From 6ab94e0b318884bbcb95e2ea3835f951502e1d99 Mon Sep 17 00:00:00 2001 From: jaseg Date: Wed, 14 Oct 2020 12:47:28 +0200 Subject: Move firmware into subdirectory --- .../Source/MatrixFunctions/arm_mat_mult_fast_q31.c | 384 +++++++++++++++++++++ 1 file changed, 384 insertions(+) create mode 100644 fw/midi-dials/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_fast_q31.c (limited to 'fw/midi-dials/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_fast_q31.c') diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_fast_q31.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_fast_q31.c new file mode 100644 index 0000000..bff3177 --- /dev/null +++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_fast_q31.c @@ -0,0 +1,384 @@ +/* ---------------------------------------------------------------------- + * Project: CMSIS DSP Library + * Title: arm_mat_mult_fast_q31.c + * Description: Q31 matrix multiplication (fast variant) + * + * $Date: 27. January 2017 + * $Revision: V.1.5.1 + * + * Target Processor: Cortex-M cores + * -------------------------------------------------------------------- */ +/* + * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "arm_math.h" + +/** + * @ingroup groupMatrix + */ + +/** + * @addtogroup MatrixMult + * @{ + */ + +/** + * @brief Q31 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4 + * @param[in] *pSrcA points to the first input matrix structure + * @param[in] *pSrcB points to the second input matrix structure + * @param[out] *pDst points to output matrix structure + * @return The function returns either + * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking. + * + * @details + * Scaling and Overflow Behavior: + * + * \par + * The difference between the function arm_mat_mult_q31() and this fast variant is that + * the fast variant use a 32-bit rather than a 64-bit accumulator. + * The result of each 1.31 x 1.31 multiplication is truncated to + * 2.30 format. These intermediate results are accumulated in a 32-bit register in 2.30 + * format. Finally, the accumulator is saturated and converted to a 1.31 result. + * + * \par + * The fast version has the same overflow behavior as the standard version but provides + * less precision since it discards the low 32 bits of each multiplication result. + * In order to avoid overflows completely the input signals must be scaled down. + * Scale down one of the input matrices by log2(numColsA) bits to + * avoid overflows, as a total of numColsA additions are computed internally for each + * output element. + * + * \par + * See arm_mat_mult_q31() for a slower implementation of this function + * which uses 64-bit accumulation to provide higher precision. + */ + +arm_status arm_mat_mult_fast_q31( + const arm_matrix_instance_q31 * pSrcA, + const arm_matrix_instance_q31 * pSrcB, + arm_matrix_instance_q31 * pDst) +{ + q31_t *pInA = pSrcA->pData; /* input data matrix pointer A */ + q31_t *pInB = pSrcB->pData; /* input data matrix pointer B */ + q31_t *px; /* Temporary output data matrix pointer */ + q31_t sum; /* Accumulator */ + uint16_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */ + uint16_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */ + uint16_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */ + uint32_t col, i = 0U, j, row = numRowsA, colCnt; /* loop counters */ + arm_status status; /* status of matrix multiplication */ + q31_t inA1, inB1; + +#if defined (ARM_MATH_DSP) + + q31_t sum2, sum3, sum4; + q31_t inA2, inB2; + q31_t *pInA2; + q31_t *px2; + +#endif + +#ifdef ARM_MATH_MATRIX_CHECK + + /* Check for matrix mismatch condition */ + if ((pSrcA->numCols != pSrcB->numRows) || + (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols)) + { + /* Set status as ARM_MATH_SIZE_MISMATCH */ + status = ARM_MATH_SIZE_MISMATCH; + } + else +#endif /* #ifdef ARM_MATH_MATRIX_CHECK */ + + { + + px = pDst->pData; + +#if defined (ARM_MATH_DSP) + row = row >> 1; + px2 = px + numColsB; +#endif + + /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */ + /* row loop */ + while (row > 0U) + { + + /* For every row wise process, the column loop counter is to be initiated */ + col = numColsB; + + /* For every row wise process, the pIn2 pointer is set + ** to the starting address of the pSrcB data */ + pInB = pSrcB->pData; + + j = 0U; + +#if defined (ARM_MATH_DSP) + col = col >> 1; +#endif + + /* column loop */ + while (col > 0U) + { + /* Set the variable sum, that acts as accumulator, to zero */ + sum = 0; + + /* Initiate data pointers */ + pInA = pSrcA->pData + i; + pInB = pSrcB->pData + j; + +#if defined (ARM_MATH_DSP) + sum2 = 0; + sum3 = 0; + sum4 = 0; + pInA2 = pInA + numColsA; + colCnt = numColsA; +#else + colCnt = numColsA >> 2; +#endif + + /* matrix multiplication */ + while (colCnt > 0U) + { + +#if defined (ARM_MATH_DSP) + inA1 = *pInA++; + inB1 = pInB[0]; + inA2 = *pInA2++; + inB2 = pInB[1]; + pInB += numColsB; + + sum = __SMMLA(inA1, inB1, sum); + sum2 = __SMMLA(inA1, inB2, sum2); + sum3 = __SMMLA(inA2, inB1, sum3); + sum4 = __SMMLA(inA2, inB2, sum4); +#else + /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */ + /* Perform the multiply-accumulates */ + inB1 = *pInB; + pInB += numColsB; + inA1 = pInA[0]; + sum = __SMMLA(inA1, inB1, sum); + + inB1 = *pInB; + pInB += numColsB; + inA1 = pInA[1]; + sum = __SMMLA(inA1, inB1, sum); + + inB1 = *pInB; + pInB += numColsB; + inA1 = pInA[2]; + sum = __SMMLA(inA1, inB1, sum); + + inB1 = *pInB; + pInB += numColsB; + inA1 = pInA[3]; + sum = __SMMLA(inA1, inB1, sum); + + pInA += 4U; +#endif + + /* Decrement the loop counter */ + colCnt--; + } + +#ifdef ARM_MATH_CM0_FAMILY + /* If the columns of pSrcA is not a multiple of 4, compute any remaining output samples here. */ + colCnt = numColsA % 0x4U; + while (colCnt > 0U) + { + sum = __SMMLA(*pInA++, *pInB, sum); + pInB += numColsB; + colCnt--; + } + j++; +#endif + + /* Convert the result from 2.30 to 1.31 format and store in destination buffer */ + *px++ = sum << 1; + +#if defined (ARM_MATH_DSP) + *px++ = sum2 << 1; + *px2++ = sum3 << 1; + *px2++ = sum4 << 1; + j += 2; +#endif + + /* Decrement the column loop counter */ + col--; + + } + + i = i + numColsA; + +#if defined (ARM_MATH_DSP) + i = i + numColsA; + px = px2 + (numColsB & 1U); + px2 = px + numColsB; +#endif + + /* Decrement the row loop counter */ + row--; + + } + + /* Compute any remaining odd row/column below */ + +#if defined (ARM_MATH_DSP) + + /* Compute remaining output column */ + if (numColsB & 1U) { + + /* Avoid redundant computation of last element */ + row = numRowsA & (~0x1); + + /* Point to remaining unfilled column in output matrix */ + px = pDst->pData+numColsB-1; + pInA = pSrcA->pData; + + /* row loop */ + while (row > 0) + { + + /* point to last column in matrix B */ + pInB = pSrcB->pData + numColsB-1; + + /* Set the variable sum, that acts as accumulator, to zero */ + sum = 0; + + /* Compute 4 columns at once */ + colCnt = numColsA >> 2; + + /* matrix multiplication */ + while (colCnt > 0U) + { + inA1 = *pInA++; + inA2 = *pInA++; + inB1 = *pInB; + pInB += numColsB; + inB2 = *pInB; + pInB += numColsB; + sum = __SMMLA(inA1, inB1, sum); + sum = __SMMLA(inA2, inB2, sum); + + inA1 = *pInA++; + inA2 = *pInA++; + inB1 = *pInB; + pInB += numColsB; + inB2 = *pInB; + pInB += numColsB; + sum = __SMMLA(inA1, inB1, sum); + sum = __SMMLA(inA2, inB2, sum); + + /* Decrement the loop counter */ + colCnt--; + } + + colCnt = numColsA & 3U; + while (colCnt > 0U) { + sum = __SMMLA(*pInA++, *pInB, sum); + pInB += numColsB; + colCnt--; + } + + /* Convert the result from 2.30 to 1.31 format and store in destination buffer */ + *px = sum << 1; + px += numColsB; + + /* Decrement the row loop counter */ + row--; + } + } + + /* Compute remaining output row */ + if (numRowsA & 1U) { + + /* point to last row in output matrix */ + px = pDst->pData+(numColsB)*(numRowsA-1); + + col = numColsB; + i = 0U; + + /* col loop */ + while (col > 0) + { + + /* point to last row in matrix A */ + pInA = pSrcA->pData + (numRowsA-1)*numColsA; + pInB = pSrcB->pData + i; + + /* Set the variable sum, that acts as accumulator, to zero */ + sum = 0; + + /* Compute 4 columns at once */ + colCnt = numColsA >> 2; + + /* matrix multiplication */ + while (colCnt > 0U) + { + inA1 = *pInA++; + inA2 = *pInA++; + inB1 = *pInB; + pInB += numColsB; + inB2 = *pInB; + pInB += numColsB; + sum = __SMMLA(inA1, inB1, sum); + sum = __SMMLA(inA2, inB2, sum); + + inA1 = *pInA++; + inA2 = *pInA++; + inB1 = *pInB; + pInB += numColsB; + inB2 = *pInB; + pInB += numColsB; + sum = __SMMLA(inA1, inB1, sum); + sum = __SMMLA(inA2, inB2, sum); + + /* Decrement the loop counter */ + colCnt--; + } + + colCnt = numColsA & 3U; + while (colCnt > 0U) { + sum = __SMMLA(*pInA++, *pInB, sum); + pInB += numColsB; + colCnt--; + } + + /* Saturate and store the result in the destination buffer */ + *px++ = sum << 1; + i++; + + /* Decrement the col loop counter */ + col--; + } + } + +#endif /* #if defined (ARM_MATH_DSP) */ + + /* set status as ARM_MATH_SUCCESS */ + status = ARM_MATH_SUCCESS; + } + + /* Return to application */ + return (status); +} + +/** + * @} end of MatrixMult group + */ -- cgit