From 6ab94e0b318884bbcb95e2ea3835f951502e1d99 Mon Sep 17 00:00:00 2001 From: jaseg Date: Wed, 14 Oct 2020 12:47:28 +0200 Subject: Move firmware into subdirectory --- .../FilteringFunctions/arm_conv_partial_q7.c | 750 +++++++++++++++++++++ 1 file changed, 750 insertions(+) create mode 100644 fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_partial_q7.c (limited to 'fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_partial_q7.c') diff --git a/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_partial_q7.c b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_partial_q7.c new file mode 100644 index 0000000..cb4c562 --- /dev/null +++ b/fw/midi-dials/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_conv_partial_q7.c @@ -0,0 +1,750 @@ +/* ---------------------------------------------------------------------- + * Project: CMSIS DSP Library + * Title: arm_conv_partial_q7.c + * Description: Partial convolution of Q7 sequences + * + * $Date: 27. January 2017 + * $Revision: V.1.5.1 + * + * Target Processor: Cortex-M cores + * -------------------------------------------------------------------- */ +/* + * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "arm_math.h" + +/** + * @ingroup groupFilters + */ + +/** + * @addtogroup PartialConv + * @{ + */ + +/** + * @brief Partial convolution of Q7 sequences. + * @param[in] *pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] *pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] *pDst points to the location where the output result is written. + * @param[in] firstIndex is the first output sample to start with. + * @param[in] numPoints is the number of output points to be computed. + * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. + * + * \par + * Refer the function arm_conv_partial_opt_q7() for a faster implementation of this function. + * + */ + +arm_status arm_conv_partial_q7( + q7_t * pSrcA, + uint32_t srcALen, + q7_t * pSrcB, + uint32_t srcBLen, + q7_t * pDst, + uint32_t firstIndex, + uint32_t numPoints) +{ + + +#if defined (ARM_MATH_DSP) + + /* Run the below code for Cortex-M4 and Cortex-M3 */ + + q7_t *pIn1; /* inputA pointer */ + q7_t *pIn2; /* inputB pointer */ + q7_t *pOut = pDst; /* output pointer */ + q7_t *px; /* Intermediate inputA pointer */ + q7_t *py; /* Intermediate inputB pointer */ + q7_t *pSrc1, *pSrc2; /* Intermediate pointers */ + q31_t sum, acc0, acc1, acc2, acc3; /* Accumulator */ + q31_t input1, input2; + q15_t in1, in2; + q7_t x0, x1, x2, x3, c0, c1; + uint32_t j, k, count, check, blkCnt; + int32_t blockSize1, blockSize2, blockSize3; /* loop counter */ + arm_status status; + + + /* Check for range of output samples to be calculated */ + if ((firstIndex + numPoints) > ((srcALen + (srcBLen - 1U)))) + { + /* Set status as ARM_MATH_ARGUMENT_ERROR */ + status = ARM_MATH_ARGUMENT_ERROR; + } + else + { + + /* The algorithm implementation is based on the lengths of the inputs. */ + /* srcB is always made to slide across srcA. */ + /* So srcBLen is always considered as shorter or equal to srcALen */ + if (srcALen >= srcBLen) + { + /* Initialization of inputA pointer */ + pIn1 = pSrcA; + + /* Initialization of inputB pointer */ + pIn2 = pSrcB; + } + else + { + /* Initialization of inputA pointer */ + pIn1 = pSrcB; + + /* Initialization of inputB pointer */ + pIn2 = pSrcA; + + /* srcBLen is always considered as shorter or equal to srcALen */ + j = srcBLen; + srcBLen = srcALen; + srcALen = j; + } + + /* Conditions to check which loopCounter holds + * the first and last indices of the output samples to be calculated. */ + check = firstIndex + numPoints; + blockSize3 = ((int32_t)check > (int32_t)srcALen) ? (int32_t)check - (int32_t)srcALen : 0; + blockSize3 = ((int32_t)firstIndex > (int32_t)srcALen - 1) ? blockSize3 - (int32_t)firstIndex + (int32_t)srcALen : blockSize3; + blockSize1 = (((int32_t) srcBLen - 1) - (int32_t) firstIndex); + blockSize1 = (blockSize1 > 0) ? ((check > (srcBLen - 1U)) ? blockSize1 : + (int32_t) numPoints) : 0; + blockSize2 = (int32_t) check - ((blockSize3 + blockSize1) + + (int32_t) firstIndex); + blockSize2 = (blockSize2 > 0) ? blockSize2 : 0; + + /* conv(x,y) at n = x[n] * y[0] + x[n-1] * y[1] + x[n-2] * y[2] + ...+ x[n-N+1] * y[N -1] */ + /* The function is internally + * divided into three stages according to the number of multiplications that has to be + * taken place between inputA samples and inputB samples. In the first stage of the + * algorithm, the multiplications increase by one for every iteration. + * In the second stage of the algorithm, srcBLen number of multiplications are done. + * In the third stage of the algorithm, the multiplications decrease by one + * for every iteration. */ + + /* Set the output pointer to point to the firstIndex + * of the output sample to be calculated. */ + pOut = pDst + firstIndex; + + /* -------------------------- + * Initializations of stage1 + * -------------------------*/ + + /* sum = x[0] * y[0] + * sum = x[0] * y[1] + x[1] * y[0] + * .... + * sum = x[0] * y[srcBlen - 1] + x[1] * y[srcBlen - 2] +...+ x[srcBLen - 1] * y[0] + */ + + /* In this stage the MAC operations are increased by 1 for every iteration. + The count variable holds the number of MAC operations performed. + Since the partial convolution starts from from firstIndex + Number of Macs to be performed is firstIndex + 1 */ + count = 1U + firstIndex; + + /* Working pointer of inputA */ + px = pIn1; + + /* Working pointer of inputB */ + pSrc2 = pIn2 + firstIndex; + py = pSrc2; + + /* ------------------------ + * Stage1 process + * ----------------------*/ + + /* The first stage starts here */ + while (blockSize1 > 0) + { + /* Accumulator is made zero for every iteration */ + sum = 0; + + /* Apply loop unrolling and compute 4 MACs simultaneously. */ + k = count >> 2U; + + /* First part of the processing with loop unrolling. Compute 4 MACs at a time. + ** a second loop below computes MACs for the remaining 1 to 3 samples. */ + while (k > 0U) + { + /* x[0] , x[1] */ + in1 = (q15_t) * px++; + in2 = (q15_t) * px++; + input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16); + + /* y[srcBLen - 1] , y[srcBLen - 2] */ + in1 = (q15_t) * py--; + in2 = (q15_t) * py--; + input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16); + + /* x[0] * y[srcBLen - 1] */ + /* x[1] * y[srcBLen - 2] */ + sum = __SMLAD(input1, input2, sum); + + /* x[2] , x[3] */ + in1 = (q15_t) * px++; + in2 = (q15_t) * px++; + input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16); + + /* y[srcBLen - 3] , y[srcBLen - 4] */ + in1 = (q15_t) * py--; + in2 = (q15_t) * py--; + input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16); + + /* x[2] * y[srcBLen - 3] */ + /* x[3] * y[srcBLen - 4] */ + sum = __SMLAD(input1, input2, sum); + + /* Decrement the loop counter */ + k--; + } + + /* If the count is not a multiple of 4, compute any remaining MACs here. + ** No loop unrolling is used. */ + k = count % 0x4U; + + while (k > 0U) + { + /* Perform the multiply-accumulates */ + sum += ((q31_t) * px++ * *py--); + + /* Decrement the loop counter */ + k--; + } + + /* Store the result in the accumulator in the destination buffer. */ + *pOut++ = (q7_t) (__SSAT(sum >> 7, 8)); + + /* Update the inputA and inputB pointers for next MAC calculation */ + py = ++pSrc2; + px = pIn1; + + /* Increment the MAC count */ + count++; + + /* Decrement the loop counter */ + blockSize1--; + } + + /* -------------------------- + * Initializations of stage2 + * ------------------------*/ + + /* sum = x[0] * y[srcBLen-1] + x[1] * y[srcBLen-2] +...+ x[srcBLen-1] * y[0] + * sum = x[1] * y[srcBLen-1] + x[2] * y[srcBLen-2] +...+ x[srcBLen] * y[0] + * .... + * sum = x[srcALen-srcBLen-2] * y[srcBLen-1] + x[srcALen] * y[srcBLen-2] +...+ x[srcALen-1] * y[0] + */ + + /* Working pointer of inputA */ + if ((int32_t)firstIndex - (int32_t)srcBLen + 1 > 0) + { + px = pIn1 + firstIndex - srcBLen + 1; + } + else + { + px = pIn1; + } + + /* Working pointer of inputB */ + pSrc2 = pIn2 + (srcBLen - 1U); + py = pSrc2; + + /* count is index by which the pointer pIn1 to be incremented */ + count = 0U; + + /* ------------------- + * Stage2 process + * ------------------*/ + + /* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed. + * So, to loop unroll over blockSize2, + * srcBLen should be greater than or equal to 4 */ + if (srcBLen >= 4U) + { + /* Loop unroll over blockSize2, by 4 */ + blkCnt = ((uint32_t) blockSize2 >> 2U); + + while (blkCnt > 0U) + { + /* Set all accumulators to zero */ + acc0 = 0; + acc1 = 0; + acc2 = 0; + acc3 = 0; + + /* read x[0], x[1], x[2] samples */ + x0 = *(px++); + x1 = *(px++); + x2 = *(px++); + + /* Apply loop unrolling and compute 4 MACs simultaneously. */ + k = srcBLen >> 2U; + + /* First part of the processing with loop unrolling. Compute 4 MACs at a time. + ** a second loop below computes MACs for the remaining 1 to 3 samples. */ + do + { + /* Read y[srcBLen - 1] sample */ + c0 = *(py--); + /* Read y[srcBLen - 2] sample */ + c1 = *(py--); + + /* Read x[3] sample */ + x3 = *(px++); + + /* x[0] and x[1] are packed */ + in1 = (q15_t) x0; + in2 = (q15_t) x1; + + input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16); + + /* y[srcBLen - 1] and y[srcBLen - 2] are packed */ + in1 = (q15_t) c0; + in2 = (q15_t) c1; + + input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16); + + /* acc0 += x[0] * y[srcBLen - 1] + x[1] * y[srcBLen - 2] */ + acc0 = __SMLAD(input1, input2, acc0); + + /* x[1] and x[2] are packed */ + in1 = (q15_t) x1; + in2 = (q15_t) x2; + + input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16); + + /* acc1 += x[1] * y[srcBLen - 1] + x[2] * y[srcBLen - 2] */ + acc1 = __SMLAD(input1, input2, acc1); + + /* x[2] and x[3] are packed */ + in1 = (q15_t) x2; + in2 = (q15_t) x3; + + input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16); + + /* acc2 += x[2] * y[srcBLen - 1] + x[3] * y[srcBLen - 2] */ + acc2 = __SMLAD(input1, input2, acc2); + + /* Read x[4] sample */ + x0 = *(px++); + + /* x[3] and x[4] are packed */ + in1 = (q15_t) x3; + in2 = (q15_t) x0; + + input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16); + + /* acc3 += x[3] * y[srcBLen - 1] + x[4] * y[srcBLen - 2] */ + acc3 = __SMLAD(input1, input2, acc3); + + /* Read y[srcBLen - 3] sample */ + c0 = *(py--); + /* Read y[srcBLen - 4] sample */ + c1 = *(py--); + + /* Read x[5] sample */ + x1 = *(px++); + + /* x[2] and x[3] are packed */ + in1 = (q15_t) x2; + in2 = (q15_t) x3; + + input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16); + + /* y[srcBLen - 3] and y[srcBLen - 4] are packed */ + in1 = (q15_t) c0; + in2 = (q15_t) c1; + + input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16); + + /* acc0 += x[2] * y[srcBLen - 3] + x[3] * y[srcBLen - 4] */ + acc0 = __SMLAD(input1, input2, acc0); + + /* x[3] and x[4] are packed */ + in1 = (q15_t) x3; + in2 = (q15_t) x0; + + input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16); + + /* acc1 += x[3] * y[srcBLen - 3] + x[4] * y[srcBLen - 4] */ + acc1 = __SMLAD(input1, input2, acc1); + + /* x[4] and x[5] are packed */ + in1 = (q15_t) x0; + in2 = (q15_t) x1; + + input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16); + + /* acc2 += x[4] * y[srcBLen - 3] + x[5] * y[srcBLen - 4] */ + acc2 = __SMLAD(input1, input2, acc2); + + /* Read x[6] sample */ + x2 = *(px++); + + /* x[5] and x[6] are packed */ + in1 = (q15_t) x1; + in2 = (q15_t) x2; + + input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16); + + /* acc3 += x[5] * y[srcBLen - 3] + x[6] * y[srcBLen - 4] */ + acc3 = __SMLAD(input1, input2, acc3); + + } while (--k); + + /* If the srcBLen is not a multiple of 4, compute any remaining MACs here. + ** No loop unrolling is used. */ + k = srcBLen % 0x4U; + + while (k > 0U) + { + /* Read y[srcBLen - 5] sample */ + c0 = *(py--); + + /* Read x[7] sample */ + x3 = *(px++); + + /* Perform the multiply-accumulates */ + /* acc0 += x[4] * y[srcBLen - 5] */ + acc0 += ((q31_t) x0 * c0); + /* acc1 += x[5] * y[srcBLen - 5] */ + acc1 += ((q31_t) x1 * c0); + /* acc2 += x[6] * y[srcBLen - 5] */ + acc2 += ((q31_t) x2 * c0); + /* acc3 += x[7] * y[srcBLen - 5] */ + acc3 += ((q31_t) x3 * c0); + + /* Reuse the present samples for the next MAC */ + x0 = x1; + x1 = x2; + x2 = x3; + + /* Decrement the loop counter */ + k--; + } + + /* Store the result in the accumulator in the destination buffer. */ + *pOut++ = (q7_t) (__SSAT(acc0 >> 7, 8)); + *pOut++ = (q7_t) (__SSAT(acc1 >> 7, 8)); + *pOut++ = (q7_t) (__SSAT(acc2 >> 7, 8)); + *pOut++ = (q7_t) (__SSAT(acc3 >> 7, 8)); + + /* Increment the pointer pIn1 index, count by 4 */ + count += 4U; + + /* Update the inputA and inputB pointers for next MAC calculation */ + if ((int32_t)firstIndex - (int32_t)srcBLen + 1 > 0) + { + px = pIn1 + firstIndex - srcBLen + 1 + count; + } + else + { + px = pIn1 + count; + } + py = pSrc2; + + + /* Decrement the loop counter */ + blkCnt--; + } + + /* If the blockSize2 is not a multiple of 4, compute any remaining output samples here. + ** No loop unrolling is used. */ + blkCnt = (uint32_t) blockSize2 % 0x4U; + + while (blkCnt > 0U) + { + /* Accumulator is made zero for every iteration */ + sum = 0; + + /* Apply loop unrolling and compute 4 MACs simultaneously. */ + k = srcBLen >> 2U; + + /* First part of the processing with loop unrolling. Compute 4 MACs at a time. + ** a second loop below computes MACs for the remaining 1 to 3 samples. */ + while (k > 0U) + { + + /* Reading two inputs of SrcA buffer and packing */ + in1 = (q15_t) * px++; + in2 = (q15_t) * px++; + input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16); + + /* Reading two inputs of SrcB buffer and packing */ + in1 = (q15_t) * py--; + in2 = (q15_t) * py--; + input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16); + + /* Perform the multiply-accumulates */ + sum = __SMLAD(input1, input2, sum); + + /* Reading two inputs of SrcA buffer and packing */ + in1 = (q15_t) * px++; + in2 = (q15_t) * px++; + input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16); + + /* Reading two inputs of SrcB buffer and packing */ + in1 = (q15_t) * py--; + in2 = (q15_t) * py--; + input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16); + + /* Perform the multiply-accumulates */ + sum = __SMLAD(input1, input2, sum); + + /* Decrement the loop counter */ + k--; + } + + /* If the srcBLen is not a multiple of 4, compute any remaining MACs here. + ** No loop unrolling is used. */ + k = srcBLen % 0x4U; + + while (k > 0U) + { + /* Perform the multiply-accumulates */ + sum += ((q31_t) * px++ * *py--); + + /* Decrement the loop counter */ + k--; + } + + /* Store the result in the accumulator in the destination buffer. */ + *pOut++ = (q7_t) (__SSAT(sum >> 7, 8)); + + /* Increment the pointer pIn1 index, count by 1 */ + count++; + + /* Update the inputA and inputB pointers for next MAC calculation */ + if ((int32_t)firstIndex - (int32_t)srcBLen + 1 > 0) + { + px = pIn1 + firstIndex - srcBLen + 1 + count; + } + else + { + px = pIn1 + count; + } + py = pSrc2; + + /* Decrement the loop counter */ + blkCnt--; + } + } + else + { + /* If the srcBLen is not a multiple of 4, + * the blockSize2 loop cannot be unrolled by 4 */ + blkCnt = (uint32_t) blockSize2; + + while (blkCnt > 0U) + { + /* Accumulator is made zero for every iteration */ + sum = 0; + + /* srcBLen number of MACS should be performed */ + k = srcBLen; + + while (k > 0U) + { + /* Perform the multiply-accumulate */ + sum += ((q31_t) * px++ * *py--); + + /* Decrement the loop counter */ + k--; + } + + /* Store the result in the accumulator in the destination buffer. */ + *pOut++ = (q7_t) (__SSAT(sum >> 7, 8)); + + /* Increment the MAC count */ + count++; + + /* Update the inputA and inputB pointers for next MAC calculation */ + if ((int32_t)firstIndex - (int32_t)srcBLen + 1 > 0) + { + px = pIn1 + firstIndex - srcBLen + 1 + count; + } + else + { + px = pIn1 + count; + } + py = pSrc2; + + /* Decrement the loop counter */ + blkCnt--; + } + } + + + /* -------------------------- + * Initializations of stage3 + * -------------------------*/ + + /* sum += x[srcALen-srcBLen+1] * y[srcBLen-1] + x[srcALen-srcBLen+2] * y[srcBLen-2] +...+ x[srcALen-1] * y[1] + * sum += x[srcALen-srcBLen+2] * y[srcBLen-1] + x[srcALen-srcBLen+3] * y[srcBLen-2] +...+ x[srcALen-1] * y[2] + * .... + * sum += x[srcALen-2] * y[srcBLen-1] + x[srcALen-1] * y[srcBLen-2] + * sum += x[srcALen-1] * y[srcBLen-1] + */ + + /* In this stage the MAC operations are decreased by 1 for every iteration. + The count variable holds the number of MAC operations performed */ + count = srcBLen - 1U; + + /* Working pointer of inputA */ + pSrc1 = (pIn1 + srcALen) - (srcBLen - 1U); + px = pSrc1; + + /* Working pointer of inputB */ + pSrc2 = pIn2 + (srcBLen - 1U); + py = pSrc2; + + /* ------------------- + * Stage3 process + * ------------------*/ + + while (blockSize3 > 0) + { + /* Accumulator is made zero for every iteration */ + sum = 0; + + /* Apply loop unrolling and compute 4 MACs simultaneously. */ + k = count >> 2U; + + /* First part of the processing with loop unrolling. Compute 4 MACs at a time. + ** a second loop below computes MACs for the remaining 1 to 3 samples. */ + while (k > 0U) + { + /* Reading two inputs, x[srcALen - srcBLen + 1] and x[srcALen - srcBLen + 2] of SrcA buffer and packing */ + in1 = (q15_t) * px++; + in2 = (q15_t) * px++; + input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16); + + /* Reading two inputs, y[srcBLen - 1] and y[srcBLen - 2] of SrcB buffer and packing */ + in1 = (q15_t) * py--; + in2 = (q15_t) * py--; + input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16); + + /* sum += x[srcALen - srcBLen + 1] * y[srcBLen - 1] */ + /* sum += x[srcALen - srcBLen + 2] * y[srcBLen - 2] */ + sum = __SMLAD(input1, input2, sum); + + /* Reading two inputs, x[srcALen - srcBLen + 3] and x[srcALen - srcBLen + 4] of SrcA buffer and packing */ + in1 = (q15_t) * px++; + in2 = (q15_t) * px++; + input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16); + + /* Reading two inputs, y[srcBLen - 3] and y[srcBLen - 4] of SrcB buffer and packing */ + in1 = (q15_t) * py--; + in2 = (q15_t) * py--; + input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16); + + /* sum += x[srcALen - srcBLen + 3] * y[srcBLen - 3] */ + /* sum += x[srcALen - srcBLen + 4] * y[srcBLen - 4] */ + sum = __SMLAD(input1, input2, sum); + + /* Decrement the loop counter */ + k--; + } + + /* If the count is not a multiple of 4, compute any remaining MACs here. + ** No loop unrolling is used. */ + k = count % 0x4U; + + while (k > 0U) + { + /* Perform the multiply-accumulates */ + /* sum += x[srcALen-1] * y[srcBLen-1] */ + sum += ((q31_t) * px++ * *py--); + + /* Decrement the loop counter */ + k--; + } + + /* Store the result in the accumulator in the destination buffer. */ + *pOut++ = (q7_t) (__SSAT(sum >> 7, 8)); + + /* Update the inputA and inputB pointers for next MAC calculation */ + px = ++pSrc1; + py = pSrc2; + + /* Decrement the MAC count */ + count--; + + /* Decrement the loop counter */ + blockSize3--; + + } + + /* set status as ARM_MATH_SUCCESS */ + status = ARM_MATH_SUCCESS; + } + + /* Return to application */ + return (status); + +#else + + /* Run the below code for Cortex-M0 */ + + q7_t *pIn1 = pSrcA; /* inputA pointer */ + q7_t *pIn2 = pSrcB; /* inputB pointer */ + q31_t sum; /* Accumulator */ + uint32_t i, j; /* loop counters */ + arm_status status; /* status of Partial convolution */ + + /* Check for range of output samples to be calculated */ + if ((firstIndex + numPoints) > ((srcALen + (srcBLen - 1U)))) + { + /* Set status as ARM_ARGUMENT_ERROR */ + status = ARM_MATH_ARGUMENT_ERROR; + } + else + { + /* Loop to calculate convolution for output length number of values */ + for (i = firstIndex; i <= (firstIndex + numPoints - 1); i++) + { + /* Initialize sum with zero to carry on MAC operations */ + sum = 0; + + /* Loop to perform MAC operations according to convolution equation */ + for (j = 0; j <= i; j++) + { + /* Check the array limitations */ + if (((i - j) < srcBLen) && (j < srcALen)) + { + /* z[i] += x[i-j] * y[j] */ + sum += ((q15_t) pIn1[j] * (pIn2[i - j])); + } + } + + /* Store the output in the destination buffer */ + pDst[i] = (q7_t) __SSAT((sum >> 7U), 8U); + } + /* set status as ARM_SUCCESS as there are no argument errors */ + status = ARM_MATH_SUCCESS; + } + return (status); + +#endif /* #if defined (ARM_MATH_DSP) */ + +} + +/** + * @} end of PartialConv group + */ -- cgit