_y input tensor dimention y + * @param[in] ch_im_in number of input tensor channels + * @param[in] wt pointer to kernel weights + * @param[in] ch_im_out number of filters, i.e., output tensor channels + * @param[in] dim_kernel_x filter kernel size x + * @param[in] dim_kernel_y filter kernel size y + * @param[in] padding_x padding size x + * @param[in] padding_y padding size y + * @param[in] stride_x convolution stride x + * @param[in] stride_y convolution stride y + * @param[in] bias pointer to bias + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in,out] Im_out pointer to output tensor + * @param[in] dim_im_out_x output tensor dimension x + * @param[in] dim_im_out_y output tensor dimension y + * @param[in,out] bufferA pointer to buffer space for input + * @param[in,out] bufferB pointer to buffer space for output + * @return The function returns either + * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking. + * + * This function is the version with full list of optimization tricks, but with + * some contraints: + * ch_im_in is multiple of 4 + * ch_im_out is multiple of 2 + */ + +arm_status arm_convolve_HWC_q7_fast_nonsquare(const q7_t * Im_in, + const uint16_t dim_im_in_x, + const uint16_t dim_im_in_y, + const uint16_t ch_im_in, + const q7_t * wt, + const uint16_t ch_im_out, + const uint16_t dim_kernel_x, + const uint16_t dim_kernel_y, + const uint16_t padding_x, + const uint16_t padding_y, + const uint16_t stride_x, + const uint16_t stride_y, + const q7_t * bias, + const uint16_t bias_shift, + const uint16_t out_shift, + q7_t * Im_out, + const uint16_t dim_im_out_x, + const uint16_t dim_im_out_y, + q15_t * bufferA, + q7_t * bufferB) +{ + +#if defined (ARM_MATH_DSP) + /* Run the following code for Cortex-M4 and Cortex-M7 */ + + int16_t i_out_y, i_out_x, i_ker_y, i_ker_x; + + /* ----------------------- + * Here we use bufferA as q15_t internally as computation are done with q15_t level + * im2col are done to output in q15_t format from q7_t input + */ + + q15_t *pBuffer = bufferA; + q7_t *pOut = Im_out; + + if (ch_im_in % 4 != 0 || ch_im_out % 2 != 0) + { + /* check if the input dimension meets the constraints */ + return ARM_MATH_SIZE_MISMATCH; + } + + /* + * Here we split the entire matrix into three regions depending on the padding situation + * Top: i_out_y from 0 to padding - 1 + * Middle: i_out_y from padding to dim_im_out-padding-1 + * Bottom: i_out_y from dim_im_out-padding to dim_im_out-1 + */ + + /* top part */ + for (i_out_y = 0; i_out_y < padding_y; i_out_y++) + { + for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++) + { + /* This part implements the im2col function */ + for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y; + i_ker_y++) + { + for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x; + i_ker_x++) + { + if (i_ker_y < 0 || i_ker_y >= dim_im_in_y || i_ker_x < 0 || i_ker_x >= dim_im_in_x) + { + /* arm_fill_q15(0, pBuffer, ch_im_in); */ + memset(pBuffer, 0, sizeof(q15_t)*ch_im_in); + } else + { + arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, + pBuffer, ch_im_in); + } + pBuffer += ch_im_in; + } + } + + if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_x * dim_kernel_y) + { + pOut = + arm_nn_mat_mult_kernel_q7_q15_reordered(wt, bufferA, ch_im_out, ch_im_in * dim_kernel_x * dim_kernel_y, + bias_shift, out_shift, bias, pOut); + /* counter reset */ + pBuffer = bufferA; + } + } + } + + /* middle part, here we also divide the x into left, mid and right */ + for (; i_out_y < dim_im_out_y - padding_y; i_out_y++) + { + + /* left part */ + for (i_out_x = 0; i_out_x < padding_x; i_out_x++) + { + /* This part implements the im2col function */ + for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y; + i_ker_y++) + { + for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x; + i_ker_x++) + { + if (i_ker_x < 0 || i_ker_x >= dim_im_in_x) + { + /* arm_fill_q15(0, pBuffer, ch_im_in); */ + memset(pBuffer, 0, sizeof(q15_t)*ch_im_in); + } else + { + arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, + pBuffer, ch_im_in); + } + pBuffer += ch_im_in; + } + } + + if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_x * dim_kernel_y) + { + pOut = + arm_nn_mat_mult_kernel_q7_q15_reordered(wt, bufferA, ch_im_out, ch_im_in * dim_kernel_x * dim_kernel_y, + bias_shift, out_shift, bias, pOut); + /* counter reset */ + pBuffer = bufferA; + } + } + + /* mid part */ + for (; i_out_x < dim_im_out_x - padding_x; i_out_x++) + { + /* This part implements the im2col function */ + for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y; + i_ker_y++) + { + arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in + + (i_ker_y * dim_im_in_x + i_out_x * stride_x - padding_x) * ch_im_in, + pBuffer, ch_im_in * dim_kernel_x); + pBuffer += ch_im_in * dim_kernel_x; + } + + if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_x * dim_kernel_y) + { + pOut = + arm_nn_mat_mult_kernel_q7_q15_reordered(wt, bufferA, ch_im_out, ch_im_in * dim_kernel_x * dim_kernel_y, + bias_shift, out_shift, bias, pOut); + /* counter reset */ + pBuffer = bufferA; + } + } + + /* right part */ + for (; i_out_x < dim_im_out_x; i_out_x++) + { + /* This part implements the im2col function */ + for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y; + i_ker_y++) + { + for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x; + i_ker_x++) + { + if (i_ker_x < 0 || i_ker_x >= dim_im_in_x) + { + /* arm_fill_q15(0, pBuffer, ch_im_in); */ + memset(pBuffer, 0, sizeof(q15_t)*ch_im_in); + } else + { + arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, + pBuffer, ch_im_in); + } + pBuffer += ch_im_in; + } + } + + if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_x * dim_kernel_y) + { + pOut = + arm_nn_mat_mult_kernel_q7_q15_reordered(wt, bufferA, ch_im_out, ch_im_in * dim_kernel_x * dim_kernel_y, + bias_shift, out_shift, bias, pOut); + /* counter reset */ + pBuffer = bufferA; + } + } + } + + for (; i_out_y < dim_im_out_y; i_out_y++) + { + for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++) + { + /* This part implements the im2col function */ + for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y; + i_ker_y++) + { + for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x; + i_ker_x++) + { + if (i_ker_y < 0 || i_ker_y >= dim_im_in_y || i_ker_x < 0 || i_ker_x >= dim_im_in_x) + { + /* arm_fill_q15(0, pBuffer, ch_im_in); */ + memset(pBuffer, 0, sizeof(q15_t)*ch_im_in); + } else + { + arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, + pBuffer, ch_im_in); + } + pBuffer += ch_im_in; + } + } + + if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_x * dim_kernel_y) + { + pOut = + arm_nn_mat_mult_kernel_q7_q15_reordered(wt, bufferA, ch_im_out, ch_im_in * dim_kernel_x * dim_kernel_y, + bias_shift, out_shift, bias, pOut); + /* counter reset */ + pBuffer = bufferA; + } + } + } + + /* check if there is left-over for compute */ + if (pBuffer != bufferA) + { + const q7_t *pA = wt; + int i; + for (i = 0; i < ch_im_out; i++) + { + q31_t sum = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift); + q15_t *pB = bufferA; + /* basically each time it process 4 entries */ + uint16_t colCnt = ch_im_in * dim_kernel_x * dim_kernel_y >> 2; + + while (colCnt) + { + + q31_t inA1, inA2; + q31_t inB1, inB2; + + pA = (const q7_t *)read_and_pad_reordered((void *)pA, &inA1, &inA2); + + inB1 = *__SIMD32(pB)++; + sum = __SMLAD(inA1, inB1, sum); + inB2 = *__SIMD32(pB)++; + sum = __SMLAD(inA2, inB2, sum); + + colCnt--; + } + colCnt = (ch_im_in * dim_kernel_y * dim_kernel_x) & 0x3; + while (colCnt) + { + q7_t inA1 = *pA++; + q15_t inB1 = *pB++; + sum += inA1 * inB1; + colCnt--; + } + *pOut = (q7_t) __SSAT((sum >> out_shift), 8); + pOut++; + + } + + } + +#else + /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ + int i, j, k, l, m, n; + int conv_out; + int in_row, in_col; + + if (ch_im_in % 4 != 0 || ch_im_out % 2 != 0) + { + /* check if the input dimension meets the constraints */ + return ARM_MATH_SIZE_MISMATCH; + } + + for (i = 0; i < ch_im_out; i++) + { + for (j = 0; j < dim_im_out_y; j++) + { + for (k = 0; k < dim_im_out_x; k++) + { + conv_out = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift); + for (m = 0; m < dim_kernel_y; m++) + { + for (n = 0; n < dim_kernel_x; n++) + { + /* if-for implementation */ + in_row = stride_y * j + m - padding_y; + in_col = stride_x * k + n - padding_x; + if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in_y && in_col < dim_im_in_x) + { + for (l = 0; l < ch_im_in; l++) + { + conv_out += Im_in[(in_row * dim_im_in_x + in_col) * ch_im_in + l] * + wt[i * ch_im_in * dim_kernel_y * dim_kernel_x + (m * dim_kernel_x + n) * ch_im_in + l]; + } + } + } + } + Im_out[i + (j * dim_im_out_x + k) * ch_im_out] = (q7_t) __SSAT((conv_out >> out_shift), 8); + } + } + } + + +#endif /* ARM_MATH_DSP */ + + /* Return to application */ + return ARM_MATH_SUCCESS; +} + +/** + * @} end of NNConv group + */ diff --git a/fw/midi-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_depthwise_separable_conv_HWC_q7.c b/fw/midi-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_depthwise_separable_conv_HWC_q7.c new file mode 100644 index 0000000..705fa6a --- /dev/null +++ b/fw/midi-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_depthwise_separable_conv_HWC_q7.c @@ -0,0 +1,418 @@ +/* + * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_depthwise_separable_conv_HWC_q7.c + * Description: Q7 depthwise separable convolution function + * + * $Date: 17. January 2018 + * $Revision: V.1.0.0 + * + * Target Processor: Cortex-M cores + * + * -------------------------------------------------------------------- */ + +#include "arm_math.h" +#include "arm_nnfunctions.h" + +/** + * @ingroup groupNN + */ + +/** + * @addtogroup NNConv + * @{ + */ + +/** + * @brief Q7 depthwise separable convolution function + * @param[in] Im_in pointer to input tensor + * @param[in] dim_im_in input tensor dimention + * @param[in] ch_im_in number of input tensor channels + * @param[in] wt pointer to kernel weights + * @param[in] ch_im_out number of filters, i.e., output tensor channels + * @param[in] dim_kernel filter kernel size + * @param[in] padding padding sizes + * @param[in] stride convolution stride + * @param[in] bias pointer to bias + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in,out] Im_out pointer to output tensor + * @param[in] dim_im_out output tensor dimension + * @param[in,out] bufferA pointer to buffer space for input + * @param[in,out] bufferB pointer to buffer space for output + * @return The function returns either + * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking. + * + * @details + * + * Buffer size: + * + * bufferA size: 2*ch_im_in*dim_kernel*dim_kernel + * + * bufferB size: 0 + * + * Input dimension constraints: + * + * ch_im_in equals ch_im_out + * + * Implementation: + * There are 3 nested loop here: + * Inner loop: calculate each output value with MAC instruction over an accumulator + * Mid loop: loop over different output channel + * Outer loop: loop over different output (x, y) + */ + +arm_status arm_depthwise_separable_conv_HWC_q7(const q7_t * Im_in, + const uint16_t dim_im_in, + const uint16_t ch_im_in, + const q7_t * wt, + const uint16_t ch_im_out, + const uint16_t dim_kernel, + const uint16_t padding, + const uint16_t stride, + const q7_t * bias, + const uint16_t bias_shift, + const uint16_t out_shift, + q7_t * Im_out, + const uint16_t dim_im_out, + q15_t * bufferA, + q7_t * bufferB) +{ + +#if defined (ARM_MATH_DSP) + /* Run the following code for Cortex-M4 and Cortex-M7 */ + + int16_t i_out_y, i_out_x; + int16_t i_ker_y, i_ker_x; + q7_t *colBuffer = (q7_t *) bufferA; + q7_t *pBuffer = colBuffer; + const q7_t *pBias = bias; + q7_t *pOut = Im_out; + uint16_t rowCnt; + uint16_t row_shift; + + /* do some checking here, basically ch_im_in == ch_im_out */ + if (ch_im_in != ch_im_out) + { + return ARM_MATH_SIZE_MISMATCH; + } + + for (i_out_y = 0; i_out_y < dim_im_out; i_out_y++) + { + for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++) + { + /* we first do im2col here */ + for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++) + { + for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++) + { + if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in) + { + /* arm_fill_q7(0, pBuffer, ch_im_in); */ + memset(pBuffer, 0, ch_im_in); + } else + { + /* arm_copy_q7((q7_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in); */ + memcpy(pBuffer, (q7_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, ch_im_in); + } + pBuffer += ch_im_in; + } + } + + /* we will do the computation here for each channel */ + rowCnt = ch_im_out >> 2; + row_shift = 0; + pBias = bias; + + while (rowCnt) + { + q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum3 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + + uint16_t colCnt = (dim_kernel * dim_kernel) >> 1; + q7_t *pB = colBuffer + row_shift; + const q7_t *pA = wt + row_shift; + row_shift += 4; + +#ifdef USE_INTRINSIC + +#ifndef ARM_MATH_BIG_ENDIAN + + while (colCnt) + { + q31_t inA1, inA2, inB1, inB2, opA, opB; + + inB1 = *__SIMD32(pB); + pB += ch_im_in; + opB = *__SIMD32(pB); + pB += ch_im_in; + inB2 = __PKHTB(opB, inB1, 16); + inB1 = __PKHBT(inB1, opB, 16); + inA1 = *__SIMD32(pA); + pA += ch_im_in; + opB = *__SIMD32(pA); + pA += ch_im_in; + inA2 = __PKHTB(opB, inA1, 16); + inA1 = __PKHBT(inA1, opB, 16); + opA = __SXTB16(inA1); + opB = __SXTB16(inB1); + sum = __SMLAD(opA, opB, sum); + opA = __SXTB16(__ROR(inA1, 8)); + opB = __SXTB16(__ROR(inB1, 8)); + sum2 = __SMLAD(opA, opB, sum2); + opA = __SXTB16(inA2); + opB = __SXTB16(inB2); + sum3 = __SMLAD(opA, opB, sum3); + opA = __SXTB16(__ROR(inA2, 8)); + opB = __SXTB16(__ROR(inB2, 8)); + sum4 = __SMLAD(opA, opB, sum4); + colCnt--; + } +#else + + while (colCnt) + { + q31_t inA1, inA2, inB1, inB2, opA, opB; + + inB1 = *__SIMD32(pB); + pB += ch_im_in; + opB = *__SIMD32(pB); + pB += ch_im_in; + inB2 = __PKHBT(opB, inB1, 16); + inB1 = __PKHTB(inB1, opB, 16); + inA1 = *__SIMD32(pA); + pA += ch_im_in; + opB = *__SIMD32(pA); + pA += ch_im_in; + inA2 = __PKHBT(opB, inA1, 16); + inA1 = __PKHTB(inA1, opB, 16); + opA = __SXTB16(inA1); + opB = __SXTB16(inB1); + sum2 = __SMLAD(opA, opB, sum2); + opA = __SXTB16(__ROR(inA1, 8)); + opB = __SXTB16(__ROR(inB1, 8)); + sum = __SMLAD(opA, opB, sum); + opA = __SXTB16(inA2); + opB = __SXTB16(inB2); + sum4 = __SMLAD(opA, opB, sum4); + opA = __SXTB16(__ROR(inA2, 8)); + opB = __SXTB16(__ROR(inB2, 8)); + sum3 = __SMLAD(opA, opB, sum3); + colCnt--; + } + +#endif /* ARM_MATH_BIG_ENDIAN */ + +#else + +#ifndef ARM_MATH_BIG_ENDIAN + /* + * r0 r1 r2 r3 r4 r5 + * inA1, inA2, inB1, inB2, opA, opB + */ + + asm volatile ("COL_LOOP_%=:\n" + "ldr.w r2, [%[pB], #0]\n" + "add.w %[pB], %[pB], %[ch_im_in]\n" + "ldr.w r5, [%[pB], #0]\n" + "add.w %[pB], %[pB], %[ch_im_in]\n" + "pkhtb r3, r5, r2, ASR #16\n" + "pkhbt r2, r2, r5, LSL #16\n" + "ldr.w r0, [%[pA], #0]\n" + "add.w %[pA], %[pA], %[ch_im_in]\n" + "ldr.w r5, [%[pA], #0]\n" + "add.w %[pA], %[pA], %[ch_im_in]\n" + "pkhtb r1, r5, r0, ASR #16\n" + "pkhbt r0, r0, r5, LSL #16\n" + "sxtb16 r4, r0\n" + "sxtb16 r5, r2\n" + "smlad %[sum], r4, r5, %[sum]\n" + "mov.w r4, r0, ror #8\n" + "mov.w r5, r2, ror #8\n" + "sxtb16 r4, r4\n" + "sxtb16 r5, r5\n" + "smlad %[sum2], r4, r5, %[sum2]\n" + "sxtb16 r4, r1\n" + "sxtb16 r5, r3\n" + "smlad %[sum3], r4, r5, %[sum3]\n" + "mov.w r4, r1, ror #8\n" + "mov.w r5, r3, ror #8\n" + "sxtb16 r4, r4\n" + "sxtb16 r5, r5\n" + "smlad %[sum4], r4, r5, %[sum4]\n" + "subs %[colCnt], #1\n" + "bne COL_LOOP_%=\n":[sum] + "+r"(sum),[sum2] "+r"(sum2), + [sum3] "+r"(sum3), + [sum4] "+r"(sum4),[pB] "+r"(pB), + [pA] "+r"(pA):[colCnt] + "r"(colCnt),[ch_im_in] "r"(ch_im_in):"r0", "r1", "r2", "r3", "r4", "r5"); +#else + /* + * r0 r1 r2 r3 r4 r5 + * inA1, inA2, inB1, inB2, opA, opB + */ + asm volatile ("COL_LOOP_%=:\n" + "ldr.w r2, [%[pB], #0]\n" + "add.w %[pB], %[pB], %[ch_im_in]\n" + "ldr.w r5, [%[pB], #0]\n" + "add.w %[pB], %[pB], %[ch_im_in]\n" + "pkhbt r3, r5, r2, LSL #16\n" + "pkhtb r2, r2, r5, ASR #16\n" + "ldr.w r0, [%[pA], #0]\n" + "add.w %[pA], %[pA], %[ch_im_in]\n" + "ldr.w r5, [%[pA], #0]\n" + "add.w %[pA], %[pA], %[ch_im_in]\n" + "pkhbt r1, r5, r0, LSL #16\n" + "pkhtb r0, r0, r5, ASR #16\n" + "sxtb16 r4, r0\n" + "sxtb16 r5, r2\n" + "smlad %[sum2], r4, r5, %[sum2]\n" + "mov.w r4, r0, ror #8\n" + "mov.w r5, r2, ror #8\n" + "sxtb16 r4, r4\n" + "sxtb16 r5, r5\n" + "smlad %[sum], r4, r5, %[sum]\n" + "sxtb16 r4, r1\n" + "sxtb16 r5, r3\n" + "smlad %[sum4], r4, r5, %[sum4]\n" + "mov.w r4, r1, ror #8\n" + "mov.w r5, r3, ror #8\n" + "sxtb16 r4, r4\n" + "sxtb16 r5, r5\n" + "smlad %[sum3], r4, r5, %[sum3]\n" + "subs %[colCnt], #1\n" + "bne COL_LOOP_%=\n":[sum] + "+r"(sum),[sum2] "+r"(sum2), + [sum3] "+r"(sum3), + [sum4] "+r"(sum4),[pB] "+r"(pB), + [pA] "+r"(pA):[colCnt] + "r"(colCnt),[ch_im_in] "r"(ch_im_in):"r0", "r1", "r2", "r3", "r4", "r5"); + +#endif /* ARM_MATH_BIG_ENDIAN */ + +#endif /* USE_INTRINSIC */ + + colCnt = (dim_kernel * dim_kernel) & 0x1; + while (colCnt) + { + union arm_nnword inA, inB; + inA.word = *__SIMD32(pA); + pA += ch_im_in; + inB.word = *__SIMD32(pB); + pB += ch_im_in; + sum += inA.bytes[0] * inB.bytes[0]; + sum2 += inA.bytes[1] * inB.bytes[1]; + sum3 += inA.bytes[2] * inB.bytes[2]; + sum4 += inA.bytes[3] * inB.bytes[3]; + colCnt--; + } + + *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8); + *pOut++ = (q7_t) __SSAT((sum2 >> out_shift), 8); + *pOut++ = (q7_t) __SSAT((sum3 >> out_shift), 8); + *pOut++ = (q7_t) __SSAT((sum4 >> out_shift), 8); + + rowCnt--; + } + + rowCnt = ch_im_out & 0x3; + while (rowCnt) + { + q7_t *pB = colBuffer + row_shift; + const q7_t *pA = wt + row_shift; + q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + uint16_t colCnt = (dim_kernel * dim_kernel); + + row_shift += 1; + + while (colCnt) + { + q7_t A1 = *pA; + q7_t B1 = *pB; + pA += ch_im_in; + pB += ch_im_in; + sum += A1 * B1; + + colCnt--; + } + *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8); + rowCnt--; + } + + /* clear counter and pointers */ + pBuffer = colBuffer; + } + } + +#else + /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ + int i_out_y, i_out_x, i_ch_out, i_ker_x, i_ker_y; + int conv_out; + + /* do some checking here, basically ch_im_in == ch_im_out */ + if (ch_im_in != ch_im_out) + { + return ARM_MATH_SIZE_MISMATCH; + } + + for (i_out_y = 0; i_out_y < dim_im_out; i_out_y++) + { + for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++) + { + for (i_ch_out = 0; i_ch_out < ch_im_out; i_ch_out++) + { + // for each output + conv_out = ((q31_t)(bias[i_ch_out]) << bias_shift) + NN_ROUND(out_shift); + for (i_ker_y = 0; i_ker_y < dim_kernel; i_ker_y++) + { + for (i_ker_x = 0; i_ker_x < dim_kernel; i_ker_x++) + { + int in_row = stride * i_out_y + i_ker_y - padding; + int in_col = stride * i_out_x + i_ker_x - padding; + if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in && in_col < dim_im_in) + { + conv_out += + Im_in[(in_row * + dim_im_in + + in_col) * + ch_im_in + + i_ch_out] * wt[(i_ker_y * dim_kernel + i_ker_x) * ch_im_out + i_ch_out]; + } + } + } + Im_out[(i_out_y * dim_im_out + + i_out_x) * ch_im_out + i_ch_out] = (q7_t) __SSAT((conv_out >> out_shift), 8); + } + } + } + +#endif /* ARM_MATH_DSP */ + + /* Return to application */ + return ARM_MATH_SUCCESS; + +} + +/** + * @} end of NNConv group + */ diff --git a/fw/midi-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_depthwise_separable_conv_HWC_q7_nonsquare.c b/fw/midi-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_depthwise_separable_conv_HWC_q7_nonsquare.c new file mode 100644 index 0000000..5989304 --- /dev/null +++ b/fw/midi-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_depthwise_separable_conv_HWC_q7_nonsquare.c @@ -0,0 +1,411 @@ +/* + * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_depthwise_separable_conv_HWC_q7_nonsquare.c + * Description: Q7 depthwise separable convolution function (non-square shape) + * + * $Date: 17. January 2018 + * $Revision: V.1.0.0 + * + * Target Processor: Cortex-M cores + * + * -------------------------------------------------------------------- */ + +#include "arm_math.h" +#include "arm_nnfunctions.h" + +/** + * @ingroup groupNN + */ + +/** + * @addtogroup NNConv + * @{ + */ + +/** + * @brief Q7 depthwise separable convolution function (non-square shape) + * @param[in] Im_in pointer to input tensor + * @param[in] dim_im_in_x input tensor dimention x + * @param[in] dim_im_in_y input tensor dimention y + * @param[in] ch_im_in number of input tensor channels + * @param[in] wt pointer to kernel weights + * @param[in] ch_im_out number of filters, i.e., output tensor channels + * @param[in] dim_kernel_x filter kernel size x + * @param[in] dim_kernel_y filter kernel size y + * @param[in] padding_x padding sizes x + * @param[in] padding_y padding sizes y + * @param[in] stride_x convolution stride x + * @param[in] stride_y convolution stride y + * @param[in] bias pointer to bias + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in,out] Im_out pointer to output tensor + * @param[in] dim_im_out_x output tensor dimension x + * @param[in] dim_im_out_y output tensor dimension y + * @param[in,out] bufferA pointer to buffer space for input + * @param[in,out] bufferB pointer to buffer space for output + * @return The function returns either + * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking. + * + * This function is the version with full list of optimization tricks, but with + * some contraints: + * ch_im_in is multiple of 2 + * ch_im_out is multiple of 2 + */ + +arm_status arm_depthwise_separable_conv_HWC_q7_nonsquare(const q7_t * Im_in, + const uint16_t dim_im_in_x, + const uint16_t dim_im_in_y, + const uint16_t ch_im_in, + const q7_t * wt, + const uint16_t ch_im_out, + const uint16_t dim_kernel_x, + const uint16_t dim_kernel_y, + const uint16_t padding_x, + const uint16_t padding_y, + const uint16_t stride_x, + const uint16_t stride_y, + const q7_t * bias, + const uint16_t bias_shift, + const uint16_t out_shift, + q7_t * Im_out, + const uint16_t dim_im_out_x, + const uint16_t dim_im_out_y, + q15_t * bufferA, + q7_t * bufferB) +{ + +#if defined (ARM_MATH_DSP) + /* Run the following code for Cortex-M4 and Cortex-M7 */ + +/* + * Implementation: + * There are 3 nested loop here: + * Inner loop: calculate each output value with MAC instruction over an accumulator + * Mid loop: loop over different output channel + * Outer loop: loop over different output (x, y) + * + */ + + int16_t i_out_y, i_out_x; + int16_t i_ker_y, i_ker_x; + q7_t *colBuffer = (q7_t *) bufferA; + q7_t *pBuffer = colBuffer; + const q7_t *pBias = bias; + q7_t *pOut = Im_out; + uint16_t rowCnt; + uint16_t row_shift; + + /* do some checking here, basically ch_im_in == ch_im_out */ + if (ch_im_in != ch_im_out) + { + return ARM_MATH_SIZE_MISMATCH; + } + + for (i_out_y = 0; i_out_y < dim_im_out_y; i_out_y++) + { + for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++) + { + /* we first do im2col here */ + for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y; + i_ker_y++) + { + for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x; + i_ker_x++) + { + if (i_ker_y < 0 || i_ker_y >= dim_im_in_y || i_ker_x < 0 || i_ker_x >= dim_im_in_x) + { + /* arm_fill_q7(0, pBuffer, ch_im_in); */ + memset(pBuffer, 0, ch_im_in); + } else + { + /* arm_copy_q7((q7_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, pBuffer, ch_im_in); */ + memcpy(pBuffer, (q7_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, ch_im_in); + } + pBuffer += ch_im_in; + } + } + + /* we will do the computation here for each channel */ + rowCnt = ch_im_out >> 2; + row_shift = 0; + pBias = bias; + + while (rowCnt) + { + q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum3 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + + uint16_t colCnt = (dim_kernel_x * dim_kernel_y) >> 1; + q7_t *pB = colBuffer + row_shift; + const q7_t *pA = wt + row_shift; + row_shift += 4; + +#ifdef USE_INTRINSIC + +#ifndef ARM_MATH_BIG_ENDIAN + + while (colCnt) + { + q31_t inA1, inA2, inB1, inB2, opA, opB; + + inB1 = *__SIMD32(pB); + pB += ch_im_in; + opB = *__SIMD32(pB); + pB += ch_im_in; + inB2 = __PKHTB(opB, inB1, 16); + inB1 = __PKHBT(inB1, opB, 16); + inA1 = *__SIMD32(pA); + pA += ch_im_in; + opB = *__SIMD32(pA); + pA += ch_im_in; + inA2 = __PKHTB(opB, inA1, 16); + inA1 = __PKHBT(inA1, opB, 16); + opA = __SXTB16(inA1); + opB = __SXTB16(inB1); + sum = __SMLAD(opA, opB, sum); + opA = __SXTB16(__ROR(inA1, 8)); + opB = __SXTB16(__ROR(inB1, 8)); + sum2 = __SMLAD(opA, opB, sum2); + opA = __SXTB16(inA2); + opB = __SXTB16(inB2); + sum3 = __SMLAD(opA, opB, sum3); + opA = __SXTB16(__ROR(inA2, 8)); + opB = __SXTB16(__ROR(inB2, 8)); + sum4 = __SMLAD(opA, opB, sum4); + colCnt--; + } +#else + + while (colCnt) + { + q31_t inA1, inA2, inB1, inB2, opA, opB; + + inB1 = *__SIMD32(pB); + pB += ch_im_in; + opB = *__SIMD32(pB); + pB += ch_im_in; + inB2 = __PKHBT(opB, inB1, 16); + inB1 = __PKHTB(inB1, opB, 16); + inA1 = *__SIMD32(pA); + pA += ch_im_in; + opB = *__SIMD32(pA); + pA += ch_im_in; + inA2 = __PKHBT(opB, inA1, 16); + inA1 = __PKHTB(inA1, opB, 16); + opA = __SXTB16(inA1); + opB = __SXTB16(inB1); + sum2 = __SMLAD(opA, opB, sum2); + opA = __SXTB16(__ROR(inA1, 8)); + opB = __SXTB16(__ROR(inB1, 8)); + sum = __SMLAD(opA, opB, sum); + opA = __SXTB16(inA2); + opB = __SXTB16(inB2); + sum4 = __SMLAD(opA, opB, sum4); + opA = __SXTB16(__ROR(inA2, 8)); + opB = __SXTB16(__ROR(inB2, 8)); + sum3 = __SMLAD(opA, opB, sum3); + colCnt--; + } + +#endif /* ARM_MATH_BIG_ENDIAN */ + +#else + +#ifndef ARM_MATH_BIG_ENDIAN + // r0 r1 r2 r3 r4 r5 + // inA1, inA2, inB1, inB2, opA, opB + asm volatile ("COL_LOOP:\n" + "ldr.w r2, [%[pB], #0]\n" + "add.w %[pB], %[pB], %[ch_im_in]\n" + "ldr.w r5, [%[pB], #0]\n" + "add.w %[pB], %[pB], %[ch_im_in]\n" + "pkhtb r3, r5, r2, ASR #16\n" + "pkhbt r2, r2, r5, LSL #16\n" + "ldr.w r0, [%[pA], #0]\n" + "add.w %[pA], %[pA], %[ch_im_in]\n" + "ldr.w r5, [%[pA], #0]\n" + "add.w %[pA], %[pA], %[ch_im_in]\n" + "pkhtb r1, r5, r0, ASR #16\n" + "pkhbt r0, r0, r5, LSL #16\n" + "sxtb16 r4, r0\n" + "sxtb16 r5, r2\n" + "smlad %[sum], r4, r5, %[sum]\n" + "mov.w r4, r0, ror #8\n" + "mov.w r5, r2, ror #8\n" + "sxtb16 r4, r4\n" + "sxtb16 r5, r5\n" + "smlad %[sum2], r4, r5, %[sum2]\n" + "sxtb16 r4, r1\n" + "sxtb16 r5, r3\n" + "smlad %[sum3], r4, r5, %[sum3]\n" + "mov.w r4, r1, ror #8\n" + "mov.w r5, r3, ror #8\n" + "sxtb16 r4, r4\n" + "sxtb16 r5, r5\n" + "smlad %[sum4], r4, r5, %[sum4]\n" + "subs %[colCnt], #1\n" + "bne COL_LOOP\n":[sum] "+r"(sum),[sum2] "+r"(sum2),[sum3] "+r"(sum3), + [sum4] "+r"(sum4),[pB] "+r"(pB),[pA] "+r"(pA):[colCnt] "r"(colCnt), + [ch_im_in] "r"(ch_im_in):"r0", "r1", "r2", "r3", "r4", "r5"); +#else + // r0 r1 r2 r3 r4 r5 + // inA1, inA2, inB1, inB2, opA, opB + asm volatile ("COL_LOOP:\n" + "ldr.w r2, [%[pB], #0]\n" + "add.w %[pB], %[pB], %[ch_im_in]\n" + "ldr.w r5, [%[pB], #0]\n" + "add.w %[pB], %[pB], %[ch_im_in]\n" + "pkhbt r3, r5, r2, LSL #16\n" + "pkhtb r2, r2, r5, ASR #16\n" + "ldr.w r0, [%[pA], #0]\n" + "add.w %[pA], %[pA], %[ch_im_in]\n" + "ldr.w r5, [%[pA], #0]\n" + "add.w %[pA], %[pA], %[ch_im_in]\n" + "pkhbt r1, r5, r0, LSL #16\n" + "pkhtb r0, r0, r5, ASR #16\n" + "sxtb16 r4, r0\n" + "sxtb16 r5, r2\n" + "smlad %[sum2], r4, r5, %[sum2]\n" + "mov.w r4, r0, ror #8\n" + "mov.w r5, r2, ror #8\n" + "sxtb16 r4, r4\n" + "sxtb16 r5, r5\n" + "smlad %[sum], r4, r5, %[sum]\n" + "sxtb16 r4, r1\n" + "sxtb16 r5, r3\n" + "smlad %[sum4], r4, r5, %[sum4]\n" + "mov.w r4, r1, ror #8\n" + "mov.w r5, r3, ror #8\n" + "sxtb16 r4, r4\n" + "sxtb16 r5, r5\n" + "smlad %[sum3], r4, r5, %[sum3]\n" + "subs %[colCnt], #1\n" + "bne COL_LOOP\n":[sum] "+r"(sum),[sum2] "+r"(sum2),[sum3] "+r"(sum3), + [sum4] "+r"(sum4),[pB] "+r"(pB),[pA] "+r"(pA):[colCnt] "r"(colCnt), + [ch_im_in] "r"(ch_im_in):"r0", "r1", "r2", "r3", "r4", "r5"); +#endif /*ARM_MATH_BIG_ENDIAN */ + +#endif /* USE_INTRINSIC */ + + colCnt = (dim_kernel_x * dim_kernel_y) & 0x1; + while (colCnt) + { + union arm_nnword inA, inB; + inA.word = *__SIMD32(pA); + pA += ch_im_in; + inB.word = *__SIMD32(pB); + pB += ch_im_in; + sum += inA.bytes[0] * inB.bytes[0]; + sum2 += inA.bytes[1] * inB.bytes[1]; + sum3 += inA.bytes[2] * inB.bytes[2]; + sum4 += inA.bytes[3] * inB.bytes[3]; + colCnt--; + } + + *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8); + *pOut++ = (q7_t) __SSAT((sum2 >> out_shift), 8); + *pOut++ = (q7_t) __SSAT((sum3 >> out_shift), 8); + *pOut++ = (q7_t) __SSAT((sum4 >> out_shift), 8); + + rowCnt--; + } + + rowCnt = ch_im_out & 0x3; + while (rowCnt) + { + q7_t *pB = colBuffer + row_shift; + const q7_t *pA = wt + row_shift; + q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + uint16_t colCnt = (dim_kernel_x * dim_kernel_y); + + row_shift += 1; + + while (colCnt) + { + q7_t A1 = *pA; + q7_t B1 = *pB; + pA += ch_im_in; + pB += ch_im_in; + sum += A1 * B1; + + colCnt--; + } + *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8); + rowCnt--; + } + + // clear counter and pointers + pBuffer = colBuffer; + } + } + +#else + /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ + int i_out_y, i_out_x, i_ch_out; + int i_ker_y, i_ker_x; + + /* do some checking here, basically ch_im_in == ch_im_out */ + if (ch_im_in != ch_im_out) + { + return ARM_MATH_SIZE_MISMATCH; + } + + for (i_out_y = 0; i_out_y < dim_im_out_y; i_out_y++) + { + for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++) + { + for (i_ch_out = 0; i_ch_out < ch_im_out; i_ch_out++) + { + // for each output + int conv_out = ((q31_t)(bias[i_ch_out]) << bias_shift) + NN_ROUND(out_shift); + for (i_ker_y = 0; i_ker_y < dim_kernel_y; i_ker_y++) + { + for (i_ker_x = 0; i_ker_x < dim_kernel_x; i_ker_x++) + { + int in_row = stride_y * i_out_y + i_ker_y - padding_y; + int in_col = stride_x * i_out_x + i_ker_x - padding_x; + if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in_y && in_col < dim_im_in_x) + { + conv_out += Im_in[(in_row * dim_im_in_x + in_col) * ch_im_in + i_ch_out] * + wt[(i_ker_y * dim_kernel_x + i_ker_x) * ch_im_out + i_ch_out]; + } + } + } + Im_out[(i_out_y * dim_im_out_x + i_out_x) * ch_im_out + i_ch_out] = + (q7_t) __SSAT((conv_out >> out_shift), 8); + } + } + } + +#endif /* ARM_MATH_DSP */ + + + /* Return to application */ + return ARM_MATH_SUCCESS; + +} + +/** + * @} end of NNConv group + */ diff --git a/fw/midi-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_nn_mat_mult_kernel_q7_q15.c b/fw/midi-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_nn_mat_mult_kernel_q7_q15.c new file mode 100644 index 0000000..24ab412 --- /dev/null +++ b/fw/midi-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_nn_mat_mult_kernel_q7_q15.c @@ -0,0 +1,187 @@ +/* + * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_nn_mat_mult_kernel_q7_q15.c + * Description: Matrix-multiplication function for convolution + * + * $Date: 17. January 2018 + * $Revision: V.1.0.0 + * + * Target Processor: Cortex-M cores + * -------------------------------------------------------------------- */ + +#include "arm_math.h" +#include "arm_nnfunctions.h" + + /** + * @brief Matrix-multiplication function for convolution + * @param[in] pA pointer to operand A + * @param[in] pInBuffer pointer to operand B, always conssists of 2 vectors + * @param[in] ch_im_out numRow of A + * @param[in] numCol_A numCol of A + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in] bias the bias + * @param[in,out] pOut pointer to output + * @return The function returns the incremented output pointer + * + * @details + * + * This function does the matrix multiplication with weight matrix + * and 2 columns from im2col. + */ + +q7_t *arm_nn_mat_mult_kernel_q7_q15(const q7_t * pA, + const q15_t * pInBuffer, + const uint16_t ch_im_out, + const uint16_t numCol_A, + const uint16_t bias_shift, + const uint16_t out_shift, + const q7_t * bias, + q7_t * pOut) +{ +#if defined (ARM_MATH_DSP) + /* set up the second output pointers */ + q7_t *pOut2 = pOut + ch_im_out; + const q7_t *pBias = bias; + + uint16_t rowCnt = ch_im_out >> 1; + /* this loop over rows in A */ + while (rowCnt) + { + /* setup pointers for B */ + const q15_t *pB = pInBuffer; + const q15_t *pB2 = pB + numCol_A; + + /* align the second pointer for A */ + const q7_t *pA2 = pA + numCol_A; + + /* init the sum with bias */ + q31_t sum = ((q31_t)(*pBias) << bias_shift) + NN_ROUND(out_shift); + q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum3 = ((q31_t)(*pBias) << bias_shift) + NN_ROUND(out_shift); + q31_t sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + + uint16_t colCnt = numCol_A >> 2; + /* accumulate over the vector */ + while (colCnt) + { + q31_t inA11, inA12, inA21, inA22; + q31_t inB1 = *__SIMD32(pB)++; + q31_t inB2 = *__SIMD32(pB2)++; + + pA = (q7_t *) read_and_pad((void *)pA, &inA11, &inA12); + pA2 = (q7_t *) read_and_pad((void *)pA2, &inA21, &inA22); + + sum = __SMLAD(inA11, inB1, sum); + sum2 = __SMLAD(inA11, inB2, sum2); + sum3 = __SMLAD(inA21, inB1, sum3); + sum4 = __SMLAD(inA21, inB2, sum4); + + inB1 = *__SIMD32(pB)++; + inB2 = *__SIMD32(pB2)++; + + sum = __SMLAD(inA12, inB1, sum); + sum2 = __SMLAD(inA12, inB2, sum2); + sum3 = __SMLAD(inA22, inB1, sum3); + sum4 = __SMLAD(inA22, inB2, sum4); + + colCnt--; + } /* while over colCnt */ + colCnt = numCol_A & 0x3; + while (colCnt) + { + q7_t inA1 = *pA++; + q15_t inB1 = *pB++; + q7_t inA2 = *pA2++; + q15_t inB2 = *pB2++; + + sum += inA1 * inB1; + sum2 += inA1 * inB2; + sum3 += inA2 * inB1; + sum4 += inA2 * inB2; + colCnt--; + } /* while over colCnt */ + *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8); + *pOut++ = (q7_t) __SSAT((sum3 >> out_shift), 8); + *pOut2++ = (q7_t) __SSAT((sum2 >> out_shift), 8); + *pOut2++ = (q7_t) __SSAT((sum4 >> out_shift), 8); + + /* skip the row computed with A2 */ + pA += numCol_A; + rowCnt--; + } /* for over ch_im_out */ + + /* compute left-over row if any */ + if (ch_im_out & 0x1) + { + /* setup pointers for B */ + const q15_t *pB = pInBuffer; + const q15_t *pB2 = pB + numCol_A; + + /* load the bias */ + q31_t sum = ((q31_t)(*pBias) << bias_shift) + NN_ROUND(out_shift); + q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + + uint16_t colCnt = numCol_A >> 2; + while (colCnt) + { + q31_t inA11, inA12; + q31_t inB1 = *__SIMD32(pB)++; + q31_t inB2 = *__SIMD32(pB2)++; + + pA = (q7_t *) read_and_pad((void *)pA, &inA11, &inA12); + + sum = __SMLAD(inA11, inB1, sum); + sum2 = __SMLAD(inA11, inB2, sum2); + + inB1 = *__SIMD32(pB)++; + inB2 = *__SIMD32(pB2)++; + sum = __SMLAD(inA12, inB1, sum); + sum2 = __SMLAD(inA12, inB2, sum2); + + colCnt--; + } + colCnt = numCol_A & 0x3; + while (colCnt) + { + q7_t inA1 = *pA++; + q15_t inB1 = *pB++; + q15_t inB2 = *pB2++; + + sum += inA1 * inB1; + sum2 += inA1 * inB2; + colCnt--; + } + + *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8); + *pOut2++ = (q7_t) __SSAT((sum2 >> out_shift), 8); + } + + pOut += ch_im_out; + + /* return the new output pointer with offset */ + return pOut; +#else + /* To be completed */ + return NULL; +#endif /* ARM_MATH_DSP */ + +} diff --git a/fw/midi-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_nn_mat_mult_kernel_q7_q15_reordered.c b/fw/midi-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_nn_mat_mult_kernel_q7_q15_reordered.c new file mode 100644 index 0000000..36af21a --- /dev/null +++ b/fw/midi-dials/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_nn_mat_mult_kernel_q7_q15_reordered.c @@ -0,0 +1,138 @@ +/* + * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_nn_mat_mult_kernel_q7_q15_reordered.c + * Description: Matrix-multiplication function for convolution with reordered columns + * + * $Date: 17. January 2018 + * $Revision: V.1.0.0 + * + * Target Processor: Cortex-M cores + * -------------------------------------------------------------------- */ + +#include "arm_nnfunctions.h" +#include "arm_math.h" + + /** + * @brief Matrix-multiplication function for convolution with reordered columns + * @param[in] pA pointer to operand A + * @param[in] pInBuffer pointer to operand B, always conssists of 2 vectors + * @param[in] ch_im_out numRow of A + * @param[in] numCol_A numCol of A + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in] bias the bias + * @param[in,out] pOut pointer to output + * @return The function returns the incremented output pointer + * + * @details + * + * This function assumes that data in pInBuffer are reordered + */ + +q7_t *arm_nn_mat_mult_kernel_q7_q15_reordered(const q7_t * pA, + const q15_t * pInBuffer, + const uint16_t ch_im_out, + const uint16_t numCol_A, + const uint16_t bias_shift, + const uint16_t out_shift, + const q7_t * bias, + q7_t * pOut) +{ + +#if defined (ARM_MATH_DSP) + /* set up the second output pointers */ + q7_t *pOut2 = pOut + ch_im_out; + int i; + + /* this loop over rows in A */ + for (i = 0; i < ch_im_out; i += 2) + { + /* setup pointers for B */ + const q15_t *pB = pInBuffer; + const q15_t *pB2 = pB + numCol_A; + + /* align the second pointer for A */ + const q7_t *pA2 = pA + numCol_A; + + /* init the sum with bias */ + q31_t sum = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift); + q31_t sum2 = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift); + q31_t sum3 = ((q31_t)(bias[i + 1]) << bias_shift) + NN_ROUND(out_shift); + q31_t sum4 = ((q31_t)(bias[i + 1]) << bias_shift) + NN_ROUND(out_shift); + + uint16_t colCnt = numCol_A >> 2; + /* accumulate over the vector */ + while (colCnt) + { + q31_t inA11, inA12, inA21, inA22; + q31_t inB1 = *__SIMD32(pB)++; + q31_t inB2 = *__SIMD32(pB2)++; + + pA = (q7_t *) read_and_pad_reordered((void *)pA, &inA11, &inA12); + pA2 = (q7_t *) read_and_pad_reordered((void *)pA2, &inA21, &inA22); + + sum = __SMLAD(inA11, inB1, sum); + sum2 = __SMLAD(inA11, inB2, sum2); + sum3 = __SMLAD(inA21, inB1, sum3); + sum4 = __SMLAD(inA21, inB2, sum4); + + inB1 = *__SIMD32(pB)++; + inB2 = *__SIMD32(pB2)++; + + sum = __SMLAD(inA12, inB1, sum); + sum2 = __SMLAD(inA12, inB2, sum2); + sum3 = __SMLAD(inA22, inB1, sum3); + sum4 = __SMLAD(inA22, inB2, sum4); + + colCnt--; + } /* while over colCnt */ + colCnt = numCol_A & 0x3; + while (colCnt) + { + q7_t inA1 = *pA++; + q15_t inB1 = *pB++; + q7_t inA2 = *pA2++; + q15_t inB2 = *pB2++; + + sum += inA1 * inB1; + sum2 += inA1 * inB2; + sum3 += inA2 * inB1; + sum4 += inA2 * inB2; + colCnt--; + } /* while over colCnt */ + *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8); + *pOut++ = (q7_t) __SSAT((sum3 >> out_shift), 8); + *pOut2++ = (q7_t) __SSAT((sum2 >> out_shift), 8); + *pOut2++ = (q7_t) __SSAT((sum4 >> out_shift), 8); + + /* skip the row computed with A2 */ + pA += numCol_A; + } /* for over ch_im_out */ + + pOut += ch_im_out; + + /* return the new output pointer with offset */ + return pOut; +#else + /* To be completed */ + return NULL; +#endif /* ARM_MATH_DSP */ +} -- cgit